
Physics Letters A 381 (2017) 1029–1032
Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Ring closure in actin polymers

Supurna Sinha a,∗, Sebanti Chattopadhyay b

a Raman Research Institute, Bangalore 560080, India
b Doon University, Dehradun 248001, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 September 2016
Received in revised form 2 January 2017
Accepted 14 January 2017
Available online 30 January 2017
Communicated by C.R. Doering

Keywords:
Biopolymers
Elasticity
Ring formation

We present an analysis for the ring closure probability of semiflexible polymers within the pure bend 
Worm Like Chain (WLC) model. The ring closure probability predicted from our analysis can be tested 
against fluorescent actin cyclization experiments. We also discuss the effect of ring closure on bend angle 
fluctuations in actin polymers.
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1. Introduction

In the past two decades, there has been much interest in the 
theoretical study of semiflexible polymer elasticity. These stud-
ies are motivated by micromanipulation experiments [1–3] on 
biopolymers. In particular, in recent years there have been ex-
periments involving stretching DNA molecules [1] which give us 
information about the bend elastic properties of DNA. There have 
also been experiments on fluorescently tagged actin filaments [4]
where they measure the bend persistence length of actin. More 
recently, there have been fluorescence experiments on cyclization 
of actin filaments [5]. In these papers they analyze the formation 
of rings in actin polymers and study the effect of ring closure on 
bend angle fluctuations in these polymeric rings. Our interest here 
is limited to the process of cyclization itself and therefore in our 
analysis we restrict to polymers with only bend degrees of freedom 
and no twist degree of freedom. Actin cyclization is of interest to 
biologists [6] who do visualization studies of actin ring formation 
in the context of cell division.

2. Ring closure probability distribution

Our starting point is the pure bend Worm Like Chain (WLC) 
model [7]. In this model, the polymer configuration is viewed as 
a space curve �x(s). There is a tangent vector associated with each 
point on the polymer of contour length L and the energy of con-
figuration is given by:
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E[C] = A

2

L∫
0

dsκ2 (1)

where C stands for the polymer configuration. A is the bending 
elastic constant and the curvature κ = | dt̂

ds |.
One of the key quantities characterizing the elasticity of a 

biopolymer is Q̃ (�r), the probability distribution for the end to 
end distance vector �r between the two ends of the polymer as 
it gets jiggled around by thermal fluctuations in a cellular environ-
ment [7]. In [7] we use a method for solving the wormlike chain 
model for semiflexible polymers to any desired accuracy over the 
entire range of polymer lengths to determine Q̃ (�r). The plots for 
Q̃ (�r) for various β = L

L P
, the ratio of the contour length L to the 

persistence length L P , reveal the dependence of the end to end 
distance vector on the rigidity of the polymer (see Fig. 4 in [7]).

We outline the theoretical calculation of Q̃ (�r) below. (For a 
detailed exposition please see Appendix A). Consider a situation 
where the initial and final tangent vectors (t̂ A = d�x

ds |s=0 and t̂B =
d�x
ds |s=L ) are held fixed. Then Q̃ (�r) has the following path integral 
representation:

Q̃ (�r) = N
∫

D[t̂(s)]exp{− 1

kB T

[ A

2

L∫
0

(
dt̂

ds
)2ds

]}

× δ3(�r −
L∫

t̂ds) (2)
0
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Here N is the normalization constant and kB T , the thermal energy 
at temperature T . As mentioned in [7], we solve for Q̃ (�r) by first 
considering a related end to end distance measure:

P (z) =
∫

d�r Q̃ (�r)δ(r3 − z),

which is Q̃ (�r) integrated over a plane of constant z. This in turn is 
related to P̃ ( f ), the Laplace transform of P (z) given by:

P̃ ( f ) =
L∫

−L

P (z)e
f z

L P dz (3)

f , the variable conjugate to z has the interpretation of a stretch-
ing force and thus P̃ ( f ), can be written as the ratio Z( f )/Z(0) of 
the partition functions in the presence and absence of an external 
stretching force f . We do an eigenspectrum analysis of P̃ ( f ) and 
determine Q̃ (�r) using tomographic transformations outlined in [7].

Here we address a question which is of current interest to 
application of polymer physics to biology: cyclization of actin fila-
ments [5]. Within the pure bend Worm Like Chain (WLC) Model 
we compute the ring closure probability (RCP) by considering 
Q̃ (�r = �0).

3. Method

In Fig. 4 of [7] we display a family of curves of Q (ρ) versus ρ , 
with ρ = |�r|

β
for various values of β . Q (ρ) is a theoretically conve-

nient quantity expressed in terms of scaled units ( �ρ = �r
β

). In order 
to compute the ring closure probability density Q̃ (�r = �0) we need 
to change variables from ρ = |�r|

β
to |�r| = r. Setting Q̃ (�r) = Q �r , we 

get:∫
Q ( �ρ)d �ρ =

∫
Q �rd�r (4)

or∫
Q ( �ρ)

β3
d�r =

∫
Q �rd�r (5)

which in turn implies

Q (0)

β3
= Q 0 (6)

We compute Q (0) for a range of values of β using Mathematica. 
As we can see from the plot of the ring closure probability den-
sity Q (0) versus β (Fig. 1), that Q (0) has a small value for short 
polymers which are hard to bend and form rings and it has a large 
value for long polymers which are easy to bend and thus the prob-
ability density of ring formation is high. We then compute and plot 
the ring closure probability density in physical space, Q 0 = Q (0)

β3 as 
a function of β (Fig. 2). The qualitative features of the plot shown 
in Fig. 2 are in agreement with our intuition. The ring closure 
probability density Q 0 in physical space, which is an experimen-
tally measurable quantity is small for very short and long strands 
of the polymer and peaks around intermediate contour lengths of 
L ≈ 3L P (see Fig. 7-41 on page 438 of [8]).

4. Mean squared tangent angle fluctuation

One of the experimentally relevant quantities of interest is the 
mean squared tangent angle fluctuation [5]. In Ref. [5] the mean 
squared tangent angle fluctuation has been calculated for a ring 
and a linear filament in a two dimensional setup. They find good 
agreement with experimental measurements.
Fig. 1. A plot of the ring closure probability density Q ( �ρ = �0) = Q (0) versus β , 
setting L P = 1. It has a small value for short polymers which are hard to bend and 
form rings and it has a large value for long polymers which are easy to bend and 
thus the probability density of ring formation is high.

Fig. 2. A plot of the ring closure probability density in physical space Q 0 = Q (0)/β3, 
versus β setting L P = 1. Notice that this function is small for very small and large 
β and peaks around an intermediate value β ≈ 3.

Here we present a similar calculation in a three dimensional ge-
ometry. Consider a polymer configuration in a closed circular ring 
lying in the x − y plane. Expanding the bend angle fluctuation φ(s)
in a Fourier series and imposing the ring closure constraint and 
removing zero modes which do not contribute, we find that the 
contribution from the x − y plane is given by

< φ2 >
xy
ring=

1

12
(1 − 6

π2
)

L

L P
(7)

We need to add this contribution to the contribution coming from 
the z direction where the ring closure condition is of the form

L∫
0

φz(s)ds = 0.

In this case the Fourier expansion for φz(s) can be expressed as 
φz(s) = ∑∞

n=2 φne
2π ins

L which finally gives us

< φ2 >z
ring=

1

12
(1 − 6

π2
)

L

L P
(8)

Thus combining Eqs. (7) and (8), the net mean squared tangent 
angle fluctuation for a three dimensional ring is given by

< φ2 >3d
ring=

1

6
(1 − 6

π2
)

L

L P
(9)

A similar calculation for a linear filament in three dimensions gives 
us

< φ2 >3d
lin=

1

3

L

L P
(10)

We have plotted (9) and (10) in Fig. 3. These predictions can be 
tested against future experiments on fluorescently tagged actin fil-
aments. Notice that, as in the two dimensional case [5], we find 
that < φ2 > is suppressed for a ringlike structure compared to a 
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Fig. 3. Plots of mean squared tangent angle fluctuation in three dimensions for a 
ring (dashed line) and a linear filament (solid line). We have set L P = 1. Notice the 
suppression of fluctuation for a ring filament compared to a linear one.

linear filament. This indicates that cyclization is entropically costly. 
Also, as expected, the fluctuations are smaller in the two dimen-
sional geometry compared to the three dimensional geometry.

5. Conclusion

Our treatment is an analysis based on the pure bend Worm 
Like Chain Model. The absence of twist degree of freedom en-
ables our predictions to be directly tested against actin cyclization 
experiments where the two ends of the polymer come together 
without any relative twist between the two ends. This is to be 
contrasted with analysis of J factor of DNA with twist degree of 
freedom where the additional twist degree of freedom makes the 
analysis considerably more cumbersome [9–11]. In [11] an inter-
polation formula is presented in the intermediate rigidity regime. 
They [11] also presented analytical expressions for the ring closure 
probability density Q 0 in the limit of β << 1 and β >> 1. How-
ever, they did not have an exact expression for the entire range 
of polymer lengths. In contrast, here we present a semianalytical 
study which gives an essentially exact prediction for Q 0 for the 
entire range of rigidity (see Fig. 1 and Fig. 2). It would be interest-
ing to see how our predictions quantitatively compare with future 
cyclization probability data for actin filaments. We also expect our 
predictions for the mean squared tangent angle fluctuation to be 
tested against future experiments on fluorescently tagged ring like 
and linear actin filaments in a three dimensional geometry.

Acknowledgement

One of us (SC) would like to thank RRI for providing hospitality 
during stay in Raman Research Institute as a Visiting Student.

Appendix A. Computation of Q 0

Our goal is to calculate Q 0, the ring closure probability. Q 0 is 
Q̃ (�r) for �r = �0. Q̃ (�r), the probability distribution for the end to end 
vector �r for a semiflexible polymer has the following path integral 
representation:

Q̃ (�r) = N
∫

D[t̂(s)]exp{− 1

kB T

[ A

2

L∫
0

(
dt̂

ds
)2ds

]}

× δ3(�r −
L∫

0

t̂ds) (A.1)

Here N is the normalization constant and kB T , the thermal energy 
at temperature T .
Instead of Q̃ (�r) it turns out to be easier to first consider P (z)

P (z) =
∫

d�r Q̃ (�r)δ(r3 − z),

which is Q̃ (�r) integrated over a plane of constant z.
P (z) in turn is related to P̃ ( f ), the Laplace transform of P (z)

given by:

P̃ ( f ) =
L∫

−L

P (z)e
f z

L P dz (A.2)

f , the variable conjugate to z has the interpretation of a stretch-
ing force and thus P̃ ( f ), can be written as the ratio Z( f )/Z(0) of 
the partition functions in the presence and absence of an external 
stretching force f .

Z( f ) is given by

Z( f ) = N
∫

D
[
t̂(s)

]
exp

⎧⎨
⎩− L P

2

⎡
⎣ L∫

o

(
dt̂

ds

)2

ds

⎤
⎦

⎫⎬
⎭

× exp

⎡
⎣ f

L P

L∫
0

t̂2ds

⎤
⎦

which in turn can be expressed as

Z( f ) = N
∫

D
[
t̂(τ )

]
exp

⎧⎨
⎩−

β∫
o

dτ

⎡
⎣1

2

(
dt̂

dτ

)2

− f t̂z

⎤
⎦

⎫⎬
⎭

which has the interpretation of the kernel of a quantum particle 
on the surface of a sphere at an inverse temperature β . We now 
exploit the analogy between time imaginary quantum mechanics 
and classical statistical mechanics to re-express Z( f ) as follows:

Z( f ) =
∑

n

e−[βEn]ψn
(
t̂ A

)
ψn

(
t̂β

)

where {ψn
(
t̂ A

)} is a complete set of normalized eigenstates of the 
Hamiltonian H f = −∇2

2 − f cos θ and En are the corresponding 
eigenstates. For free boundary conditions for the end tangent vec-
tors we can express Z( f ) as

Z( f ) = 〈o ∣∣exp −βH f
∣∣o〉

The Hamiltonian H f = −∇2

2 − f cos θ is the Hamiltonian of a rigid 
rotor in a potential and |0 > is the ground state of the free Hamil-
tonian H0 = −∇2

2 . We numerically evaluate Z( f ) by choosing a 
suitable basis in which H f has a tridiagonal symmetric matrix 
structure with

Hll = l(l + 1)

2

Hll+1 = f (l + 1)
√

1/[(2l + 1)(2l + 3)]
To summarize, after casting the problem analytically we use 

Mathematica programs to sequentially compute Z( f ) and P̃ ( f ), 
then P (z), then S(r) = −2rdP (r)/dr = 4πr2 Q̃ (r) and finally Q̃ (�r). 
We then consider the scaled variable �ρ = �r

β
. Q (0) is then com-

puted by considering Q ( �ρ) at �ρ = �0 and plotting it as a function 
of β . Q 0 = Q (0)

β3 . Below we display the programs for computing 
Q ( �ρ) and Q 0. We have inserted some comments as part of the 
programs for clarity.
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Program for computing Q ( �ρ)

ClearAll[h,f,Z,lmax,H,beta,L1,L2,LPR,PR]
lmax=10;
Nmax=3000;
beta=3;
h=.005;
L={};
For[n = 0,n < Nmax + 1,n++,
f=h*n*I;
H = Table[Switch[i − j, −1, f ∗ (i +1)/Sqrt[(2i +1)(2i +3)], 0, i(i +
1)/2, 1, f ∗ (i)/Sqrt[(2i − 1)(2i + 1)],, 0], i,0, lmax, j,0, lmax];
M=MatrixExp[-beta*H];
(*Computation of Z(f)*)
Z=M[[1,1]];
L=Append[L,Z]]
L=Re[L];
Pz={};
P1z={}
For[l=-2,l<1200,l++,
xi=.001*l;
P=(h*beta/Pi)*Sum[L[[n]]*Cos[(n-1)*h*xi*beta],n,1,Nmax];
Pz=Append[Pz,xi,P];
P1z=Append[P1z,P]];
V=P1z;
QR1=;
L1=Drop[V,2]
L2=Drop[V,-2]
LPR=(L1-L2)/(.001*2);
LPR=Drop[LPR,1];
(*Computation of S(r)*)
Q R = Table[L P R[[i]] ∗ 1/((i − 1) ∗ .001) ∗ [−1/(2 ∗ P i)], i,2,1199];
(*Computation of Q(r)*)
Q R1 = Table[(i − 1) ∗ .001, L P R[[i]] ∗ (1/(i − 1)) ∗ 1/((i − 1) ∗
.001) ∗ [−1/(2 ∗ P i)], i,2,2];
ListPlot[QR1]

Program for computing Q 0

ClearAll[h, f, Z, lmax, H, beta, Nmax, L1, L2, LPR, PR]
lmax = 10;
h = .005;
final = {};
For[k = 0, k < 50, k++,
beta = .25*k + 1;
Nmax = Piecewise[90000, beta <= 3, 9000, beta > 3];
L = {};
For[n = 0, n < Nmax + 1, n++, f = h*n*I;
H = Table[Switch[i − j, −1, f ∗ (i +1)/Sqrt[(2i +1)(2i +3)], 0, i(i +
1)/2, 1, f ∗ (i)/Sqrt[(2i − 1)(2i + 1)],, 0], i,0, lmax, j,0, lmax];
M = MatrixExp[-beta*H];
Z = M[[1, 1]];
L = Append[L, Z]]
L = Re[L];
Pz = {};
P1z = {};
For[l = −2, l < 1200, l + +, xi = .001 ∗ l;
P = (h*beta/Pi)*Sum[L[[n]]*Cos[(n - 1)*h*xi*beta], n, 1, Nmax];
Pz = Append[Pz, xi, P];
P1z = Append[P1z, P]];
V = P1z;
QR1 = {};
L1 = Drop[V, 2];
L2 = Drop[V, -2];
LPR = (L1 - L2)/(.001*2);
LPR = Drop[LPR, 1];
Q R = Table[L P R[[i]] ∗ 1/((i − 1) ∗ .001) ∗ [−1/(2 ∗ P i)], i,2,1199];
Q R1 = Table[(i − 1) ∗ .001, L P R[[i]] ∗ (1/(i − 1)) ∗ 1/((i − 1) ∗
.001) ∗ [−1/(2 ∗ P i)], i,2,2];
final = Append[final, beta, (1/beta3) ∗ Q R[[1]]]
]
ListPlot[final]
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