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Optical-bistability-enabled control of resonant light transmission for an atom-cavity system
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The control of light transmission through a standing-wave Fabry-Pérot cavity containing atoms is theoretically
and numerically investigated, when the cavity mode beam and an intersecting control beam are both close to
specific atomic resonances. A four-level atomic system is considered and its interaction with the cavity mode
is studied by solving for the cavity field and atomic state populations. The conditions for optical bistability of
the atom-cavity system are obtained. The response of the intracavity intensity to an intersecting beam on atomic
resonance is understood in the presence of stationary atoms (closed system) and nonstatic atoms (open system)
in the cavity. The nonstatic system of atoms is modelled by adjusting the atomic state populations to represent
the exchange of atoms in the cavity mode, which corresponds to a thermal environment where atoms are moving
in and out of the cavity mode volume. The control behavior with three- and two-level atomic systems is also
studied, and the rich physics arising out of these systems for closed and open atomic systems is discussed. The
solutions to the models are used to interpret the steady-state and transient behavior observed by Sharma et al.
[Phys. Rev. A 91, 043824 (2015)].
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I. INTRODUCTION

A resonantly coupled atom-cavity system can be utilized to
explore various possibilities, ranging from linear and nonlinear
physics [1–9] and single-photon atom-cavity systems [10–14]
all the way to multiple atoms [15–19] in a cavity-supported
mode. Significant work has been done on optical bistability in
two-level [2,3] and three-level systems [20]. A number of the
features observed in the above studies are explained using the
numerical results of Harshawardhan and Agarwal [21].

In this article we theoretically and numerically explore
the manipulation of the intracavity mode (probe) light for
an atom-cavity system, where the light is resonant or near
resonant with a dipole transition of the atoms contained
within the mode volume. The transmission of on-resonance
light through the cavity is altered in the presence of another
transverse (control) beam of light on atomic resonance,
which affects the state population of the atoms in the cavity
mode. The analysis here is inspired by the optical control
experiments of Sharma et al. [1], which are performed at room
temperature with a cell of atomic vapor in a standing-wave
cavity. Earlier related experimental [2,3,20,22] and theoretical-
numerical [21,23] work is almost exclusively in ring cavity
systems, as can be seen from the above references. While
the ring and standing-wave cavity-atom systems have a close
equivalence, the extension of such vapor cell experiments to
those with cold atoms requires the stationary-wave cavity
due to the unbalanced light forces in a regular ring-cavity
arrangement.

Another major feature of this work is optical control of
the intracavity intensity when the atoms are stationary within
the cavity mode, that is, a closed system for the atoms and
for an open system of atoms, where the cavity-mode atoms
are exchanged with a reservoir of thermal atoms. In a thermal
reservoir the energy levels of atoms without any external light
field have a thermal distribution. The two cases lead to different
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behaviors, in particular for transient switching of intracavity
light.

In this article we model the atom-cavity system and
determine the conditions for optical bistability. The model
solves for both steady-state and transient evolution of this
system. A four-level atomic system is considered initially, and
three- and two-level systems are discussed subsequently. The
connection to experiments is made by considering the various
atomic subsystems for the 87Rb atom, and the model provides
a phenomenological interpretation of experimental results [1].
The application of this model to laser-cooled atoms [19] or
ions coupled to a cavity [24] is addressed. Further, the flow of
atoms in and out of the cavity mode is included, so that the
transient behavior of the atom-cavity systems can be captured.
Comparisons with the experiments [1] are made, and the model
successfully replicates the observed transients [1] and prepares
the platform for a variety of experiments.

Previous work on the theory of bistability and its control
with four-level atoms in a cavity has been studied for a
ring cavity [21,23,25,26]. Our work here for closed systems
agrees well with the results for ring cavities in Ref. [21],
and we find very similar bistability and multistability for
the corresponding atom-cavity systems considered. This is
expected as the physics for closed systems in our case is the
same as the ring cavity case of Ref. [21] if we ignore the force
due to radiation pressure. In other related work, the atomic
level structure used in Refs. [25,26] is different from ours and
Ref. [23] concentrates on the effect of spontaneously generated
coherence (SGC), which requires the realization of special
conditions. Here we emphasize optical pumping, relevant for
the experimental study of Sharma et al. [1], and provide the
apparatus for the understanding of underlying effects in all
optical switching experiments.

II. THE ATOM-CAVITY SYSTEM

Consider a cavity with finesse F and mode volume V ,
which encloses a thermal vapor of atoms. In the model here, we
assume that the atomic reservoir is significantly larger than the
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FIG. 1. (a) Schematic diagram of the system. The atoms are
enclosed in a cell, located within the Fabry-Pérot cavity. The filled
circles represent atoms overlapped with the mode and the empty
circles represent the background atom vapor. The incident probe
beam on cavity resonance is transmitted through. A transverse control
beam (dashed line) intersects the cavity mode volume. On atomic
resonance, cavity mode light intensity is affected by the presence of
the control light beam, which affects the light transmitted through the
cavity. The inset (b) shows the atomic level scheme. The probe laser
beam is near resonant with transition |1〉 ↔ |3〉 with frequency ωp

and detuning �p , and the control laser beam is near resonant with
|2〉 ↔ |4〉 with frequency ωc and detuning �c.

cavity mode volume. This allows the study of the atom-cavity
system in two cases: (a) the closed system, where the atoms
contained in the cavity mode are assumed to be stationary and
so the same atoms are always coupled to the cavity, and (b) the
open system, where the atoms enter and exit the cavity mode
volume, with the constraint that the effective number of atoms
within the cavity mode is constant. Initially, the calculations
are set up for stationary atoms and the exchange of atoms is
incorporated later.

The schematic conceptualization of the system is illustrated
in Fig. 1(a). For specificity we consider a medium made up
of atoms having two ground states |1〉 and |2〉. States |1〉 and
|2〉 are nondegenerate and cannot decay by any radiative or
other process from one to another. The only process by which
the ground-state populations of the stationary atoms change is
via optical transitions, with the excited states. The two ground
states are energetically close to each other when compared
to the first excited state, such that at room temperature the
population is split equally between the two ground states. The
excited atomic states are |3〉 and |4〉, which are nondegenerate.
Dipole-allowed transitions are possible between both the
excited states and the ground states, and so an excited atom
can spontaneously emit a photon and populate either one of
these ground states.

In this article, we are concerned with the average effect of
many atoms interacting with the cavity mode and therefore
consider the effective number of atoms coupled to the cavity,
in order to understand phenomenon qualitatively. While the
thermal motion of the atoms also affects the atom-cavity

coupling, we make the assumption that on the time scale
of the experiment, the average atomic density and velocity
distributions do not change. This is the rational for the coupling
of the effective number of atoms with a single atom-cavity
coupling constant g, to be defined below. The calculations
reported below make the assumption that the number density
of atoms is constant everywhere and also the approximation
that the mode volume of the cavity is cylindrical.

Below we consider mechanisms which transfer the popu-
lations from one ground state to another, in the presence of
the externally applied light fields, for various atomic level
subsystems. The details of the cavity parameters used are
provided in the text, when the first results are quantified.

III. CLOSED SYSTEM OF ATOMS

A. Four-level atoms

For the four-level stationary atoms, as shown in Fig. 1, we
have an ensemble of atoms placed within the cavity mode. The
cavity mode beam (probe beam) with frequency ωp is tuned to
the |1〉 ↔ |3〉 resonance. The control beam with frequency ωc,
is orthogonal to the cavity axis and is tuned to the |2〉 ↔ |4〉
resonance. Identifying the operator σ̂ij ≡ |i〉〈j |, we can write
the Hamiltonian for the four-level atom with eigenstates |2〉,
|1〉, |3〉, and |4〉 and eigenenergies �ω2 = 0, �ω1, �ω3, and
�ω4, along with the two fields, consistent with the energy-level
diagram in Fig. 1(b), as in Refs. [27,28],

Ĥ = �(σ̂11ω1 + σ̂33ω3 + σ̂44ω4)

+ �g(â†σ̂13e
iωpt + âσ̂31e

−iωpt )

+ �(�∗σ̂24e
iωct + �σ̂42e

−iωct ). (1)

In the above equation, g = −μ13
√

ωp/(2�ε0V ) is atom-cavity
coupling, where μ13 is the transition dipole matrix element
between |3〉 and |1〉, â and â† are photon annihilation and
creation operators for the probe field, � = −μ24|Ec|/� is
Rabi frequency for the control beam, where μ24 is the
transition dipole matrix element between |4〉 and |2〉, |Ec|
is the magnitude of the electric field of the control light, and ∗
denotes a complex conjugate. The intensity of control beam is
kept constant.

As we are not in the single-photon regime, it is appropriate
to consider the expectation values for the field operators in
the cavity mode, where α = 〈a〉 and α∗ = 〈a†〉 correspond to
the coherent field (semiclassical approximation), and αin is
the input probe field. In general the evolution equation for the
expectation value for an operator X̂, for the atomic system
under consideration is written as

d〈X̂〉
dt

= i

�
〈[Ĥ ,X̂]〉, (2)

where [Ĥ ,X̂] is the commutator of X̂ with the Hamiltonian,
Ĥ . For the atom-cavity system defined above, with the
restrictions imposed on the four-level system, the evolution
equations for the atomic states and the cavity field, after
including spontaneous emission rates and cavity-loss terms
phenomenologically, result in the reduced set of coupled
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differential equations [24,27–29]:

α̇ =
√

κ1

τc

αin
p − κtα − igNatρ13,

ρ̇13 = −(γ13 + i�p)ρ13 + igα(ρ33 − ρ11),

ρ̇33 = −�ρ33 + ig(α∗ρ13 − αρ∗
13),

ρ̇11 = �

2
ρ44 + �

2
ρ33 − ig(α∗ρ13 − αρ∗

13),

ρ̇24 = −(γ24 + i�c)ρ24 + i�(ρ44 − ρ22),

ρ̇44 = −�ρ44 + i(�∗ρ24 − �ρ∗
24),

ρ̇22 = �

2
ρ44 + �

2
ρ33 − i(�∗ρ24 − �ρ∗

24). (3)

Here, α is the intracavity field, αin
p is the probe field, κ1 is

the transmission rate related to transmission coefficient (T ) of
input mirror given by κ1 = T

2τc
, where τc is round trip time of

the photon in the cavity and κt is the total loss rate of cavity.
In addition, � is the spontaneous emission decay rate from the
excited states, and γ13 and γ24 are the decoherence rates for
coherence between states {|3〉,|1〉} and {|4〉,|2〉} respectively.
The probe laser detuning from the |1〉 ↔ |3〉 transition is �p =
(ω3 − ω1) − ωp and the control laser detuning from the |2〉 ↔
|4〉 transition is �c = (ω4 − ω2) − ωc. The probe is resonant
with the cavity (ωp = ωca).

The objective throughout this work is to solve for the
intracavity light intensity α, when the states of the atoms
interact with the light fields. In this case the application of the
cavity mode laser ωp (|1〉 ↔ |3〉) and the transverse control
laser ωc (|2〉 ↔ |4〉) couples the ground states of the atoms in
a manner that shifts the state populations in the atoms. This in
turn affects the intensity of the light in the cavity mode. The
entire coupled system of Eqs. (3) can be solved to obtained α,
with realistic parameters for the atom and cavity.

For the atom, we have ρ13 = eiωpt 〈|1〉〈3|〉 and ρ24 =
eiωct 〈|2〉〈4|〉 for the coherences, and ρnn = 〈|n〉〈n|〉 for di-
agonal terms representing the state populations. We neglect
collisional dephasing for all transitions, and set γ24 = γ13 = �

2
in Eqs. (3). Nat is the effective number of atoms coupled to
the cavity at any given time and is taken to be a constant. In
the α̇ equation, the third term represents the loss of intracavity
light due to the presence of spontaneously emitting resonant
atoms in the cavity and is proportional to the effective number
of atoms (Nat).

In steady state, α̇ = 0 and ρ̇mn = 0,∀(m,n) and Eqs. (3)
become a set of linear equations which can be solved
algebraically. By eliminating the atomic variables we get a
nonlinear equation of degree 3 in α,√

κ1

τc

αin
p − κtα − κatα = 0, (4)

where κat is the decay rate of cavity field due to the atoms and
is given by

κat = 2Natg
2(� − 2i�p)

|α|2g2
[(

�
|�|

)2 + 16 + 4
(

�c

|�|
)2] + (

�2 + 4�2
p

) .

The quadratic dependence on α in the denominator turns
Eq. (4) into a cubic equation. The negative sign in front of the
third term represents the interaction of cavity field with atoms,

FIG. 2. Transmitted power of cavity vs input power after solving
Eq. (4) numerically and converting to SI units. The different curves
correspond to different detunings of the probe laser from the atomic
resonance. When there are no atoms, the response is linear. As
�p changes, the nature of the hysteresis and therefore the region
for bistable behavior changes. All curves are for control power
corresponding to �/2π = −50 GHz and detuning �c = 0.

which is lossy due to continuous absorption and spontaneous
emission. The solution of Eq. (4) allows the existence of three
steady-state values of α for the same αin, as shown in Fig. 2.

The part of the solution to Eq. (4) with negative slope is an
unstable solution [31] of the cubic equation. Experimentally,
the system transits from one stable solution to another,
therefore exhibiting bistability in the regime where multiple
solutions exist for a given value of αin. In Fig. 2, we have
converted the cavity field into power, for comparison with
experiments. This is achieved by multiplying intracavity inten-
sity cε0

2 |α|2( �ωca
2V ε0

) by transmission coefficient 2κ1τc and area of

beam A = 6.2×10−2 mm2. Here
√

�ωca
2V ε0

is the proportionality

constant between electric field operator inside cavity and
the operators â and â†, V is volume of cavity mode, and
ωca is cavity resonance frequency. For the calculation the
cavity parameters are κt = 4.38 MHz, κ1 = 0.492 MHz, τc =
0.305 ns, and Nat = 5×104. The values for atomic transitions
are based on the ground states (|1〉, |2〉) corresponding to
5 2S1/2(F = 2,F = 1) and excited states (|3〉, |4〉) correspond-
ing to 5 2P3/2(F = 1,F = 2) respectively of the 87Rb D2

transition and �/2π = 6.06 MHz [30]. �/2π = −50 GHz
corresponds to 1 μW power of the control beam, g/2π =
−40 kHz. The parameter values above are fairly representative
of our generic experimental laboratory conditions [19].

The cavity output power as a function of input power,
in the presence of transverse control light field with
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FIG. 3. Bistable curves for two different control beam powers
with �p = 2�.

�/2π = −50 GHz, is illustrated in Fig. 2. From the figure, we
infer that as the detuning of the probe beam from the atomic
resonance increases, the region of bistability decreases, and
beyond a point, for very large detunings, the system reduces
to the one where no resonant atoms are present in the cavity
and the empty cavity response is obtained. This is clear from
Eq. (4), in the limit of large �p.

For large control laser power represented by �/2π ≈
−50 GHz, 16 	 (�/�)2 � (�c/|�|)2, the loss in cavity light
becomes largely independent of the probe power, as can be
inferred from the above condition and Eq. (4). However, for �

of the order of � the loss of cavity light becomes dependent
on control power as seen in Fig. 3. In this range the intracavity
probe light intensity can be significantly altered by changing
the ratio of control power to cavity input power Pc/Pin ≈ 10−8.
This shows that a very weak transverse intensity of light,
under suitable conditions, is able to control the intracavity light
intensity of the probe beam. This regime of control is available
only in the region where the bistability is manifested. When
the intracavity intensity is high and when � 	 �, we obtain a
saturated regime, where adding more power to probe or control
beam does not alter the intracavity field significantly.

The set of partial differential equations [Eqs. (3)] can
be solved in a MATHEMATICA NOTEBOOK numerically, by
adiabatically increasing and then decreasing the input power
of probe beam while keeping the power of the control beam
at a given value. In this case, the change in the output
power can be followed by tracking the intracavity field α and
converting it into a transmitted output intensity using the cavity
κ1. The resulting intensity of the transmitted light exhibits
hysteresis as seen in Fig. 4. Here, as the control power is
increased, the hysteresis features moves to higher values of
the probe light intensity. The observed hysteresis is consistent
with the steady-state solutions that exhibit bistability and the
transmitted light intensity follows the positive slopes of the
bistability solution.

B. Three-level atoms

The three-level atom is easily adapted from the earlier four-
level atom by eliminating the |4〉 excited state. The probe beam
frequencies and detunings remain the same while the control

FIG. 4. Hysteresis for the two different control beam powers in
Fig. 3, with probe beam detuning �p = 2�. The hysteresis shown
here is a result of following the change in output as the input is
increased and decreased adiabatically.

beam couples |2〉 ↔ |3〉, with detuning �c = (ω3 − ω2) − ωc.
The resulting three-level system has two ground states and thus
is a � system. The rate equations can be derived in a manner
analogous to that of Eqs. (3), and can be written as

α̇ =
√

κ1

τc

αin
p − κtα − igNatρ13,

ρ̇13 = −(γ13 + i�p)ρ13 + igα(ρ33 − ρ11) − i�ρ12,

ρ̇11 = �

2
ρ44 + �

2
ρ33 − ig(α∗ρ13 − αρ∗

13),

ρ̇33 = −�ρ33 + ig(α∗ρ13 − αρ∗
13) + i(�∗ρ23 − �ρ∗

23),

ρ̇23 = −(γ23 + i�c)ρ23 + i�(ρ33 − ρ22) − iαgρ∗
12,

ρ̇12 = −(γ ′
12 + i[�c − �p])ρ12 + iαgρ∗

23 − i�∗ρ13,

ρ̇22 = �

2
ρ33 − i(�∗ρ23 − �ρ∗

23), (5)

where γ13 = γ23 = �
2 , and γ ′

12 is the collisional dephasing
between the ground states. This is the general description
when the atoms are in motion but still coupled to the cavity
mode at all times. For the three-level scheme, we consider
the complete set of evolution equations, unlike the four-level
case. The coherence term between the ground states |1〉 and
|2〉 plays a role here due to the common excited state |3〉.
All other notations are the same as those defined alongside
Eqs. (3) in the four-level case. Similar to the four-level case,
the steady-state equation for α can be calculated, yielding an
equation in α of the form

√
κ1

τc

αin
p − κtα − κ̃atα = 0, (6)

where κ1 and κt have been defined earlier and κ̃at is decay rate
of cavity field from atoms given by

κ̃at = T1α + T2|α|2α
T3|α|6 + T4|α|4 + T5|α|2 + T6

, (7)

which results in a seventh power equation in α, giving rise to
interesting consequences. The values of T1, . . . ,T6 are given
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FIG. 5. Bistability in case of a three-level system for different
values of detuning. Here |�|/2π = 5.15 MHz. Unlike the four-level
system, the bistable curves have two distinct regions of negative slope
in some cases. The four curves illustrate the different cases of probe
and control detuning, as specified in the legend.

in the appendix. The corresponding ring cavity analysis [21]
also results in a seventh-power equation.

For a specific case of g � �,�, above solution reduces to
the one derived in Ref. [32], which does not result in hysteresis.
The seventh power of α in Eq. (7) gives rise to an input-output
relation when the two light frequencies are close to resonance,
which is far richer than the case of the four-level system, within
the approximations made. A seventh-order cavity field solution
can result in multistability and multiple bistability, as seen in
Figs. 5 and 6.

FIG. 6. Double hysteresis for the case of �p = 0, �c = 2� and
|�|/2π = 5.15 MHz in Fig. 5. The increasing and decreasing legend
represents the sense of the change in the input probe power.

When the gas of atoms is dilute and stationary, the
assumption γ ′

12 → 0 holds and equal detuning, i.e., �p = �c

implies that κ̃at = 0, resulting in electromagnetically induced
transparency (EIT) [33]. This results in Eq. (6) becoming linear
in α due to the fact that the medium becomes transparent in
the steady state and so the transmitted light depends only on
cavity loss. Hence there is no bistability, as has been observed
experimentally [34]. For �p = �c we see bistability, as shown
in Fig. 5. Depending on the system parameters, the nature of
the solution can be altered such that the adiabatic solution of
the curve can exhibit multiple bistable behavior. This is seen
in Figs. 5 and 6.

IV. OPEN SYSTEM OF ATOMS

A. Four-level atoms

So far the atoms that have been considered are static, i.e.,
they do not flow in and out of the cavity mode, which implies
zero temperature. We now consider a situation where the
resonant atoms are swapped in and out of the cavity mode,
while maintaining the effective number of atoms within the
mode constant with time. Such a system describes the case
when the atomic reservoir is much larger than the volume of
the cavity mode and that the atoms move into and out of the
cavity mode, representing an open system of atoms coupled to
the cavity. In this case the atoms would have finite temperature
to account for their motion. Experimentally this is satisfied for
the schematic illustrated in Fig. 1. In this work, instead of
explicitly considering an ab initio velocity distribution for the
temperature, we mimic the temperature by a model which
exchanges atoms between the mode and the reservoir at a
certain rate, which is consistent with the experiments [1]. At
room temperature, the population of the Rb atoms is equally
split in the two ground states, and we put this in explicitly
in our calculations when we exchange background gas atoms
with cavity-mode atoms. For such a system, the steady-state
behavior of the atom-cavity system remains the same while
the transient response of the four-level atom-cavity system
is significantly affected. Below we formulate the atom-cavity
problem by creating a simple exchange model and connect
the switching response of light through the cavity to the
experiments in Sharma et al. [1].

The principle difference with respect to the stationary atom
model is that the state of the ensemble (density matrix) in the
cavity mode changes, as the atoms interacting with the cavity
go out of the cavity mode and background gas atoms are added
to the ensemble of atoms inside the cavity. Consider the case
when the flow rate of atoms from the cavity mode is Rf . After
time t the fraction of atoms remaining are e−Rf t . When N1

atoms with state ρ1 are mixed with N2 atoms with state ρ2, the
statistical mixture of both gives the density matrix

ρ = 1

N1 + N2
(N1ρ1 + N2ρ2).

If ρ(t) is the density matrix at time t the density matrix after
small time τ is

ρ(t + τ ) = e−Rf τ ρ(t) + (1 − e−Rf τ )ρ0,

where ρ0 is density matrix of external atoms entering the cavity
mode. For small τ � {1/Rf ,τc,1/�}, e−Rf τ ≈ 1 − Rf τ and
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(1 − e−Rf τ ) ≈ Rf τ . Therefore,

ρ(t + τ ) − ρ(t)

τ
= −Rf ρ(t) + Rf ρ0

and in the limit τ → 0,

dρ(t)

dt
= Rf [ρ0 − ρ(t)].

For four-level atoms the equations are same as Eqs. (3)
with addition of term Rf (ρ0

nm − ρnm) on the right-hand side
for atomic operators ρnm,∀(n,m). The corresponding set of
equations with the exchange incorporated is reproduced in the
appendix.

For an atom at room temperature, ρ0
44 = ρ0

33 = ρ0
13 = ρ0

24 ≈ 0
and ρ0

22 = ρ0
11 ≈ 0.5. In such a system of atoms the steady-

state loss of cavity field due to interaction with the atoms,
represented by κat in the intracavity field Eq. (4), when the
control light is off (i.e., � = 0), is

κat = Natg
2Rf A(B − 2i�p)

2|α|2g2BC + Rf A
(
4�2

p + B2
) , (8)

where we identify A= �+Rf , B =�+2Rf and C = � + 4Rf .
Thus the system exhibits bistable behavior, both with and
without the presence of the control beam. Here the saturated
sample is continuously replaced by a thermal sample and
hence there is a continuous supply of fresh atoms in ground
state |1〉, which is equivalent to the action of the control
beam for the stationary atom case. When the control beam
is incident on a small fraction of atoms we see a shift in
bistability, as shown in Fig. 7. At input power of 430 μW,
in the case when |�| = 0, i.e., when there is no intersecting
transverse beam, the atom-cavity system is on the upper
branch of the stability curve and when |�| = 1.76 MHz the
stability point exists only on the lower branch of the stability
curve, as seen in Fig. 7. On the lower intensity branch the
output is almost zero. Hence, the above fact can be used for
switching on and off the cavity output by turning off and on the
control beam instantaneously. Figure 7 parameters are different
from those used in the computation of Fig. 2: κt = 39 MHz,
g/2π = 11.8 kHz, τc = 0.533 ns, Nat = 5×107, �p = 10�.
The fraction of atoms addressed by control beam is 0.025 and

FIG. 7. Bistability when atoms are flowing in and out of cavity.
The two curves correspond to the condition when the control light is
off and on as seen in the legend.

Rf /(2π ) = 5.5 kHz. The above parameters are close to those
used in the experiment of Sharma et al. [1].

The transient behavior of the intracavity intensity, when
the control beam is switched on, is obtained by tracking the
time evolution of the atomic states in the intersection volume
of the cavity mode and the transverse beam. This is done by
first solving the rate equations numerically (using NDSolve
in MATHEMATICA v9.0) until the system reaches steady state
with � = 0. The second step is to solve the equations again
with � = 0 with initial conditions same as the final conditions
of first step. Finally, the third step is to solve the equations
again when the control beam is switched off (� = 0) with
initial conditions the same as the final state of the second step.
The second and third steps correspond to switching on and
off the control beam. The numerical solutions give the time
evolution of the cavity field. The underlying physics is that the
system operating point shifts from the hysteresis solution for
the initial condition to that for the final state. In this process,
for parameters which closely relate to the switching regime in
Sharma et al. [1], we find that the intracavity intensity shifts
from the upper branch of the initial system when � = 0 to the
lower branch of the final system when � = 1.76 MHz. This is
the experimentally demonstrated negative logic switching [1].

For the case when the four-level atoms are static, the
transient response time for the switching is rapid (sub-micro-
second), consistent with the analysis of Harshawardhan and
Agarwal [21]. However, introduction of the exchange to
mimic the atoms flow into and out of the cavity mode keeps
readjusting the ground-state populations and prevents the
intracavity atoms from rapid optical pumping, resulting in
large decay times of the cavity mode, as can be seen in Fig. 8.
The figure shows the time evolution of output power when
control beam is suddenly turned on and off. While there are fast
fluctuations in the field values, the envelope of the intracavity

FIG. 8. Time evolution of cavity output power when the cavity
input laser is switched by the control beam. Here the control beam
off is |�|/2π = 0 and the control beam on is |�|/2π = 1.76 MHz.
The input power of 430 μW corresponds to the bistability parameter
region in Fig. 7. The submillisecond slow response of the output
power is clearly seen. The inset shows the submicrosecond response
of the transmitted power, where the left ordinate axis is the power
in the control off case and right axis is the power for the control on.
The time axis is in milliseconds. Clearly the short-time behavior is
complex.
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intensity rise and fall times is of the order of 0.2 ms, which
is of the order 2π/Rf . This behavior is consistent with the
long-time responses measured in Sharma et al. [1], and the
complex transient behavior prevents the switching times in
Ref. [1] from exhibiting single exponential response.

B. Two-level atoms with decay loss

The special case of the four-level system, where both the
probe and control laser are resonant with the |1〉 ↔ |3〉 tran-
sition, constitutes the two-level system that is experimentally
relevant. For such a system, there is a possibility that an atom
in |3〉 decays to the other ground state |2〉, but in |2〉, the atom is
no longer optically active and the overall effect of the presence
of the other ground state is that of an optical loss mechanism
created by the decay from |3〉. The experimental realization of
this is simple and it results in a different response of the cavity
transmission.

Assuming �c = 0, γ ′
12 = 0 and all other terms as before, the

coupled differential equations describing the system are given
in the appendix. For the case ωr = ωp, when the intracavity
field is enhanced [1], κat becomes

κat = NatgRf A(g + �/α)(B − 2i�p)

2BC|gα + �|2 + Rf A
[
4�2

p + B2
] , (9)

where A, B, and C are defined earlier.
Once again there exists a cubic equation in α, which is

the type of solution that supports bistability and hysteresis.
Here the equations have been written with the exchange
rate of atoms incorporated. Solving for the same atom-cavity
parameters as used for the four-level open system, we see that
in this case, the control beam pumps atoms out of the cavity
light cycle and hence reduces probe loss. The shift in the
bistable region of the output response to lower input intensity,
shown in Fig. 9, confirms this. The corresponding hysteresis
plot can be readily imagined and the positive logic or cavity
mode enhancement experiments [1] follow from the processes
described above. Without undue repetition, we can observe
from Fig. 9 that, in a region of input power values of the
probe, the application of the appropriate intensity of control
laser can promote the transmission from low intensity to high
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FIG. 9. Bistability for atoms with exchange when control beam
is in resonance with levels |1〉 and |3〉, making it a two-level system
with loss. Here the fraction of atoms addressed by control beam is
0.2, and all other parameters are the same as the values used for Fig. 7.

intensity in positive switching logic. The transient properties
are similar that of the four-level case with nonstatic atoms, as
can and should be expected and in line with the experimental
observations.

V. DISCUSSION

As can be seen from the results above, the division of the
problem into a closed and open atomic ensemble interacting
with the cavity mode expresses itself in the transient response
of the controlled intracavity light intensity. The theoretical
solutions obtained can be explicitly tested in experiments
since the values for the atomic transitions and fields used in
the explicit solutions are close to the experimental values for
Rb. We expect that the generic features of the results here
are independent of the particular atomic system and cavity
parameters. We now discuss the simplifications and extensions
of this work to experiments. The 87Rb energy levels considered
in the above calculations are the 5S1/2, F = 1,2 and the 5P3/2,
F ′ = 1,2, so that there are no closed optical transitions in
the system. This choice represents the most general four-level
system. In the experiments of Sharma et al. [1], the majority
of the experiments were performed by tuning the lasers to the
maxima of the Doppler broadened absorption, and therefore
close to the 5P3/2, F ′ = 3,4. Further the Doppler spread and
the velocity-dependent coupling of the atoms to the cavity in
the open system case, which is expected to contribute to the
details of the experimental results, has not been considered
in the model. While effort has been made to keep the
agreement between theoretical parameters and experiment as
close as possible, significant departures between the analysis
in this article and the experimental realization in Sharma
et al. [1] exist. Therefore while qualitative agreement can be
expected between the theory here and the experiment [1], the
present work does not attempt to provide detailed quantitative
agreement.

A. Closed system of atoms

A viable candidate for a closed system of atoms can be a
cold-atom ensemble that is contained within the mode volume
of the cavity, as illustrated in Fig. 10. For such a system, using
initially state-prepared atoms, a number of situations with
four-, three-, and two-level atomic systems can be studied,
with a small number of atoms present in the cavity mode.
The simulations for this case above have been done with

FIG. 10. Schematic diagram for closed system of atoms. The
black spot can represent an ensemble of laser cooled and trapped
atoms or ions, or atoms in a dipole trap.
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Nat = 5×104 atoms and the lasers plus the detection tech-
nologies required are readily available. In all cases with the
closed system, resonant light in the cavity mode will lead to
optical pumping into the alternate ground state and lead the
system into transparency. Therefore, to control the intracavity
light field, it is essential to have a nonzero transverse field
which allows the atom to interact with the cavity field.

When weak control light is incident on the atoms connect-
ing an excited state with the erstwhile dark ground state, the op-
tical pumping effects are reversed and a simultaneous nonzero
population of both ground states manifests. In a specific range
of system parameters which depend on the detunings and
intensities of the two fields, steady-state bistability of the
transmitted light intensity is observed. This can be used to
control the transmitted light intensity through the cavity and,
in the limit of weak fields and small atom numbers, can be used
as a very sensitive all-optical switch. The choice of doing this
with either the four-level atom or the three-level atom exists.

Due to negligible Doppler broadening for laser-cooled
atoms, the three-level system is practically realizable. The
solution for this system is particularly rich, as seen in Sec. III B.
As the relative detunings are altered, complex output to input
intensity dependences show up, resulting in multiple bistability
in some cases. The parameter space for observation of multiple
bistability needs careful adjustment of intensity and detunings;
an example of this is seen in Figs. 5 and 6. It might be
possible to exploit the multiple bistability regime for a 2+-level
all optical switch, where instead of just the turning on and
off of the cavity field, intermediate, stable, intracavity light
intensities are possible. This would open up new possibilities
for the precise control of the degree of atom-cavity field
interaction, by manipulation of the control light field.

The transient response of the intracavity light field for
the closed system depends on the atom-cavity coupling, the
reflectivity of the cavity mirrors, and the cavity mode volume.
The transient response in this case is of the order of a
microsecond (Fig. 11), for both the rise and fall times of
the intracavity intensity, when solved for the experimental
parameters of Ray et al. [19]. A significant fraction of the

FIG. 11. Fast switching times for closed four-level system. Here
the control beam off is |�|/2π = 0 and the control beam on is
|�|/2π = 31 MHz. The input power of 1 μW corresponds to the
lower part of the second bistability curve in Fig. 3 when control is on
and the no-atoms curve in Fig. 2 when control is off.

physics discussed here is possible on our experiment with
cold atoms in the cavity [19]. While a cold-atom ensemble
also has its losses and flows, our ability to state prepare the
system allows it to be used partially in the manner treated in
the present paper.

B. Open system of atoms

When the atoms from the reservoir move in and out of the
cavity mode volume, the atomic subsystem is open. How the
exchange of atoms affects the experimental measurement can
be studied with a vapor cell placed inside a cavity, which is
much larger than the mode volume. The cell can be placed
in either a ring cavity [4,34] or a standing-wave Fabry-Pérot
cavity [1,6,32,35], as discussed here.

In this system we have a significantly larger number of
atoms in the cavity mode at any given time, consistent with the
vapor pressure at room temperature. In addition, the cavity de-
cay rates for photons are much higher since the cavity has very
high loss; i.e., κt is very high. Further the atom-cavity coupling
g is much lower in this case than that for the cold atoms.

Of the many connections that the model makes with the
experiment [1], a key one is in the understanding of the long
rise time (≈0.2 ms) for the cavity field, when resonant probe
light is suddenly switched on, in the absence of a control beam.
This long rise time is due to the inclusion of atom flow in and
out from the cavity mode volume, as seen in Fig. 12. If the
flow of atoms is not incorporated, then the field buildup in
the cavity is two orders of magnitude faster (2 μs). When the
probe field is physically switched off, the decay of the cavity
field is very rapid. Both the rise and the decay of the resonant
probe field is shown in Fig. 12. In both the rise and decay,
fast oscillations are seen in the time evolution. From this it is
clear that the transient response of the resonant atom-cavity
system is critically altered by the movement of atoms in and
out of the cavity mode. The constant Rf for the calculations
is extracted from the experiment [1] and then introduced into
the evolution equations for the atom-field system to obtain the
results reported here.

FIG. 12. Rise and decay of transmitted intensity when cavity laser
is switched on and off respectively. The input power of 300 μW
corresponds to the lower branch of hysteresis curve in Fig. 7 with
� = 0.
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For the open system, even when the control beam is off,
the atom-cavity bistability is observed [1]. This is due to the
continuous flow of ground-state atoms in the cavity mode
volume, which has the effect of continuously maintaining the
atomic population in both atomic ground states. The effect
of the control beam is that the particular value of input light
intensity, where the cavity field solution becomes bistable,
shifts (a) to higher input light power values, when the control
is on the complementary transition (full four-level system),
and (b) to lower light input powers when the control is on the
same transition as the probe (two-level system with decay).

The observation that for high intracavity intensity of the
probe light, even relatively large intensities of control light
is unable to switch the probe transmission off, is explained
by the intracavity intensity jumping between the upper
branches of the hysteresis curve, resulting in small changes
in the intracavity intensity and therefore the transmitted light
intensity. It is therefore clear that the switching of the cavity
light intensity as described in Sharma et al. [1] is possible only
in a window of parameter space, which can be calculated using
the methods described here.

A particularly challenging problem posed by the experi-
ment [1] was the large time constant for the decay of the
cavity mode intensity, when the control beam is switched on,
in the negative logic case. The measured time constant was
≈0.5 ms. This was explained in the experiment by invoking
the exchange of thermal atoms between the cavity mode and

the thermal reservoir. From the analysis here we find that the
decay time for the cavity field on transverse switching, for
the open system as shown in Fig. 8, is in agreement with the
experimental result. This large decay time reduces by orders
of magnitude (0.6 μs) for the closed system, as seen in Fig. 11.

VI. CONCLUSIONS

The atom-cavity system’s ability to transmit resonant light
is studied in detail. The solutions for four-level, three-level,
and two-level atoms are solved for realistic atom-cavity
parameters. The solutions are constructed for the case when
the atoms are stationary in the cavity mode and generalized to
the case when the atoms are exchanged with a reservoir. It is
shown that the motion of the atoms is reflected in the transient
properties of the transmitted light through the cavity. All the
key features of the recent experiment of Sharma et al. [1] are
qualitatively understood on the basis of the theoretical analysis
here. The possibilities of adapting these systems for the study
of multiple bistability, multistability, and cold-atom ensembles
are exciting prospects for future experiments.
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APPENDIX

1. Three-level atoms

The values of T1, . . . ,T6 in Sec. III B are

T1 = 2g2Nat|�|2[�(� − 2i�p)
(
γ ′2

12 + (�p − �c)2
) + 2�|�|2(γ ′

12 + i�p − i�c)
]
,

T2 = 4g4Nat|�|2[−2γ ′
12(i�p + i�c) + �(γ ′

12 + i�p − i�c)],

T3 = 4�g6,

T4 = g4[�2γ ′
12 + 2��c(�p − �c) + 3|�|2(� + 4γ ′

12)],

T5 = g2
{
�

(
�2 + 4�2

c

)[
γ ′2

12 + (�p − �c)2
] + 8|�|2[�2γ ′

12 + 3�γ ′2
12 + 2�(�p − �c)2 + γ ′

12(�p + �c)2
] + 12|�|4(� + 4γ ′

12)
}
,

T6 = �|�|2(�2 + 4�2
p

)[
γ ′2

12 + (�p − �c)2
] + 4�|�|6 + |�|4[�2γ ′

12 + 2��p(�c − �p)]. (A1)

2. Open system of four-level atoms

The coupled time-dependent equations including the flow for the case in Sec. IV A are

α̇ =
√

κ1

τc

αin
p − κtα − igNatρ13,

ρ̇13 = −(γ13 + i�p)ρ13 + igα(ρ33 − ρ11) + Rf

(
ρ0

13 − ρ13
)
,

ρ̇33 = −�ρ33 + ig(α∗ρ13 − αρ∗
13) + Rf

(
ρ0

33 − ρ33
)
,

ρ̇11 = �

2
ρ44 + �

2
ρ33 − ig(α∗ρ13 − αρ∗

13) + Rf

(
ρ0

11 − ρ11
)
, (A2)

ρ̇24 = −(γ24 + i�c)ρ24 + i�(ρ44 − ρ22) + Rf

(
ρ0

24 − ρ24
)
,

ρ̇44 = −�ρ44 + i(�∗ρ24 − �ρ∗
24) + Rf

(
ρ0

44 − ρ44
)
,

ρ̇22 = �

2
ρ44 + �

2
ρ33 − ig(�∗ρ24 − �ρ∗

24) + Rf

(
ρ0

22 − ρ22
)
.
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For � = 0 we get κat = E
F

, where

E = g2NatA(B − 2i�p)
{
4|�|2B2 + Rf A

[
4�2

c + B2
]}

,

F = 2|α|2g2B
{
16|�|2B2 + AC

[
4�2

c + B2]} + A
(
4�2

p + B2){2|�|2BC + Rf A
[
4�2

c + B2]} (A3)

A,B, and C are defined in Sec. IV A.

3. Open system of two-level atoms with decay loss

The equations for the case in Sec. IV B are

α̇ =
√

κ1

τc

αin
p − κtα − igNatρ13,

ρ̇13 = −(γ13 + i�p)ρ13 + igα(ρ33 − ρ11) + i�̃(ρ33 − ρ11) + Rf

(
ρ0

13 − ρ13
)
,

ρ̇33 = −�ρ33 + ig(α∗ρ13 − αρ∗
13) + i(�̃∗ρ13 − �̃ρ∗

13) + Rf

(
ρ0

33 − ρ33
)
, (A4)

ρ̇11 = �

2
ρ33 − ig(α∗ρ13 − αρ∗

13) − i(�̃∗ρ13 − �̃ρ∗
13) + Rf

(
ρ0

11 − ρ11
)
,

ρ̇22 = �

2
ρ33 + Rf

(
ρ0

22 − ρ22
)
,

where �̃ = �ei(ωp−ωr )t .
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