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We numerically investigate the dynamics of entanglement in a chain of spinless fermions with nonrandom but
long-range hopping and interactions, and with random on-site energies. For moderate disorder in the absence of
interactions, the chain hosts delocalized states at the top of the band which undergo a delocalization-localization
transition with increasing disorder. We find an interesting regime in this noninteracting disordered chain where
the long-time entanglement entropy scales as S(t) ∼ ln t and the saturated entanglement entropy scales with
system size L as S(L,t → ∞) ∼ ln L. We further study the interplay of long-range hopping and interactions
on the growth of entanglement and the many-body localization (MBL) transition in this system. We develop an
analogy to higher-dimensional short-range systems to compare and contrast such behavior with the physics of
MBL in a higher dimension.
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I. INTRODUCTION

Recent studies of the time evolution (dynamics) of en-
tanglement after a global quench from a product state in
various disordered quantum systems have enriched our un-
derstanding of the physics of localization [1–9]. For example,
dynamics of entanglement shows different features in the
many-body localized (MBL) phase compared to the Anderson
localized (AL) phase, although dc-transport measurements
are insensitive to the difference between the two [3,10].
Dynamical entanglement also changes its nature across the
transition between a delocalized and an MBL phase of a
disordered interacting quantum system, thereby providing a
tool to separate the MBL phase from the noninteracting AL
and interacting delocalized phases [2,3,7].

Dynamics of entanglement has been investigated in generic
noninteracting and interacting disordered systems, both critical
and noncritical [1–9]. The XX spin chain (equivalent to the
fermionic Anderson tight-binding model [11]) with random
external field (i.e., potential disorder) is an example of a non-
critical disordered system where all eigenstates are localized in
the thermodynamic limit. The transverse-field Ising chain and
the XX spin chain with bond disorder are critical disordered
one-dimensional (1D) systems which show a delocalization
transition as a function of eigenstate energy [12,13].

A typical measure of entanglement in these systems is the
entanglement entropy defined as the von Neumann entropy of
a subsystem for which we divide the 1D system into two equal
parts (say A and B) of length L/2. For a wave function |ψ(t)〉
of the total system, the von Neumann entropy of subsystem A

is given by

S(t) = −TrAρA(t) ln ρA(t), (1)

where ρA(t) = TrB |ψ(t)〉〈ψ(t)| is the reduced density matrix
of the subsystem A at time t .

For the noncritical disordered noninteracting models of
length L when the localization length ξ � L/2 for weak
disorder, the entanglement S(t) grows linearly in time t for

vt < L/2 (where v is a characteristic velocity [14]), and
saturates to an extensive value showing a volume law for
vt � L/2. Thus, the nature of entanglement dynamics in
the weak disorder regime is similar to the clean case for
small system sizes. For relatively stronger disorder when
ξ � L, the initial growth of S(t) until vt ∼ ξ roughly follows
a power law with an exponent smaller than 1, and the
saturated entanglement entropy at long times can be fitted
as S(L,t → ∞) ≡ S∞ ∝ exp(−L/2ξ ) which allows one to
obtain an estimate for ξ [8]. S(t) becomes independent of L

when ξ 
 L for strong disorder.
The dynamics of entanglement in critical disordered

noninteracting models is quite nontrivial [4,8]. In recent
years a generalized real-space renormalization group (RSRG)
approach including excited states has been applied to study
S(t) following a global quench in these models [5]. It has
been predicted from such studies of the critical XX spin
chains in the thermodynamic limit that (a) the long-time
growth of entanglement scales as S(t) ∼ ln(ln t), and (b) the
saturated entanglement at long times scales as S∞ ∼ ln L.
High-precision numerical calculations [8] have observed an
initial approximately logarithmic increase in S(t) which is
followed by S(t) ∼ ln(ln t) scaling over several orders of
magnitude in time. However, these numerical studies have
not found fully conclusive evidence for prediction (b). Earlier
numerical studies in the critical random transverse-field Ising
chain [4] have found a regime where long-time entanglement
S(t) ≈ 0.25 ln(ln t) + constant, and saturated entanglement
S∞ ≈ 0.173 ln L + constant, which are qualitatively consis-
tent with the generalized RSRG predictions for the critical XX
spin chains.

In the presence of interactions, these 1D models are
expected to show an MBL phase at higher disorder strengths,
and the prediction (a) for the asymptotic growth of entangle-
ment changes to S(t) ∼ ln t , while the prediction (b) for the
saturated entanglement is a volume law, S∞ ∼ L [3,5,7,8].
The dynamical entanglement entropy S∞ in the MBL phase is
much smaller than that in the interacting delocalized (thermal)
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phase, although both show a volume law. Some of the above
features in the MBL phase have been observed in the XXZ
spin chain with potential and bond disorders [3,7,8]. However,
it is still not clear if there would be any difference in S(t)
due to the absence or presence of an underlying single-particle
mobility edge [6,15]. The above results are based on many
recent studies with short-range hopping and interactions in 1D
disordered systems.

Although disordered models with long-range hopping and
interactions are very relevant for experiments with ions [16],
dipolar molecules in an optical lattice, and spin defects in a
solid-state system [17], entanglement dynamics in such models
has been relatively less investigated [6,18]. Another motivation
for exploring long-range models is their relation to the higher-
dimensional (D) ones. The nature of MBL in higher-D short-
range disordered models [19,20] is not yet clear as it is quite
difficult to simulate reasonably large system size on classical
computers. The long-range models in 1D can capture some
features of the higher-D short-range models, such as the growth
of the number of bonds with distance. It is thus interesting to
see to what extent increasing long-rangeness in such models
can be used to glean information on the effect of increasing
dimensionality in short-range models. In this work we consider
spinless fermions on a 1D lattice of L sites with long-range
hopping and interactions. The Hamiltonian is given by [21]

H = −
∑
i<j

Jij (c†i cj + c
†
j ci) +

∑
i<j

Uijninj −
∑

i

εini, (2)

where fermion occupation ni = c
†
i ci , Jij = J/|i − j |α, Uij =

U/|i − j |β, U > 0 for repulsive interactions and the εi’s are
chosen randomly from a uniform distribution [−η,η].

We numerically study the dynamics of entanglement in the
Hamiltonian in Eq. (2) for different values of α and β in the
absence and presence of interaction term Uij . In the absence of
interactions (Uij = 0), we observe that the scaling of long-time
growth of entanglement and saturated entanglement shows
interesting features for different α at relatively large disorder
strengths. In particular, we find a special value of α, αlog when
the long-time S(t) ∼ ln t and S∞ ∼ ln L. Also, the observed
L dependence of S∞ for smaller α is similar to that of the
higher-D AL phase in short-range systems.

We then study the effect of long-range interactions along
with long-range hopping on the growth of entanglement and
the MBL transition in this system. For the strongly disordered
interacting model, we find an intermediate regime in the
window 1 � α < 3 which shows a system-size-dependent
eigenstate entanglement and a strongly system-size-dependent
(likely a volume law) yet small value of S∞. Using an
analogy that smaller α corresponds to higher dimension in
short-range systems, we expect a higher-D MBL phase in
interacting short-range systems to show exactly the above
two behaviors. For α � 3 the effect of long-range hopping
is quite reduced, and we recover the well-known properties of
the (short-range) MBL phase in 1D such as slow growth in
long-time S(t).

The paper is organized as follows. In Sec. II we discuss the
system parameters as well as the dynamical properties of the
clean system, and provide some details of the simulations. We
study entanglement dynamics in the long-range noninteracting

model (LRNM) in the presence of strong disorder in Sec. III.
We present results from the simulations of the full model
with both long-range hopping and interactions in Sec. IV.
In Sec. V we explore the possibility of an analogy between
1D long-range models and higher-D short-range models and
discuss the properties of the MBL phase of the latter from
this perspective. We summarize our results with a phase
diagram in Sec. VI. We include four appendices: Appendix A
to present single-particle eigenstate properties of the LRNM,
Appendix B to compare the entanglement dynamics in the
LRNM to a short-range interacting model which displays
an MBL phase, Appendix C to show the level-spacing and
eigenstate thermalization in a long-range interacting model
and Appendix D to compare particle number fluctuations with
S(t) in the long-range interacting model.

II. SYSTEM AND SIMULATION DETAILS

For all physical systems, the exponents α and β in Eq. (2)
obey the constraint β � α, and if α = β,U � J [17,22] where
J > 0 without loss of generality, and the lattice constant is set
to unity. We also take α,β � 1 to ensure convergence of the
energy density in the thermodynamic limit. Some eigenstate
properties of the above model in the noninteracting limit (i.e.,
U = 0) have been studied earlier [23,24], and it has been
found from these analytical and numerical investigations that
the states at the top of the band (single-particle eigenstates
with highest energies) are delocalized at moderate disorder
strength (η ∼ J ) for α � αc with αc ≈ 1.5, and they undergo
a delocalization-localization transition as the strength of
disorder increases [23,25]. All states of the noninteracting
disordered chain are localized in the thermodynamic limit
when α > αc.

Following Buyskikh et al. [26], the dynamical behavior
of long-range models in the absence of disorder can be un-
derstood by analyzing the dispersion relation ε(k), maximum
group velocity vmax

g , and density of states in velocity Dv(k) near
vmax

g . Dv(k) is the number of states per volume with a velocity
between vg and vg + δvg . The dispersion of LRNM without
disorder is given by ε(k) = J

∑
n�=0

eikn

|n|α which scales for small

momenta as ε(k) ∼ ε0 + vkα−1 for 1 < α < 2. In this regime
1 < α < 2, the dispersion is bounded while the vmax

g ∼ dε(k)
dk

∼
kα−2 is unbounded (infinite) for k → 0. Also the density of
states in velocity Dv(k) ∼ | d2ε(k)

dk2 |−1 ∼ k3−α is suppressed in
this regime. As a result, even though correlations can build
instantly via infinite vmax

g through the entire system, overall
it grows slowly due to the collective effect of combination
vgDv(k) ∼ k for k → 0.

For α > 2, both the ε(k) and vmax
g are bounded in clean

LRNM but Dv(k) near vmax
g diverges. This implies that it is

possible to excite infinitely many quasiparticles propagating
with finite vmax

g , which in turn build a well-defined front of
entanglement for α > 2. We have confirmed the above features
of entanglement dynamics in LRNM in the absence of disorder
from our numerics. In this paper, we study how disorder
influences the above description of entanglement growth by
infinite and finite maximum group velocities for α < 2 and
α > 2 in the absence and presence of long-range interactions.
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Here we mostly focus on the dynamical properties of the
long-range system in Eq. (2), preparing it in a simple initial
state and evolving in time. Such simple initial states can be
considered as the ground state of an artificial Hamiltonian and
this initialization is commonly known as a global quench [3].
We use a charge density wave at half-filling as the initial
condition for all the results shown here. It is a state with one
fermion at every other site,

|ψ(t = 0)〉 =
L/2∏
i=1

c
†
2i |0〉, (3)

where |0〉 denotes the vacuum. We have also checked the
robustness of our results by using random half-filled states as
the initial condition. We show the results with open boundary
conditions, but we have verified that they are qualitatively
similar for periodic boundary conditions. Even though we
mostly present the results for entanglement entropy, we have
also calculated Renyi entropies and particle number fluctua-
tions F(t) in the system. F(t) is a measure of the quantum
fluctuations in total number of particles in a subsystem and is
given by

F(t) = 〈ψ(t)|N2
A|ψ(t)〉 − 〈ψ(t)|NA|ψ(t)〉2, (4)

where NA = ∑
i∈A c

†
i ci is total number of fermions in sub-

system A. While Renyi entropies and F(t) behave quali-
tatively similar to the entanglement for the noninteracting
system, interactions result in an important difference between
the entropies and F(t), which we discuss in Sec. IV and
Appendices B and D.

The time evolution for noninteracting fermions can be
simulated using correlation matrices [27], and we can simulate
reasonably long system sizes (up to L = 3200 here) as the
exact diagonalization is done for a single-particle problem. For
the interacting system we calculate the time evolution using
exact diagonalization of the full Hamiltonian. Particle number
conservation helps in reducing the size of the matrix slightly
and we can go up to L = 16 with lesser disorder averaging.
For the noninteracting case we perform an averaging of
S(t),F(t), single-particle level-spacing ratio r̃ and entan-
glement in eigenstates Se over 104, 5000, 500 realizations
for L � 400, L = 800,1600, L = 3200, respectively, whereas
for the interacting system this is done with 104, 103, 500
realizations for L � 12, L = 14, L = 16, respectively.

III. GLOBAL QUENCH IN THE LONG-RANGE
NONINTERACTING MODEL ( J �= 0, U = 0)

We first summarize the single-particle eigenstate properties
of the disordered LRNM from our studies of level statistics and
entanglement (see Appendix A). We confirm the presence of
delocalized states at the top of the band at moderate disorder
for α � αc with αc ≈ 1.5, and a delocalization-localization
transition with increasing η as predicted earlier in Rodrı́guez
et al. [23] and Balagurov et al. [24]. Other states in the band
of a long chain are localized even at relatively low disorder
for α � αc. On the other hand, all states of the noninteracting
chain for α > αc are localized at any disorder.

We now discuss the entanglement dynamics in the LRNM
at a strong disorder (η ≈ 20J ) when all the single-particle

FIG. 1. Time evolution of entanglement S(t) in the long-range
noninteracting model at different values of α for strong disorder
η ≈ 20J . The chain lengths L are 50,100,200, . . . ,1600 in all except
the middle row where L = 3200 is also included. The red dotted
straight line in the middle row is a guide to the eye for emphasizing
the logarithmic growth at α = 2 in the center.

eigenstates, including those at the top of the band, are
localized. In Fig. 1 we show S(t) for different α and chain
lengths. For smaller α, S(t) shows a rapid growth followed
by a L-dependent saturation (first row of Fig. 1). S(t) starts
to display a slow logarithmic growth after a short rapid
initial growth for α > αc. Around α = αlog = 2, S(t) grows
logarithmically for the longest time before saturating due to
finite-size effects. We highlight this very interesting feature at
α = 2 by comparing it to the growth at nearby values of α

(=1.75 and 2.25) in the middle row of Fig. 1. Although S(t)
at all three α’s appears to show a logarithmic growth in the
beginning, later it grows faster at α = 1.75, while it does so
more slowly at α = 2.25. The longest duration of logarithmic
growth at α = 2 can be qualitatively seen by comparing the
time evolution to the red (dashed) straight line in each subplot.
α = 2 is also special because only here does the saturated
entanglement scale as S∞ ∼ ln L (see below). Although the
slow logarithmic growth of S(t) at αlog in the LRNM is
somewhat similar to that in the MBL phase of a random XXZ
chain with nearest-neighbor interactions, there are some subtle
differences in the entanglement dynamics between these two
models which we discuss in Appendix B.

For α � 3, S(t) becomes independent of L, and only shows
a short early growth due to the movement of particles within
the localization length. The limit α → ∞ implies a short-range
model, which represents a 1D XX spin chain with potential
disorder (noncritical), and it shows an AL phase at any disorder
strength in the thermodynamic limit.

In Fig. 2 we show the L dependence of S∞ for different
values of α. For α < αlog, S∞ shows an algebraic dependence
on L (seen as straight lines on the log-log plot), while S∞
becomes independent of L for α � 3. S∞ scales as ln L at
αlog. We show the exponent γ of the algebraic L dependence
(i.e., S∞ ∼ Lγ ) as a function of α in the inset of Fig. 2(a).
The exponent γ falls with increasing α and is less than 1
in the window 1 � α < 3. We also show there the values of
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FIG. 2. System-size (L) dependence of asymptotic entanglement
(S∞) in the long-range noninteracting model at η ≈ 20J . S∞ shows
an algebraic dependence on L for smaller α, as shown by a log-log
plot in (a), while it grows as ln L at α = 2, highlighted by a log-linear
plot in (b). Different curves correspond to different values of α. In
the inset of (a) we show the exponent γ of algebraic L dependence
(S∞ ∼ Lγ ) as a function of α. The two solid black lines in the inset
represent the γ values corresponding to an area law in 2D (1/2) and
3D (2/3) short-range models.

γ corresponding to an area law in 2D and 3D short-range
models by solid black lines. On a log-log plot, a logarithmic
dependence can of course appear algebraic with a small
exponent if the x range is not sufficiently long. Figure 2(b)
shows the same data on a log-linear scale to emphasize the
quality of the log behavior at α = 2.

The initial rapid growth in this system for all allowed α

is due to propagation of quasiparticles within the localization
length which falls with increasing disorder. The logarithmic
growth of long-time S(t) at α = 2 can be a reminiscence of
the feature of underlying maximum group velocity vmax

g in
clean systems which changes from infinite to finite across

α = 2. The exponent γt [long-time S(t) ∼ tγt ] for smaller
α(<2) seems to suggest a drifting exponent of γt which goes
through zero at αlog in response to increasing α. Therefore,
we can perceive that the appearance of logarithmic growth
at αlog is a consequence of the culmination of the power-law
growth of long-time S(t) there, which is again due to a drifting
power-law dependence of some underlying physical quantity
like vmax

g . In our numerics we have seen some slower than
logarithmic growth of long-time S(t) for α > 2. However, it
is difficult to precisely determine what is the nature of such
growth as well as at which value of α such growth completely
stops in the thermodynamic limit.

The observed L dependence of S∞ in the window 1 �
α < 3 is surprising as, in contrast, we know from the single-
particle eigenstate properties at such strong disorder that all
states are fully Anderson localized for all α � 1. However,
even the entanglement in many-particle eigenstates shows an
L dependence similar to S∞. Because S∞ and many-particle
eigenstate entanglement in the LRNM show an L dependence
in the window 1 � α < 3 while they both are L independent
for α � 3, we may call the former regime a quasi-AL, while
the latter one is called a true AL.

IV. LONG-RANGE INTERACTING MODEL

We now discuss the properties, both of eigenstates and
dynamical entanglement, of the long-range interacting model
in Eq. (2) for general values of α,β. We denote the entangle-
ment in eigenstates of the system by Se, which is calculated
using Eq. (1). For low disorder, we find the system in an
extended phase for all values of α and β, as expected. This
can be inferred from the extensive and large entanglement in
the eigenstate as seen in the first column of Fig. 3 at low
disorder. However, the behavior of entanglement for strong
disorder has an intricate dependence on these parameters, and
we discuss it here in some detail. For simplicity, we start with
the situation closest to the well-studied case of short-range
systems, namely, large values of α and β. For α = 3 and

FIG. 3. Eigenstate and dynamical entanglement properties in a long-range interacting model at different values of α(=1,2,3) (rows). The
first column shows the eigenstate entanglement Se in the middle of the spectrum as a function of disorder (η) for β = 1. Time evolution of
entanglement S(t) for β(=1,∞) (second and third columns respectively) for η ≈ 20J . The last column shows the fluctuations in asymptotic
dynamical entanglement δS∞ with disorder η at three α values for β = 1.
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β → ∞ we find the usual logarithmic growth of entanglement
at high disorder [Fig. 3(k)], while changing β to 1 changes
this slow growth from logarithmic to algebraic [Fig. 3(j)] [6].
Although the nature of growth (logarithmic vs algebraic) is not
obvious immediately in Figs. 3(k) and 3(j), it becomes clear
when the same S(t) data is plotted with different scale for the
y axis (log-linear vs log-log). The nature of the slow growth
at α � 3 is mostly independent of α and depends strongly
on β. The slow growth is algebraic in time for the long-range
interactions (small β) and is logarithmic in time for short-range
interactions (large β). This is in agreement with earlier studies
on the role of long-range interactions in a short-range hopping
model [6]. However, this dynamical difference in S(t) is not
present at the level of eigenstate entanglement which shows
an area law for all values of β. Irrespective of the value of β

when α � 3, the system is in the MBL phase at high disorder,
characterized by a logarithmic (algebraic) growth of S(t) in
the presence of short (long)-range interactions and an area law
for entanglement in all eigenstates.

For 1 � α < 3 and high disorder, the slow growth of S(t)
at later time, if present, is a very short one in contrast to the
short-range MBL phase [Figs. 3(f) and 3(g)]. However, the
characteristic of dynamical entanglement in this region is also
different from the delocalized case in that S∞ here is much
smaller than the latter. The difference of this region from the
extended phase can also be seen in the eigenstate entanglement
Se which is again much smaller [compare Se between low
and high disorder in Figs. 3(a) and 3(e)]. Nevertheless, unlike
the MBL phase at α � 3, this small entanglement in the
eigenstates has a clear system-size dependence. Since the
strongly disordered regime in the window 1 � α < 3 appears
to share some properties with the (short-range) MBL phase
(such as small entanglement), but not others [including a long
slow-growth of S(t) and an area law for eigenstate entangle-
ment], we call this regime quasi-MBL. From a dynamical point
of view, the entanglement growth in this phase has a significant
contribution due to movement of particles along with the
dephasing mechanism. This result can be inferred from the
observation that the particle number fluctuations F(t), which
are insensitive to the dephasing mechanism, behave similar to
the dynamical entanglement in this phase, in contrast to the
usual short-range MBL phase (see Fig. 9).

Both the asymptotic dynamical entanglement S∞ and
eigenstate entanglement Se (see, e.g., first column of Fig. 3)
fall from a constant (η-independent) and large value to some
small and η-dependent values with increasing η for all α � 1.
This change in behavior from large to small S∞ or Se

with increasing η is related to a delocalization-localization
transition separating the interacting delocalized phase at weak
η and localized (MBL) phase at large η. We can try to locate
the MBL transition by considering the standard deviation of
S∞ with respect to disorder, namely, δS∞ [7]. We present it
in the last column of Fig. 3, and find diverging δS∞ near the
transition in all the long-range scenarios.

We find that both the asymptotic properties as well as the
eigenstate properties are somewhat insensitive to β, so we
show the results for β = 1 only. Thus, the role of long-range
interactions is mostly to speed up the later growth in S(t).
On the other hand, the long-range hopping plays a role in the
initial rapid growth of S(t) for α < 2 which is L dependent

from the start implying an infinite vmax
g . The effect of α on the

entanglement in the eigenstates at high disorder is a shift from
a volume law to an area law with an increasing α, while the
value of Se is significantly smaller than the delocalized phase
in all cases (first column in Fig. 3). As the role of long-range
hopping becomes significant with smaller α, the transition
shifts to larger disorder.

V. 1D LONG-RANGE AND HIGHER-DIMENSIONAL
SHORT-RANGE MODELS

Some results of the long-range system suggest attempting
an analogy to higher-D short-range ones in order to compare
and contrast the two types of behaviors. The analogy in two
limiting cases is straightforward. The limit α → 0 in the 1D
LRNM corresponds to an infinite-range hopping system, i.e.,
a fully connected model, and is thus akin to a certain type
of infinite-dimensional noninteracting system. By contrast,
the limit of α → ∞ in the 1D LRNM is equivalent to a 1D
short-range noninteracting model as in this limit every site is
effectively connected to only two of its nearest neighbors,
as the ratio of next-nearest- to nearest-neighbor coupling
vanishes.

There are many ways of defining effective dimensionality;
the most suitable one depends on the question being asked.
For short-range models, these usually agree, e.g., a common
definition involving the scaling of number of sites with linear
size L. For our 1D LRNM, this gives a value of 1 independent
of α, as it is the coupling strength at long distances which
varies with α, not the number of sites per se.

For our purposes, a practically useful and consistent
definition is the following: we construct a simple bipartition
of the system into two equal parts, and ask about the total
strength of the bonds of the hopping graph that minimally
needs to be cut. For the 1D LRNM, such a bipartition cuts
a single bond between nearest-neighbor sites, two bonds
between next-nearest-neighbor sites and so on at each cut (1D
system with periodic boundary has two cuts). Thus, we find
the total effective hopping strength:

Jeff = 2 × J

1α
+ 4 × J

2α
+ 6 × J

3α
+ · · · ≈ 2J

L/2∑
n=1

|n|1−α

across a bipartition boundary in the middle of the 1D LRNM.
The summation is an approximation as we have double counted
the n = L/2 term. In deriving Jeff we take the contribution of
a long-range bond to be independent of the location of the cut,
i.e., a bond that is cut symmetrically with half on each side has
the same contribution as those (of same length) which are cut
asymmetrically. This is an approximation for bonds beyond
next-nearest neighbors. From the expression of Jeff we find
that the total effective hopping strength across a boundary
diverges with system size L for α � 2. For example, we find
Jeff ∼ L for α = 1 and Jeff ∼ lnL for α = 2 when L → ∞.

The corresponding calculation of total hopping strength J d
eff

across a (d − 1)-dimensional surface/boundary in the middle
of a d-dimensional noninteracting model with short-range
hopping gives an asymptotic dependence of J d

eff ∼ L(d−1)

where L is the length scale of the d-dimensional short-range
model. In terms of the volume V ∼ Ld of the short-range
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model, the total hopping strength across the boundary becomes
J d

eff ∼ V (d−1)/d . This asymptotic dependence is independent
of specific lattice structure of the short-range model. For the
1D LRNM, the volume V ∼ L. Thus, when we compare
the asymptotic V dependence of Jeff of the 1D LRNM with
that of J d

eff of the d-dimensional short-range model, we find
α ≈ 1.5,1.34 of the 1D LRNM respectively relates to the
d = 2,3 dimensional noninteracting short-range models.

We now discuss some of our results in light of this analogy.
The quasi-AL phase in Sec. III is akin to an AL phase in a
higher-D short-range noninteracting model: the entanglement
in many-particle eigenstates as well as S∞ show area law in
the AL phase of a short-range noninteracting model of any
dimension and we have confirmed this for the short-range
model numerically. Interestingly, the (interpolated) values
of α ≈ 1.56,1.36 showing respectively γ = 1/2,2/3 for the
system size dependence (satisfying area-law of entanglement)
of a 2D and 3D short-range noninteracting model in the AL
phase are very close to the predicted values 1.5,1.34 from
the above analogy. We can also argue that the asymptotic
L dependence of S∞ and entanglement in many-particle
eigenstates at α = 1,2 is due to that of Jeff at these α’s,
respectively.

Even though these eigenstate and asymptotic dynamical
properties agree, the analogy is limited in that the time scale
involved in the global quench can be very different between
the 1D LRNM and the higher-D short-range model. This is
because, in the higher-D short-range model, the particles move
relatively smaller distances (typically a localization length)
over a larger boundary; thus asymptotic dynamical properties
are achieved in a shorter time. On the other hand, in the 1D
LRNM, there are many weak hoppings across a point boundary
whose contribution in the asymptotic dynamical properties
takes a very long time to appear (hopping term of strength
J/Rα takes ∼Rα/J time to saturate).

Assuming a similar analogy between the 1D long-range
model and the higher-D short-range model exists in the
presence of interactions, we now reconsider the following
quantities: Se, many-particle level-spacing ratio r̃ , and eigen-
state thermalization. Although it is hard to find the exact L

dependence of Se from our simulations with limited system
sizes, we do see some signatures of an area law of Se for
the interacting system in a higher dimension (2D and 3D
correspond, respectively, to α ≈ 1.56,1.36). We note here that
Se and other properties discussed below do not depend on the
value of β, and the analogy between a 1D long-range system
and a higher-D short-range system is mainly due to α. The
long-range model near α = 1 for which we find a signature
of an almost extensive Se in Fig. 3(a) is also consistent
with such an analogy as small α corresponds to a very high
d-dimensional short-range model, for which there would be a
little difference between volume and area law of entanglement
(γ being 1 and 1 − 1/d, respectively).

We also observe Poisson level spacing and absence of
eigenstate thermalization for 1 < α < 3 in the long-range in-
teracting model (see Appendix C) at large disorder suggesting
a similarity in the eigenstate properties of the MBL phase in 1D
and higher-D short-range models by our analogy. Therefore,
our analogy would suggest the existence of an MBL phase
in higher-D short-range interacting models [10,19,20], which

has area law for Se, Poisson level spacing, and absence of
eigenstate thermalization. Our quasi-MBL phase in Sec. IV
would then be related to the MBL phase in higher-D short-
range interacting models. Just like the noninteracting case,
we expect here some qualitative difference in the dynamics
between the higher-D short-range interacting model and the
corresponding 1D long-range one. The long-time growth of
entanglement in the former will be exclusively due to the
dephasing mechanism, whereas for the latter there will also be
a contribution due to long-range particle hopping.

VI. SUMMARY

To summarize, we have studied entanglement dynamics
and MBL in a critical disordered 1D model with long-range
hopping and interactions. One specialty of this model is that we
could separately investigate the roles of long-range hopping
and interactions for the entanglement growth and MBL
transition. It is not possible to separate these contributions in
many long-range spin models, e.g., XY [21], transverse-field
Ising [16], and XXZ models [17] which have been examined
recently in relevant contexts.

In recent years, a slow logarithmic growth of S(t) at large
t after a quench has been associated with the MBL phase
to separate it from the related Anderson insulator, which
does not show such logarithmic growth in previously studied
(short-range) disordered models. Here we have found a slow
logarithmic growth of S(t) in a highly disordered LRNM at
α = 2. The eigenstate properties of the LRNM for all allowed
α clearly signal that all states are Anderson localized at such
high disorder.

Thus, our results for the LRNM reveal that the logarithmic
growth of S(t) is not a sufficient condition for separating the
MBL phase from the AL phase in all disordered models. The
quasi-MBL phase at smaller α or the MBL in higher-D short-
range models seem to have the same eigenstate properties of
the MBL phase of 1D short-range models, namely, Poisson
level spacing and absence of eigenstate thermalization [20].
However, the quasi-AL phase at smaller α or the AL in higher-
D short-range models also share these eigenstate properties.
This needs to be borne in mind when aiming to unambiguously
detect the MBL phase in experiments in 1D long-range
systems. The slow growth of entanglement due to particle
transport in the LRNM can be mistaken for that due to
the dephasing mechanism in the MBL phase. It may thus
be necessary to do a more quantitative analysis of, e.g., the
difference between time scales of such slow growth due to
different mechanisms, in order to experimentally distinguish
between the MBL and AL phases.

The growth of S(t) at long time in the LRNM for 1 � α < 3
results in an L-dependent saturated entanglement even at very
large disorder, which we call quasi-AL (see the phase diagram
in Fig. 4). Similarly, we have a quasi-MBL phase at large
disorder in the presence of interactions in this model for 1 �
α < 3 which is related to the higher-D MBL. The entanglement
dynamics in the noninteracting and interacting long-range
models for α � 3 at large disorder shows commonly accepted
features of the AL (e.g., area law for S∞) and MBL [e.g., slow
growth in S(t)] phases in 1D short-range models. We conclude
that quasi-AL and AL which occur respectively for 1 � α < 3
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FIG. 4. A cartoon phase diagram of the spinless fermion model
in 1D with long-range hopping at strong disorder without (bottom
panel) and with (top panel) interactions decaying with distance r

as U/rβ . The dashed blue line at α ≈ 3 divides the long-range
noninteracting model in quasi-AL [with some growth of long-time
entanglement, S(t)] and AL [without any growth of long-time S(t)]
phases, and it divides the long-range interacting model in quasi-MBL
(size-dependent eigenstate entanglement Se and particle transport
during long-time dynamics) and MBL (size-independent Se and the
dephasing mechanism) phases. The dashed red line at α ≈ 2 points
to the region of logarithmic growth of long-time entanglement in the
long-range noninteracting model. The maximum group velocity vmax

g

of quasiparticles in the long-range (noninteracting and interacting)
model is unbounded for α < 2 and bounded for α > 2. The growth
of long-time entanglement in the MBL phase is algebraic for small β

and logarithmic for large β.

and α � 3 in the LRNM, turn into quasi-MBL and MBL as
interactions are turned on. However, we should emphasize that
the boundaries between different phases are somewhat crude
due to limitations of numerical calculations.

Finally, while the existence of MBL and its properties in
higher-D models are not yet settled, our numerical calculations
with a 1D long-range system provide some concrete pointers
towards the physics of an MBL phase in higher-D interacting
models. Additionally, our analogy would suggest that such an
MBL phase in higher-D short-range systems could have some
accepted properties of a 1D MBL phase, such as breakdown
of eigenstate thermalization, Poisson level statistics, and an
area law for eigenstate entanglement. On the other hand, the
recent work of Chandran et al. [20] using an extended l-bit
model proposes that the higher-D MBL phase will show many
eigenstate properties similar to the thermal state (delocalized
phase).

While we have seen good agreement of our analogy for
noninteracting fermions in our numerics, it is not obvious
whether an analogy centering on the parameter α works in the
presence of interactions. Also, the role of β in this analogy
is not settled, and could in principle lead to a further set
of distinctive behaviors; here, however, we have numerically
observed that both the eigenstate and asymptotic properties
hardly depend on β, suggesting as the simplest scenario that

such an analogy, if it works for interacting systems similarly
well, would be independent of β.

In either case, the existence and nature of a presumptive
MBL phase in higher D requires further study for a definitive
answer. Conceivably, given the limits of numerical approaches
in higher D, experiments will be helpful in settling this issue—
there is already some experimental evidence supporting the
existence of MBL phase and breakdown of thermalization in
2D [19].

Another problem of interest is the study of eigenstate
and dynamical entanglement in disordered models of bosonic
particles, which are relatively less investigated theoretically,
especially for long-range models. A model of bosonic particles
with strong repulsive interactions is expected to behave at
high disorder much like the fermionic one, and to exhibit
localization. However, there would be significant differences
in entanglement in models of noninteracting or weakly
interacting bosonic particles compared to fermions at low
disorder. One would require an ingenious method to calculate
entanglement for longer chain length as the methods applied
here for fermions have limited applications for bosons.
Therefore, it will be interesting to systematically explore
entanglement in the disordered long-range models of bosonic
particles in both the presence and the absence of interactions.
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APPENDIX A: EIGENSTATE PROPERTIES OF THE
LONG-RANGE NONINTERACTING MODEL ( J �= 0, U = 0)

We investigate the properties of single-particle eigen-
states of the LRNM (J �= 0, U = 0) with increasing disorder
strength at different α. In Fig. 5 we show the level-spacing
ratio r̃ between different eigenstates following a definition by
Oganesyan and Huse [28],

r̃i = min

(
ri,

1

ri

)
, ri = εi+1 − εi

εi − εi−1
,

where εi’s are the single-particle eigenvalues. This quantity has
turned out to be a good discriminator for different universal
level-spacing statistics. The value of r̃i is 4 − 2

√
3 ≈ 0.536 for

the Gaussian orthogonal ensemble (GOE) indicating extended
states, while it is 2 ln 2 − 1 ≈ 0.386 for the Poisson level
spacing if the states are localized. We show these two values
as solid black lines in each subplot of Fig. 5.

The top row of Fig. 5 shows r̃i at the top of the spectrum
(calculated using the top three eigenstates with highest energy,
i = L − 1), while the middle row is calculated using the three
highest energy eigenstates excluding the top (i = L − 2). The
bottom row shows the data for the eigenstate in the middle
(i = L/2). As expected we find that the chain shows a Poisson
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FIG. 5. Single-particle level-spacing ratio (r̃) in the long-range
noninteracting model for the highest energy eigenstate (top row), the
second highest energy eigenstate (middle row), and the eigenstate
in the middle of the spectrum (bottom row) for three values of α

(1.25,1.5,1.75). The two solid lines in each subplot show the GOE
(≈0.536) and the Poisson (≈0.386) values for r̃ .

level spacing at very high disorder in all the plots. We can
also identify that the departure from Poisson statistics is only
a finite-size effect for the middle of the spectrum (bottom row)
as well as for α = 1.75 (last column), since all these curves
tend towards the Poisson value upon increasing the system size
systematically. The characteristics of the remaining four plots
(first two rows and first two columns) are more complicated as
the departure from a Poisson behavior does not appear to be
a finite-size effect and only one of them is close to the GOE
value. The eigenstate at the top of the band for α � 1.5 is
expected to be extended [23,24], and the level spacing for this
case shown in Fig. 5(a) is consistent with that. However, the
level-spacing ratio for the next eigenstate shows a departure
from the GOE behavior even for α � 1.5.

The entanglement Se in the eigenstates of the LRNM also
shows features of a delocalization-localization transition near
the top of the band. For larger disorder we get very small
entanglement in all cases, while we get the maximum allowed
entanglement (ln 2) at very low disorder for states near the top
of the band [see Figs. 6(a)–6(f)]. Similar to the level spacing,
the finite entanglement for low disorder at the middle of the
spectrum (bottom row) can be perceived to be a finite-size
effect. Both the highest and the second highest eigenstate of
the spectrum for α = 1.25 show a transition at a finite η.
The behavior for higher α near the band top is again more
complicated and the data presented here is not conclusive, but
one can still notice some finite-size effects which suggest that
there is no transition.

APPENDIX B: LONG-RANGE NONINTERACTING
MODEL ( J �= 0, U = 0) VS SHORT-RANGE INTERACTING

MODEL (α,β → ∞, J,U �= 0)

In this appendix, we consider α,β → ∞, which corre-
sponds to short-range hopping and interactions. This short-

FIG. 6. Single-particle eigenstate entanglement Se in the long-
range noninteracting model in the highest energy eigenstate (top row),
the second highest energy eigenstate (middle row), and the eigenstate
in the middle (bottom row) for three values of α (1.25,1.5,1.75).

range Hamiltonian in Eq. (2) for α,β → ∞ can be mapped
by the Jordan-Wigner transformation to a 1D random-field
XXZ spin chain which has been widely studied recently in
the context of MBL [3,7,29,30], and shows an MBL transition
with increasing disorder strength.

We show S(t) in the interacting delocalized and MBL
phases of the short-range model in the upper panel of Fig. 7.
One can immediately see striking differences in S(t) between
the two cases. The delocalized phase shows a rapid (ballistic)
growth of entanglement until it saturates at a rather large

FIG. 7. Comparison of entanglement dynamics between a long-
range noninteracting model (J �= 0, U = 0) and a short-range inter-
acting model (α,β → ∞, J,U �= 0). Here (a) interacting delocalized
phase (η ≈ J ) and (b) many-body localized phase (η ≈ 20J ) of the
short-range interacting model, and (c) α = 1, η ≈ 20J and (d) α =
2, η ≈ 20J of the long-range noninteracting model. The chain lengths
are 6,8, . . . ,16 in (a) and (b) while those are 50,100,200, . . . ,1600
in (c) and (d). In the inset of (c) we zoom in to show the length
dependence at short times of the long-range model.
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value satisfying a volume law. In sharp contrast, S(t) in the
MBL phase grows slowly (logarithmically) over a very long
time scale after a rapid initial growth. This latter growth in
this short-range model is entirely due to interactions, as it
is absent in the AL phase [3,7,31]. The logarithmic growth
results in an extensive behavior (volume law) of the asymptotic
entanglement S∞ in the MBL phase [5,7].

We compare the above two different behaviors of S(t)
in the short-range interacting model to that in the LRNM
(J �= 0, U = 0) at α = 1,2 (see lower panel of Fig. 7). They
show interesting similarities. A rapid growth of S(t) followed
by system-size-dependent saturation is observed in the delocal-
ized phase of the short-range interacting model and the LRNM
at α = 1. There is, however, one qualitative difference between
Figs. 7(a) and 7(c), which is not immediately clear from the
figure. In the delocalized phase of the short-range interacting
model, the long-distance correlations develop causally (with
some finite maximum group velocity vmax

g ) whose physical
mechanism is the one given by Lieb and Robinson [32]. As
a result the entanglement is independent of system size at
short times. In the LRNM this picture is no longer valid
for α < 2 and correlations can develop instantly at arbitrary
long distances by long-range hopping resulting in infinite
vmax

g [26,33–36]. This is manifested in the appearance of a
system-size dependence in the entanglement right from the
beginning [see, e.g., inset of Fig. 7(c)].

The behavior of S(t) in the LRNM at α = 2 in Fig. 7(d)
looks remarkably similar to the logarithmic growth seen
in the MBL phase in Fig. 7(b). However, there are some
important differences between these two cases. The first one
is the scaling of asymptotic entanglement entropy with system
size. While the asymptotic entanglement is extensive in the
MBL phase [5,7], the LRNM at α = 2 shows a nonextensive
behavior, S∞ ∼ ln L [see Fig. 2(b)]. A related feature is that the
logarithmic growth due to interactions continues for a much
longer duration than that due to long-range hopping [compare
Fig. 7(b) to 7(d)]. Note that the longest chain size in the inter-
acting case (L = 16) is much smaller than the smallest chain
length in the noninteracting case (L = 50) considered here.

The underlying physical mechanisms for the two logarith-
mic growths are most likely different because of the following
observation. In the MBL phase of a short-range interacting
model, only entanglement and closely related quantities such
as Renyi entropies show logarithmic growth. In particular,
particle number fluctuations F(t) do not show any signature
of this growth [3,7]. On the other hand, many physical
quantities including F(t) show the logarithmic growth in the
LRNM at α = 2. This observation suggests that a simpler
physical mechanism involving actual movement of particles
is causing the slow growth in the LRNM as opposed to
the subtle dephasing mechanism between distant localized
regions for the MBL case whose effect is seen only in suitable
entropies [31,37].

APPENDIX C: LEVEL-SPACING AND EIGENSTATE
THERMALIZATION IN THE LONG-RANGE

INTERACTING MODEL ( J �= 0, U �= 0)

In the first column of Fig. 8 we show the level-spacing
ratio r̃ in the middle of the spectrum of the long-range

FIG. 8. Left column: Localization-delocalization as evidenced by
the level-spacing ratio r̃ as a function of disorder strength η. Different
rows correspond to growing α = 1,1.5,2,3 from top to bottom, with
different curves in each panel representing different system sizes,
L. A localization-delocalization transition is clearly evident for all
α > 1. The two solid lines in each panel show the GOE (≈0.536)
and the Poisson (≈0.386) values for r̃ . Right column: thermalization
and its breakdown. Shown is the disorder-averaged standard deviation
of eigenstate expectation values of a local observable as a function
of system size L for different values of disorder strength η (different
colors) and α = 1,1.5,2,3 from top to bottom. The local observable
used is the number operator in the middle of the chain nL/2 and 10%
eigenstates near the middle of the spectrum are used to calculate the
standard deviation. For α > 1, a system-size-independent standard
deviation at large L indicates breakdown of eigenstate thermalization.

interacting model at different values of α (β = 1). Similar
to other eigenstate properties, r̃ also appears to be relatively
insensitive to the value of β (except when α = 1), hence we
here present results only for β = 1. We find a clear signature of
delocalization-localization transition with increasing disorder
for larger values of α with r̃ changing from the GOE value
to its Poisson value. Although a transition is not very clear
for α = 1, β = 1 we still see a Poisson level spacing for
larger disorder. The r̃ data appears to converge to the usual
delocalization-localization behavior with increasing system
size L for higher values of α but it has not converged by
L = 16 for α = 1, β = 1.

We explicitly test for eigenstate thermalization in the
long-range interacting model by measuring fluctuations in
the expectation value of a local operator over neighboring
eigenstates [38]. We choose the number operator nL/2 on a site
in the middle of the chain and find its expectation value. We
calculate the variance

σ 2(nL/2) =
∑

e

′
(〈e|nL/2|e〉)2 −

(∑
e

′〈e|nL/2|e〉
)2
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FIG. 9. System-size dependence of asymptotic dynamical entan-
glement (S∞) and particle number fluctuations (F∞) in the long-range
interacting model for η ≈ 20J at different values of exponents (α,β).

where the sum is over 10% of eigenstates (|e〉) near the middle
of the spectrum. In the second column of Fig. 8 we show the
disorder-averaged standard deviation σ (nL/2) as a function of
system size L for different values of disorder strength η and
the exponent α. When a system thermalizes, this is expected
to decrease with increasing L as can be seen for small disorder
(delocalized phase) at all values of α. At a strong disorder
it is roughly independent of L which is a signature of the
violation of eigenstate thermalization. The behavior at α = 1

is more complicated as it appears that the fluctuation might
decrease upon increasing L further even at a large disorder.
This is consistent with the shift in the MBL transition point
to larger values of disorder with increasing system size at
α = 1 [Fig. 3(d)]. Higher values of α(>1) show thermalization
(delocalized phase) and its breakdown (MBL phase) for the
accessible system sizes.

APPENDIX D: PARTICLE NUMBER FLUCTUATIONS VS
DYNAMICAL ENTANGLEMENT IN THE LONG-RANGE

INTERACTING MODEL ( J �= 0, U �= 0)

The particle number fluctuations F(t) show interesting
comparisons to entanglement in the long-range interacting
model. We know from earlier studies that F(t) does not
show slow-growth in the MBL phase for short-range inter-
actions [3,7], and we have mentioned in Appendix B that F(t)
behaves qualitatively similar to S(t) for the LRNM. Here we
observe that F(t) does not follow the features of S(t) in a
long-range interacting model with short-range hopping. We
show L dependence of both S∞ and F(L,t → ∞) ≡ F∞ for
a strong disorder at different values of α and β in Fig. 9. We find
that entanglement shows a clear L dependence for all values
of α and β. On the other hand, the F∞ becomes independent
of system size at large α irrespective of β. The L dependence
of S∞ and F∞ at small α appears to be faster than linear which
is clearly a finite-size effect. The asymptotic entanglement is
bounded by a linear dependence on L, Smax � L ln 2/2, and a
growth which is faster than linear would exceed the maximum
allowed value for sufficiently long chains.
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