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In quantum theory, a physical observable is represented by a Hermitian operator as it admits real eigenvalues.
This stems from the fact that any measuring apparatus that is supposed to measure a physical observable will
always yield a real number. However, the reality of an eigenvalue of some operator does not mean that it is
necessarily Hermitian. There are examples of non-Hermitian operators that may admit real eigenvalues under
some symmetry conditions. In general, given a non-Hermitian operator, its average value in a quantum state is a
complex number and there are only very limited methods available to measure it. Following standard quantum
mechanics, we provide an experimentally feasible protocol to measure the expectation value of any non-Hermitian
operator via weak measurements. The average of a non-Hermitian operator in a pure state is a complex multiple
of the weak value of the positive-semidefinite part of the non-Hermitian operator. We also prove an uncertainty
relation for any two non-Hermitian operators and show that the fidelity of a quantum state under a quantum
channel can be measured using the average of the corresponding Kraus operators. The importance of our method
is shown in testing the stronger uncertainty relation, verifying the Ramanujan formula, and measuring the product
of noncommuting projectors.
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I. INTRODUCTION

One of the basic postulates of quantum mechanics limits
the possible quantum-mechanical observables to be the Her-
mitian ones [1]. The Hermiticity of the quantum-mechanical
observables seems to be a compelling and plausible postulate
as the eigenvalues of Hermitian operators are real. Moreover,
a Hermitian Hamiltonian yields a unitary evolution leading
to the conservation of probability. However, the reality of
the spectrum of the quantum-mechanical observables does
not imply that the observables must be Hermitian. In fact,
there is a certain class of operators that are not Hermitian
yet their spectrum is real. The reason for the reality of such
operators is argued to be the underlying symmetry of the
operators with certain other restrictions. This has resulted in
attempts to lift the postulate of Hermiticity and allow for more
general operators. It is known that there are non-Hermitian
operators that possess real eigenvalues if one imposes some
symmetry conditions, namely, the PT symmetry, which is
unbroken. PT symmetry is said to be not spontaneously
broken if the eigenfunctions of the non-Hermitian operator are
itself PT symmetric. Such operators that respect the unbroken
PT symmetry are ingredients of PT -symmetric quantum
mechanics [2–4].

In quantum theory, the concept of weak measurement
was introduced by Aharonov and co-workers [5–7] to study
the properties of a quantum system in preselected and
postselected ensembles. In this formalism the measurement
of an observable leads to a weak value of the observable
with unexpectedly strange properties. In fact, the weak
value is shown to be complex, in general, and can take
values outside the eigenspectrum of the observable. The
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concept of weak measurements has been generalized further
beyond its original formulation [8–16]. In recent years, weak
values have found numerous applications. For example, the
Panchratnam geometric phase is nothing but the phase of
a complex weak value that arises in the context of weak
measurements [17]. It has been shown that weak measurements
can be used for interrogating quantum systems in a coherent
manner [18,19]. In addition, they play an important role
in understanding the uncertainty principle in the double-slit
experiment [20,21], resolving Hardy’s paradox [22], analyzing
tunneling time [23,24], protecting quantum entanglement from
decoherence [25,26], and modifying the decay law [27].
Remarkably, it is possible to express the wave function as
a weak value of a projector and this paved the way to measure
the wave function of a single photon directly [28,29]. Similarly,
in quantum metrology the phase sensitivity of a quantum
measurement is given by the variance of the imaginary
parts of the weak values of the generators over the different
measurement outcomes [30]. For a very recent review on weak
measurements one can look at Ref. [31].

Despite having a complex spectrum, in general, the non-
Hermitian operators have found applications in theoretical
work as a mathematical model for studying open quantum
systems in, for example, nuclear physics [32] and quantum
optics [33]. In these fields, the non-Hermitian Hamiltonian
appears as an effective description for the subsystem of the
full system. The adiabatic measurements on systems evolving
according to effective non-Hermitian Hamiltonians were
analyzed in Ref. [34] and it was established that the outcome
of an adiabatic measurement of a Hermitian observable is the
weak value associated with the two-state vector comprised
of forward and backward evolving eigenstates of the non-
Hermitian Hamiltonian. Non-Hermitian operators that can
be expressed as a product of two noncommuting Hermitian
operators do appear in the formalism that describes quantum
states using a quasiprobability distribution such as the Dirac
distribution [35–38] and the Moyal distribution [39,40]. Also,

1050-2947/2015/92(5)/052120(8) 052120-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.92.052120


ARUN KUMAR PATI, UTTAM SINGH, AND URBASI SINHA PHYSICAL REVIEW A 92, 052120 (2015)

weak measurement of a Hermitian operator on a system having
a non-Hermitian Hamiltonian is considered in Ref. [41].
Apart from these limited expositions of the measurement of
non-Hermitian operators, not much is discussed in terms of
experimental methods to measure the expectation values of
such operators. Here we propose an experimentally verifiable
procedure to measure the complex expectation value of a
general non-Hermitian operator. The key to measurement of
non-Hermitian operators is the notion of polar decomposition
of any operator and the process of weak measurement. In
this paper we show that the average of a non-Hermitian
operator is a complex multiple of the weak value of the
positive-semidefinite part of the non-Hermitian operator. By an
experimentally verifiable procedure to measure non-Hermitian
operators we mean that the expectation value of a non-
Hermitian operator in a quantum state is inferred from a
direct measurement of the weak value of its Hermitian
positive-definite part employing the theoretically determined
expectation value of the unitary part of the non-Hermitian
operator. Significantly, our method can be used to measure the
matrix elements of any non-Hermitian operator. It is important
to note that our proposed method to measure the expectation
value require a priori knowledge of both the operator to be
measured and the state in which it is being measured. However,
this situation may arise naturally in many contexts, therefore
it does not limit the applicability of our method severely.
Besides the mentioned situations in quantum optics where
non-Hermitian operators appear, one noteworthy example is
the quantum system described by evolution in the presence
of gain or loss [4]. Also, we would like to mention here
that our approach is different from the one that is used in
the direct measurement of wave functions [28,29] and goes
beyond it as the former is applicable to any non-Hermitian
operator. Moreover, we prove an uncertainty relation for any
two non-Hermitian operators and show that it can also be tested
experimentally. As an application, we show that the uncertainty
in the Kraus operators governs the fidelity of the output state
for a quantum channel. If the total uncertainty in the Kraus
operators is low, then the fidelity will be high. We illustrate
our main results with several examples. Our method allows
one to measure the average of the creation and annihilation
operators in any state and provides an experimental method to
test the Ramanujan formula for the sum of square roots of the
first s natural numbers.

The paper is organized as follows. In Sec. II we give
a very brief review of non-Hermitian operators in quantum
mechanics. We discuss our method to measure expectation
values of non-Hermitian operators in Sec. III. In Sec. IV
we find an uncertainty relation for non-Hermitian operators
and using the results of the previous section, we make a
connection of the uncertainty relation to experiments. To
exemplify this, we provide the uncertainty relation for the
creation and annihilation operators. In Sec. V we find a
relation between the fidelity of a quantum channel and the
uncertainty of non-Hemitian Kraus operators of the channel
and provide an example of the amplitude damping channel as
an illustration. In Sec. VI we give a comprehensive account
of the interesting applications of our results in the context of
testing a stronger uncertainty relation, measuring the product
of projection operators, and verifying Ramanujan’s formula.

Finally, we summarize in Sec. VII and discuss the implications
of our results.

II. NON-HERMITIAN OPERATORS

For the sake of clarity and completeness, in this section we
review the non-Hermitian operators in quantum mechanics.
The abstract mathematical description of quantum mechanics
is facilitated by the introduction of a separable Hilbert space
H, which by definition is complete and endowed with an
inner product [42]. The states of the physical system and the
physical observables are mapped one to one to the rays in the
Hilbert space and Hermitian operators on the Hilbert space,
respectively. The physically measurable quantity associated
with the operator O of a system in state |ψ〉 ∈ H is the
expectation value 〈ψ |O|ψ〉. It is assumed here that the operator
O is Hermitian, so its expectation value is real. It is worth
pointing out that the notion that an operator is Hermitian or not
depends on an inner product, e.g., O is Hermitian if O = O†,
where adjoint O† of O is defined as

〈ψ |O|φ〉 = 〈O†ψ |φ〉 (1)

for all |ψ〉 ∈ H and |φ〉 ∈ H in the domain of O. A closely
related concept is of a self-adjoint operator, which is a
Hermitian operator with the same domain for its adjoint [43].
With a given Hilbert space and inner product defined over it,
the operator O for which O �= O† is called a non-Hermitian
operator. Since the notion of Hermiticity or non-Hermiticity
is relative to some inner product, a non-Hermitian operator
relative to some inner product can be turned into a Hermitian
operator relative to some other inner product. A very good
exposition of this fact can be found in Refs. [44–46]. The non-
Hermiticity arising from the representation of an operator by
square-integrable functions such that these functions are not in
the domain of the operator is not considered here. In this work
we focus on the measurability of non-Hermitian operators,
keeping the notion of an inner product fixed once and for
all. The non-Hermitian operators naturally occur in effective
descriptions of open quantum systems [32], systems in the
presence of loss and gain [4], quantum optics [33], etc. (see
also [45]). In general, the expectation value of a non-Hermitian
operator in some state is a complex number. Various physical
interpretations of the complex expectation of non-Hermitian
operators in a quantum state are discussed in Ref. [45], for
example, in scattering experiments. Adiabatic measurements
with an experimental proposal of systems evolving according
to effective non-Hermitian Hamiltonians can be found in
Ref. [34] and the results on weak measurement of a Hermitian
operator on a system having a non-Hermitian Hamiltonian
can be found in Ref. [41]. In the next section we provide
our protocol to measure the complex expectation values of
non-Hermitian operators employing weak measurements.

III. EXPECTATION VALUE OF A
NON-HERMITIAN OPERATOR

Let us consider a non-Hermitian operator A. The expecta-
tion value of such an operator in a quantum state |ψ〉, given
by 〈ψ |A|ψ〉, is in general a complex number. This makes it
unobservable in a laboratory experiment. However, here we
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present a formalism to overcome this problem. To present
the main idea, we need the polar decomposition of a matrix.
Let A ∈ Cm×n, m � n. Then there exists a matrix U ∈ Cm×n

and a unique Hermitian positive-semidefinite matrix R ∈ Cn×n

such that A = UR, with U †U = I . The positive-semidefinite
matrix R is given by R =

√
A†A, even if A is singular. If

rank A = n, then R is positive definite and U is uniquely
determined [47,48].

Let us consider a quantum system initially in the state |ψ〉 ∈
H = Cd . Suppose we are interested in measuring the average
of a non-Hermitian operator A in the state |ψ〉. Consider the
polar decomposition of an operator A ∈ Cd×d , given by A =
UR, where R is a positive-semidefinite operator and U is a
unitary operator. The average of a non-Hermitian operator in
the pure state |ψ〉 is given by

〈A〉 = 〈ψ |A|ψ〉 = 〈ψ |UR|ψ〉

= 〈φ|R|ψ〉
〈φ|ψ〉 〈φ|ψ〉 = φ〈R〉wψ 〈φ|ψ〉, (2)

where |φ〉 = U †|ψ〉 and φ〈R〉wψ is a weak value of the

positive-semidefinite operator R, given by 〈φ|R|ψ〉
〈φ|ψ〉 . Now, given

a non-Hermitian operator A, we first find R =
√

A†A and the
corresponding unitary U . The measurement of the expectation
value of A in a quantum state |ψ〉 can be carried out as follows.
We start with a quantum system that is preselected in the
state |ψi〉 = |ψ〉 and weakly measure the positive-semidefinite
operator R in the preselected state |ψ〉. The weak measurement
can be realized using the interaction between the system
and the measurement apparatus, which is governed by the
interaction Hamiltonian

Hint = gδ(t − t0)R ⊗ P, (3)

where g is the strength of the interaction that is sharply peaked
at t = t0, R is an observable of the system, and P is an
observable of the apparatus. Under the action of the interaction
Hamiltonian, the system and apparatus evolve as

|ψ〉 ⊗ |�〉 → e− i
�

gR⊗P |ψ〉 ⊗ |�〉. (4)

Here |�〉 is the initial state of the apparatus. After the weak
interaction, we postselect the system in the state |φ〉 = U †|ψ〉
with the postselection probability given by |〈φ|ψ〉|2(1 +
2g Imφ〈R〉wψ 〈P 〉). This yields the desired weak value of R,

i.e., φ〈R〉wψ = 〈φ|R|ψ〉
〈φ|ψ〉 . Therefore, multiplying 〈φ|ψ〉 by φ〈R〉wψ

gives us 〈ψ |A|ψ〉. To sum up, in order to measure the
expectation value of a non-Hermitian operator A, with polar
decomposition A = UR, in a state |ψ〉 we first determine
experimentally the weak value of R with preselection and
postselection in the states |ψ〉 and U †|ψ〉, respectively. Then
multiplying the obtained weak value by the theoretically
determined complex number, which is the expectation value of
U † in the state |ψ〉, gives the expectation value 〈ψ |A|ψ〉 of the
non-Hermitian operator A. To this end we have a provided a
procedure to measure the expectation value of a non-Hermitian
operator. Equivalently, one can also write A = SU , where
S = URU † =

√
AA† is a positive-semidefinite operator. In

this case the average of A in a pure state |ψ〉 is given

by

〈A〉 = 〈ψ |A|ψ〉 = 〈ψ |SU |ψ〉

= 〈ψ |S|χ〉
〈ψ |χ〉 〈ψ |χ〉 = ψ 〈S〉wχ 〈ψ |χ〉, (5)

where |χ〉 = U |ψ〉 and ψ 〈S〉wχ is the weak value of positive-

semidefinite operator S, given by 〈ψ |S|χ〉
〈ψ |χ〉 . Following the same

procedure as above, one can measure the weak value of S with
preselection in the state |χ〉 = U |ψ〉 and postselection in the
state |ψ〉. Now the weak value ψ 〈S〉wχ multiplied by 〈ψ |χ〉
yields 〈ψ |A|ψ〉. Furthermore, we have

〈ψ |A|ψ〉 = ψ 〈S〉wχ 〈ψ |χ〉 = φ〈R〉wψ 〈φ|ψ〉. (6)

Interestingly, our method can also be applied to measure the
weak value of any non-Hermitian operator A in a preselected
state |ψ〉 and a postselected state |ψ ′〉. Using the polar
decomposition of A = UR, the weak value of A is given by

ψ ′ 〈A〉wψ = 〈ψ ′|UR|ψ〉
〈ψ ′|ψ〉 = ψ ′′ 〈R〉wψz, (7)

where ψ ′′ 〈R〉wψ = 〈ψ ′′|R|ψ〉
〈ψ ′′|ψ〉 is the weak value of R and z =

〈ψ ′′|ψ〉
〈ψ ′|ψ〉 . Thus, the weak value of any non-Hermitian operator A

with the preselection in the state |ψ〉 and postselection in the
state |ψ ′〉 is equal to the weak value of R with the preselection
and the postselection in the states |ψ〉 and |ψ ′′〉, respectively,
multiplied by the complex number z.

IV. UNCERTAINTY RELATION FOR
NON-HERMITIAN OPERATORS

For any Hermitian operator, if we measure it in an arbitrary
state, there will always be a finite uncertainty, unless the state
is an eigenstate of the observable (Hermitian operator) that is
being measured. Similarly, one can ask if there is an uncertainty
associated with the measurement of any non-Hermitian opera-
tor. The variance of a non-Hermitian operator A in a state |ψ〉
is defined as �A2 := 〈ψ |(A† − 〈A†〉)(A − 〈A〉)|ψ〉, where
〈A〉 = 〈ψ |A|ψ〉 and 〈A†〉 = 〈ψ |A†|ψ〉 [49]. Also, �A2 =
〈ψ |A†A|ψ〉 − 〈ψ |A†|ψ〉〈ψ |A|ψ〉 = 〈f |f 〉, where |f 〉 =
(A − 〈A〉)|ψ〉. Even though A is non-Hermitian, |f 〉 is a valid
quantum state as using the polar decomposition of A = SAUA

renders |f 〉 a linear combination of |ψ〉 and SA(UA|ψ〉).
Similarly, we can define the uncertainty for the non-Hermitian
operator B as �B2 = 〈ψ |B†B|ψ〉 − 〈ψ |B†|ψ〉〈ψ |B|ψ〉 =
〈g|g〉, where |g〉 = (B − 〈B〉)|ψ〉. Now we have

�A2�B2 = 〈f |f 〉〈g|g〉 � |〈f |g〉|2, (8)

where we have used the Cauchy-Schwarz inequality. Now let
us use the polar decompositions of A and B, namely, A =
SAUA and B = SBUB . Using these, we can simplify Eq. (8)
and obtain

�A�B � |〈ψ |U †
ASASBUB |ψ〉 − 〈ψ |U †

ASA|ψ〉〈ψ |SBUB |ψ〉|
= |φ[SAPSB ]wχ | |〈φ|χ〉|, (9)

where P = (I − |ψ〉〈ψ |), |φ〉 = UA|ψ〉, and |χ〉 = UB |ψ〉.
Thus, we have the generalized uncertainty relation for any two
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non-Hermitian operators as given by

�A�B �
∣∣
φ
[SAPSB]wχ

∣∣ |〈φ|χ〉|, (10)

where φ[SAPSB]wχ is the weak value of the non-Hermitian
operator SAPSB and it can be determined using our experi-
mentally viable method. For the case of Hermitian operators,
we have the Robertson uncertainty relation [50].

As an example of the generalized uncertainty relation,
given by Eq. (10), we consider the creation and annihilation
operators, which are non-Hermitian, for a single-mode elec-
tromagnetic field, in the phase state |θm〉 [51,52]. The phase
states are the eigenstates of the Hermitian phase operator. The
phase operator arises in the context of the polar decomposition
of creation and annihilation operators and it is known that the
polar decomposition of creation and annihilation operators for
the radiation field has difficulties related to the unitary part
of the decomposition [53–55]. This problem is addressed in
terms of the nonexistence of the Hermitian phase operator for
the infinite-dimensional Hilbert space [56,57]. The problem is
resolved by taking the Hilbert space to be finite dimensional
and taking the limit at the end of all the calculations. In
the finite-dimensional Hilbert space there is a well-defined
Hermitian phase operator called the Pegg-Barnett phase
operator [51]. This leads to the polar decompositions of the
creation and annihilation operators, which are given by

â = eiφ̂θ

√
N̂, â† =

√
N̂e−iφ̂θ , (11)

where φ̂θ is the Hermitian phase operator

φ̂θ =
s∑

m=0

θm|θm〉〈θm|, (12)

with θm = θ0 + 2mπ/(s + 1) and |θm〉 the orthonormal phase
states, given by

|θm〉 = (s + 1)−1/2
s∑

n=0

einθm |n〉. (13)

The phase states satisfy e±iφ̂θ |θm〉 = e±iθm |θm〉. Now the gen-
eralized uncertainty relation, given by Eq. (8), for the creation
and annihilation operators of a single-mode electromagnetic
field in the phase state |θm〉 reads

�â†�â � |〈(â†)2〉 − 〈â†〉2|, (14)

where �A=
√

〈θm|A†A|θm〉−〈θm|A†|θm〉〈θm|A|θm〉 with A =
a,a†. Using the expressions 〈θm|â†â|θm〉 = s

2 = 〈θm|ââ†|θm〉,
〈θm|â|θm〉† = 〈θm|â†|θm〉 = (s + 1)−1e−iθm

∑s
n=0

√
n, and

〈θm|(â†)2|θm〉 = (s + 1)−2e−2iθm
∑s

n=0

√
n(n − 1), we have

�â†�â = (�â†)2 =
∣∣∣∣∣ s2 − (s + 1)−2

s∑
m,n=0

√
nm

∣∣∣∣∣ (15)

and

|〈(â†)2〉 − 〈â†〉2|

= (s + 1)−1

∣∣∣∣∣
s∑

n=0

√
n(n − 1) − (s + 1)−1

s∑
m,n=0

√
nm

∣∣∣∣∣.
(16)
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FIG. 1. (Color online) Plot of LHS and RHS of Eq. (14), given,
respectively, by Eqs. (15) and (16), as a function of s. Both axes
are dimensionless. Triangles show the LHS and circles the RHS.
This figure clearly shows that the uncertainty relation given for
non-Hermitian operators is satisfied by the creation and annihilation
operators in phase states.

One can see from Fig. 1 that the uncertainty relation given
by Eq. (14) for creation and annihilation operators is indeed
satisfied.

V. UNCERTAINTY FOR KRAUS OPERATORS
AND FIDELITY OF QUANTUM STATES

Here we show how our proposal of measuring the average
value of non-Hermitian operator could be extremely valuable.
This will also show that the uncertainty in the non-Hermitian
operator can have some real physical meaning. Suppose that
a quantum system, initially in the state |ψ〉, passes through a
quantum channel. The state of the system after passing through
the quantum channel is given by

|ψ〉〈ψ | → ρ = E(|ψ〉〈ψ |) =
∑

k

Ek|ψ〉〈ψ |E†
k, (17)

where the Ek are the Kraus elements of the channel. Now the
fidelity between the pure initial state and the mixed final state
is given by

F = 〈ψ |ρ|ψ〉 =
∑

k

|〈ψ |Ek|ψ〉|2. (18)

Equation (18) shows that by measuring the average of the
non-Hermitian operators Ek in the state |ψ〉, one can find
the fidelity between the input and the output states. Note
that, usually, to measure the fidelity of a channel, one has
to do a quantum state tomography of the final state and then
calculate the quantity 〈ψ |ρ|ψ〉. However, as stated above, by
weakly measuring the positive-semidefinite part of the Kraus
operators, one can measure the average of the Kraus operators
and hence the channel fidelity.

Now consider the variance of Ek in the state |ψ〉. This is
given by

�E2
k = 〈ψ |E†

kEk|ψ〉 − 〈ψ |E†
k |ψ〉〈ψ |Ek|ψ〉. (19)
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Summing both sides and using the relation
∑

k E
†
kEk = I , we

have

F +
∑

k

�E2
k = 1. (20)

This relation provides a physical meaning to the uncertainties
in the Kraus operators. This shows that if the total uncertainty
in the Kraus operators is low, then the fidelity between the
input and output states will be high. Thus, the fidelity and the
uncertainty play complementary roles in the quantum channel.
Hence, to preserve a state more efficiently, one should have low
uncertainties in the Kraus operators. For a quantum channel
with two Kraus elements, the fidelity F and uncertainties of
the Kraus operators satisfy

1 − F

2
� �E1�E2 � |φ[S1|ψ⊥〉〈ψ⊥|S2]wχ | |〈φ|χ〉|, (21)

where E1 = S1U1, E2 = S2U2, |φ〉 = U1|ψ〉, |χ〉 = U2|ψ〉,
and |ψ〉〈ψ | + |ψ⊥〉〈ψ⊥| = I .

We illustrate our uncertainty relation for Kraus operators
and its relation to fidelity with the amplitude damping channel.
The Kraus operators for the amplitude damping channel are
given by

E1 =
(

1 0
0

√
1 − p

)
, E2 =

(
0

√
p

0 0

)
. (22)

If we pass an arbitrary state |ψ〉 = cos θ
2 |0〉 + eiφ sin θ

2 |1〉 of
the qubit through the amplitude damping channel, then the
output state is given by

ρ =
2∑

k=1

Ek|ψ〉〈ψ |E†
k

= 1

2
[e1|0〉〈0| + e2|1〉〈1| + e3|0〉〈1| + e∗

3|1〉〈0|], (23)

where e1 = 1 + p + (1 − p) cos θ , e2 = (1 − p)(1 − cos θ ),
and e3 = e−iφ

√
1 − p sin θ . The fidelity F = 〈ψ |ρ|ψ〉 is

given by

F = 1

4
[3 +

√
1 − p − p + 2p cos θ

+ (1 − p −
√

1 − p) cos 2θ ]. (24)

Here S1 = E1, U1 = I , S2 = √
p|0〉〈0|, and U2 = σx . We have

|φ[S1|ψ⊥〉〈ψ⊥|S2]wχ | |〈φ|χ〉|

= 2 cos φ cos2

(
θ

2

)
sin4

(
θ

2

)√
p[1 −

√
1 − p], (25)

�E1 = cos( θ
2 ) sin( θ

2 )[1 − √
1 − p] and �E1 = √

p cos2( θ
2 ).

Figure 2 shows the bounds on �E1�E2 as a function of p at
fixed values of θ = π/2 and φ = π/4, which validates Eq. (21)
for the amplitude damping channel.

VI. APPLICATIONS

In this section we provide various interesting applications
of our results. In particular, we show a way to test the
stronger uncertainty relation [58] to measure the product of
projection operators. Interestingly, we show that our results
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FIG. 2. (Color online) Lower and upper bounds on �E1�E2.
Here both the axes are dimensionless. Blue squares show �E1�E2

and green triangles and the red solid line show the lower bound (25)
and upper bound 1−F

2 , respectively on �E1�E2 as a function of p at
fixed values of θ = π/2 and φ = π/4.

can also be used to verify the Ramanujan sum formula [59].
We also consider the application of our results in the case of
PT -symmetric Hamiltonians.

A. Testing the stronger uncertainty relation

Uncertainty relation plays a fundamental role in quantum
mechanics and quantum information theory. Recently, the
stronger uncertainty relation [58] (compared to the Robertson
uncertainty relation [50]) was proved, which shows that the
sum of variances of two incompatible observables, A and B in
a state |ψ〉, is given by

�A2 + �B2 � ±i〈ψ |[A,B]|ψ〉 + |〈ψ |A ± iB|ψ̄〉|2, (26)

where |ψ̄〉 is a state orthogonal to |ψ〉. For two canonically
conjugate pairs of observables such as position X and
momentum P (� = 1 and X and P are dimensionless), the
stronger uncertainty relation reads

�X2 + �P 2 � 1 + 2|〈ψ |a†|ψ̄〉|2, (27)

where a† = (X − iP )/
√

2 is the creation operator and it is
indeed a non-Hermitian operator. The Heisenberg-Robertson
uncertainty relation [50] only implies that one has �X2 +
�P 2 � 1, while the relation given by Eq. (27) is stronger. We
show that our protocol can be used to test this. The variances
in the position and the momentum can be tested using the
standard method and the last term can be actually measured
using our scheme. Specifically, we show that it is the modulus
squared of the weak value of the positive-semidefinite part of
the non-Hermitian operator multiplied by a real number. First
note that we can write |〈ψ |a†|ψ̄〉|2 = |〈ψ̄ |a|ψ〉|2. If we let a =
UR, then we have |〈ψ |a†|ψ̄〉|2 = |φ〈R〉wψ |2|〈φ|ψ〉|2, where
|φ〉 = U †|ψ̄〉. Therefore, by measuring the non-Hermitian
operator we can test the stronger uncertainty relation.
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B. Measurement of the product of two
noncommuting projectors

Consider measurement of �i(B)�j (C), with �i(B) =
|ψi〉〈ψi | and �j (C) = |φj 〉〈φj |, where |ψi〉 and |φj 〉 (i,j =
1,2, . . . ,d) are eigenstates of two noncommuting Hermitian
operators B and C, respectively. The product �i(B)�j (C) is
a non-Hermitian operator. In fact, the average of this operator
in a quantum state is nothing but the discrete version of the
Dirac distribution [35–38]. We show that our method can
be applied to measure the expectation value of �i(B)�j (C)
using the polar decomposition and the weak measurement.
For the non-Hermitian operator A = 〈ψi |φj 〉|ψi〉〈φj |, let the
polar decomposition be defined by A = UR, where R =
|〈ψi |φj 〉||φj 〉〈φj | and U is determined by the relation U |φj 〉 =
eiη|ψi〉, where eiη = 〈ψi |φj 〉

|〈ψi |φj 〉| . Such a unitary operator is given
by

U = U (m) = eiη

d−1∑
k=0

|ψk⊕m〉〈φk|, (28)

with j ⊕ m = i and ⊕ denotes the addition modulo d. Now
the expectation value of �i(B)�j (C) in a state |ψ〉 is given
by

〈ψ |�i(B)�j (C)|ψ〉 = 〈ψ |UR|ψ〉 = ψ ′ 〈R〉wψ 〈ψ ′|ψ〉, (29)

where |ψ ′〉 = U †|ψ〉. Thus, the expectation value of
�i(B)�j (C) in the state |ψ〉 is given by the weak value

ψ ′ 〈R〉wψ = 〈ψ ′|R|ψ〉
〈ψ ′|ψ〉 of R multiplied by a complex number

〈ψ ′|ψ〉.
The weak average [29], without postselection, of a non-

Hermitian operator A in a state ρ is equal to a generally
complex expectation value of A in the state ρ, i.e., 〈Aw〉ρ =
Tr[Aρ]. Following [38,60], one can devise an experimental
method to measure this complex expectation value of A.
The method is shown only for non-Hermitian operators
that are products of noncommuting Hermitian operators. In
this method the interaction Hamiltonian for the system and
apparatus is designed to be H = g

∑N
i=1 Ai ⊗ Pi in order to

measure the expectation value 〈∏i Ai〉. Unlike our method,
which can be used to measure the expectation value of any
non-Hermitian operator, the earlier method is applicable only
to the cases of non-Hermitian operators that are products
of noncommuting Hermitian operators. Next we consider an
example of a non-Hermitian operator that is not the product of
Hermitian operators.

C. Average of the creation operator and the Ramanujan sum

Let us consider the creation and annihilation operators for a
single-mode electromagnetic field. The polar decompositions
of the creation and annihilation operators are given by Eq. (11).
Now consider the expectation value of the creation operator
in a general state from the (s + 1)-dimensional Hilbert space
spanned by phase states, given in Eq. (13). This is given by

〈ψ |â†|ψ〉 = 〈ψ |
√

N̂e−iφ̂θ |ψ〉 = ψ 〈
√

N̂〉
w

χ
〈ψ |χ〉, (30)

where |χ〉 = e−iφ̂θ |ψ〉. Thus, measuring the weak value of
the square root of the number operator with preselection

in the state |χ〉 and postselection in the state |ψ〉 leads
to the expectation value of â† in the state |ψ〉. Con-
sider a general state |ψ〉 = ∑s

m=0 cm|m〉 with
∑s

m=0 |cm|2 =
1. Here |χ〉 = e−iφ̂θ |ψ〉 = ∑s

m=1 cm−1|m〉 + cse
−i(s+1)θ0 |0〉

and ψ 〈
√

N̂〉w
χ

=
∑s

m=1 cm−1c
∗
m

√
m

csc
∗
0e−i(s+1)θ0 +∑s

m=1 cm−1c∗
m

. Therefore, we have

〈ψ |a†|ψ〉 = ∑s
m=1 cm−1c

∗
m

√
m. For an equally superposed

number state, i.e., cm = eiνm/
√

s + 1, we have

〈ψ |a†|ψ〉 = e−iν

s + 1

s∑
m=1

√
m. (31)

For any real number r with r � 1 and positive integer n, we
obtain

s∑
m=1

m1/r = r

r + 1
(s + 1)

r+1
r − 1

2
(s + 1)

1
r − �s(r), (32)

where �s(r) is a function of r (with s a parameter) that
is bounded between 0 and 1/2 [59,61]. Setting r = 2 in
the above formula, we get

∑s
m=1

√
m = 2

3 (s + 1)3/2 − 1
2 (s +

1)1/2 − �s(2), where 0 � �s(2) � 1/2. Therefore, we have
〈ψ |a†|ψ〉 = e−iν

s+1 [ 2
3 (s + 1)3/2 − 1

2 (s + 1)1/2 − �(1/2)]. Inter-
estingly, one can invert Eq. (31) to get

s∑
m=1

√
m = eiν

s + 1
〈ψ |a†|ψ〉. (33)

Therefore, one can use the expectation value of the creation
operator by employing our method based on weak measure-
ments to estimate the sum of the square roots of the first s

natural numbers and then this result can be compared to the
Ramanujan formula [59] for the above series. This is another
interesting application of our formalism.

D. Measurement of the PT -symmetric Hamiltonian

There exists a class of Hamiltonians that are non-Hermitian
and yet they possess real eigenvalues when they respect
unbroken PT symmetry [2,3]. However, in general they pos-
sess non-normalizable eigenstates and complex eigenvalues,
so one may think that we cannot measure their expectation
values. However, using our formalism, which is based on weak
measurements, one can in principle measure them. Therefore,
given a non-Hermitian Hamiltonian, one can check whether
its expectation value indeed gives a complex number.

The simplest example of a general PT -symmetric Hamil-
tonian in two dimensions is given by [3]

H =
(

reiθ t

s re−iθ

)
, (34)

where r , s, t , and θ are real parameters. The eigenvalues are
given by ε± = r cos θ ± √

st − r2 sin2 θ and the correspond-
ing eigenstates of this Hamiltonian are given by

|ε+〉 = 1√
2 cos α

(
eiα/2

e−iα/2

)
,

|ε−〉 = 1√
2 cos α

(
e−iα/2

−eiα/2

)
,

052120-6



MEASURING NON-HERMITIAN OPERATORS VIA WEAK VALUES PHYSICAL REVIEW A 92, 052120 (2015)

where α is defined by the relation sin α = r√
st

sin θ . Let the

polar decomposition of H be H = UR, where R =
√

H †H
and for r2 �= st , U = HR−1. Here

R2 =
(

r2 + s2 r(s + t)e−iθ

r(s + t)eiθ r2 + t2

)
. (35)

Therefore, the positive-semidefinite operator R for the non-
Hermitian operator H is given by

R = 1

2
√

2A

(
R11 R21

R12 R22

)
, (36)

where R11 = [A − (s − t)]B− + [A + (s − t)]B+, R12 =
2r(B+ − B−)e−iθ , R21 = 2r(B+ − B−)eiθ , and R22 = [A +
(s − t)]B− + [A − (s − t)]B+ with

A =
√

4r2 + (s − t)2, (37)

B± =
√

2r2 + s2 + t2 ± (s + t)A. (38)

Now we have

R−1 = 1√
2AB+B−

(
S11 S12

S21 S22

)
, (39)

where S11 = [A + (s − t)]B− + [A − (s − t)]B+, S12 =
−2r(B+ − B−)e−iθ , S21 = −2r(B+ − B−)eiθ , and S22 =
[A − (s − t)]B− + [A + (s − t)]B+. Using U = HR−1, we
have

U = 1√
2AB+B−

(
U11 U12

U21 U22

)
, (40)

where U11 = {[A + (s − t)]B−+[A−(s − t)]B+ − 2t(B+ −
B−)}reiθ , U12 = t{[A − (s − t)]B− + [A + (s − t)]B+} −
2r2(B+ − B−), U21 = s{[A + (s − t)]B− + [A − (s −
t)]B+} − 2r2(B+ − B−), and U22 = {[A − (s − t)]B− +
[A + (s − t)]B+ − 2s(B+ − B−)}re−iθ . For the special case
of s = t , r �= ±s, and r > s, we have H = UR, where

R =
(

r se−iθ

seiθ r

)
, U =

(
eiθ 0
0 e−iθ

)
. (41)

For another special case of s = t , r �= ±s, and r < s, we have
H = UR, where

R =
(

s re−iθ

reiθ s

)
, U =

(
0 1
1 0

)
. (42)

Now the expectation value of A in a general single-qubit state
|ψ〉 = cos(η/2)|0〉 + eiξ sin(η/2)|1〉 is given by

〈ψ |H |ψ〉 = r cos θ + s cos ξ sin η + ir sin θ cos η. (43)

The above expectation value of A in the state |ψ〉 can be
realized if we experimentally measure the Hermitian operator
R with preselection in the state |ψ〉 and postselection in the
state U †|ψ〉 and then multiply the weak value thus obtained
by the complex number 〈ψ |U |ψ〉.

VII. CONCLUSION

In this paper we have addressed the question of the
experimental feasibility of measuring the expectation value
of any non-Hermitian operator in a pure quantum state.
We showed that the expectation value of a non-Hermitian
operator in a quantum state is equal to the weak value of the
positive-semidefinite part of the operator, modulo a complex
number. Our method to measure the expectation value requires
a priori knowledge of both the operator to be measured and
the state in which it is being measured. However, this situation
may arise naturally in many contexts, therefore our method
is widely applicable. We have provided several examples to
illustrate this technique. In particular, we have provided a
relation between the average of Kraus elements of a channel
and the channel fidelity. We have also applied our method
to measure the expectation value of the creation operator in
a general state. This leads to an interesting link between the
sum of the square roots of the first s natural numbers and the
expectation value of the creation operator. Furthermore, we
have proved an uncertainty relation for any two non-Hermitian
operators. Our method also helps to test experimentally the
stronger uncertainty relation. Our paper may lead to the
possibility of considering the non-Hermitian operators not
only as a mathematical tool but also as an experimental arsenal
such as in scattering experiments in quantum physics and
quantum information theory, in general.
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