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Random walk with random resetting to the maximum position
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We study analytically a simple random walk model on a one-dimensional lattice, where at each time step the
walker resets to the maximum of the already visited positions (to the rightmost visited site) with a probability r ,
and with probability (1 − r), it undergoes symmetric random walk, i.e., it hops to one of its neighboring sites,
with equal probability (1 − r)/2. For r = 0, it reduces to a standard random walk whose typical distance grows as√

n for large n. In the presence of a nonzero resetting rate 0 < r � 1, we find that both the average maximum and
the average position grow ballistically for large n, with a common speed v(r). Moreover, the fluctuations around
their respective averages grow diffusively, again with the same diffusion coefficient D(r). We compute v(r) and
D(r) explicitly. We also show that the probability distribution of the difference between the maximum and the
location of the walker becomes stationary as n → ∞. However, the approach to this stationary distribution is
accompanied by a dynamical phase transition, characterized by a weakly singular large deviation function. We
also show that r = 0 is a special “critical” point, for which the growth laws are different from the r → 0 case
and we calculate the exact crossover functions that interpolate between the critical (r = 0) and the off-critical
(r → 0) behavior for finite but large n.
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I. INTRODUCTION

Search problems appear in diverse contexts [1–4] and there
has been a recent surge of interest in the physics community in
these problems [5]. Search strategies may be either systematic
or random. In the systematic strategies, the searcher uses
deterministic rules (e.g., “lawnmower”) to find a target. On the
other hand, the random search mechanism typically involves
two kinds of moves: local steps when the searcher looks for a
target, and long-range moves during which the searcher does
not look for the target but relocates itself to a different territory.
The slow search phase is typically modeled by a diffusion
or a random walk. The long-range moves may be modeled
depending on the specific application [4].

A particularly simple long-range strategy consists of “re-
setting” the searcher to a fixed location (say to the initial
starting point) with a finite probability or rate depending on
whether the dynamics is in discrete time or in continuous
time. The rationale behind this strategy is that if one does
not succeed in finding the target via short-range diffusion, it
is better to “restart” the process, rather than continuing on
the short-range moves. The effect of such stochastic resetting
was first studied by Manrubia and Zanette [6] in the context
of multiplicative processes and a slightly different version
was studied later by Gelenbe [7] in the context of network
theory. Such “restart” strategy also plays an important role in
randomized search algorithms for combinatorial optimization
problems [8,9].

Recently, a very simple model of a Brownian searcher in
the presence of stochastic resetting to its initial position with
rate r was introduced by Evans and Majumdar [10]. In the
presence of a nonzero r , it was shown that, at long times, the
probability distribution of the position of the walker reaches
a nonequilibrium steady state [10]. The temporal relaxation
to this steady state was also studied recently [11] and an
interesting dynamical phase transition was found: as time
progresses, an inner core region around the resetting point
reaches the steady state, while the region outside the core is

still transient. The boundaries of the core region grow linearly
with time at late times [11].

In the presence of resetting with rate r , the mean first-
passage time to find a target located at the origin, by a searcher
starting and resetting to x0, was computed exactly [10] and
was found to have a minimum at an optimal resetting rate r∗,
thus making the search process efficient in the presence of
resetting. This conclusion holds in all dimensions [12]. Also,
it was proved that this nonequilibrium reset dynamics is more
efficient in target search compared to an equilibrium Langevin
dynamics in the presence of an external potential leading to
the same steady state [13].

This simple model of diffusion with stochastic resetting,
in the single searcher setting, has been generalized in various
ways. For example, when the target as well as the resetting
positions are not fixed but drawn from specified probability
distributions [14], in the presence of partial detection (or
absorption) of the target by a searcher [15], when the searcher
performs a continuous-time random walk [16] or a Lévy flight
instead of a Brownian motion or random walk [17,18], when
the searcher moves in a bounded domain [19] or in the presence
of a confining potential [20], when the resetting occurs to any
of the previously visited sites with a rate proportional to the
number of visits to the site [21], etc. Recently, the model of
random walks with resetting has also been used to understand
the behavior in models of enzymatic reactions in biology [22].

Going beyond the one particle setting, the effect of the
resetting mechanism in searching an immobile target has also
been studied in the presence of multiple, but noninteracting
searchers [10]. More recently, the resetting has been studied in
spatially extended many-body interacting systems, such as for
fluctuating interfaces [11,23], as well as a class of reaction-
diffusion models [24]—in both cases, the natural dynamics
of the system is stochastically interrupted by resetting it to
the initial configuration at a nonzero rate r . A nonzero r

leads to new nonequilibrium stationary states in such extended
systems [11,23].
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In this paper, we consider a model where the searcher
remembers the maximum location visited so far and the
long-range move consists in resetting to this current maximum.
This strategy may be thought as the mixture of the systematic
search and the random search. In the systematic search strategy
since each location is visited only once, if a target in an already
visited place is missed (by an imperfect searcher), it is never
going to be detected. In the new strategy discussed in this
paper, the searcher revisits already searched locations (with
certain probability), but also feels a dynamical bias towards
exploring new locations (by resetting to the maximum).

This model may actually be useful in the context of animals
searching for food. During the foraging period, it is well
known that an animal typically performs a random walk in
search of food [25,26]. It is however quite natural for an
intelligent animal (with memory) to remember the already
visited (explored) sites and thus to have a natural tendency
to relocate once in a while to the frontier between already
explored and yet unexplored territories, where the probability
of finding food may be higher due to the proximity of the
unexplored territory. In a one-dimensional setting, the animal,
besides short-range diffusion, may relocate with a nonzero
probability to the current maximum or to the current minimum,
which together constitute the frontier between explored and
unexplored territories. In this paper, we consider an even
more simplified directed version that has the advantage of
being exactly solvable. In our model the animal starting at the
origin, besides performing short-range standard random walk,
relocates stochastically with a nonzero probability to only the
positive side of the frontier, i.e., the farthest visited site so far
to the right of the origin (i.e., to the maximum). We will see
that despite the fact that the position of the walker evolves via
a non-Markovian dynamics (as it remembers the maximum
position so far in order to relocate), the model allows for an
exact solution and thus provides interesting insights into this
long-range search strategy.

The rest of the paper is organized as follows. In Sec. II
we introduce the model precisely and summarize our main
exact results. In Sec. III we derive the generating functions
for the probabilities of the position and the maximum after n

time steps. We then examine in detail the asymptotic large n

statistics in the two opposite limits respectively in the next two
sections: (i) the case without resetting but only with diffusion
in Sec. IV and (ii) the case where only resetting occurs without
any diffusion in Sec. V. In Sec. VI we analyze the situation for
arbitrary resetting rate. In Sec. VII, we analyze the statistics of
the maximum and the position in the scaling limit r → 0, n →
∞, while keeping the product r n fixed. The crossover scaling
functions are computed exactly in this section and compared
to numerical simulation results. Finally, we conclude with a
summary and some open questions in Sec. VIII.

II. MODEL AND THE SUMMARY OF MAIN RESULTS

We consider a walker moving on a one-dimensional lattice,
initially starting from the origin. Here each lattice site should
be thought of as a “region,” which is much larger than the
“size of the searcher,” but much smaller than the whole region.
The searcher spends some characteristic time τ in each region
(lattice site), and we consider time steps in units of τ and take

it to be discrete. Let x(n) denote the position of the walker at
step n and m(n) denote the current position of the maximum
at step n, i.e.,

m(n) = max[x(0) = 0, x(1), x(2), . . . ,x(n)]. (1)

The position x(n) evolves with time via the following
stochastic dynamics. At any given time step n, if the position
x(n) of the walker is less than the maximum position m(n)
reached up to that time [i.e., x(n) < m(n) strictly], then in the
next time step, the position is reset to the maximum position
with probability r . With the remaining probability (1 − r), the
walker moves either to the right or to the left lattice site, with
equal probability (1 − r)/2. On the other hand, if x(n) = m(n),
then in the next time step, the walker moves either to the
right or to the left lattice site with equal probability 1/2. The
dynamics is precisely defined by the following evolution rules
[see Fig. 1(a)]:

if x(n) < m(n)

(x,m) →

⎧⎪⎨
⎪⎩

(x + 1,m) with probability (1 − r)/2,

(x − 1,m) with probability (1 − r)/2,

(m,m) with probability r,

(2)

and if x(n) = m(n),

(x,m) →
{

(m + 1,m + 1) with probability 1/2,

(m − 1,m) with probability 1/2.
(3)

Evidently, the evolution of x(n) is non-Markovian by itself,
since the walker has to remember the maximum position
reached so far in order to reset. However, the dynamics of the
pair of stochastic variables {x(n),m(n)} is Markovian in the
two-dimensional (x,m) plane, and this is the key point behind
the solvability of the model. Figure 1 depicts the motion in the
(x,m) plane.

It is useful to summarize our main results. Our main
objective is to compute the statistics of the two random
variables x(n) and m(n). Let us first recall that in the
absence of resetting (r = 0), the walker performs a standard
one-dimensional random walk, for which x(n) converges to
a Gaussian random variable with zero mean and variance n,
for large n. Hence the probability distribution of the position

converges, for large n, to Px(x,n) →
√

1
2πn

exp [−x2/2n].
Similarly, for r = 0, the distribution of the maximum m(n) �
0, for large n, converges to a half-Gaussian: Pm(m,n) →√

2
πn

exp [−m2/2n] with support only over m � 0. Thus, for
r = 0, both the position and the maximum typically grow
diffusively as

√
n for large n.

When the resetting to the maximum is switched on (r > 0),
the walker feels a dynamical bias towards the maximum. Hence
one expects that both x(n) and m(n) will grow faster than pure
diffusion for large n. The question is how much faster? We
will see that for r > 0 (strictly), both m(n) and x(n) grow
linearly with n for large n with the same speed. In addition,
the variance of both m(n) and x(n) grow diffusively for large
n with the same diffusion coefficient. This suggests that, for
all r > 0, the position latches onto the maximum and, indeed,
we show that the difference variable m(n) − x(n) approaches
a stationary distribution as n → ∞ for all r > 0. Our exact
results are summarized below.
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FIG. 1. (a) Allowed lattice points for the walker to move in the (x,m) plane. The walker is restricted to move only along the horizontal
(constant m) lines except when it is on the x = m line. When on the x = m line, the walker can either move to a level up on the same line
(m,m) → (m + 1,m + 1) with probability 1/2 or move to the left site while staying on the same level (m,m) → (m − 1,m) with probability
1/2. (b) The comb lattice structure after the transformation y = m − x. In the (y,m) plane, the walker is restricted to move along the vertical
lines except when y = 0. From a point (0,m) the walker can go either to (0,m + 1) with probability 1/2 or to (1,m) with probability 1/2.

Statistics of the maximum m(n). The average maximum, for
large n, behaves as

〈m(n)〉 �
√

2 n

π
for r = 0, (4)

� v(r) n for r > 0, (5)

where the speed v(r) is given by

v(r) = r(1 − r)

r − 2r2 + √
r(2 − r)

. (6)

The speed vanishes as v(r) ≈ √
r/2 as r → 0. The variance

of m(n) grows diffusively for large n,

σ 2
m = 〈m2(n)〉 − 〈m(n)〉2 � Dm(r) n, (7)

where the diffusion coefficient [the subscript m in Dm(r)
denotes the random variable m] is given by

Dm(r) =
(

1 − 2

π

)
for r = 0, (8)

= D(r) for r > 0, (9)

where D(r), for r > 0, is given by

D(r) = (1 − r)r2

√
r(2 − r)[r − 2r2 + √

r(2 − r)]3

× [(2 − 2r − 5r2 + 3r3)

+ (2 − r − r2 + 2r3)
√

r(2 − r)]. (10)

The behavior of v(r) and D(r), vs r , is shown in Fig. 2.
Note that as r → 0, D(r) → 1/2 
= Dm(0) = (1 − 2/π ). Thus
there is a discontinuity in the variance as r → 0. These results
clearly indicate that r = 0 is a singular or critical point.
Indeed, we find that near the critical point r = 0, there is
a scaling regime. Taking r → 0, n → ∞, but keeping the
product rn fixed, we find that the mean and the variance exhibit

the following scaling behavior:

〈m(n)〉 → √
n fm(rn), (11)

σ 2
m → nFm(rn), (12)

where the two scaling functions fm(y) and Fm(y) have
nontrivial expressions

fm(y) = 1√
2y

[(
y + 1

2

)
erf

(√
y
) +

√
y

π
e−y

]
, (13)

Fm(y) = 1 + y

2
− f 2

m(y), (14)

where erf(z) = 2√
π

∫ z

0 e−u2
du is the error function. The func-

tion fm(y) has the following asymptotic behaviors: fm(y) ∼√
2/π + √

2/π (y/3) as y → 0, and fm(y) ∼ √
y/2 + 1/

√
8y

as y → ∞. Consequently, Fm(y) → (1 − 2/π ) as y → 0, and

0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5

r

v(r)

D(r)

FIG. 2. (Color online) v(r) and D(r) as a function of r (in blue
and red, respectively). The dashed lines show their limiting values,
1/3 and 8/27, respectively, for r → 1.
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Fm(y) → 1/2 as y → ∞. These two limiting behaviors of the
scaling functions (for the mean and the variance) then smoothly
interpolate between r = 0 (strictly) and r > 0 (and n → ∞).
For any small but fixed r , there is a crossover time n∗(r) ∼ 1/r ,
such that, for n < n∗(r), the mean and the variance grow
with n simply as a random walk (r = 0): 〈m(n)〉 ∼ √

2n/π

and 〈σ 2
m〉 ∼ (1 − 2/π ) n. However, for n > n∗(r), the walker

starts sensing the presence of a finite resetting rate r and
crosses over to a new behavior where the mean maximum
grows linearly with n, 〈m(n)〉 ∼ v(r) n and the variance grows
diffusively, σ 2

m ∼ D(r) n with the diffusion constant D(r)
given in Eq. (10).

Statistics of the position x(n). We find that the mean position
behaves as

〈x(n)〉 = 0 for r = 0, (15)

� v(r) n for r > 0, (16)

where the speed v(r), for r > 0, is the same as that of
the maximum given in Eq. (6). The variance of x(n) grows
diffusively for large n,

σ 2
x = 〈x2(n)〉 − 〈x(n)〉2 � Dx(r) n, (17)

with the diffusion coefficient (the subscript x denotes the
random variable x)

Dx(r) = 1 for r = 0, (18)

= D(r) for r > 0, (19)

where the diffusion coefficient D(r) is the same as that of
the maximum and is given in Eq. (10). As in the case of
the maximum, the diffusion coefficient D(r → 0) = 1/2 
=
Dx(0) = 1 undergoes a discontinuous jump at the critical point
r = 0. Similar to m(n), the behavior of the mean and the
variance of x(n) exhibit a scaling behavior in the scaling regime
r → 0, n → ∞ with the product rn fixed

〈x(n)〉 → √
n fx(rn), (20)

σ 2
x → nFx(rn). (21)

The scaling functions have the exact expressions

fx(y) = 1√
2y

[(
y − 1

2

)
erf

(√
y
) +

√
y

π
e−y

]
, (22)

Fx(y) = y

2
+ 1 − e−y

y
− f 2

x (y). (23)

The scaling function fx(y) has the asymptotic behav-
ior: fx(y) ∼ (2/3)

√
2/π y − (2/15)

√
2/π y2 as y → 0 and

fx(y) ∼ √
y/2 − 1/

√
8y as y → ∞. As a result, Fx(y) →

1 as y → 0 and Fx(y) → 1/2 as y → ∞. These scaling
functions then smoothly interpolate between the critical (r =
0) and off-critical (r > 0) growth of the mean and the variance.

Statistics of the difference y(n) = m(n) − x(n). We show
that the probability Qy(y,n) that the position at the nth step is
at a distance y away from the global maximum has the large
deviation form

Qy(y = wn,n) ∼ exp[−nH (w)], (24)

where the large deviation function is given by

H (w) =
{

w ln
[ 1+√

r(2−r)
1−r

]
for w < w∗,

w
2 ln 1+w

1−w
+ ln

√
1−w2

1−r
for w > w∗,

(25)

with w∗ = √
r(2 − r). This result shows that for a given n, the

probability Qy(y,n) becomes independent of n for y < w∗n:

Qy(y,n) ∼ exp

[
− ln

(
1 + √

r(2 − r)

1 − r

)
y

]
, (26)

while, for y > w∗n, the distribution Qy(y,n) is still time
dependent. In other words, the distribution of y becomes
stationary on a larger and larger length scale y∗(n) = w∗n
that grows linearly with time n. Moreover, the rate function
H (w) is weakly nonanalytic at w = w∗: the second derivative
H ′′(w) is discontinuous at w = w∗. This signals a dynamical
phase transition, similar to the one observed in the temporal
evolution of the distribution of position of a Brownian motion
with resetting to its initial position [11].

III. DERIVATION USING GENERATING FUNCTIONS

In this section we outline the derivation of our results. We
start with the dynamics of the two basic observables x(n) and
m(n) given in Eqs. (2) and (3). Since we have m � 0 and x �
m, it is convenient to define the difference variable y = m − x,
where y � 0. In terms of y, the dynamics in Eqs. (2) and (3)
get translated into the equivalent forms [see Fig. 1(b)]:

if y > 0

(y,m) →

⎧⎪⎨
⎪⎩

(y − 1,m) with probability (1 − r)/2,

(y + 1,m) with probability (1 − r)/2,

(0,m) with probability r,

(27)

and if y = 0

(y,m) →
{

(0,m + 1) with probability 1/2,

(1,m) with probability 1/2.
(28)

Let P (x,m,n) and Q(y,m,n) denote the joint probability
distribution of (x,m) and (y,m), respectively, at the nth
time step. Evidently, P (x,m,n) = Q(m − x,m,n). Using the
dynamics in Eqs. (27) and (28), it is easy to write down the
master equation for Q(y,m,n) as

Q(y,m,n) =
[

1 − r

2
+ r

2
δy,1

]
Q(y − 1,m,n − 1)

+ 1 − r

2
Q(y + 1,m,n − 1), (29)

for y > 0, and

Q(0,m,n) = 1 − r

2
Q(1,m,n − 1) + 1

2
Q(0,m − 1,n − 1)

+ r

∞∑
y=1

Q(y,m,n − 1), (30)

with the initial condition Q(y,m,0) = δy,0δm,0, and the bound-
ary conditions Q(y → ∞,m,n) = 0 and Q(y,m → ∞,n)
= 0.
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To solve the set of linear equations (29) and (30), it is natural
to define the generating function

G(s,z,λ) =
∞∑

y=0

∞∑
m=0

∞∑
n=0

Q(y,m,n)syzmλn. (31)

Evidently, G(1,z,λ) is the generating function for the probabil-
ity distribution of the global maximum position and G(s,1,λ)
is the generating function for the probability distribution of
the position. Moreover, G(1,1,λ) must be equal to (1 − λ)−1

as demanded by the normalization of the probability. After
straightforward algebra, it follows that G(s,z,λ) satisfies

G(s,z,λ)

[
1 − a

2

(
s + 1

s

)]

= 1+
(

rs− 1 − r

s
+ z− 2r

)
λ

2
F (z,λ) + rλG(1,z,λ),

(32)

where

a = (1 − r)λ (33)

and

F (z,λ) =
∞∑

n=0

∞∑
m=0

Q(0,m,n)zmλn. (34)

The expression for G(1,z,λ) can be obtained by setting s = 1
in Eq. (32) as

G(1,z,λ) = 1

1 − λ

[
1 − (1 − z)

λ

2
F (z,λ)

]
. (35)

The normalization condition G(1,1,λ) = (1 − λ)−1 is imme-
diately checked from above. Substituting G(1,z,λ) in Eq. (32),
after some algebra, we get

G(s,z,λ)
a

2s
(s+ − s)(s − s−)

= 1 − a

1 − λ

(
1 − [z1(s) − z]

λ

2
F (z,λ)

)
, (36)

where

s± = 1 ± √
1 − a2

a
(37)

and

z1(s) = 1 − λ

1 − a

[
−rs + 1 − r

s
+ 2r + rλ

1 − λ

]
. (38)

In Eq. (36), the function F (z,λ) is still undetermined and has
to be determined self-consistently. To proceed, we note from
Eq. (36) that G(s,z,λ) has two poles at s = s±, respectively.
Therefore, inverting with respect to s, gives the form

∞∑
λ=0

∞∑
m=0

Q(y,m,n)zmλn = A

s
y
+

+ B

s
y
−

, (39)

where A and B are the residues at the two poles. However,
from Eq. (37), we notice that s+ > 1 and s− < 1. Hence the
(1/s−)y term in the above expression diverges when y → ∞,
which is inconsistent with the boundary condition Q(y →
∞,m,n) = 0. The only way to prevent this blow up is that

B must necessarily vanish, which implies that the right-hand
side of Eq. (36) vanishes for s = s−. We note that this method
of determining the self-consistency condition via the “pole-
cancelling” mechanism was used before in other contexts
[27–29]. This condition then determines F (z,λ) as

λ

2
F (z,λ) = 1

z0 − z
, where z0 = z1(s−). (40)

Substituting F (z,λ) in Eq. (35) gives the generating function
of the maximum as

∞∑
m=0

∞∑
n=0

Pm(m,n) zm λn = G(1,z,λ) = 1

1 − λ

z0 − 1

z0 − z
. (41)

The normalization condition G(1,1,λ) = (1 − λ)−1 is imme-
diately checked. It is easy to invert G(1,z,λ) with respect to z

exactly, which gives
∞∑

n=0

Pm(m,n)λn = z0 − 1

1 − λ

1

zm+1
0

, (42)

where Pm(m,n) is the probability of having the maximum at
m in n steps.

On the other hand, substituting F (z,λ) in Eq. (36) yields
the full generating function as

G(s,z,λ) = 2s+
a

1 − r(1 − ss−)

(s+ − s)(z0 − z)
, (43)

where we have used s+s− = 1 and

z0 − z1(s)= (s − s−)s−1s+[1− r(1 − ss−)](1 − λ)(1 − a)−1.

Using z0 = z1(s−), it can be shown that

(z0 − 1)(1 − s−) = 2a−1(1 − λ)[1 − r(1 − s−)]. (44)

Therefore, the normalization condition G(1,1,λ) = (1 − λ)−1

is checked from the above expression. Finally, it is useful to
rewrite the above expression as

G(s,z,λ) = 2

a

[
s+

s+ − s
− r

]
1

z0 − z
, (45)

where we recall that Eqs. (33), (37) and

z0 = (1 − λ)

(1 − a)

[
−rs− + (1 − r)

s−
+ 2r + rλ

(1 − λ)

]
, (46)

using Eq. (38) in z0 = z1(s−). The explicit expression of the
generating function G(s,z,λ) in Eq. (45) is the central result
of this paper and is valid for arbitrary 0 � r � 1.

Let us first check a few immediate consequences of this
result in Eq. (45). One can easily invert Eq. (45) with respect
to s and z to give

∞∑
n=0

Q(y,m,n)λn = 2

a
[s−y

+ − rδy,0]z−(m+1)
0 . (47)

Now, using P (x,m,n) = Q(m − x,m,n) we get
∞∑

n=0

P (x,m,n)λn = 2

az0

[
sx
+(s+z0)−m − rδx,mz−m

0

]
. (48)

From Eq. (48), one can derive the marginal distribution of
the position by summing over m. Note that, for positive x, the
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sum over m goes from x to ∞. In contrast, for negative x, the
sum goes from zero to ∞. This yields

∞∑
n=0

Px(x,n)λn

= 2

a(s+z0 − 1)

{
[(1 − r)s+z0 + r]z−(x+1)

0 for x � 0,

s
(x+1)
+ for x < 0.

(49)

For completeness, we also compute the generating function
with respect to both x and n, which gives

∞∑
x=−∞

∞∑
n=0

Px(x,n) sx λn = 2

a

s − r(s − s−)

(z0 − s)(s − s−)
. (50)

Setting s = 1 above and using Eq. (44), it is easy to verify the
normalization condition

∞∑
x=−∞

∞∑
n=0

Px(x,n)λn = (1 − λ)−1. (51)

As mentioned above, the expression Eq. (45) for the
full generating function G(s,z,λ), valid for arbitrary reset
probability 0 � r � 1, is the main central result of our paper.
Several asymptotic results for the statistics of the two random
variables m and x can then be derived by analyzing this
expression in Eq. (45) in different limits, which we present
in the next few sections.

IV. r = 0 CASE

Let us first check the case without resetting, i.e., we set
r = 0. This is the standard one-dimensional random walk and
the results for the maximum and the position of the walker are
well known. However, we reproduce it here as a check as well
as for the sake of completeness.

For r = 0, a = λ, and

z0 = s+ = 1 + √
1 − λ2

λ
. (52)

Putting λ = e−p, and taking p → 0 limit, we have z0 ∼ 1 +√
2p, (z0 − 1)/(1 − λ) ∼ √

(2/p), and zm
0 → exp(m

√
2p) as

m → ∞ keeping m
√

p fixed. Therefore, in this limit, from
Eq. (42)

∑
n

Pm(m,n)e−pn ∼
√

2√
p

exp(−m
√

2p). (53)

Inverting the Laplace transform gives

Pm(m,n) ∼
√

2

πn
exp

(
−m2

2n

)
, where m � 0. (54)

From this distribution, it is easy to compute all the moments
for large n. For instance, the mean and the variance of the
maximum grow asymptotically as

〈m(n)〉 �
√

2 n

π
and σ 2

m �
(

1 − 2

π

)
n, (55)

as stated respectively in Eqs. (4) and (8).

Similarly, from Eq. (49), we get∑
n

Px(x,n)e−pn ∼ 1√
2 p

exp(−|x|
√

2 p), (56)

which, after Laplace inversion, gives the expected Gaussian
distribution (since a random walk, for large n, converges to a
Brownian motion)

Px(x,n) ∼ 1√
2πn

exp

(
− x2

2n

)
. (57)

Thus the mean and the variance of the position behave as

〈x(n)〉 = 0 and σ 2
x � n, (58)

as stated respectively in Eqs. (15) and (18).
For the joint distribution of the maximum and the position,

we get from Eq. (48)

∞∑
n=0

P (x,m,n)e−pn ∼ 2 exp[−(2m − x)
√

2 p], (59)

which, after Laplace inversion, gives

P (x,m,n) ∼ (2m − x)

n3/2

√
2

π
exp

[
− (2m − x)2

2n

]
, (60)

where x � m and m � 0.
Let us also verify Eq. (50) using the exact result of the

random walk

Px(x,n) =
(

n
n+x

2

)
2−n, when n + x is even, (61)

and zero otherwise. Therefore,
n∑

x=−n

Px(x,n)sx =
n∑

m=0

P (2m − n,n)s2m−n =
[

1

2

(
s + 1

s

)]n

.

Consequently,

∞∑
n=0

λn

n∑
x=−n

Px(x,n)sx =
[

1 − λ

2

(
s + 1

s

)]−1

= 2s

λ

1

(s+ − s)(s − s−)
, (62)

which is the same as Eq. (50) for r = 0.
Thus, for the case r = 0, when there is no resetting to the

maximum, we have recovered the results for the usual random
walk.

V. r → 1 LIMIT

In the other extreme limit of r → 1, we have z0 = (2 −
λ2)/λ. Therefore, from Eq. (42),

∞∑
n=0

Pm(m,n)λn = 2 + λ

2 − λ2

[
λ

2 − λ2

]m

. (63)

From the series expansion of the above expression with respect
to λ, it is easily verified that Pm(m,0) = δm,0. Moreover,

Pm(0,n) = 2− (n+1)
2

[
1 − (−1)n

2
+

√
2

1 + (−1)n

2

]
(64)
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is the probability that the walker has not crossed the origin up
to the step n. This is the case where the walker goes to the site
x = −1 (with probability 1/2) and comes back to the origin
(with probability one) at alternate time steps. In general (for
r → 1),

Pm(m,n) = 1

2πi

∮
0

dλ

λn+1

2 + λ

2 − λ2

[
λ

2 − λ2

]m

. (65)

For large m and n, with m = wn, the integral can be evaluated
using saddle-point approximation, which to the leading order
gives

Pm(m = wn,n) ∼ exp[−nS(w)], (66)

where S(w) ≡ S(w,λ∗) with

S(w,λ) = ln λ − w ln

[
λ

2 − λ2

]
. (67)

The saddle point λ∗ is obtained by solving the equation
∂λS(w,λ)|λ∗ = 0, as [λ∗(w)]2 = 2(1 − w)/(1 + w). Substitut-
ing this in the above equation we obtain the large deviation
function as

S(w) ≡ S(w,λ∗) = (1 − w)

2
ln

2(1 − w)

(1 + w)
+ w ln

4w

(1 + w)
.

(68)

This large deviation function has a maximum at w = 1/3, and
near this, one gets S(w) = (27/16)(w − 1/3)2, which implies
the Gaussian form

Pm(m,n) ∼ exp

(
− (m − n/3)2

2Dn

)
, with D = 8

27
. (69)

In fact, Eq. (63) can be inverted exactly, which gives

Pm(m,n) =
{

2− (n+m)
2

( n+m
2
m

)
if (n − m) is even,

2− (n+m+1)
2

( n+m−1
2
m

)
if (n − m) is odd.

(70)

For large n and m, using the Stirling’s approximation in
Eq. (70), one can recover the large deviation function given by
Eq. (68).

Let us now look at the probability distribution of the position
using Eq. (49). For r → 1 we have a → 0 and s+ → ∞ with
as+ → 2. Therefore, from Eq. (49), it is clear that for negative
x, we get nonzero probability only for x = −1, which reads

∞∑
n=0

Px(−1,n)λn = 1

z0
= λ

2 − λ2
. (71)

Inverting this with respect to λ gives

Px(−1,n) = 1 − (−1)n

2
2− n+1

2 . (72)

This result can be understood, as this is the case where the
walker goes to the site x = −1 (with probability 1/2) at odd
time steps and comes back to the origin (with probability
one) at even time steps. This also implies that P (−1,n)
is nonzero only when the maximum remains zero. Indeed,
from Eq. (48), for r → 1 we get

∑
n P (−1,0,n)λn = z−1

0 =

∑
n Px(−1,n)λn. For x � 0, Eq. (49) we get

∞∑
n=0

Px(x,n)λn = 4 − λ2

(2 − λ2)2

[
λ

2 − λ2

]x

. (73)

Although the exact form differs from Eq. (63), it is evident that
Px(x,n) and Pm(m,n) have the same large deviation function,
i.e.,

Px(x = wn,n) ∼ exp[−nS(w)], (74)

with S(w) given by Eq. (68).

VI. CASE 0 < r < 1

For general resetting probability 0 < r < 1, it is a bit cum-
bersome to find the exact large deviation functions associated
with the probabilities Pm(m,n) and Px(x,n). However, one
expects (as in the cases of r = 0,1) the typical fluctuations
near the mean to be governed by Gaussian distributions.
The generating functions for the mean and the variance for
the maximum and the current position are obtained from the
generating functions of their distributions, given by Eq. (41)
and Eq. (50), respectively, simply by taking derivatives. From
their respective generating functions, we then derive, for
arbitrary but fixed 0 < r < 1, the asymptotic behavior of
the mean and variance for large n for both the maximum
and the position. Finally, the asymptotic behavior of the
full probability distribution of the difference variable y(n) =
m(n) − x(n) is derived. These derivations are outlined in the
next three subsections.

A. Statistics of the maximum m(n)

From Eq. (41), we get the generating functions of the first
two moments of the maximum as

∞∑
n=0

〈m(n)〉λn = ∂

∂z
G(1,z,λ)

∣∣∣
z=1

= 1

1 − λ

1

z0 − 1
(75)

and
∞∑

n=0

〈m2(n)〉λn = ∂

∂z
z

∂

∂z
G(1,z,λ)

∣∣∣
z=1

= 1

1 − λ

[
2

(z0 − 1)2
+ 1

z0 − 1

]
, (76)

respectively. Using the expression of z0 = z1(s−) from
Eq. (38), it is easy to check that

1

z0 − 1
= C(r,λ)

1 − λ
, (77)

where

C(r,λ) = a(1 − a)

(1 − a)(1 − 2r) + √
1 − a2

, (78)

with a = (1 − r)λ. Inverting Eqs. (75) and (76) with respect
to λ using Cauchy’s formula, we get

〈m(n)〉 = 1

2πi

∮
0

dλ

λn+1

C(r,λ)

(1 − λ)2
(79)
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and

〈m2(n)〉 = 1

2πi

∮
0

dλ

λn+1

[
2C2(r,λ)

(1 − λ)3
+ C(r,λ)

(1 − λ)2

]
, (80)

respectively, where the integral is along a counterclockwise
closed contour around the origin in the complex λ plane.

A hint that r = 0 is a special case and is different from
the r > 0 case can be already seen at this level. For r = 0,
a = λ, and from Eq. (78) one gets C(0,λ) = (1 − λ)λ[(1 −
λ) + √

1 − λ2]−1. Therefore, for the r = 0 case, the powers of
(1 − λ) in the denominators of the above expressions reduce
by one, and hence this case must be treated separately from the
r > 0 case. In the following, we will only consider the case
r > 0.

Evaluating the contour integrals in Eqs. (79) and (80) ex-
plicitly for all n looks cumbersome. However, the asymptotic
behavior for large n can be derived by separating out the
contributions to the contour integrals arising from the pole
at λ = 1. Note that C(r,λ) also has two branch points at
λ = ±(1 − r)−1. Therefore,

∮
0 = − ∮

1 + [contributions from
the integrals around the branch cuts from −∞ to −(1 − r)−1

and from (1 − r)−1 to ∞]. Using the residue theorem and
computing the residue at λ = 1 we get

1

2πi

∮
0

dλ

λn+1

C(r,λ)

(1 − λ)2
= C0(r)(n + 1) + C1(r)

+ [branch cuts contributions] (81)
and

1

2πi

∮
0

dλ

λn+1

2C2(r,λ)

(1 − λ)3

= (n + 1)(n + 2)C2
0 (r) + 4(n + 1)C0(r)C1(r)

+2C2
1 (r) + 2C0(r)C2(r) + [branch cuts contributions],

(82)

where

Cn(r) = (−1)n
∂n

∂λn
C(r,λ)

∣∣∣∣
λ=1

= ∂n

∂λn
C(r,1 − λ)

∣∣∣∣
λ=0

. (83)

These coefficients can be calculated explicitly using Eq. (78).
For example, the first two coefficients are given explicitly as

C0(r) = r(1 − r)

r(1 − 2r) + √
2r − r2

(84)

and

C1(r)= r(1 − r)[1 − 3r + r2 + r(2r − 1)
√

2r − r2]√
2r − r2(r − 2r2 + √

2r − r2)2
. (85)

One can also show that the branch cuts contributions in
Eqs. (81) and (82) go to zero exponentially fast as n → ∞.

Using the results from Eqs. (81) and (82) in Eqs. (79)
and (80), we then obtain, for large n, the mean

〈m(n)〉 � v(r) n, with
(86)

v(r) = C0(r) = r(1 − r)

r(1 − 2r) + √
2r − r2

.

The speed v(r), as a function of r , is plotted in Fig. 2. Similarly,
the variance grows linearly for large n,

σ 2
m = 〈m2〉 − 〈m〉2 � Dm(r) n, (87)

with
Dm(r) = D(r) ≡ C2

0 (r) + 2C0(r)C1(r) + C0(r). (88)

Using C0(r) and C1(r) from Eqs. (84) and (85) gives the
explicit expression for the diffusion coefficient D(r), for r > 0,
as given by Eq. (10). A plot of D(r) vs r is provided in Fig. 2.

B. Statistics of the position x(n)

Similarly, to compute the mean and variance of the position
x(n), we take derivatives with respect to s in Eq. (50) at s = 1
to get

∞∑
n=0

〈x(n)〉λn = 2

a

[
1 − r(1 − s−)

(1 − s−)(z0 − 1)2
− s−

(1 − s−)2(z0 − 1)

]

(89)

and
∞∑

n=0

〈x2(n)〉λn

= 2

a

[
2[1 − r(1 − s−)]

(1 − s−)(z0 − 1)3

+ 1 − r(1 − s−)2 − 3s−
(1 − s−)2(z0 − 1)2

+ s−(1 + s−)

(1 − s−)3(z0 − 1)

]
, (90)

where we recall Eqs. (33), (37), and (46).
It is useful to define the following quantities:

A1(r,λ) = 2[1 − r(1 − s−)]

a(1 − s−)
, (91)

A2(r,λ) = 2s−
a(1 − s−)2

, (92)

A3(r,λ) = 2[1 − r(1 − s−)2 − 3s−]

a(1 − s−)2 , (93)

A4(r,λ) = 2s−(1 + s−)

a(1 − s−)3 . (94)

We note that A1(r,λ)C(r,λ) = 1 and [2A2(r,λ) +
A3(r,λ)]C(r,λ) = 1. Using these definitions and Eq. (77), we
invert the above generating function with respect to λ and get

〈x(n)〉 = 1

2πi

∮
0

dλ

λn+1

[
C(r,λ)

(1 − λ)2
− A2(r,λ)C(r,λ)

(1 − λ)

]
, (95)

〈x2(n)〉 = 1

2πi

∮
0

dλ

λn+1

[
2C2(r,λ)

(1 − λ)3
+ A3(r,λ)C2(r,λ)

(1 − λ)2

+ A4(r,λ)C(r,λ)

(1 − λ)

]
. (96)

Finally, evaluating these integrals using residue theorem, we
get

〈x(n)〉 = (n + 1)C0(r) + C1(r) − A2,0(r)C0(r) + · · · (97)
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and

〈x2(n)〉 =(n + 1)(n + 2)C2
0

+ (n + 1)
[
4C0(r)C1(r) + A3,0(r)C2

0 (r)
]

+ 2C2
1 (r) + 2C0(r)C2(r) + A3,1(r)C2

0 (r)

+ 2A3,0(r)C0(r)C1(r) + A4,0(r)C0(r) + · · · ,

(98)

where Cn(r) is defined by Eq. (83) and

Al,n(r) = (−1)n
∂n

∂λn
Al(r,λ)

∣∣∣
λ=1

= ∂n

∂λn
Al(r,1 − λ)

∣∣∣
λ=0

.

(99)

Finally, collecting the leading term for large n, we obtain
the following asymptotic results for the mean and the variance.
For large n, and for r > 0, the mean

〈x(n)〉 ∼ v(r) n, (100)

where the speed v(r) = C0(r) turns out to be exactly the same
as in the case of maximum, with an explicit expression given
in Eq. (86). Similarly, the variance behaves, asymptotically for
large n and for all r > 0, as

σ 2
x = 〈x2(n)〉 − 〈x(n)〉2 � Dx(r) n,

(101)
with Dx(r) = D(r) ≡ C2

0 (r) + 2C0(r)C1(r) + C0(r).

Hence the first and the second moments of the two variables
m(n) and x(n) grow identically for large n. It is then natural
to ask how the difference variable y(n) = m(n) − x(n) is
distributed and we address this in the next subsection.

C. Asymptotic distribution of the difference y(n) = m(n) − x(n)

Let Qy(y,n) be the probability that the location at the nth
step is at a distance y away from the global maximum. Clearly,
Qy(y,n) = ∑∞

m=0 Q(y,m,n). Therefore, from Eq. (47), we get

∞∑
n=0

Qy(y,n)λn = 2

a
[s−y

+ − rδy,0]
1

z0 − 1
. (102)

Let us first look at the value y = 0, for which Eq. (102)
reads

∞∑
n=0

Qy(0,n)λn = 2

λ

1

z0 − 1
= 2C(r,λ)

λ(1 − λ)
, (103)

where we have used Eq. (77). To extract the large n behavior of
Qy(0,n), we need to investigate the right-hand side of Eq. (103)
in the limit λ → 1. As λ → 1, C(r,λ) → C(r,1) = C0(r)
given in Eq. (84). Hence the right-hand side of Eq. (103)
behaves as 2C0(r)/(1 − λ) as λ → 1. This clearly indicates
that Qy(0,n) becomes independent of n in the limit n → ∞,
given by

Qy(0,n → ∞) → 2C0(r). (104)

For y > 0, inverting the generating function Eq. (102) we
get

Qy(y,n) = 1

2πi

∮
0

dλ

λn+1

2

a(z0 − 1)
s
−y
+ . (105)

Now, using explicit expressions, and changing the integral over
λ to that over a = (1 − r)λ, we get

Qy(y,n) = 1

2πi

∮
0

da

(a0 − a)

[
2(1 − a)

(1 − a)(2a0 − 1) + √
1 − a2

]

×
(

a0

a

)n+1[
a

1 + √
1 − a2

]y

, (106)

where a0 = 1 − r . The integrand has a simple pole at a =
a0 and branch points at a = ±1. The contour of integration
around zero can be split into two vertical contours: one that
goes from +i∞ to −i∞ through the left of the origin and
another that goes from −i∞ to +i∞ through the right of the
origin. The left contour subsequently can be wrapped around
the branch cut from a = −1 to −∞. The contribution from
this contour is subdominant and the main contribution comes
from the contour on the right for large n. It is useful to express
the integral as

Qy(y = wn,n) ≈ 1

2πi

∫ (0+)+i∞

(0+)−i∞
da

g(a)

(a0 − a)

× exp[−nH (w,a)], (107)

so that for large n we can use the saddle point approximation
method. Here

H (w,a) = ln(a/a0) − w ln

[
a

1 + √
1 − a2

]
(108)

and

g(a) = 2(1 − a)

(1 − a)(2a0 − 1) + √
1 − a2

. (109)

The saddle point a∗ is obtained by solving the condition
∂aH (w,a)|a∗ = 0, which gives a∗ = √

1 − w2. Note that the
integrand of Eq. (107) has a simple pole at a = a0 = 1 − r .
For w < w∗ = √

r(2 − r), we have a∗ > a0 and, therefore,
the contribution to the above integral comes from both the
pole and the saddle point. However, the contribution from the
pole is larger than that from the saddle point. Therefore, for
large n, Qy(y = wn,n) ∼ exp[−nH1(w)], where the large
deviation function is given by

H1(w) ≡ H (w,a0) = w ln

[
1 + √

r(2 − r)

1 − r

]
. (110)

On the other hand, for w > w∗, we have a∗ < a0. Therefore,
evaluating the above integral using saddle-point approxima-
tion gives Qy(y = wn,n) ∼ exp[−nH2(w)], where the large
deviation function is given by

H2(w) ≡ H (w,a∗) = w

2
ln

1 + w

1 − w
+ ln

√
1 − w2

1 − r
. (111)

Finally, combining these two regimes we obtain the large
deviation behavior

Qy(y = wn,n) ∼ exp[−nH (w)], (112)

with the rate function given by

H (w) =
{
H1(w) = w ln

[ 1+√
r(2−r)

1−r

]
for w < w∗,

H2(w) = w
2 ln 1+w

1−w
+ ln

√
1−w2

1−r
for w > w∗,

(113)

with w∗ = √
r(2 − r).
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FIG. 3. (Color online) Qy(y,n) against the scaled variable w =
y/n for n = 100 and r = 0.01. The (blue) points are obtained from
numerical simulation. The solid (red) line represents the asymptotic
form given by Eq. (116). The dashed lines (magenta and black) plot
the large deviation forms Qy(y = wn,n) ∼ exp[−nH1,2(w)] with the
large deviation functions H1(w) and H2(w) given by Eq. (110) and
Eq. (111), respectively. The vertical dotted line marks the position of
w∗ ≈ 0.141.

As discussed in Sec. II, this result indicates that for a
given large n, Qy(y,n) becomes independent of n for y < w∗n
and is still n dependent for y > w∗ n, signaling a dynamical
phase transition. The rate function H (w), plotted in Fig. 3,
is weakly singular at the critical point w = w∗ where both
H (w) and H ′(w) are continuous, but the second derivative
H ′′(w) is discontinuous: H ′′(w → w∗−) = 0, while H ′′(w →
w∗+) = 1/(1 − r)2. Such a second order dynamical phase
transition was also observed recently in the time evolution
of the distribution of position of a Brownian motion in one
dimension with resetting to its initial position [11].

We finish this subsection by making a couple of interesting
observations. In the limit r → 0 we have w∗ = 0. Therefore,
the large deviation form is given by H2(w) with r = 0.
Expanding in Taylor series, for small w we get H2(w) � w2/2,
which gives the Gaussian form Qy(y,n) ∼ exp[−y2/(2n)].
This is consistent with the result obtained by substituting
x = m − y in Eq. (60) and integrating over m from 0 to
∞. On the other hand, in the limit r → 1, we have w∗ = 1.
Therefore, the large deviation form is given by H1(w) with
r = 1. We note that, for r = 1, the large deviation function is
−∞, except for the case w = 0. This is because y can take
only two values, namely, 0 and 1, for the case r = 1. Using the
result of Eq. (104), we get Qy(0,n → ∞) → 2C0(1) = 2/3.
For y = 1, Eq. (102) gives

∞∑
n=0

Qy(1,n)λn = 2

(as+)(z0 − 1)
. (114)

Now, in the limit r → 1, we get as+ → 2 and (z0 − 1) →
λ−1(1 − λ)(2 + λ). Using these, and inverting the above
equation, we get

Qy(1,n) = 1
3

[
1 − ( − 1

2

)n] → 1
3 as n → ∞. (115)

Finally, following the method used in Ref. [30] in a different
context, we can also write down a more complete asymptotic
form of Q(y,n) for large n as

Qy(y = wn,n)

≈ e−nH2(w)

2
√

πn

[
K(w) − sgn(w∗ − w)g−1√

H2(w) − H1(w)

]

+ e−nH1(w)g−1

[
sgn(w∗ − w)

2

× erfc(
√

n[H2(w) − H1(w)]) − θ (w∗ − w)

]
, (116)

where g−1 = −g(a0) and K(w) = √
2 w g(a∗)/(a0 − a∗).

This preasymptotic form is particularly useful to compare
to the results of simulation. Indeed, Fig. 3 compares this
form with the numerical simulation results. The agreement
is excellent.

VII. LIMIT r → 0 AND THE ASSOCIATED SCALING
FUNCTIONS

From the results presented in Sec. IV for r = 0 and in
Sec. VI for r > 0, we see that the limit r → 0 (after taking
the large n limit) is not the same as r = 0, for the statistics of
both the maximum and the position. In other words, the two
limits limr→0 and limn→∞ do not commute. This indicates that
r = 0 is a singular or a “critical” point. For finite but large n,
there should then be a smooth crossover function interpolating
between these two limits. In this section, these crossover
scaling functions are derived analytically and compared to
numerical simulations.

A. Scaling functions associated with the maximum m(n)

We first consider the crossover scaling functions (near r →
0) associated with the mean and the variance of the maximum
m(n). Let us first focus on the mean. Our starting point is the
exact generating function for the mean in Eq. (75), where we
recall that z0 = z1(s−) is given in Eq. (38). We also remind the
reader that

a = (1 − r)λ and s− = 1
a

(1 −
√

1 − a2). (117)

Since we want to analyze the behavior of 〈m(n)〉 for large
n, and simultaneously r → 0, we need to set λ close to 1 in
Eq. (75). We set λ = 1 − p, where p is small. Upon inspecting
s− in Eq. (117), it follows that the right scaling limit is when
p → 0, r → 0, keeping the ratio p/r fixed. In the real space,
this limit corresponds to r → 0, n → ∞ but keeping the
product r n fixed. In this limit, the leading behavior of s−
can be easily worked out to give

s− ≈ 1 −
√

2(r + p). (118)

Substituting this leading behavior of s− in Eq. (38), it follows
that in the scaling limit

z0 = z1(s−) ≈ 1 +
√

2 p√
r + p

. (119)

We substitute this leading behavior of z0 on the right-hand
side (RHS) of Eq. (75) and use λ = 1 − p. In the limit p → 0,
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the sum on the left-hand side (LHS) of Eq. (75) can be
approximated by an integral, yielding in the scaling limit∫ ∞

0
〈m(n)〉 e−p n dn ≈

√
r + p√
2 p2

. (120)

By power counting on both sides of Eq. (120), it follows that
〈m(n)〉 must have the following scaling behavior:

〈m(n)〉 ≈ √
n fm(r n), (121)

in the appropriate scaling limit r → 0, n → ∞ with the
product r n fixed.

Substituting this scaling behavior on the LHS of Eq. (120),
setting p/r = s, and making a change of variable rn = y

yields the following equation for the scaling function fm(y)∫ ∞

0

√
y fm(y) e−s y dy =

√
1 + s√
2 s2

. (122)

To invert the Laplace transform on the RHS of Eq. (122), we
reexpress

√
1 + s

s2
= 1

s2
√

1 + s
+ 1

s
√

1 + s
. (123)

Each term on the RHS of Eq. (123) is an elementary
function that can be easily inverted using convolution theorem.
Inverting, we then get an exact expression for the scaling
function

fm(y) = 1√
2y

[(
y + 1

2

)
erf

(√
y
) +

√
y

π
e−y

]
, (124)

where erf(z) = 2√
π

∫ z

0 e−u2
du. The function fm(y) has the

following asymptotic behaviors:

fm(y) ∼
⎧⎨
⎩

√
2
π

+ O(y) as y → 0,√
y

2 + O
(

1√
y

)
as y → ∞.

(125)

Thus, when r = 0, using fm(0) = √
2/π in Eq. (121)

yields the asymptotic behavior of the mean, 〈m(n)〉 � √
2 n/π .

In contrast, when r > 0, as n → ∞, the scaling argument
y = rn → ∞. Hence, using the other asymptotic behavior
in Eq. (125) as y → ∞ yields the linear growth 〈m(n)〉 �√

r/2 n. Note that the speed v(r) in Eq. (6) indeed tends to
v(r) → √

r/2 as r → 0. The exact scaling function fm(y) thus
interpolates smoothly between these two limits. For any small
but nonzero r , we thus expect that 〈m(n)〉, as a function of n,

will initially grow as ∼
√

2 n
π

(the critical behavior at r = 0),
before crossing over at a characteristic time n∗(r) ∼ 1/r to
the off-critical linear growth, 〈m(n)〉 ∼ √

r/2 n. In Fig. 4, we
compare the numerical simulation results for small values of
r and show how they approach the analytical scaling function
fm(y) as r → 0.

Next we consider the variance of the maximum, σ 2
m =

〈m2(n)〉 − 〈m(n)〉2, in the scaling limit r → 0, n → ∞ but
keep the product r n fixed. For this, we now need to analyze
the second moment in Eq. (76) in the scaling limit. The analysis
proceeds more or less as in the case of the mean. We do not
repeat this computation here and just mention the final result.
In the scaling limit r → 0, n → ∞ with the product rn fixed,

r = 1×10−4
r = 5×10−4
r = 1×10−3
r = 5×10−3
r = 1×10−2
r = 5×10−2

fm(rn)

rn

m
/
√ n

50454035302520151050

5

4

3

2

1

0

FIG. 4. (Color online) 〈m(n)〉√
n

plotted vs y = r n for different small
values of r . As r → 0, the curves approach the analytical scaling
function fm(y) in Eq. (124) plotted as a solid line.

we find that the variance behaves as

σ 2
m ≈ nFm(r n), (126)

with the scaling function Fm(y) given by

Fm(y) = 1 + y

2
− f 2

m(y), (127)

where fm(y) is given in Eq. (124). The scaling function has
the following asymptotic behaviors:

Fm(y) →
{

1 − 2
π

as y → 0,

1
2 as y → ∞.

(128)

Hence, for r = 0, using Fm(0) = 1 − 2
π

in Eq. (126) gives
the asymptotic behavior of the variance, σ 2

m � (1 − 2
π

) n, i.e.,
the result for normal diffusion without resetting. In contrast, for
r > 0, as n → ∞, the scaling argument y → ∞. Hence, using
Fm(y) → 1/2 as y → ∞ in Eq. (126) gives σ 2

m � n/2. This
agrees perfectly with the finite r result σ 2

m � D(r) n with D(r)
given in Eq. (10), since D(r → 0) = 1/2. The exact scaling
function Fm(y) thus interpolates smoothly between these two
limits. In Fig. 5, we compare the numerical simulation results
with the analytical scaling function Fm(y) in Eq. (127).

B. Scaling functions associated with the maximum x(n)

We now turn to the scaling behavior of the mean and the
variance of the position x(n). We start with the mean whose
exact generating function is given in Eq. (89). To analyze
the scaling limit r → 0, n → ∞ while keeping the product
y = r n fixed, we follow the same procedure as in the case
of the maximum. Setting λ = 1 − p with p → 0, and using
Eq. (119), we find that Eq. (89) reduces, in the scaling limit,
to the following integral∫ ∞

0
〈x(n)〉 e−p n dn ≈ r

p2
√

2(r + p)
. (129)

It then indicates the following scaling behavior for the mean
position:

〈x(n)〉 ≈ √
n fx(r n), (130)
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r = 5×10−4
r = 1×10−3
r = 5×10−3
r = 1×10−2
r = 5×10−2

Fm(rn)

rn

σ
2 m
/

n

50454035302520151050
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FIG. 5. (Color online) σ 2
m/n plotted vs y = r n for different small

values of r . As r → 0, the curves approach the analytical scaling
function Fm(y) in Eq. (127) plotted as a solid line.

where fx(y), using Eq. (129), satisfies∫ ∞

0

√
y fx(y) e−s y dy = 1

s2
√

2(1 + s)
. (131)

One can again easily invert the Laplace transform in Eq. (131)
to get

fx(y) = 1√
2y

[(
y − 1

2

)
erf

(√
y
) +

√
y

π
e−y

]
. (132)

It has the asymptotics

fx(y) ∼
⎧⎨
⎩

2
3

√
2
π

y + O(y2) as y → 0,√
y

2 + O
(

1√
y

)
as y → ∞.

(133)

When r = 0, using fx(0) = 0, one recovers the standard
random walk (without resetting) result, 〈x(n)〉 = 0. In contrast,
for r > 0, when n → ∞, i.e., the product y = r n → ∞, using
the large y asymptotic behavior in Eq. (133), one gets, 〈x(n)〉 �√

r/2 n, compatible with the linear growth with speed v(r)
in Eq. (16) upon noting that v(r → 0) = √

r/2. The scaling
function fx(y) interpolates between these two limits. Figure 6

r = 1×10−4
r = 5×10−4
r = 1×10−3
r = 5×10−3
r = 1×10−2
r = 5×10−2

fx(rn)
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/
√ n
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0

FIG. 6. (Color online) 〈x(n)〉√
n

plotted vs y = r n for different small
values of r . As r → 0, the curves approach the analytical scaling
function fx(y) in Eq. (132) plotted as a solid line.

r = 5×10−4
r = 1×10−3
r = 5×10−3
r = 1×10−2
r = 5×10−2
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σ
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FIG. 7. (Color online) σ 2
x /n plotted vs y = r n for different small

values of r . As r → 0, the curves approach the analytical scaling
function Fx(y) in Eq. (135) plotted as a solid line.

demonstrates how simulation results converge to the analytical
scaling function fx(y) in Eq. (132) as r → 0.

We next consider the scaling behavior of the variance of the
position, σ 2

x = 〈x2(n)〉 − 〈x(n)〉2, in the scaling limit r → 0,
n → ∞ with the product y = r n fixed. Here we analyze the
generating function for the second moment in Eq. (90) in the
scaling limit. Since the procedure is identical as in the case of
the maximum, we skip the details and present only the result.
We find that in the scaling limit, the variance of the position
behaves as

σ 2
x ≈ nFx(r n), (134)

with the scaling function Fx(y) given by

Fx(y) = y

2
+ 1 − e−y

y
− f 2

x (y), (135)

where fx(y) is given in Eq. (132). The scaling function Fx(y)
has the following asymptotic behaviors:

Fx(y) →
{

1 as y → 0,
1
2 as y → ∞.

(136)

Using these asymptotic behaviors, it is again easy to check that
Fx(y) smoothly interpolates between the critical (r = 0) and
the off-critical (r > 0) behavior of the variance of the position,
for finite but large n. In Fig. 7, we compare the numerical
simulation results with the analytical scaling function Fx(y) in
Eq. (135).

VIII. CONCLUSION

In conclusion, we have considered a model of random walk
in one dimension where the walker, at each time step, resets
to the maximum of the already visited positions with a certain
probability r . For r = 0, it reduces to the standard random
walk in one dimension. The presence of a nonzero resetting
probability r changes drastically the asymptotic behavior of
the walker. We find that, on average, both the position and the
maximum move with the same speed, and we have obtained
an exact expression for this speed v(r). The fluctuations about
the mean is again described by the same diffusion coefficient
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D(r) for both. We also obtain the large deviation form of the
probabilities of finding the walker at a distance y away from
the maximum. The associated large deviation function shows
a second order phase transition.

An interesting extension would be to study the walk which
resets either to the maximum or the minimum with an equal
probability r/2. In general, one could ask the question in higher
dimension, where the walker resets to one of the boundary sites
of the already visited sites. Yet another extension, beyond the
study of the fluctuations of the position and the maximum
studied here, concerns the study of the search process with
resetting to the maximum. For instance, it would be interesting

to compute the mean first-passage time to an immobile or a
moving target for such a random walker submitted to random
resetting to the maximum.
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