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Weak measurements are a subset of measurement processes in quantum mechanics wherein the system, which
is being measured, interacts very weakly with the measuring apparatus. Measurement values of observables
undergoing a weak interaction and their amplification are concepts that have sharpened our understanding of
interaction processes in quantum mechanics. Recent experiments show that naturally occurring processes such as
resonance fluorescence from excited states of an atom can exhibit weak value amplification effect. In this paper
we theoretically analyze the process of elastic resonance fluorescence from a V-type three-level atomic system,
using the well-known Weiskopff-Wigner (WW) theory of spontaneous emission. Within this theory we show that
a weak interaction regime can be identified and for suitable choices of initial and final excited states the mean
scattering time between these states show an amplification effect during interaction with the vacuum bath modes
of the electromagnetic field. We thus show that a system-bath interaction can show weak value amplification.
Using our theory we reproduce the published experimental results carried out in such a system. More importantly,
our theory can calculate scattering time scales in elastic resonance scattering between multiple excited states of
a single atom or between common excited state configurations of interacting multiatom systems.
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I. INTRODUCTION

Weak measurements refer to measurement processes in
quantum mechanics where the measuring device has very little
effect on the system which is being measured. Weak interaction
is a more general concept, referring to an interaction process
where the strength of coupling between the observables taking
part in the interaction is very weak. Weak values of an
observable is a relatively new concept that is definable in
the case of weak measurements on the observable that has
undergone a weak interaction. This concept was introduced
by Aharonov, Albert, and Vaidman [1]. They showed that
the weak value associated with an observable undergoing
weak interaction can exhibit an amplification effect called
weak value amplification. This effect occurs for pre- and
post-selected quantum states of the observable that are nearly
orthogonal to each other. It was pointed out subsequently [2]
that, indeed under suitable conditions, a projective post-
selection of the outcome of a weak interaction can substantially
alter the value of the measured observable from its eigenvalue
measurements, which is obtained without post-selection. It
is argued that the advantages of weak value amplification
effect can be leveraged when the measurement process is
dominated by technical noise and not by the shot noise of
the detector [3,4].

Experiments demonstrating weak measurements and weak
interactions have been performed. Using weak interaction in an
Young’s double slit experimental setup, the average trajectories
of photons exiting either one or the other of the two slits have
been mapped [5] without loss in the visibility of interference
fringes. Since weak values can even be complex, it has enabled
direct measurement of complex probability amplitudes as is
shown in [6,7]. Experiments are also done to bring out the weak
value amplification effect. These experiments [8,9] measured
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effects, using weak value amplification, which would have
otherwise been too small to be measured. However, many of
these experiments have been deliberately designed to bring out
the effects of weak value amplification of the observable being
measured.

By contrast in a recent experiment [10], Shomroni et al.
measured an imaginary weak value which is the arrival time
of photons during natural decay processes of an excited state
atom. They chose a V-type three-level atomic configuration
initially prepared in a superposition of excited levels to be their
system. This interacts with the vacuum electromagnetic bath
environment (see Fig. 1). They showed that for appropriately
selected initial and final states of the system, the observable
being measured showed weak value amplification, which
manifested as a delayed arrival of photon as compared to the
mean arrival time of photons from an excited state decay to
the ground state.

In this paper we apply the well-known Weiskopff-Wigner
(WW) theory of spontaneous emission for an atom in the
excited states of a V-type configuration of levels. Using this
theory we derive mean scattering time of the atom between two
well defined excited state configurations. By our calculation,
we explicitly show that the extended excited state lifetime seen
in the experiment of [10] is actually the mean scattering time
from a particular, initial superposition state of the two excited
states of the V system, to a nearly orthogonal post-selected
final excited state superposition. It is important to note that the
atom does not decay to the ground state during this scattering
event and thus we are in the elastic scattering regime of
resonance fluorescence. Outside of this regime and without
post-selection, the scattering will be inelastic, dominated by
excited state decay to the ground state. We thus show that
elastic resonance fluorescence from multiple excited states
modeled by WW theory can be used to describe a weak
interaction in these systems. More importantly, we show using
WW theory that weak value amplification occurs naturally
for configurational changes between excited states, which
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FIG. 1. (Color online) An atomic V-level configuration with
ground state |g〉 and two excited states |+〉 and |−〉. The separation
between the excited states � is less than �, the rate of excited
state decay. The elastically scattered light in the forward direction
is detected for a particular polarization orientation.

are nearly orthogonal to each other during interaction with
vacuum bath modes of the EM field. Such scattering events
are rare, before which, in a usual measurement process of
atomic decay, the atom would have decayed to the ground
state. The weak value amplification process serves as a time
sieve separating the rare excited state configurational changes
from the overwhelming frequent decay of the excited state
to the ground state. It thus allows for real-time experimental
observation of excited state configurational changes from a
collection of events which overwhelmingly contain excited
state decay to the ground state.

II. RESONANCE FLUORESCENCE FROM A V SYSTEM

A V-type atomic level configuration is a prototypical
quantum atom-optical system. Initial theoretical studies on
resonance fluorescence from this system [11,12] addressed
the origin of the light and dark periods seen in their resonance
fluorescence [13]. These features were explained on the basis
of formation of symmetric |S〉 = |+〉+|−〉√

2
and antisymmetric

|A〉 = |+〉−|−〉√
2

combination of excited states. At any given
time, for finite detuning, the state of the atom will be in a
mixture of |S〉 and |A〉 states. The symmetric state |S〉 couples
to the vacuum modes of electromagnetic bath field and rapidly
deexcites to the ground state. Before such a decay can happen,
there is a finite but small probability for the |S〉 state to get
converted to the |A〉 state which does not couple to the field.
This process combined with the depleting population of the
|S〉 gives rise to dark periods in the fluorescence spectrum.
This effect happens independent of the relative orientation of
induced dipoles between the ground state |g〉 and the excited
states |+〉 and |−〉. For parallel orientation of the induced
dipoles, the |A〉 state becomes invariant in time and a total
vanishing of fluorescence due to quantum interference was
predicted [12].

It is clear from the above analysis that for nonparallel
orientations of induced dipoles the rate at which the |S〉 state
changes to |A〉 state without deexcitation is the regime of
elastic resonance where the incident light on such a system
undergoes merely a phase change in the forward scattering
direction [14].

III. WEAK VALUE AMPLIFICATION IN
RESONANCE FLUORESCENCE

We now briefly outline the traditional weak value ampli-
fication theory. The weak value of an observable is defined
as [1]

〈Ow〉 = 〈f |Ô|i〉
〈f |i〉 . (1)

It is clear from the above definition that for a nonzero 〈f |Ô|i〉,
the weak value Ow gets amplified for nearly orthogonal |i〉 and
|f 〉 states and that the weak value can lie outside the eigenvalue
value spectrum of the observable Ô.

For elastic scattering in resonance fluorescence from the V
system the observable Ô, which takes an initial symmetric
atomic state |i〉 = |S〉 of the atom to a nearly orthogonal
final state |f 〉 = 1√

2
(e−iε |+〉 − e+iε |−〉), where ε � 1 is the

σz = |+〉〈+| − |−〉〈−| observable. Here the value of ε lies
between 0 and 1. As is shown in the experiment of [10],
evaluating the weak value of this σz observable between
nearly orthogonal |i〉 and |f 〉 states produces a weak value
amplification effect. This manifests as an increase in the
arrival time of photons on a detector which detects only the
|f 〉 (post-selection) state. Based on our physical picture of
elastic scattering between the |S〉 and |A〉 states, we explain
this increased mean lifetime as the mean scattering time
scale between the |i〉 and |f 〉 states using the well-known
Weiskopff-Wigner theory of spontaneous emission.

IV. WEISKOPFF-WIGNER THEORY FOR RESONANCE
FLUORESCENCE FROM A V SYSTEM

Before proceeding to calculate the mean scattering time
between chosen states, we estimate the time scales inherent in
the problem. The time scale of atomic evolution between |S〉
and |A〉 states, without decay, depends on the energy difference
between |+〉 and |−〉 states and hence proportional to 1/� (see
Fig. 1). The larger the value of � the faster is this evolution. On
the other hand, the mean time scale of decay to the ground state
from either the excited state is given by 1/�. In order that the
scattering is in the elastic regime, we need to satisfy 1

�
� 1

�
,

i.e., � � �. We wish to point out that this is precisely the
regime where the experiment reported in [10] was conducted.
This regime naturally emerges for our calculation if we demand
that the scattering between the |i〉 and the |f 〉 states be an
elastic scattering.

We now proceed to calculate the probability that an atom,
initially in the state |i〉, gets scattered to a nearly orthogonal
final state |f 〉 during its interaction with the vacuum modes.
Our calculation is based on the well-known Weiskopff-Wigner
derivation originally proposed for a two-level excited state
atom interacting with vacuum bath modes of the EM field.

The state of the atom at any time t is given by

|ψ(t)〉 = α(t)e−iwt |ψin,0k,s〉 +
∑
k,s

β1
k,s(t)e

−iwkt |g,1k,s〉

+
∑
k′,s ′

β2
k′,s ′ (t)e−iwk′ t |g,1k′,s ′ 〉. (2)

Here α(t) refers to the probability amplitude that the atom is
in a particular combination of the excited states |+〉 and |−〉
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represented by |ψin〉 with no photons. The energy of this state is
�w. The terms β

1,2
k,s refer to the probability amplitudes that the

atom decays to the ground state |g〉 from either of the excited
states, emitting a photon. The appropriate mode of the emitted
photon is labeled by the propagation vector of the emitted
photon k or k′, its polarization state s or s ′, and its energy
wk or w′

k distinguishing emission from two different excited
states to the ground state. We take the atom to be initially in
the state |i〉 = |S〉. The Hamiltonian of this atom interacting
with the electromagnetic vacuum bath modes is given by

Ĥ /� = w+σe+e+ + w−σe−e− +
∑
k,s

wkn̂k,s

−
∑
k,s

g1
k,sσe+gâk,s −

∑
k′,s ′

g2
k′,s ′σe−gâk′,s ′ + H.c. (3)

Here σe± ≡ |e±〉〈g| is the operator representing transition from
either of the excited states e± to the ground state. The coupling
constant of excited states to the vacuum modes is gk,s =
−i

√
wk

2�ε0V
(d · εk,s), where V is the quantization volume, d

is the induced dipole moment vector for the transition, and εk,s
is the unit vector along a polarization s. Using Schrödinger
wave equation (SWE) we get the evolution equations for α

and both the β:

H |ψ(t)〉 = i�
∂ψ

∂t
(4)

= i�[α̇(t) − iwα(t)]e−iwt |ψin,0k,s〉
+ i�

[
β̇1

k,s(t) − iwkβ
1
k,s(t)

]
e−iwkt |g,1k,s〉

+ i�
[
β̇2

k′,s ′ (t) − iwk′β2
k′,s ′ (t)

]
e−iwk′ t |g,1k′,s ′ 〉. (5)

The left-hand side of Eq. (4) can be calculated using the
definitions of H and |ψ(t)〉.

The problem we are addressing pertains to scattering
between two different configurations of the excited states
denoted by |i〉 and |f 〉. Therefore, using Eqs. (2)–(3) and using
the Schrödinger wave equation (SWE) H |ψ(t)〉 = i�

∂|ψ(t)〉
∂t

we take the inner product of SWE with 〈f |, 〈g,1k,s |, and
〈g,1k′,s ′ | separately on both sides. This is equivalent to
post-selection on a particular outcome. Since our desired final
state |f 〉 does not involve the ground state, this post-selection
represents a scattering event during which the atom in the
excited state |i〉 does not decay to the ground state. After
post-selection the dynamical equations representing the
probability amplitudes are given as

α̇(t) = −i

(
w+ + w−

2
− w

)
α(t) + �

2
cot(ε)α(t)

+ i√
2

∑
k,s

[
β1

k,s(t) + β2
k,s(t)

](
g1

k,s − g2
k,s

)
e−i(wk−w)t ,

(6)

β̇1
k,s(t) = iα(t)√

2

(
g1∗

k,s − g2∗
k,s

)
ei(wk−w)t − iwkβ

2
k,s(t),

(7)

β̇2
k′,s ′ (t) = iα(t)√

2

(
g1∗

k′,s ′ − g2∗
k′,s ′

)
ei(wk′−w)t − iwk′β1

k′,s ′ (t).

By defining β1
k,s(t) + β2

k,s(t) = βk,s(t) and g1
k,s − g2

k,s = gk,s

and by using the fact that the separation between the excited
states � is less than that of the width of their energy levels,
i.e., � � �, we assume w+ ≈ w−. This translates to the
condition that in the weak interaction regime the energies
of both the excited states of the V system are almost equal,
thereby making w = (w1 + w2)/2. Using this approximation,
we obtain the following equations:

α̇(t) = i√
2

∑
k,s

βk,s(t)gk,se
−i(wk−w)t + �

2
cot(ε)α(t), (8)

β̇k,s(t) =
√

2iα(t)g∗
k,se

i(wk−w3)t − iwkβk,s(t). (9)

The formal solution for βk,s(t) is

βk,s(t) = e−wktβk,s(0) + i
√

2g∗
k,s

∫ t

0
α(t ′)ei(wk−w3)t ′dt ′. (10)

Since at time t = 0 we consider all the atoms to occupy the
excited state configuration |i〉 the initial value of βk,s(0) = 0.
We then obtain

α̇(t) = −
∑
k,s

|gk,s |2
∫ t

0
α(t ′)ei(wk−w)(t−t ′)dt ′ + �

2
cot(ε)α(t).

(11)
Since the emitted photon can be in any direction k with any
polarization s, we have to sum over these two variables. In the
continuum limit (i.e., when the quantization volume V → ∞)

∑
k,s

�
2∑

s=1

∫
D(k)d3k,

where D(k) is the density of states in k space. Using spherical
coordinates in k space denoted by (k,θ,φ) we have∫

D(k)d3k = V

(2π )3

∫ ∞

0
k2dk

∫ π

0
sinθdθ

∫ 2π

0
dφ.

Now by using the definition of gk,s we evaluate

∑
k,s

|gk,s |2 =
∫ ∞

0

wk

2(2π )3ε0�
k2dk

×
2∑

s=1

[ ∫ π

0
sinθdθ

∫ 2π

0
(d · εk,s)

2dφ

]
. (12)

Since the triplet (εk,1,εk,2,κ) with κ = k/k forms an
orthogonal coordinate system,

d = (d · εk,1)εk,1 + (d · εk,2)εk,2 + (d · κ)κ, (13)

∴
2∑

s=1

(d · εk,s)
2 = |d|2 − |d · κ|2. (14)

For the transitions where �m = ±1 the induced dipole
moment vectors are complex and orthogonal to each other. By
defining d = d1 − d2 and considering the case of these two
induced dipole moment vectors being perpendicular to each
other we define without loss of generality

d1 = |η|x + iy√
2

, d2 = |η|x − iy√
2

.
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FIG. 2. (Color online) The (thick) red line plot shows increased
mean lifetime τ of atoms as they scatter from an initial state |i〉 to
a final state |f 〉, as a function of ε. Different values of ε denote
different final states |f 〉. The (thin) black line shows the decay time
scale of the atom to go from |i〉 to the ground state |g〉 in the absence
of post-selection.

Therefore, d = d1 − d2 = i
√

2|η|y. Incorporating this in the
evolution equations, we get

α̇(t) = −
∑
k,s

|gk,s |2
∫ t

0
α(t ′)ei(wk−w)(t−t ′)dt ′ (15)

= |η|2
6π2�ε0c3

∫ ∞

0
w3

kdwk

∫ t

0
α(t ′)ei(wk−w)(t−t ′)dt ′. (16)

We assume that the excited state amplitude α(t) varies
with a rate � � w. Therefore, α(t) changes little and we
replace α(t ′) in the integrand by α(t). This is called the
Weisskopf-Wigner approximation, which can be recognized as
a Markov approximation. Since α(t) varies with a rate � � w

the upper bound of the above integral can be put to ∞, and we
have

α̇(t) = − w3|η|2
6πε0c3�

α(t) + �

2
cot(ε)α(t). (17)

By defining � = w3|η|2
3πε0c3�

we have

α̇(t) = −�

2
α(t) + �

2
cot(ε)α(t). (18)

We use post-selection condition, namely ε � 1, for picking
out final states which are nearly orthogonal to the initial state
|i〉, giving

α̇(t) = −�

2
α(t) + �/ε

2
α(t), (19)

α(t) = α(0)e(−�/2)[1−(�/�ε)]t . (20)

Using the fact that at t = 0,α(0) = 1 we calculate the
probability |α(t)|2 that the atom scatters between the desired
excited state configurations |i〉 and |f 〉. We derive from it
the mean time (τ ) the atom takes for transiting between
these two excited state configurations, as a function of ε as
shown in Fig. 2. As seen in the figure, for small values of
ε, that is, for nearly orthogonal initial and final states, the
mean-scattering lifetime between these two states increases. It
can even be several times the mean decay lifetime (�) of the

FIG. 3. (Color online) The (thick) red line plot shows increased
mean lifetime τ of atoms as they scatter from an initial state |i〉 to a
final state |f 〉, as a function of ε. This plot is for a ratio �/� = 0.01.
The (thin) black line shows the decay time scale of the atom to go
from |i〉 to the ground state |g〉 in the absence of post-selection. In
comparison with Fig. 2, which is obtained for a ratio �/� = 0.1,
we see that the amplification effect is more pronounced for nearly
orthogonal final states.

excited state to the ground state. This increase for scattering
between nearly orthogonal initial and final states is the same
as weak value amplification effect. Using the values of �

and � pertaining to the experiment of [10], we can reproduce
remarkably similar mean lifetime values as that obtained by
their measurements. Thus we have rigorously proved that an
atomic excited state interaction with vacuum bath modes of the
EM field modeled by traditional WW theory can reproduce all
the results of a weak measurements interpretation, provided we
can

(1) Define a weak interaction regime which is the regime
of elastic resonance scattering.

(2) Identify suitable choices of initial and final excited
states.

Our calculation makes transparent the physical principles
behind the increased mean lifetime seen in experiments. In
particular, for the experiment of [10], it entirely does away the
need for a pointer based weak measurement explanation.

Through our analysis we can predict a priori, the maximum
value of ε, which is an experimentally controllable parameter,
up to which the amplification effect can be obtained. From
Eq. (20) it is clear that the ratio �/�, which defines the
weakness criteria, determines this maximum value. For ε =
�/�, the mean scattering time diverges and the values of
ε below this value, namely for 0 < ε < �/�, the equation
gives unphysical results. This means that for such values of
ε, scattering from |i〉 to |f 〉 does not occur. For accessing
smaller values of ε we now need to choose a different ratio
of �/�. To emphasize this point, we show in Fig. 3 a plot of
mean scattering lifetime as a function of ε, for values smaller
than what is shown in Fig. 2. Such values are made possible
by choosing a smaller value for the ratio �/� = 0.01. From
the plot, it is clearly seen that not only smaller values of ε

are now physically accessible, but also that the corresponding
amplification effect is much more pronounced than in Fig. 2.
This gives an experimenter a powerful choice of parameter
values for observing the amplification effect based on physical
reasoning.
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V. DISCUSSION

For an excited state atom interacting with a bath, the WW
theory shows that the weak measurement induced by the
multitude of vacuum bath modes on the excited states of
the V system preserves the weak value amplification effect
as traditionally defined by [1]. It is interesting to note that the
interference criteria which is necessary for seeing this effect [2]
now occurs in the interference arising from the |i〉 and |f 〉
interacting with the very same bath mode at any instant, but
averaged over all the modes of the bath.

As a corollary of our analysis, we have arrived at a very
general result that configurational changes within the excited
state manifold happen in time scales which are very different
from the decay time of the excited state to the ground state. To
study such scattering events between nearly orthogonal excited
state configurations, we have to be in the regime of weak,
elastic, and resonance interaction. Under such an interaction,
we have shown that the scattering time scale increases as the
states become more and more orthogonal to each other and
diverges for states which are exactly orthogonal. Such a trend
of increased mean lifetime is not surprising, considering the
fact that the fastest time scale in a system-bath interaction is
the decoherence time scale 1/� [15] and any other time scale
in the problem is slower compared to this decay time. Within
this period 1/�, the atom goes from an initially prepared
pure state to a statistical mixture. Therefore, in a traditional
non-post-selected experiment there is little chance to observe
other kinds of state changes which does not involve decay to the
ground state as the excited state decay occurs more frequently.
However, performing a weak measurement with post-selection
makes it possible to isolate events which are rare in occurrence.

The WW theory we have employed is applicable to a wide
class of experiments where an excited state configuration
is interacting with vacuum modes of the EM field. Thus
the theory is applicable for collective excited states in an
atom-atom interaction process. As a concrete example, we
take the case of Forster resonances between excited states of

Rydberg atoms induced by dipole-dipole interaction between
the atoms [16,17]. In a basis consisting of collective excited
states of both atoms and using post-selected calculations as
we have done, we can evaluate scattering time scales between
specific excited state changes. This will not only give scattering
times between nearly degenerate excited states, but more
importantly, it will bring out time scales of those rare scattering
events between states which are nearly orthogonal. This is
indeed very important because this will enable evaluation of
dipole-dipole scattering coefficient C6 to a greater degree of
sensitivity than what is currently available.

VI. CONCLUSIONS

In resonant elastic scattering, a weak interaction regime
between excited states and vacuum bath modes of the EM
field can be established, when the mean separation between
the excited states is smaller than the mean decay width of the
excited states. In this paper, such an interaction is described
for the excited state pair of a V-type atomic system, using
the Weiskopff-Wigner (WW) theory of spontaneous emission.
We show that in this regime an increase in the time scale
of scattering occurs for events that takes the atom between
nearly orthogonal excited state superpositions. This increased
time scale is the same as that occurring during a weak value
amplification effect. We show that this effect singles out rare
scattering events between excited states in a system dominated
by frequent decay of the excited state to the ground state. Thus
we show that a system-bath interaction can be modeled as a
weak interaction that can give rise to a corresponding weak
value amplification effect. This opens up a powerful method
to estimate mean scattering time scales for events which keep
the atom within the excited state manifold. By applying our
theory to rare and long-lived scattering events in the common
excited manifold of a multiatom system, like that of a Rydberg
ensemble, we can obtain very sensitive measurements of atom-
atom scattering coefficients.
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A. Browaeys, Nat. Phys. 10, 914 (2014).
[17] D. Barredo, H. Labuhn, S. Ravets, T. Lahaye, A. Browaeys, and

C. S. Adams, Phys. Rev. Lett. 114, 113002 (2015).

052123-5

http://dx.doi.org/10.1103/PhysRevLett.60.1351
http://dx.doi.org/10.1103/PhysRevLett.60.1351
http://dx.doi.org/10.1103/PhysRevLett.60.1351
http://dx.doi.org/10.1103/PhysRevLett.60.1351
http://dx.doi.org/10.1103/PhysRevD.40.2112
http://dx.doi.org/10.1103/PhysRevD.40.2112
http://dx.doi.org/10.1103/PhysRevD.40.2112
http://dx.doi.org/10.1103/PhysRevD.40.2112
http://dx.doi.org/10.1103/PhysRevLett.105.010405
http://dx.doi.org/10.1103/PhysRevLett.105.010405
http://dx.doi.org/10.1103/PhysRevLett.105.010405
http://dx.doi.org/10.1103/PhysRevLett.105.010405
http://dx.doi.org/10.1103/PhysRevLett.107.133603
http://dx.doi.org/10.1103/PhysRevLett.107.133603
http://dx.doi.org/10.1103/PhysRevLett.107.133603
http://dx.doi.org/10.1103/PhysRevLett.107.133603
http://dx.doi.org/10.1126/science.1202218
http://dx.doi.org/10.1126/science.1202218
http://dx.doi.org/10.1126/science.1202218
http://dx.doi.org/10.1126/science.1202218
http://dx.doi.org/10.1038/nature10120
http://dx.doi.org/10.1038/nature10120
http://dx.doi.org/10.1038/nature10120
http://dx.doi.org/10.1038/nature10120
http://dx.doi.org/10.1038/nphoton.2013.24
http://dx.doi.org/10.1038/nphoton.2013.24
http://dx.doi.org/10.1038/nphoton.2013.24
http://dx.doi.org/10.1038/nphoton.2013.24
http://dx.doi.org/10.1126/science.1152697
http://dx.doi.org/10.1126/science.1152697
http://dx.doi.org/10.1126/science.1152697
http://dx.doi.org/10.1126/science.1152697
http://dx.doi.org/10.1103/PhysRevLett.102.173601
http://dx.doi.org/10.1103/PhysRevLett.102.173601
http://dx.doi.org/10.1103/PhysRevLett.102.173601
http://dx.doi.org/10.1103/PhysRevLett.102.173601
http://dx.doi.org/10.1103/PhysRevLett.111.023604
http://dx.doi.org/10.1103/PhysRevLett.111.023604
http://dx.doi.org/10.1103/PhysRevLett.111.023604
http://dx.doi.org/10.1103/PhysRevLett.111.023604
http://dx.doi.org/10.1209/0295-5075/1/9/004
http://dx.doi.org/10.1209/0295-5075/1/9/004
http://dx.doi.org/10.1209/0295-5075/1/9/004
http://dx.doi.org/10.1209/0295-5075/1/9/004
http://dx.doi.org/10.1103/PhysRevA.46.373
http://dx.doi.org/10.1103/PhysRevA.46.373
http://dx.doi.org/10.1103/PhysRevA.46.373
http://dx.doi.org/10.1103/PhysRevA.46.373
http://dx.doi.org/10.1103/PhysRevLett.56.2797
http://dx.doi.org/10.1103/PhysRevLett.56.2797
http://dx.doi.org/10.1103/PhysRevLett.56.2797
http://dx.doi.org/10.1103/PhysRevLett.56.2797
http://dx.doi.org/10.1103/PhysRev.188.1969
http://dx.doi.org/10.1103/PhysRev.188.1969
http://dx.doi.org/10.1103/PhysRev.188.1969
http://dx.doi.org/10.1103/PhysRev.188.1969
http://dx.doi.org/10.1038/nphys3119
http://dx.doi.org/10.1038/nphys3119
http://dx.doi.org/10.1038/nphys3119
http://dx.doi.org/10.1038/nphys3119
http://dx.doi.org/10.1103/PhysRevLett.114.113002
http://dx.doi.org/10.1103/PhysRevLett.114.113002
http://dx.doi.org/10.1103/PhysRevLett.114.113002
http://dx.doi.org/10.1103/PhysRevLett.114.113002



