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We give an overview of joint unsharp measurements 
of non-commuting observables using positive operator 
valued measures (POVMs). We exemplify the role 
played by joint measurability of POVMs in entropic 
uncertainty relation for Alice’s pair of non-commuting 
observables in the presence of Bob’s entangled quan-
tum memory. We show that Bob should record the 
outcomes of incompatible (non-jointly measurable) 
POVMs in his quantum memory so as to beat the en-
tropic uncertainty bound. In other words, in addition 
to the presence of entangled Alice–Bob state, imple-
menting incompatible POVMs at Bob’s end is neces-
sary to beat the uncertainty bound and hence predict 
the outcomes of non-commuting observables with  
improved precision. We also explore the implications 
of joint measurability to validate a moment matrix 
constructed from average pairwise correlations of 
three dichotomic non-commuting qubit observables. 
We prove that a classically acceptable moment ma-
trix – which ascertains the existence of a legitimate 
joint probability distribution for the outcomes of all 
the three dichotomic observables – could be realized if 
and only if compatible POVMs are employed. 
 
Keywords: Incompatibility, joint measurability, posi-
tive operator valued measures, unsharp measurements. 

Introduction 

IN the classical perspective, all physical observables can 
be measured jointly. In contrast, quantum theory places 
restrictions on the precision with which non-commuting 
observables can be measured. In the conventional quan-
tum framework, sharp measurement of an observable is 
done through the corresponding spectral projection val-
ued (PV) operators. Joint sharp values can only be  
assigned to a commuting set of observables, when one  
restricts to PV measurements. More specifically, joint 
measurability or compatibility of observables is entirely 
linked with their commutativity, if sharp PV measure-
ments are employed. However, with the introduction of 
generalized measurements – formulated in terms of posi-
tive operator valued measures (POVMs) – it has been 
possible to refine the notion of joint measurability of non-
commuting observables1–4. While sharp values for non-

commuting observables cannot be assigned jointly via 
their PV measurements, their unsharp joint values could 
be perceived when compatible POVMs are employed. 
Active research efforts are dedicated to investigate opera-
tionally significant criteria of joint measurability (com-
patibility) of two or more POVMs and also to develop a 
resource theory of measurement incompatibility5–17. In 
this article, we review the notion of compatible POVMs 
in the generalized measurement setting. We then illustrate 
two different physical situations, where incompatible  
unsharp measurements are crucial to bring forth non-
classical features. First, we identify the significance of 
incompatible POVMs to predict the outcomes of a pair of 
non-commuting observables with enhanced precision – 
by focusing on the entropic uncertainty relation in the 
presence of quantum entangled memory18. Beating the 
entropic uncertainty bound relies on both entanglement 
and measurement incompatibility as necessary quantum 
resources19. Next, we explore when a moment matrix, 
constructed from the pairwise correlation outcomes of 
joint unsharp measurements of three dichotomic non-
commuting qubit observables, admits a classical joint 
probability distribution. We find that the optimal value of 
the unsharpness parameter, below which the moment ma-
trix is positive (and hence, admits a joint probability dis-
tribution for the fuzzy measurement outcomes of all the 
three qubit observables), matches identically with the 
compatibility of the observables. 
 The article is organized as follows. First, we begin 
with an overview of generalized measurements comprised 
of POVMs. We discuss the notion of joint measurability 
of two or more POVMs and show that this is much 
broader than commutativity. Next we explore the impli-
cations of joint measurability on entropic uncertainty re-
lation for Alice’s pair of non-commuting observables, in 
the presence of Bob’s quantum memory. We show that 
when Bob is restricted to employ only jointly measurable 
POVMs, it is not possible to achieve enhanced precision 
for predicting Alice’s measurement outcomes, even if en-
tangled state is shared between them. Further, we explore 
the role of joint measurability of three dichotomic Pauli 
qubit observables ˆ ;kn 

  k = 1, 2, 3 with 1 2 2 3ˆ ˆ ˆ ˆn n n n     
1 3ˆ ˆ 1/ 2,n n    on the positivity of the moment matrix – 

which is constructed from the average pairwise correla-
tions of the outcomes of the dichotomic observables aris-
ing in their sequential unsharp–sharp measurements. We 
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find that the corresponding moment matrix is positive if 
and only if the unsharpness parameter lies in the joint 
measurability range of the observables. The last section is 
devoted to a summary of our results. 

Compatible POVMS 

In the conventional framework, quantum measurements 
are described in terms of projection operators of the cor-
responding self-adjoint observables. And joint measur-
ability of two commuting observables means that one can 
produce the results for both the observables by perform-
ing only one PV measurement. A necessary requirement 
for joint measurability is that there exists a joint probabil-
ity distribution for the measurement outcomes of a set of 
compatible observables, such that it yields correct mar-
ginal probability distributions for the outcomes of all the 
subsets of observables. Introduction of POVMs in 1960s 
by Ludwig1 and subsequent investigations on their appli-
cability2, led to a conceptually sound and mathematically 
rigorous generalization of measurement theory. The usual 
PV measurements constitute a special case of generalized 
measurements. Generalized observables are represented 
by POVMs, which are termed as unsharp in contrast to 
their sharp PV counterparts. Commutativity of POVMs 
has a restricted meaning than their compatibility in the 
framework of generalized measurements. 
 Mathematically, POVM is a set  = {E(x)} comprising 
positive self-adjoint operators 0  E(x)  1, called effects, 
satisfying x E(x) = 1; x denotes the outcomes of meas-
urement and 1 is the identity operator. The notion of a 
POVM  to be a generalized observable provides a 
physical representation for any possible events (effects 
E(x)) to occur as outcomes x in a measurement process. 
 When a quantum system is prepared in the state , 
measurement of the observable  gives rise to general-
ized Lüder’s transformation of the state, i.e. 
 

 ( ) ( ),
x

E x E x   (1) 

 
and an outcome x occurs with probability p(x) = 
Tr[E(x)]. The expectation value of the observable is 
given by 
 

 Tr[ ( )] ( ).
x x

x E x xp x      (2) 

 
The usual scenario of PV measurements is recovered as a 
special case when {E(x)} forms a set of complete, or-
thogonal projectors. 
 A finite collection of POVMs 1, 2, ..., n is said to 
be jointly measurable (or compatible), if there exists a 
grand POVM  = {G(); 0  G()  1, G() = 1} from 

which the observables i can be obtained by post-
processing as follows. Suppose a measurement of the 
global POVM  is carried out in a state  and the prob-
ability of obtaining the outcome  is denoted by 
p() = Tr[G()]. If the effects Ei(xi) constituting the 
POVM i can be obtained as marginals of the grand 
POVM  = {G(),   {x1, x2, ...}, (where  corresponds 
to a collective index {x1, x2, ...}), i.e. if there exists a 
grand POVM  such that7 
 

 
2 3

1 1 1 2
, ,...

( ) ( , ,..., ),n
x x

E x G x x x   

 
1 3

2 2 1 2
, ,...

( ) ( , ,..., ),n
x x
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1 3

1 2
, ,...

( ) ( , ,..., ),n n n
x x

E x G x x x 


 (3) 

 
the POVMs 1, 2, ..., n are said to be jointly measur-
able. Thus, a collection of compatible POVMs 
1, 2, ..., n is obtained from a global POVM  via post 
processing of the form given in eq. (3). We emphasize 
once again that compatibility of POVMs does not require 
their commutativity, but it demands the existence of a 
global POVM. 
 As an example, consider Pauli spin observables x, z 
of a qubit. Sharp measurements of the observables 
x = x=1 xx(x) and z = z=1 zz(z) are performed 
using the two outcome projection operators 
 

 1( ) ( ),
2x xx x   1  

 1( ) ( ).
2z zz z   1  (4) 

 
The observables x and z are non-commuting and hence 
cannot be measured jointly using PV measurements. 
However, it is possible to consider joint fuzzy measure-
ments of x, z in terms of their POVM counterparts, 
which are constructed by adding uniform white noise to 
the PV operators of eq. (4). One then obtains binary 
POVMs x = {Ex(x); x = 1}, z = {Ez(z); z = 1}, 
where 
 

 
( ) ( ) (1 )

2
1 ( ),
2

x x

x

E x x
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where 0    1 denotes the unsharpness parameter. It 
may be noted that when  = 1, the fuzzy POVMs 
x = {Ex(x)}; z = {Ez(z)} reduce to their correspond-
ing sharp PV versions {x(x)}, {x(z)}. 
 The binary POVMs x, z are compatible if there ex-
ists a four-element grand POVM  = {G(x, z); x, z = 1} 
satisfying 
 

 
1

( , ) ( ,1) ( , 1) ( ),
x

z

G x z G x G x E x


     

 
1

( , ) (1, ) ( 1, ) ( ),
z

x

G x z G z G z E z


     

 
, 1

( , ) , ( , ) 0.
x z

G x z G x z


  1  (6) 

 
It has been shown3,7 that the POVMs x, z are com-
patible in the range 0    1/ 2  of the unsharpness pa-
rameter, as it is possible to construct a global POVM  
comprising the effects 
 

 1( , ) ( ), 0 1/ 2
4 x zG x z x z        1  (7) 

 
satisfying the required conditions in eq. (6). Measurement 
of a single generalized observable (POVM)  enables 
one to produce the results of measurement of both the 
POVMs x and z, when they are compatible. And, as a 
consequence, joint measurability of POVMs x, y  
ensures the existence of a joint probability distribution 
p(x, z) = Tr[G(x, z)] obeying p(x) = z p(x, z) = 
Tr[zG(x, z)] = Tr[Ex(x)], p(z) = x p(x, z) = 
Tr[x G(x, z)] = Tr[Ez(z)], over the measurement out-
comes x, z of the unsharp POVMs x, z in any arbi-
trary quantum state . 
 Triple-wise joint measurements of all the three Pauli 
observables x, y and z can be envisaged by consider-
ing the fuzzy binary outcome POVMs x = {Ex(x) = 
(1/2)(1 +  xx); x = 1}, y = {Ey(y) = (1/2)(1 +  yy); 
y = 1}, z = {Ez(z) = 1/2(1 +  zz); z = 1} in the range 
0    1/√3 of the unsharpness parameter7,10. Further, it 
has also been shown10 that the noisy versions ˆkn 

  = 
ˆ ˆ{ ( 1) (1/ 2)( )}
kn k k kE x x n        

1  of the qubit spin, 
oriented along the unit vectors ˆ ,kn  k = 1, 2, 3, which are 
equally separated in a plane (i.e. separated by an angle 
120), are pairwise jointly measurable if the unsharpness 
  3  − 1, but are triple-wise jointly measurable when 
  2/3. 
 These examples bring forth the possibility of quantum 
measurements of three observables that can be imple-
mented jointly pairwise – but not triplewise – in a two-
dimensional Hilbert space, which could not be realized 
within the PV measurement framework. This identifica-
tion led towards an extension of the notion of Kochen–

Specker contextuality20 recently and a generalized non-
contextuality inequality10,21 is shown to be violated in a 
two-dimensional Hilbert space22, if a set of three dicho-
tomic POVMs, which has pairwise joint measurability – 
but no triple-wise joint measurability – is employed. 
Moreover, it has been recognized3,5–8,13,14 that if Bob is 
restricted to employ only local compatible POVMs on his 
system, irrespective of Alice’s measurements and of the 
bipartite state shared between them, a local classical 
probabilistic model could be realized. And hence it is not 
possible to witness non-local quantum features like steer-
ing23,24 (the ability to non-locally alter the states of one 
part of a composite system by performing measurements 
on another spatially separated part) and the violation of 
Bell inequality25. An intrinsic connection between non-
local steering and incompatible measurements has been 
independently established by Quintino et al.13 and Uola et 
al.14, who proved that a set of POVMs is not jointly 
measurable if and only if it is useful to demonstrate quan-
tum steering. In addition to bringing out the fact that 
measurement compatibility is not synonymous with 
commutativity of the observables, these research efforts 
highlight the quantum resource nature of incompatible 
measurements. There are ongoing investigations recently, 
which focus towards developing a resource theory of 
measurement incompatibility16,17. 

Beating entropic uncertainty bound using  
incompatible measurements 

In this section, we investigate entropic uncertainty rela-
tion for Alice’s pair of non-commuting observables, in 
the presence of an entangled quantum memory at Bob’s 
end, when Bob is restricted to measure only compatible 
POVMs19. 
 The Shannon entropies H(X) = –xp(x) log2 p(x), 
H(Z) = –zp(z) log2 p(z), associated with the probabili-
ties p(x) = Tr[EX(x)], p(z) = Tr[EZ(z)] of measurement 
outcomes x, z of a pair of POVMs X  {EX(x)|0  
EX(x)  1; x EX(x) = 1}, Z  {EZ(z)|0  EZ(z)  1; 
z EZ(z) = 1}, offer a more general framework to quantify 
uncertainties in predicting the measurement outcomes of 
two observables X, Z in a given quantum state . 
 The uncertainties of the measurement outcomes of X 
and Z in a quantum state of finite dimension d reveal a 
trade-off, which is expressed in terms of the entropic  
uncertainty relation26,27 
 
 2( ) ( ) 2 log ( , ),X Z X ZH H       (8) 
 
where 

,( , ) max || ( ) ( ) || .X Z x z X ZE x E z   (Here ||A|| = 
Tr †[ ]).A A  
 A generalized version of the entropic uncertainty rela-
tion, for Alice’s pair of observables X, Z, when assisted 
by Bob’s quantum memory, led to a refinement of the  
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uncertainty bound as in eq. (8) and brought out that the 
outcomes of non-commuting observables could be pre-
dicted more precisely with the help of an entangled state 
shared between Alice and Bob18. 
 The entropic uncertainty relation in the presence of 
quantum memory is better introduced in terms of a 
game18: to begin with, two players Alice and Bob decide 
to measure a pair of observables X and Z. Bob prepares 
a quantum state of his choice and sends it to Alice. Alice 
measures X or Z randomly and communicates only her 
choice of measurements (not the outcomes of her meas-
urement) to Bob. To win the game, Bob should prepare a 
suitable quantum state such that he is able to predict Al-
ice’s measurement outcomes in every experimental run 
with as much precision as possible. In other words, Bob’s 
task is to minimize the uncertainties in the measurements 
of a pair of chosen observables X, Z, by appropriate 
state preparation and measurements at his end. The uncer-
tainties of X, Z are bounded as in eq. (8), if Bob can ac-
cess only classical information. On the other hand, when 
Bob prepares an entangled state and sends one part of it 
to Alice, retaining the other part, he can beat the uncer-
tainty bound of eq. (8). 
 The entropic uncertainty relation for the observables 
X, Z, measured on Alice’s subsystem of the entangled 
state AB, is given by18 
 

2( | ) ( | ) 2 log ( , ) ( | ),X Z X ZS B S B S A B        (9) 
 
where 
 
 ( )( | ) ( ) ( ),X

X BABS B S S    

 ( )( | ) ( ) ( )Z
Z BABS B S S    (10) 

 
are the conditional von Neumann entropies of the post-
measured states ( ) ,X

AB   ( ) ,Z
AB   which are obtained after 

Alice measures X, Z on her system and stores the out-
comes x, z in an orthonormal basis {|x} ({|z} respec-
tively 
 

 ( ) ( )| | ,X x
BAB

x

x x     

 ( ) ( )| | .Z z
BAB

z

z z     (11) 

 
Here, ( )x

B = TrA[AB(EX(x)  1B)] and ( )z
B = TrA[AB 

 (E(z)  1B)]. The probabilities of measurement outcomes 
x, z are given by p(x) = Tr ( )[ ]x

B  = Tr[AB(EX(x)  1B)], 
p(z) = Tr ( )[ ]z

B  = Tr[AB(EZ(z)  1B)]; S(A|B) = S(AB) − 
S(B) denotes the conditional von Neumann entropy of 
the state AB; the von Neumann entropy S() of the quan-
tum state  is given by S() = −Tr[ log2 ]. 

 It may be noted that when the state AB shared between 
Alice and Bob is maximally entangled, the second term 
on the right-hand side of eq. (9) takes the value S(A|B) = 
−log2 d. And, as the first term −2 log2 (X, Z) cannot be 
larger than log2 d (the maximum value of log2 d for 
−2log2 (X, Z) is realized when Alice employs pairs of 
unbiased projective measurements28), a trivial lower 
bound of zero can be achieved in the entropic uncertainty 
relation, showing that Bob can predict Alice’s outcomes 
with certainty. In general, by sharing an appropriate en-
tangled state with Alice, Bob can in fact beat the uncer-
tainty bound of eq. (8) with the help of suitable 
measurements on his part of the state. 
 Let us denote X or Z as the POVMs which Bob cho-
ses to measure at his end, after Alice announces her 
choice X or Z of observables in each experimental run. 
Probabilities of Alice obtaining an outcome x for X, and 
Bob getting an outcome x in his measurement of X are 
given by 
 
 ( , ) Tr[ ( ) ( )].AB X Xp x x E x E x     (12) 
 
Shannon conditional entropies of Alice’s measurement 
outcomes x  X, z  Z – conditioned by Bob’s measure-
ment outcomes x  X, z  Z – are given by 
 

 2
,

( | ) ( , ) log ( | ),
x x

H X X p x x p x x


     

 2
,

( | ) ( , ) log ( | ),
z z

H Z Z p z z p z z


     (13) 

 
Here, p(x|x) = p(x, x)/p(x) denotes the conditional prob-
ability that Alice registers an outcome x, when Bob finds 
the outcome to be x; p(x) = Tr[BEX(x)] = x p(x, x) is 
the probability of Bob getting an outcome x in the meas-
urement of X. 
 Recalling that measurements can never decrease  
entropy, i.e. H(X|X)  S(X |B), H(Z|Z)  S(Z|B), the  
entropic uncertainty relation in the presence of quantum 
memory in eq. (9) can also be expressed in terms of 
Shannon conditional entropies as, 
 
 2( | ) ( | ) 2log ( , ) ( | ).X ZH X X H Z Z S A B       
 (14) 
 
On the other hand, it has been shown29,30 that the sum of 
conditional Shannon entropies H(X|X), H(Z|Z) is con-
strained to obey the following entropic steering inequality 
 
 2( | ) ( | ) 2log ( , ),X ZH X X H Z Z       (15) 
 
when Bob is unable to remotely steer Alice’s state by his 
local measurements24. As it has been shown recently13,14 
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that measurement incompatibility is necessary and suffi-
cient to demonstrate the violation of any steering inequa-
lity, it turns out that Bob should perform incompatible 
measurements at his end, so as to be able to beat  
the uncertainty bound of eq. (8) below the value  
‘–2log2

 (X, Z)’ (or equivalently, to witness the viola-
tion of entropic steering inequality (eq. (15)). 
 We now proceed to illustrate, with a particular example 
of qubits, how Bob can beat the upper bound on entropic 
uncertainties with the help of an entangled state and  
appropriate measurements. Suppose that Alice and Bob 
decide to measure a pair of qubit observables x and z 
initially. Bob then prepares a pure maximally entangled 
two-qubit state 
 

 1| (| 0 ,1 |1 ,0 ),
2AB A B A B       (16) 

 
and sends one of the subsystems to Alice. Alice performs 
any one of the sharp PV measurements 
 

 1( ) ( ), 1,
2 xx x x     


1  

 1( ) ( ), 1,
2 zz z z     


1  (17) 

 
randomly on her qubit and announces her choice (x or 
z) to Bob. Now Bob’s task is to predict Alice’s meas-
urement outcomes x or z by performing suitable meas-
urements at his end. Suppose that he performs unsharp 
measurements 
 

 1( ) ( ),
2x xE x x    1  

 1( ) ( ),
2z zE z z    1  (18) 

 
and announces his outcomes x or z in every experimen-
tal run. 
 The joint probabilities p(x, x) (or p(z, z)) of Alice’s 
sharp outcome x (or z) and Bob’s unsharp outcome x (or 
z), are obtained (see eq. (12)) to be 
 

 
( , ) | ( ) ( ) |

1 (1 ),
4

x xAB ABp x x x E x

xx

  



     

 
 

 
( , ) | ( ) ( ) |

1 (1 ).
4

z zAB ABp z z z E z

zz

  



     

 
 (19) 

 
While the right-hand side of the entropic uncertainty rela-
tion in eq. (14) reduces to zero in this case, the left-hand 
side can be simplified (by substituting eq. (19) in eq. (13) 
and simplifying) to obtain 

 2
, 1

( | ) ( | ) ( , ) log ( | )
x x

H X X H Z Z p x x p x x


        

           2
, 1

( , ) log ( | )
z z

p z z p z z


    

          2 [(1 ) / 2],H    (20) 
 
where H(p) = –p log2 p − (1 − p) log2(1 − p) is the Shan-
non binary entropy 0  H(p)  1. Noting that the binary 
entropy function H[(1 + )/2] = 0 only if  = 1, the trivial 
bound zero of the uncertainty relation in eq. (14) can be 
achieved only when Bob too performs sharp PV meas-
urements of the observables x and z at his end, in  
which case Bob can predict Alice’s outcomes precisely. 
Reduction in the uncertainty bound, below –2log2 

( , )
x z   = 1, can only be realized if H[(1 + )/2]  

0.5, i.e. for  > 0.78. 
 It may be recalled that unsharp joint measurements of 
the observables x, z (i.e. compatibility of the POVMs 

,
x  )

z  places the restriction   1/ 2   0.707 on the 
unsharpness parameter3,7. If Bob confines only to the 
joint measurability range 0    1/ 2 , the entropic 
steering inequality (see eq. (15)) 
 
 ( | ) ( | ) 1H X X H Z Z    (21) 
 
is always satisfied. Bob’s inability to steer Alice’s state 
remotely (to be able to violate the steering inequality (eq. 
(21)) translates itself into his inability to predict Alice’s 
outcomes with enhanced precision (i.e. to beat the en-
tropic uncertainty bound below 1), when he is restricted 
to employ compatible measurements – irrespective of the 
fact that he shares an entangled state with Alice. 

Moment matrix positivity and measurement  
incompatibility 

Foundational conflicts about the quantum–classical 
worldviews of nature arise due to strikingly different sta-
tistical features in the two domains. Pioneering investiga-
tions by Bell25, Kochen and Specker20 and Leggett and 
Garg31 brought out the puzzling features of probabilities 
of measurement outcomes, arising within the quantum 
framework in terms of various no-go theorems. A com-
mon underlying feature that gets highlighted in these  
no-go theorems is the non-existence of a joint probability 
distribution for the measurement outcomes of all the ob-
servables in the quantum framework32–35. 
 From an entirely different perspective, the classical 
moment problem36,37 addressed the issue of determining 
the probability distribution, given a sequence of valid sta-
tistical moments. The classical moment problem identi-
fies that a given set of real numbers qualifies to be a 
legitimate moment sequence of a probability distribution, 
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if and only if the associated moment matrix is positive. In 
other words, existence of a valid joint probability distri-
bution, consistent with the set of moments, may be put to 
test in terms of the moment matrix positivity34,35. In the 
present context, we focus our attention on the role of  
incompatibile measurements on the positivity of the mo-
ment matrix, constructed based on the statistics of fuzzy 
measurements of a set of three non-commuting dichoto-
mic observables. 
 Let Xk, k = 1, 2, 3 denote the dichotomic random vari-
ables with outcomes xk = 1. Consider a row with four 
elements  T = (1, x1x2, x2x3, x1x3). The average pairwise 
correlations Xk Xl = xk,xl = 1 p(xk, xl) xk, xl, k, l = 1, 2, 3 
of the random variables Xk can be used to construct a 
4  4 moment matrix M =  T 
 

 

1 2 2 3 1 3

1 2 1 3 2 3

2 3 1 3 1 2

1 3 2 3 1 2

1
1

.
1

1

X X X X X X
X X X X X X

M
X X X X X X
X X X X X X

      
       
      
 
      

 (22) 

 
Note that in order to obtain the diagonal elements of M, 
we find that  
 

 2 2 2 2

, 1 , 1

( , ) ( , ) 1.
k l k l

k l k l k l k l
x x x x

X X p x x x x p x x
 

       

 
Further, the off-diagonal elements are identified as fol-
lows: we have  
 

 1 2 3

1 3

2 2
23 1 2 3 1 2 3 1 2 3

, , 1

1 3 1 3 1 3
, 1

( , , )

( , )

x x x

x x

M X X X p x x x x x x

p x x x x X X





   

   




 

 
and so on, which leads to the above structure in eq. (22) 
for the moment matrix M involving only average pairwise 
correlations of the variables. 
 In the construction of M, it is implicit that a joint prob-
ability distribution p(x1, x2, x3) for the statistical outcomes 
of three random variables X1, X2, X3 exists, and pairwise 
probabilities p(x1, x2), p(x2, x3), p(x1, x3) are obtained as 
marginal distributions, i.e. 
 

 
3

1 2 3 1 2( , , ) ( ),
x

p x x x p x x  
1

1 2 3 2 3( , , ) ( ),
x

p x x x p x x  

 
2

1 2 3 1 3( , , ) ( ).
x

p x x x p x x  

 By construction, the moment matrix M is symmetric 
and positive definite. Thus, all the four eigenvalues of M 
are positive, i.e. 
 
 1 + X1 X2 − X2 X3 − X1 X3  0, (23) 
 
 1 – X1 X2 + X2 X3 − X1 X3  0, (24) 
 
 1 – X1 X2 − X2 X3 + X1 X3  0, (25) 
 
 1 – X1 X2 + X2 X3 + X1 X3  0. (26) 
 
Note that the positivity condition in eq. (25) on one of the 
eigenvalues of the moment matrix directly corresponds to 
the three-term Leggett–Garg inequality31,38 
 
 X1 X2 + X2 X3 – X1 X3  1. (27) 
 
It has been shown31,38 that sequential measurements of a 
set of three dichotomic quantum observables, with possi-
ble outcomes 1, violate the inequality in eq. (27) – as 
the average quantum pairwise correlations on the left-
hand side of eq. (27) can sum up to a maximum value 
3/2. The maximal violation of the three-term Leggett–
Garg inequality can be realized from the statistics of out-
comes in the sequential PV measurements of three  
dichotomic qubit observables ˆ ,kn 

  with the unit vectors 
ˆ ,kn  k = 1, 2, 3 equally separated in a plane by an angle 

120, in the completely mixed initial state  = 1/2 of a 
qubit. In other words, the moment matrix constructed 
based on the results of sharp PV sequential measurements 
of three dichotomic qubit observables ˆkn 

  could  
turn out to be non-positive35 – and hence, points towards  
the non-existence of a joint probability distribution 
p(x1, x2, x3) for the outcomes. 
 In the following, we consider unsharp measurements of 
the trine axes observables ˆkn 

  using the POVMs ˆkn    
ˆ{ ( 1)},
kn kE x     where the effects ˆ ( 1)

kn kE x     are 
given by, 
 

 ˆ
1 ˆ( 1) ( ).
2kn k k kE x x n        

1  (28) 

 
Our intention is to obtain the range of the unsharpness 
parameter  for which the 4  4 moment matrix – con-
structed from the average pairwise correlations Xk Xl of 
the three dichotomic Pauli observables – is positive. 
 We consider a maximally mixed qubit state  = 1/2 and 
perform sequential unsharp–sharp pairwise measurements 
of the observables ˆ ,kn 

  k = 1, 2, 3. Suppose that the 
first unsharp measurement of ˆkn 

 gives an outcome xk. 
The initial quantum state transforms to 
 
 ˆ ˆ( ) ( ) / ( )

k kk n k n k kE x E x p x         

     
ˆ ( ) / ( ),

kn k kE x p x    (29) 
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with probability p(xk) = ˆTr[ ( )] / 2 1/ 2.
kn kE x    A subse-

quent sharp measurement of ˆ ,ln 
  yielding an outcome 

xl, results in the post-measured state ˆ ˆ( ) ( )
k l kn x n kE x      

ˆ ( ) / ( | )
k ln x l kp x x    with the probability p(xl|xk) of obtain-

ing the sharp outcome xl for ˆ ,ln 
  given that the first un-

sharp measurement of ˆknE 
  has resulted in the outcome 

xk given by 
 
 ˆ ˆ ( )( | ) Tr[ ( ) ]

k k ll k n k n xp x x E x      

     1 ˆ ˆ(1 )
2 k l k lx x n n    

     1 1 .
2 2 k lx x   
 

 (30) 

 
The pairwise joint probabilities p(xk, xl) of the sequential 
measurement are then evaluated as 
 
 ( , ) ( ) ( | )l k k l kp x x p x p x x  

     1 1 .
4 2 k lx x   
 

 (31) 

 
Using the above joint probabilities, the average pairwise 
correlations (u) (s) ,k lX X   k < l = 1, 2, 3 of the unsharp–
sharp sequential measurements are evaluated to obtain 
 

 
1 2

(u) (s)
1 2 1 21 2

,

( , ) / 2,
x x

X X p x x x x       

 
2 3

(u) (s)
2 3 2 32 3

,

( , ) / 2,
x x

X X p x x x x       

 
1 3

(u) (s)
1 3 1 31 3

,

( , ) / 2.
x x

X X p x x x x       (32) 

 
The corresponding 4  4 moment matrix (see eq. (22)) is 
then given by 
 

 

1 / 2 / 2 / 2
/ 2 1 / 2 / 2

.
/ 2 / 2 1 / 2
/ 2 / 2 / 2 1

M

  
  
  
  

   
    
   
 
   

 (33) 

 
The eigenvalues of the moment matrix are readily found 
to be 1 = (2 + )/2 = 2 = 3 and 4 = (2 – 3)/2. Positiv-
ity of the moment matrix implies that   2/3, which 
matches exactly with the range of the unsharpness pa-
rameter over which the POVMs ˆ ,

kn 
  k = 1, 2, 3 for the 

trine axes ˆkn  are compatible10. We thus obtain the result 
that moment matrix positivity and joint measurability of 
the observables are synonymous. 

Conclusion 

In the classical framework, physical observables are all 
compatible and they can be measured jointly. In contrast, 
measurements of observables, which do not commute, are 
declared to be incompatible in the quantum scenario. The 
notion of compatibility of measurements is synonymous 
with commutativity of the observables only when one re-
stricts to PV measurements. A broader notion of com-
patibility emerged in a generalized framework of unsharp 
measurements using POVMs. In the generalized meas-
urement theory, joint measurability of two or more 
POVMs does not, in general, require their commutativity, 
but it necessarily requires the existence of a grand 
POVM, measurement of which suffices to construct the 
results of measurements of the set of compatible (jointly 
measurable) POVMs. In this article we have reviewed the 
notion joint measurability of POVMs. We have also 
given a detailed discussion on the importance of incom-
patible measurements, to be employed by Bob at his end, 
so as to beat the entropic uncertainty bound for a pair of 
non-commuting observables of Alice’s spatially separated 
quantum system, entangled with Bob’s state. Further, we 
have brought out the connection between measurement 
compatibility and positivity of a moment matrix, by con-
sidering a specific example of sequential unsharp–sharp 
measurements of pairs of qubit observables ˆ ;kn 

  k = 1, 
2, 3, where the three unit vectors 1 2 3ˆ ˆ ˆ, ,n n n  are equally 
separated in a plane, making an angle 120. Specifically, 
we have shown that the moment matrix is positive if and 
only if the unsharpness parameter   2/3, which coin-
cides exactly with that for the joint measurability of all 
the three qubit observables ˆ ;kn 

  k = 1, 2, 3. Our exam-
ple indicates that positivity of the moment matrix, exis-
tence of joint probabilities and compatibility of POVMs 
are all equivalent notions. 
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