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Exact distributions of cover times for N independent random walkers in one dimension
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We study the probability density function (PDF) of the cover time tc of a finite interval of size L by N

independent one-dimensional Brownian motions, each with diffusion constant D. The cover time tc is the
minimum time needed such that each point of the entire interval is visited by at least one of the N walkers.
We derive exact results for the full PDF of tc for arbitrary N � 1 for both reflecting and periodic boundary
conditions. The PDFs depend explicitly on N and on the boundary conditions. In the limit of large N , we show
that tc approaches its average value of 〈tc〉 ≈ L2/(16D ln N ) with fluctuations vanishing as 1/(ln N )2. We also
compute the centered and scaled limiting distributions for large N for both boundary conditions and show that
they are given by nontrivial N independent scaling functions.
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I. INTRODUCTION

Stochastic search processes are ubiquitous in nature [1].
These include animals foraging for food [2–4], various bio-
chemical reactions [5,6], such as proteins searching for specific
DNA sequences to bind [7–10] or sperm cells searching for
an oocyte to fertilize [11,12]. Several of these stochastic
search processes often are modeled by a single searcher
performing a simple random walk (RW) [1,6]. In many
situations, the search takes place in a confined domain as the
targets typically are scattered over the entire domain. Finding
all these targets therefore requires an exhaustive exploration of
this confined domain. In this context, an important observable
that characterizes the efficiency of the search process is the
cover time tc, i.e., the minimum time needed by the RW
to visit all sites of this domain at least once [13]. The
cover time of a single random walker has also an important
application in computer science, for instance, for generating
random spanning trees (with uniform measure) on an arbitrary
connected and undirected graph G [14,15].

Computing analytically the statistics of tc for a given
confined domain has remained an outstanding challenge in
RW theory. Most previous studies focused on calculating the
mean cover time on regular lattices, graphs, and networks
[16–22]. Obtaining analytical results for the full distribution
of tc is a notoriously hard task. In Ref. [23] the authors
derived formal expressions for the distribution of tc on an
arbitrary finite graph from which it remains however extremely
difficult to extract explicit results for large systems. For RW
on the d-dimensional regular lattice with periodic boundary
conditions (PBCs) and in high dimensions d > 2, it was shown
rigorously in Ref. [24] that the distribution of tc, properly
centered and scaled, converges in the limit of a large system
to a Gumbel distribution. It was then shown that the same
conclusion holds for the RW on the fully connected graph
[25], corresponding formally to the limit d → ∞. Note that
on the d-dimensional regular graph with d > 2, the RW is
transient, i.e., the walker escapes to infinity with a nonzero
probability in the unbounded domain. In fact, very recently,
Chupeau et al. studied the full distribution of the cover time
on a finite graph by an arbitrary transient RW and found that
the aforementioned results are quite robust [13]. Indeed, for

such transient RWs, they showed [13] that the distribution
of tc, appropriately centered and scaled, indeed approaches a
Gumbel distribution, irrespective of the topology of the graph.

An important exception to this class of transient walkers is
a RW in one or two dimensions where the walker is recurrent
(i.e., starting from a given site, it comes back to it with
probability one). It is thus natural to investigate the distribution
of tc for a RW in one or two dimensions. In particular, on a
finite segment in d = 1, is the scaled distribution of tc still
given by a Gumbel law or is it something completely different?
This question is clearly relevant for any process modeled by
a one-dimensional (1D) RW in a finite domain, for instance,
for proteins searching for a binding site on a DNA strand
[7,9]. Another important question concerns the role of the
boundary conditions on the confined domain. How sensitive is
the distribution of tc to the boundary conditions in the limit of
a large domain? In d = 1, although the mean cover time 〈tc〉
is known exactly for a RW on a finite interval of size L, for
both reflecting and periodic boundary conditions, computing
the full distribution for these two boundary conditions has
remained an outstanding challenge.
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FIG. 1. (a) Brownian motion (BM) with RBCs at x = 0 and x =
L. The thick (red) region indicates the space already covered by the
walker up to time t , starting at x0 = L/2. The circle denotes the
current position at time t of the walker. (b) The same walker on a
ring, i.e., with PBCs, starting at 0. The thick (red) region, indicating
the covered space up to time t , is equivalent to the span S (t) (the
spatial extent of the visited region) of a walker on the infinite line.
In both cases, the cover time tc is the first time at which the entire
domain becomes red.
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FIG. 2. The PDFs of the scaled cover time for a single lattice
RW with RBCs and PBCs for sizes L = 101 (blue) and L = 201
(orange). The collapsed scaling data are compared to theoretical
scaling functions (dashed lines) in the Brownian limit in Eq. (1)
with D = 1/2, where f

R|P
1 (z)’s are given in Eqs. (22) and (26),

respectively.

In this paper, we present exact results for the full distribution
of tc in d = 1 for a RW in the Brownian limit (i.e., the long-
time scaling limit of a discrete-time RW on a lattice) on a
finite interval of size L for both reflecting boundary conditions
(RBCs) and PBCs (see Fig. 1). In the case of the PBC, the RW
takes place on a ring of size L, and evidently the distribution
of tc is independent of the starting point, whereas it depends
explicitly on the starting point x0 ∈ [0,L] in the case of the
RBC. In the latter case, for simplicity, we present the results
only when the walker starts at the center of the interval, i.e.,
at x0 = L/2. We show that, in the Brownian limit (with a
diffusion constant D), the probability density function (PDF)
of tc is given by

Prob.[tc = t |L] = 4D

L2
f

R|P
1

(
4Dt

L2

)
, (1)

where R|P denotes the RBC and the PBC, respectively. The
exact scaling functions f R

1 (x) and f P
1 (x) are given in Eqs. (22)

and (26), respectively, along with their asymptotics in Eqs. (23)
and (29). Plots of these two scaling functions are shown in
Fig. 2.

Another interesting question concerns the statistics of the
cover time tc where there are N independent walkers. This
problem of multiple independent random walkers naturally
arises in various search problems where there is a team of
N independent searchers as opposed to a single searcher.
Various observables associated with this multiple random
walker process have been studied over the past few decades,
such as the first passage time to the origin [26–29], the
number of distinct and common sites visited by these walkers
[30–34], the statistics of the maximum displacement [35–38],
the statistics of records [39], etc. For N walkers, the cover
time tc is the minimum time needed for all sites to be visited
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FIG. 3. Main: The PDFs of the scaled cover time (30) for different
N ’s with RBCs. For each N , the numerical results were obtained for
lattice RW of size L = 201 as in Fig. 2. The (magenta) dashed lines
are the exact theoretical scaling functions in the Brownian limit with
D = 1/2 and are given by f R

N (z) in Eq. (31). The inset: Same data as
shown in the main panel but for PBCs. The (magenta) dashed lines
correspond to the exact theoretical results given by f P

N (z) in (38).

at least once by at least one of the walkers. In the literature,
only the mean cover time was computed and that too only for
N = 2 with the PBC in 1D [20]. It is evident that the average
cover time will decrease with increasing N , but how does it
decrease for large N? In this paper, we generalize our result
for the cover time distribution for one walker to arbitrary N

walkers in 1D, both for RBCs and PBCs (for a plot of these
distributions for different N ’s, see Fig. 3). In particular, we
show that the mean cover time for both boundary conditions
decreases for large N as

4D〈tc〉
L2

≈ 1

4 ln N
. (2)

However, it turns out that the fluctuations around the mean are
sensitive to the boundary conditions. Indeed we show that for
large N , the random variable tc approaches

4Dtc

L2
≈ 1

4 ln N
− 1

4(ln N )2
χR,P , (3)

where χR and χP are two N independent distinct random
variables with nontrivial PDFs, respectively, given by [with
x ∈ (−∞, + ∞)]

Prob.[χR = x] = gR(x) = 2e−x−e−x (
1 − e−e−x )

(4)

plotted in Fig. 4, and

Prob.[χP = x] = gP (x) = 4e−2xK0(2e−x), (5)

where K0 is the modified Bessel function. The function gP (x)
is plotted in Fig. 4.
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FIG. 4. Plot of the limiting PDFs of tc (for N RWs in the limit of
large N ) gR(x) (for RBC) and gP (x) (for PBC) given in Eqs. (4) and
(5), respectively.

II. SINGLE WALKER (REFLECTING CASE)

Let us start by first considering the case of a single Brownian
motion on the interval [0,L] starting at x0 with the RBCs at
x = 0 and x = L. The cover time tc in this case is clearly the
first time when the walker has hit both boundaries at x = 0
and x = L. It is useful to consider the cumulative distribution
Prob.[tc > t |x0]. If tc > t , this means that at time t one of
the boundaries has not been hit up to time t . This means that
Prob.[tc > t |x0] = Prob.[L is unhit up to time t] + Prob.[0
is unhit up to time t]−Prob.[both are unhit up to time t]. All
three probabilities can be computed by solving the standard
backward Fokker-Planck equation for the survival probability
S(x0,t) (x0 being the starting position of the walker),

∂S(x0,t)

∂t
= D

∂2S(x0,t)

∂x2
0

, (6)

with appropriate boundary conditions at x0 = 0 and x0 =
L. For example, Prob.[L is unhit up to time t] = SAR(x0,t)
where the subscript A indicates an absorbing boundary condi-
tion at x0 = L [i.e., S(x0 = L,t) = 0], whereas the subscript
R refers to the reflecting boundary condition at x0 = 0, [i.e.,
∂x0S(x0,t)|x0=0 = 0] [26,27,40]. Hence we have

Prob.[tc > t |x0] = SAR(x0,t) + SRA(x0,t) − SAA(x0,t), (7)

where the subscripts refer to the boundary conditions. These
survival probabilities can be computed exactly from Eq. (6)
using standard methods [26,27,41], as follows.

This Eq. (6) holds for x0 ∈ [0,L] with the initial condition
S(x0,0) = 1 for 0 < x0 < L. By taking Laplace transform
S̃(x0,λ) = ∫ ∞

0 e−λtS(x0,t)dt in Eq. (6) and using the initial
condition S(x0,0) = 1 yields an ordinary differential equation,

D
d2S̃(x0,λ)

dx2
0

− λS̃(x0,λ) = −1. (8)

This differential equation can be solved trivially with the
appropriate boundary conditions at x0 = 0 and x0 = L as

needed here (7). For convenience, we will choose x0 = L/2
for which by symmetry SAR(x0 = L/2,t) = SRA(x0 = L/2,t).
In this case we obtain

SAA(L/2,t) = S1

(
4Dt

L2

)
, (9)

SAR(L/2,t) = SRA(L/2,t) = S2

(
4Dt

L2

)
, (10)

where

∫ ∞

0
S1(z)e−λzdz = 1

λ

[
1 − 1

cosh
√

λ

]
, (11)

∫ ∞

0
S2(z)e−λzdz = 1

λ

[
1 − cosh

√
λ

cosh 2
√

λ

]
. (12)

These Laplace transforms can be inverted by using the
standard Bromwich contour on the complex λ plane and
calculating the residues at the poles. This gives

S1(z) = 4

π

∞∑
n=0

(−1)n

(2n + 1)
e−(2n+1)2π2z/4, (13)

and

S2(z) = 4

π

∞∑
n=0

(−1)n cos[(2n + 1)π/4]

(2n + 1)
e−(2n+1)2π2z/16. (14)

These series representations are very useful for calculating
the large z asymptotics where only the n = 0 term gives the
leading contribution, yielding

S1(z) ≈
z→∞

4

π
e−π2z/4, (15)

S2(z) ≈
z→∞

4

π
√

2
e−π2z/16. (16)

However, for small z, it is harder to compute the tail from the
series representations in (13) and (14). In that case, one can
use an alternative representation that can be obtained via the
Poisson summation formula [42]. Equivalently, we can derive
it by inserting the following identity:

1

cosh(p
√

λ)
= 2

∞∑
n=0

(−1)ne−(2n+1)p
√

λ, (17)

in Eqs. (11) and (12) and then inverting the Laplace transform
term by term. This gives, after straightforward algebra,

S1(z) = 1 − 2
∞∑

n=0

(−1)nerfc

(
2n + 1

2
√

z

)
, (18)

S2(z) = 1 −
∞∑

n=0

(
sin

nπ

2
+ cos

nπ

2

)
erfc

(
2n + 1

2
√

z

)
,

(19)

where erfc(x) = (2/
√

π )
∫ ∞
x

e−u2
du. Note that erfc(x) ≈

e−x2
/(x

√
π ) as x → ∞. Consequently, for small z, keeping

only terms up to n = 1 in the sums in Eqs. (18) and (19) (higher
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order terms only give subleading corrections), gives

S1(z) ≈
z→0

1 − 4
√

z√
π

e−(1/4z) + 4
√

z

3
√

π
e−(9/4z), (20)

S2(z) ≈
z→0

1 − 2
√

z√
π

e−(1/4z) − 2
√

z

3
√

π
e−(9/4z) . (21)

Therefore, from Eqs. (7) and (9), we have Prob.[tc > t |L] =
F1(4Dt/L2) where the scaling function F1(z) = 2S2(z) −
S1(z). Taking the derivative with respect to z yields the PDF
announced in Eq. (1) with the scaling function f R

1 (z) given
explicitly by

f R
1 (z) = S ′

1(z) − 2S ′
2(z), (22)

where S1(z) and S2(z) are given in Eqs. (13) and (14). The tails
of the scaling function are obtained easily from the asymptotic
behaviors given in Eqs. (15)– (21) as

f R
1 (z) ∼

{
(6/

√
π )z−3/2e−9/(4z) as z → 0,

π/(2
√

2)e−π2z/16 as z → ∞.
(23)

Note that, for small z, the leading term ∝e−1/(4z) in Eqs. (20)
and (21) actually cancels, yielding the behavior in Eq. (23). A
plot of this scaling function f R

1 (z) is shown in Fig. 2 where it
also is compared to the simulation results. Simulations were
performed for a RW on a lattice of L = 101 and L = 201 sites
with reflecting boundary conditions, which in the long-time
limit collapses to the Brownian scaling function in Eqs. (1)
and (22).

III. SINGLE WALKER (PERIODIC CASE)

We now consider the cover time for a single RW on a ring
of length L. In this case, the distribution of tc is independent of
x0, which we take to be at 0 [see Fig. 1(b)]. We first show that
the cumulative probability Prob.[tc > t |L] on the ring can be
mapped exactly onto the cumulative distribution of the span
S (t) of the walker at time t on an infinite line—the span being
the length of the covered region by the walker up to time t . The
probability that tc > t indicates that at time t the ring has not
been covered by the walker [see Fig. 1(b)]. Since the ring has
not been traversed fully at time t , the walker does not realize
that it is on a ring. Thus one can think of the walk taking place
on an infinite line and Prob.[tc > t |L] on the ring is just the
probability that the span S (t) of the walker on the infinite line
is less than L, i.e., one has the exact relation [see Fig. 1(b)],

Prob.[tc > t |L] = Prob.[S (t) < L]. (24)

The PDF of the span S (t) on the infinite line is known [43],
Prob.[S (t) = s] = (1/

√
4Dt)h1(s/

√
4Dt) where

h1(y) = 8√
π

∞∑
m=1

(−1)m+1m2e−m2y2
. (25)

Therefore, taking the derivative of Eq. (24) with respect to t ,
we obtain the PDF of the cover time on a ring as in Eq. (1)
where the scaling function f P

1 (z) = 1/(2z3/2)h1(1/
√

z). Using
the explicit expression of h1(y) in Eq. (25) we then get

f P
1 (z) = 4√

πz3/2

∞∑
m=1

(−1)m+1m2e−m2/z. (26)

This formula is useful to extract the small z asymptotics of
f P

1 (z). Indeed, keeping the m = 1 term in (26) gives f P
1 (z) ∼

(4/
√

π)z−3/2e−1/z. However, this representation is not very
convenient to derive the large z asymptotics. For this, we can
use the following identity:

1 + 2
∞∑

m=1

(−1)me−m2x = 2

√
π

x

∞∑
n=0

e−(π2/x)(n+1/2)2
, x > 0,

(27)

which can easily be derived from the Poisson summation
formula [42]. Taking the derivative with respect to x on both
sides of Eq. (27) and setting x = 1/z one obtains

f P
1 (z) =

∞∑
n=0

[(2n + 1)2π2z − 2]e−π2(n+1/2)2z. (28)

For large z, the n = 0 term provides the most dominant
contribution f P

1 (z) ∼ π2ze−π2z/4. Finally, the tails of this
function can be summarized as

f P
1 (z) ∼

{
(4/

√
π

)
z−3/2e−1/z, as z → 0,

π2ze−π2z/4, as z → ∞.
(29)

For a plot of this scaling function, see Fig. 2.

IV. MULTIPLE WALKERS (REFLECTING CASE)

Here we consider, for simplicity, N independent walkers all
starting at the same point x0. Using the mutual independence
of the N walkers, the cumulative cover time distribution
for N walkers is clearly given by Prob.[tc > t |x0,N ] =
[SAR(x0,t)]N + [SRA(x0,t)]N − [SAA(x0,t)]N . Choosing as be-
fore x0 = L/2, we find that

Prob.[tc = t |x0 = L/2,N ] = 4D

L2
f R

N

(
4Dt

L2

)
, (30)

with the superscript R denoting the RBC and the scaling
function given by

f R
N (z) = −F ′

N (z), where FN (z) = 2[S2(z)]N − [S1(z)]N,

(31)

where S1,2(z) are given in Eqs. (13) and (14). A plot of this
function for different values of N is shown in the main panel
of Fig. 3 where it is compared to simulations with an excellent
agreement. The asymptotic behaviors of f R

N (z) are obtained
from Eqs. (15)– (21), and they are given by (for N � 2)

f R
N (z) ∼

{
2N (N − 1)/(πz)e−1/(2z), as z → 0,

(Nπ2/8)(2
√

2/π )Ne−Nπ2z/16, as z → ∞.

(32)

Note that the small z asymptotics of f R
N (z) are quite different

for N = 1 (23) and N � 2 (32).
One naturally wonders whether there exists a limiting

distribution of tc for large N . We first estimate the mean
cover time 4D〈tc〉/L2 = ∫ ∞

0 FN (z)dz, where FN (z) is the
cumulative scaling function given in Eq. (31). For large N ,
one expects that 〈tc〉 is small. Hence, the integral

∫ ∞
0 FN (z)dz

is dominated by the small z behavior of FN (z). For small z, one
has from Eqs. (20) and (21) that S1(z) ∼ 1 − 4

√
z/πe−1/(4z)

and S2(z) ∼ 1 − 2
√

z/πe−1/(4z). Substituting these behaviors
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in Eq. (31) and exponentiating for large N we get

FN (z) ≈ 2e−uN (z) − e−2uN (z), uN (z) = 2
√

z√
π

Ne−1/(4z).

(33)

Therefore FN (z) ∼ 1 as long as uN (z) � 1 [which happens
for z < 1/(4 ln N )], whereas FN (z) is exponentially small
in N for z > 1/(4 ln N ). Hence, to leading order for large
N, 4D〈tc〉/L2 = ∫ ∞

0 FN (z)dz ≈ 1/(4 ln N ) as announced in
Eq. (2). In addition, we can also compute the limiting distri-
bution from Eq. (33) by expanding around z = 1/(4 ln N ).
We set z = 1/(4 ln N ) − x/[4(ln N )2] where we assume that
the scaled fluctuation x is of order O(1). Substituting this z

in uN (z) in Eq. (33) and expanding for large N , one gets to
leading order uN (z) ≈ e−x . Hence, in this limit, one obtains
FN (z) → 2e−e−x − e−2e−x

. Taking the derivative with respect
to x gives the limiting PDF of tc as announced in Eq. (4).

V. MULTIPLE WALKERS (PERIODIC CASE)

We now consider N independent walkers on a ring of size L,
all starting at the same point 0. As in the N = 1 case discussed
earlier, the cumulative cover time distribution is exactly related
to the cumulative distribution of the span SN (t) of N walkers
on an infinite line, all starting at the same point, via the relation,

Prob.[tc > t |L,N ] = Prob.[SN (t) < L]. (34)

The study of the PDF of SN (t) was initiated in Ref. [30]
and recently was computed exactly for all N in Ref. [33].
It was shown in Ref. [33] that Prob.[SN (t) = s] =
(1/

√
4Dt)hN (s/

√
4Dt) where the N dependent scaling func-

tion hN (y) is given by

hN (y) =
∫ ∞

0
dl1

∫ ∞

0
dl2δ(y − l1 − l2)

∂2gN

∂l1∂l2
. (35)

Here g(l1,l2) is the scaled cumulative joint distribution of the
maximum and the minimum of a single BM, starting at the
origin on an infinite line and is given by [33],

g(l1,l2) = 4

π

∞∑
n=0

1

2n + 1
sin

[
(2n + 1)πl2

l1 + l2

]

× exp

{
−

[
(2n + 1)π

2(l1 + l2)

]2}
. (36)

As in the case of N = 1, taking derivative of Eq. (34) with
respect to t , we get

Prob.[tc = t |L,N ] = 4D

L2
f P

N

(
4Dt

L2

)
, (37)

with the superscript P denoting the PBC. The scaling function
f P

N (z) is given by

f P
N (z) = 1

2z3/2
hN

(
1√
z

)
, (38)

where hN (y) is given in Eq. (35). In the inset of Fig. 3, we
show a plot of f P

N (z) for different N ’s and compare it to
numerical results. The asymptotic tails of f P

N (z) for N � 2
can be obtained from the tails of hN (y) computed in Ref. [33]

with the result,

f P
N (z) ∼

{√
2N (N − 1)/(

√
πz3/2)e−1/(2z), as z → 0,

(aNz/2)e−Nπ2z/4, as z → ∞,

(39)

where aN is given by

aN = 4π3/2N (N − 1)(4/π )N−2�([N − 1]/2)/�(N/2).

(40)

In particular one can check that a1 = 2π2, in agreement with
Eq. (29). As in the reflecting case (32), the behavior for z → 0
is quite different for N = 1 and N � 2.

We now turn to the limiting distribution of tc for large N for
the PBC. In the context of the span distribution, the limiting
form of the scaling function hN (y) was already analyzed for
large N in Ref. [33], and it was found that

hN (y) ≈ 2
√

ln ND[2
√

ln N (y − 2
√

ln N )], (41)

where the function D(s) = 2e−sK0(2e−s/2) was obtained as a
convolution of two Gumbel laws. Substituting this result (41)
in Eq. (38) one finds that this function f P

N (z) has a sharp peak at
z = 1/(4 ln N ). To analyze the large N scaling limit of f P

N (z),
we set z = 1/(4 ln N ) − x/[4(ln N )2] as in the reflecting case.
Expanding for large N , we get f P

N (z) ≈ 8(ln N )2D(2x). Using
dz = dx/[4(ln N )2], one immediately obtains the results for
the periodic case announced in Eqs. (3) and (5).

VI. CONCLUSION

We have obtained the full PDF of the cover time tc for
N independent Brownian motions in one dimension, both for
reflecting and for periodic boundary conditions. Previously,
only the first moment of tc was known in 1D for N = 1
and N = 2. Our results provide an instance of exact cover
time distributions for recurrent random walks, demonstrating
clearly that this is different from a Gumbel law found recently
for transient (i.e., nonrecurrent) walks [13,24]. In addition, we
have shown that in the limit of large N , the random variable
tc approaches its average value of 〈tc〉 ≈ L2/(16D ln N )
with fluctuations decaying as 1/(ln N )2. The centered and
scaled distributions converge to two distinct and nontrivial
N independent scaling functions gR(x) and gP (x) given in
Eqs. (4) and (5), respectively, and plotted in Fig. 4. Another
instance of recurrent RW is in d = 2 for which the average
value of tc has been well studied [16,17,19,21,22]. However,
determining its full PDF in d = 2 for one or multiple (N � 2)
walkers remains an outstanding challenge.
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