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Abstract
We construct a quantum kinematics for asymptotically flat gravity based on
the Koslowski–Sahlmann (KS) representation. The KS representation is a
generalization of the representation underlying loop quantum gravity (LQG)
which supports, in addition to the usual LQG operators, the action of ‘back-
ground exponential operators’, which are connection dependent operators
labelled by ‘background’ su(2) electric fields. KS states have, in addition to the
LQG state label corresponding to one dimensional excitations of the triad, a
label corresponding to a ‘background’ electric field that describes three
dimensional excitations of the triad. Asymptotic behaviour in quantum theory
is controlled through asymptotic conditions on the background electric fields
that label the states and the background electric fields that label the operators.
Asymptotic conditions on the triad are imposed as conditions on the back-
ground electric field state label while confining the LQG spin net graph labels
to compact sets. We show that KS states can be realised as wave functions on a
quantum configuration space of generalized connections and that the asymp-
totic behaviour of each such generalized connection is determined by that of
the background electric fields which label the background exponential
operators. Similar to the spatially compact case, the Gauss law and diffeo-
morphism constraints are then imposed through group averaging techniques to
obtain a large sector of gauge invariant states. It is shown that this sector
supports a unitary action of the group of asymptotic rotations and translations
and that, as anticipated by Friedman and Sorkin, for appropriate spatial
topology, this sector contains states that display fermionic behaviour under 2π
rotations.
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1. Introduction

Isolated gravitating systems are modelled by asymptotically flat spacetimes. Key physical
results such as the positivity of energy and the definition of total angular momentum depend
on the delicate asymptotic behaviour of the gravitational field. Therefore, an understanding of
quantum gravitational effects in the context of asymptotic flatness requires that these
asymptotic conditions be suitably incorporated in quantum theory. The particular quantum
gravity approach we are interested in is canonical loop quantum gravity (LQG). LQG is an
attempt at canonical quantization of a classical formulation of gravity in terms of SU(2)
connections and conjugate electric (triad) fields on a Cauchy slice Σ. The basic connection
dependent operators are holonomies associated with graphs and the basic electric field
dependent operators are fluxes through surfaces, the graphs and surfaces being embedded in
the Cauchy slice. The LQG representation can be viewed as a connection representation [1].
A spin network basis of quantum states can be built out of holonomies of (generalized)
connections [2, 3]. Consequently each such state ‘lives’ on a graph. Holonomy operators act
by multiplication and electric fluxes through surfaces act, roughly speaking, by differentiation
whenever the surface and the spin net graph intersect [2, 4] so that the triad field is excited
only along the support of the graph and vanishes outside this support. As a result, the
microsocopic quantum spatial geometry can be thought of as vanishing everywhere except
along the spin net graph.

Most work in LQG has been in the context of compact Cauchy slices wherein the spin net
graphs are chosen to have a finite number of compactly supported edges. In the asymptoti-
cally flat case, while the connection vanishes at spatial infinity, the triad approaches a fixed
flat triad [5]. Since the spatial geometry is excited only along the support of the
graph underlying a spin net state, and since, in the asymptotically flat case, the boundary
conditions indicate that the spatial geometry is excited in non-compact regions, it follows that
the graphs underlying spin net states appropriate to asymptotic flatness must be supported in
non-compact regions. Thus these graphs must have infinitely many (or infinitely long) edges.
Since it seems natural that, as in the spatially compact case, such spin net states should be
mapped to each other by holonomy operators, it seems necessary that the compact
graph holonomy operators also admit a generalization to ones supported on non-compact
graphs.

In this work, instead of attempting a generalization based on non-compact versions of the
standard LQG states (namely, spin nets supported on graphs with non-compact support) and
the standard LQG operators (namely holonomies on non-compact graphs), we adapt a gen-
eralization of LQG itself, on compact spaces, to the asymptotically flat case. This general-
ization was introduced by Koslowski and further developed by Sahlmann in their seminal
contributions [6–8] and we refer to it as the Koslowski–Sahlmann (KS) representation. The
KS representation involves, in addition to the standard probes of LQG, an extra set of probes
consisting of electric fields. Each such electric field Ē (called a ‘background electric field’ to
distinguish it from the dynamical electric field which is a phase space variable) probes the
behaviour of the connection Aa

i through the ‘background exponential function’
A E A( ) exp(i ¯ )E i

a
a
i

¯ ∫β = Σ . The KS representation supports the action of the corresponding
‘background exponential operators’ [12] and the representation itself can be seen as a
representation of a ‘holonomy-background exponential-flux’ algebra [13].

In our generalization of the KS representation to the asymptotically flat case, we demand
that these extra probes (namely, the background electric fields) satisfy appropriate asymptotic
conditions. These conditions on the background electric fields ensure that the background
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exponential functions are sensitive to the detailed asymptotic behaviour of the classical
connections and we are able to continue to use compactly supported graphs to define holo-
nomies. It then turns out that in the quantum theory these asymptotic conditions on the
background electric fields control the behaviour of the generalized connections which con-
stitute the quantum configuration space. This is similar to what happens in standard flat
spacetime quantum field theory where the behaviour of the elements of the quantum con-
figuration space is determined by that of the ‘dual probes’; for example, in the standard Fock
representation of the scalar field, the precise distributional nature of the quantum scalar fields
is determined by the rapid fall off property of the dual smearing functions [24]. As we shall
show, our particular choice of asymptotic behaviour for the background electric fields which
label the background exponential operators implies that elements of the quantum config-
uration space satisfy a quantum analog of the classical asymptotic behaviour. It is in this way
that the classical asymptotic conditions on the connection leave their imprint in quantum
theory.

Background electric fields also appear as labels of KS states in addition to the standard
LQG spin net labels. The action of the electric flux operators on such states acquires, relative
to standard LQG, an extra contribution corresponding to the flux of the background electric
field which labels the state [6, 7]. Similar contributions ensue for the area and volume
operators [7]. It then follows that the classical asymptotic conditions on the electric field can
be incorporated in quantum theory by directly imposing them as conditions on the back-
ground electric field label of the state. These conditions are that the electric field asymptotes
to the sum of a fixed flat triad field and a subleading piece [5, 18, 19].3 The background
electric fields which label the background exponential operators obey the same conditions as
the background electric fields which label the states except that the ‘zeroth order’ flat triad
piece of the latter is absent in the former. As we shall see4, it is this difference in the two sets
of conditions (namely on state and operator labels) which allows their consistent imposition.

The resulting quantum kinematics supports a unitary representation of SU(2) rotations
and diffeomorphisms subject to appropriate asymptotic behaviour. We shall be interested in
SU(2) rotations and diffeomorphisms which are connected to identity. The diffeomorphisms
asymptote to a combination of asymptotic rotations, translations and odd supertranslations
[19]. The SU(2) rotations are trivial at infinity except when they act in combination with
diffeomorphisms with non-trivial asymptotic rotational action so that the triad at infinity is
kept fixed under this combined action. The unitary transformations corresponding to any
combination of SU(2) rotations which are trivial at infinity and diffeomorphisms with trivial
asymptotic rotational and translational parts are interpreted as the quantum analog of the finite
gauge transformations generated by the SU(2) Gauss Law and spatial diffeomorphism con-
straints [19]. The unitary transformations corresponding to any combination of diffeo-
morphisms with non-trivial asymptotic rotational and translational parts together with
appropriate SU(2) rotations (so that the combination is an asymptotic symmetry of the fixed
flat triad at infinity) are interpreted as the quantum analog of the finite symmetry transfor-
mations generated by the the total angular and linear momenta of the classical spacetime [19].
We view the ability of the quantum kinematics to support these unitary actions as an
a posteriori justification for our treatment of asymptotic behaviour in quantum theory. As in
the spatially compact case [7, 9], gauge invariant states can then be constructed by group

3 We use ‘parity’ conditions which are closely related to those of [19] (see section 2.2 for what we mean by the
phrase ‘closely related’ and section 9 for related issues). Parity conditions on metric variables were introduced in [16]
and adapted to the self dual Ashtekar variables in [18]. The treatment of [16] was improved in [17] and the improved
treatment adapted to the Ashtekar–Barbero variables in [19].
4 See footnote 11, section 3.1.
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averaging methods. We construct large ‘superselected’ sectors [9] of such group averaged
states and show that these sectors support a unitary representation of the finite dimensional
group of translations and rotations at infinity. As in LQG, and as in the KS representation for
the compact case, the Hamiltonian constraint remains a key open issue. This, in turn, pre-
cludes a quantum analysis of the total energy and of the generator of boosts.

While this work seeks to address the construction of a quantum kinematics appropriate to
asymptotic flatness, it is based on the KS representation rather than the standard LQG one.
Since we view the KS representation as an effective description of fundamental LQG states
which describe an effectively smooth spatial geometry, we would like to base our con-
structions on purely LQG type probes, which, as mentioned above, must now include non-
compact graphs. There have been a few extremely interesting and important attempts at
initiating a study of asymptotically flat LQG [10, 11] to accommodate non-compact graphs.
Since these works do not address the full set of asymptotic conditions adequately, we hope
that the results of this work will provide a useful supplement to that of [10, 11] in the putative
construction of an LQG quantum kinematics for asymptotically flat spacetimes.

Our work as presented here crucially relies on our recent work [9, 12, 13]. Specifically,
the considerations of sections 4–6 of this paper rest on the analogous results and constructions
for the compact case as detailed in [13] and those of section 8 on the group averaging analysis
of [9].5 The layout of the paper is as follows.

Section 2 is devoted to a description of classical structures of relevance to the con-
struction of the KS representation in the asymptotically flat case. Standard definitions of
asymptotic flatness (see for example [5, 16, 17]) implicitly use the C∞ category. In antici-
pation of the formulation of the KS representation based on semianalytic, and hence, finitely
differentiable fields, we tailor the definition of asymptotically flat 3-manifolds to the semi-
analytic category and discuss the differential properties of fields supported on such manifolds.
This is done in section 2.1. This section also establishes our notation for asymptotic fall-off
properties of such fields. Next, in section 2.2 we discuss the asymptotic conditions on the
phase space variables, namely the SU(2) connection and its conjugate electric field6, and
display the elementary phase space functions of interest, namely, the holonomies, background
exponentials and electric fluxes. The ‘probes’ associated with these functions are, respec-
tively, edges e, background electric fields Ē and SU(2) Lie algebra valued scalars f supported
on surfaces S. Section 2.3 discusses the precise defining properties of probes for the con-
nection (namely e E, ¯) and reviews the structures associated with these probes, namely the
groupoid of compactly supported paths and the Abelian group (under addition) of these
electric fields subject to appropriate asymptotic conditions. In section 2.4 we detail our choice
of electric field probes f S( , ). In section 2.5 we discuss the classical Poisson brackets between
the holonomies, background exponentials and electric fluxes.

In section 3 we define the KS representation (which as we show in this and subsequent
sections is) appropriate to the asymptotically flat case in terms of the action of the holonomy,
background exponential and electric flux operators on KS spin nets. Each KS spin net is
labelled by a standard LQG spin net label whose underlying graph is compactly supported
and a background electric field label which is subject to the same asymptotic conditions as are
satisfied by the asymptotically flat electric fields which serve as classical phase space
variables.

5 The analysis of [9] is motivated by Sahlmannʼs pioneering work [7].
6 It turns out that the considerations of sections 3–6 do not depend on the fine details of the asymptotic conditions.
The imposition of gauge and diffeomorphism invariance and the definition of linear and angular momenta in
section 7 and 8 do depend on detailed asymptotic conditions.
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Sections 4–6 are devoted to the study of the quantum configuration space and to a
characterization of the asymptotic behaviour of the generalized connections which constitute

this space. We use C* algebraic methods to show that the KS representation is unitarily
equivalent to one based on square integrable functions on a quantum configuration space
which is a topological completion of the classical space of connections. Every classical
connection A is ‘smooth’ (more precisely, finitely differentiable) and satisfies conditions
appropriate to asymptotic flatness and thereby defines a homomorphism from the space of
background electric field labels to U(1) through the background exponential function

A E A( ) exp(i ¯ )E i
a

a
i

¯ ∫β = Σ . Thus any classical connection can be thought of as a homo-

morphism from the space of all Ēʼs to U(1) which is (a) well defined and (b) functionally
differentiable with respect to Ē . Property (a) is a result of the fall-off behaviour of A and the
‘dual’ fall-off behaviour of ē 7 and property (b) is a consequence of the differential properties
of A E, ¯ . We show that any element of the quantum configuration space defines a homo-
morphism which satisfies property (a) but not necessarily property (b). We argue that the
satisfaction of property (a) implies that the quantum connections satisfy a weakened form of
the classical fall-off conditions on the connection.

The detailed content of sections 4–6 is as follows. In section 4 we prove a key master
lemma which establishes that given a finite set of independent probes and a corresponding set
of elements in SU(2) (one for each independent edge) and U(1) (one for each rationally
independent electric field), there exists a classical connection satisfying the asymptotic
conditions such that the evaluation of the relevant set of holonomies and background
exponentials on this connection reproduces the given set of group elements to arbitrary
accuracy. The master lemma is used extensively in sections 5 and 6. In section 5 we complete
the Abelian Poisson bracket algebra of holonomies and background exponentials, , to

the C* algebra,  and identify its spectrum Δ with the quantum configuration space of
generalized connections. We show that each element of the spectrum corresponds to a pair of
homomorphisms, one homomorphism from the path groupoid to SU(2) and the other from the
Abelian group of electric fields to U(1). The first homomorphism corresponds to the algebraic
structure provided by the holonomies and the second to that provided by the background
exponentials. We argue that the existence of this second homomorphism and the satisfaction
of asymptotic conditions by every element of the Abelian group of electric fields imply the
imposition of a weakened version of the classical asymptotic boundary conditions on ele-
ments of the spectrum. Next, we justify the identification of the spectrum as the quantum
configuration space by showing that the KS Hilbert space is isomorphic to the space
L ( , d )2

KSΔ μ of square integrable functions on the spectrum with respect to a suitably defined
measure d KSμ . We do this by showing that the expectation value function with respect to any
KS spin net state of section 2 defines a positive linear function on . The GNS con-
struction together with standard Gel’fand theory then provides an isomorphism between the
action of the holonomy and background exponential operators in the KS representation and
their action by multiplication on L ( , d )2

KSΔ μ . Finally, we show that the electric flux operator

is represented as an operator on L ( , d )2
KSΔ μ and that this representation completes the

isomorphism between the KS representation of section 2 and the L ( , d )2
KSΔ μ representation.

In section 6 we show that the spectrum Δ is homeomorphic to an appropriate projective limit
space ̄ whose fundamental building blocks are products of finite copies of SU(2) and U(1)

7 By this we mean that Ē has a fall off behaviour which ensures the well definedness of E A¯
i
a

a
i∫

Σ
.
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and that the measure d KSμ can be realised as a projective limit measure of the Haar measure
on these building blocks.

Section 7 is devoted to a discussion of gauge transformations and symmetries of the
classical theory. We describe the group of gauge transformations, Aut, of SU(2) rotations and
diffeomorphisms connected to identity and subject to appropriate asymptotic behaviour. Next,
we describe the group AutE̊ of asymptotic symmetries which are connected to identity and
show that Aut is a normal subgroup of AutE̊ . Finally we show that the quotient of AutE̊ by
Aut is the semidirect product of the group of asymptotic translations with that of asymptotic
rotations so that SUAut Aut (2)E̊ 3= ⋊ . In section 8 we show that the groups Aut and

AutE̊ (suitably restricted to the semianalytic category) are unitarily implemented on the KS
Hilbert space. We construct a large sector of gauge invariant states by averaging over the
action of the gauge group Aut (suitably restricted to the semianalytic category) and show that
this sector supports a unitary representation of Aut AutE̊ . We show that, while for trivial
topology, Aut AutE̊ acts effectively as SO (3)3 ⋊ , for the non-trivial topologies considered
by Friedman and Sorkin (FS) [14], gauge invariant states exist which display fermionic
behaviour under 2π rotations so that Aut AutE̊ is represented non-trivially as su (2)3 ⋊ .8

Thus our work yields a fully rigorous implementation of the beautiful ‘Spin 1

2
from Gravity’

behaviour predicted by FS. We close section 8 with a brief discussion of the construction of
eigenstates of angular and spatial momenta. Section 9 contains our concluding remarks. A
number of technicalities are relegated to the appendices.

Before we proceed to the next section, we reiterate that the results of sections 4–6
represent simple generalizations of results obtained in the spatially compact case in [13].
Hence, in our presentation, we shall endeavour to employ the notation of [13] wherever
possible and we shall be explicit only in aspects of argumentation which differ from those
contained in [13]. Considerable parts of our argumentation will be identical to those in [13]
and for such parts we shall simply refer the reader to that work. Similar remarks apply to our
exposition in section 8 of this paper in relation to the contents of [9]. We use units such that
c G8 1π= = ℏ = where γ is the Barbero–Immirzi parameter.

2. Classical preliminaries

2.1. Differential structure

Our classical departure point is a semianalytic version of the description given in [17, 19] for
asymptotically flat canonical gravity. The Cauchy slice Σ is taken to be a C k, 1k >>
semianalytic manifold without boundary admitting certain structure required for the notion of
asymptotic flatness. This structure is as follows. Let U0

3⊂ be the complement of the unit
ball in 3 ,U x x x x x x{( , , ) : ( ) ( ) ( ) 1}0

1 2 3 3 1 2 2 2 3 2≔ ∈ + + > . We require the existence of a
preferred (semianalytic) chart U:0 0χ Σ→ such that K U( )0 0Σ χ≔ ⧹ is compact. We refer to it

as the Cartesian chart. In this chart we use the notation: x x x x x( , , ) { }1 2 3⃗ ≔ = α ,

r x x x( ) ( ) ( )1 2 2 2 3 2≔ + + and x x rˆ ≔ ⃗ . Spatial infinity is approached as r → ∞.
It is important to note that while Σ is itself Ck and semianalytic, on U( )0 0χ we may still

define semianalytic functions on Σ which are of arbitrary degree of differentiability with
respect to the preferred Cartesian coordinates. More in detail, since U0 is an open set in 3 ,
we can define semianalytic Cp functions, even for p k> , with respect to this preferred 3

8 See [15] for a discussion of FS ideas in LQG.
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structure. Such functions are still Ck semianalytic functions on Σ; they just happen to possess
higher differentiability with respect to the preferred Cartesian coordinates. We shall refer to
this degree of differentiability in the preferred Cartesian chart as the Cartesian degree of
differentiability. Next, we detail two examples of such functions which we shall use in this
paper.

First note that the discussion above, together with the definition of semianalyticity [22],
implies that a semianalytic Ck function of Cartesian degree of differentiability p = ∞ is an
analytic function of the Cartesian coordinates in U( )0 0χ . An example of such a function is one

which is Ck and semianalytic on U( )0 0Σ χ⧹ and which coincides with the function r 1− in

U( )0 0χ . Since we are away from r = 0, the function r 1− is analytic in the Cartesian chart so
that the function in question has Cartesian degree of differentiability p = ∞. A similar
conclusion holds for functions which agree asymptotically with the function r.

Another example of the functions which we shall use in this work is provided in
appendix A wherein we show that any C p semianalytic function of x̂ naturally defines a
semianalytic function of Cartesian degree of differentiability p on U( )0 0χ . This implies that,
for example, any semianalytic Ck function on U( )0 0Σ χ⧹ which agrees with such a function on

U( )0 0χ for p k⩾ is Ck semianalytic on Σ.
To summarize: if we restrict attention to the behaviour of functions in U( )0 0χ Σ⊂ , then

semianalytic functions of Cartesian differentiability p are seminalytic Ck functions on
U( )0 0χ Σ⊂ for p k⩾ else they are seminalytic Cp functions on U( )0 0χ Σ⊂ .
Next, we introduce the notion of asymptotic fall offs of functions of Cartesian differ-

entiability p. These fall offs refer to the behaviour of the function in U( )0 0χ for large enough

r. We shall say that a function of Cartesian differentiability Cp is of order O r( )β− if for
sufficiently large r and m p0, ,= … the mth partial derivatives with respect to the preferred
Cartesian coordinates are bounded by cr mβ− − for some constant c independent of m.

The notions of Cartesian degree of differentiability together with that of fall-off order can
be applied to tensor fields on Σ as follows. The maximum degree of differentiability of tensor
fields on (the Ck semianalytic manifold) Σ is Ck 1− . Components of tensor fields in

U( )0 0χ Σ⊂ can be evaluated in the preferred Cartesian chart. Each such component can be
viewed as a function on U( )0 0χ Σ⊂ . This function in turn can be a linear combination of

functions each of different Cartesian degree of differentiability p and associated order O r( )β− .
Indeed, this is the typical situation we shall encounter in this paper.

Note that Σ can of course also be given the less restrictive structure of a Ck manifold by
completing its maximal semianalytic atlas to a Ck one. In this setting Σ is still the disjoint
union of U( )0 0Σ χ⧹ and its asymptotic region U( )0 0χ and the asymptotic region is still
equipped with the preferred Cartesian chart described in the first paragraph of this section. It
is then easy to see that the notions of Cartesian degree of differentiability as well as fall off
order continue to be well defined.

In summary, Σ can be thought of as follows. Σ is a Ck manifold. On Σ there is a preferred
family of Ck charts which endow Σ with the structure of a Ck semianalytic manifold, with this
preferred family comprising a maximal semianalytic atlas on Σ. In this family of semianalytic
charts, one of the charts is the Cartesian chart on U( )0 0χ . From this point of view Σ has the
ability to support, simultaneously, both finite differentiability structures as well as the more
restricted semianalytic structures. This is the point of view we shall employ in the rest of this
work. In general, as in the case of compact space LQG [27], classical structures will be of
finite differentiability but not necessarily semianalytic whereas structures relevant to quantum
theory will be chosen to be semianalytic.
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2.2. Phase space variables and functions

In this section we relax the condition of semianalyticity and work with Σ as a Ck asymp-
totically flat manifold

The phase space of interest is coordinatized by pairs A E( , )a
i

i
a of su(2)-valued 1-forms

and densitized vector fields satisfying certain fall off conditions at infinity. Here i 1, 2, 3=
are internal indices with respect to a fixed su(2) basis iτ satisfying [ , ]i j ijk kτ τ ϵ τ= (we work on

a fixed global trivialization of the bundle). A E,a
i

i
a are taken to be respectively C C,k k2 1− −

(not necessarily semianalytic) tensors on Σ 9. Let E̊i
a
be a fixed ‘zeroth order’ triad such that in

the Cartesian chart E̊i iδ=α α. The conditions on A E i( , ), , 1, 2, 3i
i α =α
α (where α refers to

components in the preferred Cartesian chart x{ }α ) as r → ∞ are taken to be:

( )( )
E E

h x

r
O r˚ ˆ

, (2.1)i i
i 1= + +α α
α

ϵ− −

( )( )
A

g x

r
O r

ˆ
, (2.2)i

i

2
2= +α

α ϵ− −

where 0 1ϵ< < ,10 and h g,i
iα
α are functions on the Cartesian sphere satisfying:

( ) ( )h x h xˆ ˆ , (2.3)i i− =α α

( ) ( )g x g xˆ ˆ . (2.4)i i− = −α α

For technical reasons (see for instance footnote 34) we require hi
α, g i

α to be respectively

C C,k k 1− as functions on the sphere. As indicated in the previous section, these specifications
are consistent with the degree of differentiability of the tensor fields Ei

a and Aa
i on Σ and

correspond to the ‘ r1 ’ and ‘ r1 2’ parts of the triad and connection fields being of Cartesian
degree of differentiability k and k 1− respectively. We denote by E̊ the space of su(2)-
valued electric fields satisfying (2.1) and  the space of su(2)-valued one forms satisfying
(2.2). As in LQG,  plays the role of classical configuration space.

Conditions (2.1), (2.2), (2.3), (2.4) are motivated by the parity conditions of references
[17, 19] and, indeed, at first glance look identical to them. However, whereas the standard
parity conditions are defined in theC∞ setting, the parity conditions (2.1), (2.2) are defined for
finitely differentiable fields.

The conditions ensure the symplectic structure

( )( ) A E A E, , (2.5)a
i

i
a

a
i

i
a

1 2 1 2 2 1∫Ω δ δ δ δ δ δ≔ −
Σ

is well defined. The elementary phase space functions which admit direct operator
correspondents in the KS representation are given by

h A e( ) , (2.6)e
A

e ∫≔

A( ) e (2.7)E
E A

¯
i Tr ¯a

a
⎡⎣ ⎤⎦∫β ≔ Σ

9 We take Ea to be of maximal differentiability (Ck 1− ). The reason we take the connection to be Ck 2− is that in
classical theory Aa arises as a combination of extrinsic curvature and spin connection, both of which involve first
derivatives of the triad.
10 The condition 1ϵ < plays no restriction (for 0ϵ ϵ> , f x O r f x O r( ) ( ) ( ) ( )0= ⟹ =ϵ ϵ− − ). Its purpose is to allow
for simplifications of the type: O r O r O r( ) ( ) ( )1 2 1+ =ϵ ϵ− − − − − .
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[ ]F E S fE( ) d Tr . (2.8)S f
S

a
a

, ∫≔

Here h A( )e is the SU(2) matrix valued holonomy of the connection along the compactly
supported edge e, A( )Ēβ is the background exponential labelled by the background electric
field Ē subject to appropriate asymptotic conditions, and F E( )S f, is the electric flux smeared
with the su(2)-valued function f through the surface S Σ⊂ . ‘Tr’ stands for -2 times the
standard matrix trace, M M MTr[ ] 2( )11 22≔ − + , so that Tr[ ]i j ijτ τ δ= . Anticipating the key
role that the ‘probes’ e E S f, ¯, , play in quantum theory, we shall choose them to be
semianalytic. The detailed definition of e and the asymptotic conditions on Ē are displayed in
section 2.3. The detailed choice of surfaces S and associated smearing functions f is displayed
in section 2.4.

2.3. Probes of the connection

2.3.1. Holonomy related structures. An oriented piecewise semianalytic curve c is defined as
a piecewise semianalytic map c: [0, 1] Σ→ (see definition 6.2.1 of [20]). The compact
semianalytic parameter range [0, 1] in the definition of c implies that curves are compactly
supported in Σ and, hence, do not extend to spatial infinity. Paths are defined by identifying
curves differing in orientation preserving reparametrizations and retracings. They form a
groupoid  with composition law given by concatenation. The compact support of the curves
c and the definition of paths in terms of equivalence classes of finite compositions of curves
implies that any path p is compactly supported in Σ. An edge e is a path p that has a
representative curve such that the image ẽ of this representative curve is a connected one
dimensional semianalytic submanifold with 2 point boundary. Thus, edges are elementary
paths which generate  by composition. We denote by SUHom( , (2)) the set of all
homomorphisms from  to SU(2). The set of holonomies h A p{ [ ], }p ∈ for a given
connection A ∈ define an element in SUHom( , (2)) by virtue of the composition law:
h A h A h A[ ] [ ] [ ]p p C

D
p C

C
p C

D=′ ′
′

′ ,whenever the endpoint f p( ) of p coincides with the beginning
point b p( )′ of p′.

A set of edges e e, , n1 … is said to be independent if their intersections can only occur at
their endpoints, i.e. if e e b e b e f e f e˜ ˜ { ( ), ( ), ( ), ( )}i j i j i j∩ ⊂ . We denote by e e( , , )n1γ ≔ …
an ordered set of independent edges and by H the set of all such ordered sets of independent
edges. Given , Hγ γ′ ∈ , we say that γ γ′ ⩾ iff all edges of γ can we written as composition of
edges (or their inverses) of γ′. With this relation ( , )H ⩾ becomes a directed set [13].

To summarize: the compactness of the curves c ensures that no subtelities ensue relative
to the treatment of the compact case in [13].

2.3.2. Background exponential related structures. The probes associated to the background
exponentials are electric fields. Each such electric field Ē satisfies the fall offs:

( )( )
E

h x

r
O r¯

¯ ˆ
, (2.9)i

i 1= +α
α

ϵ− −

with

( ) ( )h x h x¯ ˆ ¯ ˆ , (2.10)i i− =α α

where, as before, the expressions refer to components in the (semianalytic) Cartesian chart
x{ }α , Ēa isCk 1− semianalytic and h̄i

α isCk semianalytic as a function on the sphere. Note that
these conditions, modulo semianalyticity, correspond to those associated with variations of
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asymptotically flat triads (2.1) and that these conditions ensure convergence of the three
dimensional integral in (2.7).

We denote by  the set of all such electric fields Ēi
a.  is an Abelian group with

composition law given by addition. We denote by UHom( , (1)) the set of homomorphism
from  to U(1). The set of background exponentials A E{ [ ], ¯ }Ē β ∈ for a given connection
A ∈ define an element in UHom( , (1)) by virtue of A A A[ ] [ ] [ ]E E E E¯ ¯ ¯ ¯β β β=′ ′+ .

A set of electric fields E E¯ , , ¯N1 … is said to be independent, if they are algebraically
independent, i.e. if they are independent under linear combinations with integer coefficients:

q E q q I N¯ 0, 0, 1, , . (2.11)
I

N

I I I I
1

∑ = ∈ ⟺ = = …
=

We denote by E E( ¯ , , ¯ )N1Υ = … an ordered set of independent electric fields. The set of all
ordered sets of independent electric fields is denoted by B . Given , BΥ Υ′ ∈ we say that
Υ Υ′ ⩾ iff all the electric fields in Υ can be written as algebraic (i.e. with integer coefficients)
combinations of those in Υ ′. One can verify that ( , )B ⩾ is a directed set exactly as done in
[13] (the proof is purely algebraic and insensitive to the detailed properties of  such as the
particular fall-off (2.9)).

2.3.3. Combined holonomy and background exponential structures. The combined set of
labels associated to holonomies and background exponentials is given by pairs
l ( , ) H B  γ Υ= ∈ × ≕ with preorder relation given by ( , ) ( , )γ Υ γ Υ′ ′ ⩾ iff γ γ′ ⩾ and
Υ Υ′ ⩾ . It immediately follows that  is a directed set. Given l= e e E E( , , , ¯ , , ¯ )n N1 1 … … ∈
we define the group

G SU U(2) (1) , (2.12)l
n N≔ ×

and the map

G: , (2.13)l lπ →

( )A A h A h A A A[ ] [ ], , [ ], [ ], , [ ] . (2.14)l e e E E¯ ¯n N1 1
π β β↦ ≔ … …

It will be useful for later purposes to describe the relation between lπ and lπ ′ whenever l l′ ⩾ .
Let l l′ ⩾ . Edges e li ∈ can then be written as compositions of edges in l′. Let us denote

this relation by: e p e˜ ( , )i i 1= ′ … , where p̃i denotes a particular composition of edges (and their
inverses) in l′. This corresponds to a relation on the holonomies of the form:

( )h A h A p h A[ ] [ ] [ ], , (2.15)( )e p e i e˜ ,i i 1 1
= = …′ ′…

where p SU SU: (2) (2)i
n →′ is the map determined by interpreting the compositions rules of

p̃i as matrix multiplications. For example, if e e e( )1 2 1
1= ′ ◦ ′ − then p g g g g( , , ) ( )n1 1 2 1

1′ … ′ = ′ ′′
− .

Similarly, electric fields E l¯I ∈ can be written as integer linear combinations of electric fields
in l′:

( )E P E q E q I N¯ ˜ ¯ , ¯ , , 1, , . (2.16)I I

J

N

I
J

J I
J

1
1

∑= ′ … ≔ ′ ∈ = …
′

=

Associated to (2.16) there is the map P U U: (1) (1)I
N →′ given by P u u( , , )I N1′ … ′ =′

u( )J
N

J
q

1 I
JΠ ′=

′ so that
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( )( )A A P A[ ] [ ] [ ], . (2.17)E P E I E¯ ˜ ¯ , ¯I I 1 1
β β β= = …′ ′…

The above maps combine in a map

( )p p p P P G G, , , , , : , (2.18)l l n N l l, 1 1≔ … … →′′

in terms of which equations (2.15) and (2.17) are summarized as:

( )A p A[ ] [ ] , (2.19)l l l l,π π= ′′

expressing lπ in terms of lπ ′ and pl l, ′.

2.4. Probes of the electric field

The probes of the electric field are the pairs S f( , ) which go into the construction of the
electric flux FS f, of equation (2.8). We choose the surfaces S to be oriented compact two
dimensional semianalytic submanifolds of Σ with or without boundary. For S without
boundary, we require the su(2) valued function f to be semianalytic as a function on S. For S
with boundary, we require that f be semianalytic and compactly supported as a function on the
interior, IntS, of S. The choice of surfaces ensures that any such surface S intersects any edge
(as defined in section 2.3) in at most a finite number of connected semianalytic submanifolds
(i.e. in a finite number of isolated points and/or a finite number semianalytic edges tangential
to S). This in turns ensures that the Poisson bracket between the holonomies and fluxes, is, as
in the standard LQG case, well defined. The restriction of the support of f within a compact
set of IntS is to avoid any further technicalties associated with semianalyticity in the presence
of boundaries.

2.5. Poisson brackets between elementary functions

The classical Poisson brackets of the above functions is as follows. Holonomies and back-
ground exponentials Poisson commute among themselves and each other. The Abelian
Poisson bracket algebra they generate plays a crucial role in the construction of the quantum
configuration space to be described in later sections. Poisson brackets between fluxes and
holonomies are exactly as in LQG, since our choice of edges and surfaces is such that they do
not ‘reach’ infinity and, as in the semianalytic, compact Σ case, they can only intersect each
other finitely many times. The Poisson bracket between fluxes and background exponentials
is

{ } ( )F F E, i ¯ , (2.20)E S f S f E¯ , , ¯β β=

where F E S fE( ¯) d Tr[ ¯ ]S f
S

a
a

, ∫= . In order to obtain a classical algebra involving brackets

between fluxes, it would be necessary to repeat the analysis of [13] which, following [21, 22]
identifies these Poisson brackets with commutators of derivations on the space of connection
dependent functions generated by sums and products of holonomies and background
exponentials. While we anticipate no obstruction to doing so, we leave this for future work.

3. The KS representation for the asymptotically flat case

In section 3.1 we display the KS Hilbert space representation for the asymptotically flat case.
Section 3.2 discusses the implementation of the classical asymptotic boundary conditions on
the electric field in this representation.
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3.1. The KS Hilbert space and operator actions thereon

The KS Hilbert space, KS , is spanned by states of the form s E,∣ 〉, where s is an LQG spin
network with edges as described in the previous section, and Ea a semianalytic asymptotically
flat background electric field satisfying (2.1). The inner product is given by

s E s E s s, , , (3.1)E ELQG ,δ′ ′ = ′ ′

where s s LQG〈 ∣ ′〉 is the LQG spin network inner product and E E,δ ′ the Kronecker delta.
Holonomies (2.6) and background exponentials (2.7) act by

h s E h s Eˆ , ˆ , , (3.2)e D
C

e B
ALQG=

s E s E Eˆ , , ¯ . (3.3)Ēβ = +

Above, we have used the notation of [12] wherein given an LQG operator Ô with action
O s O sˆ

I I
s

I
( )∑∣ 〉 = ∣ 〉 in standard LQG, we have defined the state Os Eˆ ,∣ 〉 in the KS

representation through

Os E O s Eˆ , , . (3.4)
I

I
s

I
( )∑≔

Note that the action (3.3) is well defined because the new background field state label E Ē+
satsifies the boundary conditions (2.1) by virtue of the boundary conditions (2.9) on Ē .11

The action of fluxes is given by

F s E F s E F E s Eˆ , ˆ , ( ) , , (3.5)S f S f S f, ,
LQG

,= +

where f f i
iτ= is the su(2)-valued smearing scalar on the surface S and

F E S f E( ) dS f
S

a
i

i
a

, ∫= the flux associated to the background electric field Ei
a.

It is easily verified that with these definitions the background exponentials act as unitary
operators with ( ˆ ) ˆ

E E¯
†

¯β β= − , the fluxes as self adjoint (or, more precisely, symmetric)
operators, and that adjointness relations of holonomy operators reproduce the relations of
classical holonomies under complex conjugation.

The (unitary) action of spatial diffeomorphisms and SU(2) gauge transformations will be
discussed in section 8.

3.2. Implementation of the electric field boundary conditions

From a phase space perspective, the classical boundary conditions described in section 2.2
can be cast in the following form: given a phase space point A E( , ), there exists a radius r A E( , )

in the asymptotic region KΣ⧹ such that equations (2.1), (2.2) hold for r r A E( , )> . By r greater
than a given radius r0 we mean points in Σ lying in:

{ }( ) ( ) ( )x x x x r: , (3.6)r
3 1 2 2 2 3 2

0
2

0 Σ Σ⧹ ≔ ⃗ ∈ + + >

where (3.6) is described in the Cartesian chart. r0Σ , defined as the complement of the set (3.6),
represents the points of Σ ‘inside’ the 2-sphere of radius r0.

11 It is in this sense that the imposition of the asymptotic conditions (2.1) on the background electric field labels of
states is consistent with the imposition of the asymptotic conditions (2.9) on the background electric field labels of
operators (see the remarks in the main text of section 1 preceding footnote 4).
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An analogue statement in quantum theory (regarding the electric field boundary condi-
tions) is: given a KS spinnet s E,ψ∣ 〉 ≡ ∣ 〉, there exists a radius rψ in the asymptotic region
such that (i) the spin network s lies in rΣ ψ (as defined above), (ii) E satisfies (2.1) for r r> ψ .
Property (i), ensured by the compactness of s, implies that the spinnet ψ∣ 〉 can be thought of as
an eigenvector of an electric field operator E xˆ ( )a with x outside rΣ ψ :

E x E x xˆ ( ) ( ) , . (3.7)
a a

rψ ψ Σ Σ= ∈ ⧹ ψ

From property (ii), the eigenvalue in (3.7) satisfies (2.1). Thus equation (3.7) represents a
quantum version of the electric field boundary condition (2.1).

An alternative strategy more attuned to standard LQG would be to describe the electric
field boundary conditions purely in terms of fluxes. This is however more involved as it
requires the use of surfaces approaching infinity. In appendix B we present the first steps
towards the implementation of this idea.

4. The master lemma

4.1. Statement of the lemma

Let e e( , , )n1 … be a set of n independent edges. Let E E( ¯ , , ¯ )N1 … be a set of N algebraically
independent electric fields, each with asymptotic behaviour (2.9). Define the group

G SU U(2) (1) , (4.1)n N≔ ×
and the map

G: (4.2)π →

( )A A h A h A A A[ ] [ ], , [ ], [ ], , [ ] . (4.3)e e E E¯ ¯n N1 1
π β β↦ ≔ … …

Then the map π has dense range in G.
To prove the lemma, it clearly suffices to construct Ag, ∈δ such that, given

g g g u u G SU U( , , , , , ) (2) (1)n N l
n N

1 1≔ … … ∈ = × and any 0δ > , Ag,δ has the property
that

h A g C n C D1 ,.., and , 1, 2. (4.4)e
g

C

D

C
D,

1
⎡⎣ ⎤⎦ δ α− ⩽ ∀ = =δ

αα

A C I Ne 1 ,.., . (4.5)E
g

¯
, i

2I
I⎡⎣ ⎤⎦β δ− ⩽ ∀ =δ θ

Here C C,1 2 are δ- independent constants, C D, are SU(2) matrix indices and
u e ,I I

i I θ≕ ∈θ .
The proof parallels the proof of the master lemma for the case of compact Σ in [13]. It

consists of five steps, of which only the first one requires a minor adaptation to the present,
non-compact Σ case. We outline the steps in section 4.2 below referring to [13] for technical
proofs. The end result is a connection Ag, ∈δ which implements equations (4.4) and (4.5)
and which falls off faster than r 2− near spatial infinity thus satisfying the asymptotic con-
ditions (2.2) with no leading order r 2− term.

We remark here that connections with only subleading behaviour at infinity cannot
describe spacetime solutions with non-vanishing linear momenta since the surface terms
corresponding to the evaluation of the linear momenta only involve the leading order r 2− part
of the connection. Note however that we have only shown that a finite number of arbitrarily
prescribed SU(2) and U(1) elements can be approximated to arbitrary accuracy using such
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connections with no leading order asymptotic behaviour. As we show in section 5.1 the set of
all edge holonomies and all background exponentials seperate points in . This together with
the master lemma implies that one needs infinitely many evaluations of holonomies and
background exponentials to distinguish between connections with vanishing and non-van-
ishing leading order fall offs.

As a final remark, note that by setting l e e E E( , , , ¯ , , ¯ )n N1 1= … … , the master lemma
implies that the map lπ of equation (2.14) is dense in Gl for any l.

4.2. Steps in the proof of the lemma

(i) Construct a connection ĀB,δ which satisfies (4.5): Assume without loss of generality that
the electric fields E E{ ¯ , , ¯ }N1 … are ordered so that the firstM are linearly independent and
that the remaining P N M≔ − electric fields can be written as linear combinations of the
first M ones so that:

E k E j P¯ ¯ , 1, , , (4.6)M j

m

j
1

∑= = …
μ

μ
μ+

=

for some real constants k j
μ. Next, we construct M connections A M, 1, ,ν = …ν

satisfying:

E A MTr ¯ , , 1, , . (4.7)a
a

⎡⎣ ⎤⎦∫ δ μ ν= = …
Σ

μ
ν

μ
ν

An adapted version of the argument given in [13] for the existence of such connections is
as follows. Let qab be an asymptotically flat metric in Σ so that q q O r˚ (1 )ab ab= + with
q̊ab being the fixed flat metric at infinity. Let pΩ be a strictly positive function on Σ with

an O r( )p behaviour at infinity. Define the metric q qab
p

p ab
( ) 2Ω≔ so that we have

( )q q q O r r, as . (4.8)ab
p

p ab ab
p p( ) 2 ( ) 2Ω≔ = → ∞

Define the following bilinear form on  :
E E q q E E¯, ¯ Tr ¯ ¯ . (4.9)ab

a b1 2 ⎡⎣ ⎤⎦∫′ ≔ ′
Σ

−

Let us now set p 1> . Then the asymptotic behaviour of pΩ implies the integral (4.9) is
convergent. Nondegeneracy of qab and positivity of pΩ implies ,〈 〉 is positive definite. It
then follows that the M M× matrix defined by: E E M¯ , ¯ , , 1, ,μ ν〈 〉 = …μ ν is invertible.

Denote its inverse by cμν . Then the one-forms A q c q Ēa
M

ab
b1 2

1
∑≔ν

ρ ρν ρ
−

=
satisfy (4.7)

and, from equation (4.8), fall off as r p 1− − at infinity so that Aa ∈ν . By exactly the same
steps as in [13], one can then find M real numbers t M, 1( ) μ⩽ ⩽μ

δ such that

A t A¯ , (4.10)a
B

M

a
,

1

( )∑≔δ

μ
μ
δ μ

=

satisfies (4.5) with C 12 = .
(ii) For sufficiently small ϵ and appropriately chosen ϵ- independent charts, construct balls

B n(2 ), 1 ,..,ϵ α =α of coordinate size 2ϵ such that

B B(2 ) (2 ) iff , (4.11)∩ϵ ϵ α β= ∅ ≠α β

B e(2 ) ˜ iff , (4.12)∩ϵ α β= ∅ ≠α β
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B e¯ (2 ) ˜ is a semianalytic edge. (4.13)∩ϵα α

Since the edges are compactly supported, the construction of (ii) is identical to the one
given in [13].

(iii) Construct a real semianalytic function fϵ such that f 1∣ ∣ ⩽ϵ on Σ with

f B1 on (2 ), (4.14)∪Σ ϵ= −ϵ α α

B0 on ( ), (4.15)∪ ϵ= α α

where B ( )ϵα denotes the ϵ size ball with the same centre as B (2 )ϵα .
The construction of fϵ is identical to that in [13].

(iv) From (4.13) it follows that each eα can be written as the composition of three edges
s s s, ,1 2

α α α ,

e s s s , (4.16)1 2= ◦ ◦α α α α

with

s e B˜ ˜ ¯ ( ) (4.17)∩ ϵ≔α α α

( )s s e B˜ ˜ ˜ ( ) . (4.18)1 2∪ ∩ Σ ϵ= −α α α α

Define:

h A g i, 1, 2 (4.19)s
B f i,i ⎡⎣ ⎤⎦≕ =αα

where A f ĀB f B, ,≔ ϵ
δ. and construct a connection Aϵ supported in B ( )∪ ϵα α such that

( ) ( )[ ]h A g g g . (4.20)s
1 1 2 1

=ϵ
α α α

− −
α

The construction of Aϵ is identical to that in [13].
(v) Set A A Ag B f, ,≔ +δ ϵ. It is then possible to show that for small enough ϵ, Ag,δ satisfies

equations (4.4) and (4.5) with C 01 = and C 22 = . The proof of this assertion is identical
to that in [13].

5. The quantum configuration space

In section 5.1 we introduce the (Abelian) holonomy-background exponential algebra 
and its associated C* algebra . The spectrum Δ of  is shown to be a topological
completion of the space of connections . In section 5.2 we give a characterization of Δ in
terms of certain homomorphisms, to be later used in section 5.5. In section 5.3 we realize KS
as an L2 space over Δ (with an integration measure d KSμ ) and show that the holonomies and
background exponentials act by multiplication in this realization. Section 5.4 is concerned
with the action of flux operators on L ( , d )2

KSΔ μ . We note that while the general argue-
mentation of sections 5.3 and 5.4 follows that for the spatially compact case in [13], a key
difference from the compact case stems from the unavailability of the ‘ s E0, 0∣ = = 〉’ cyclic
state of [13] in the asymptotically flat context due to the incompatibility of the E = 0 label
with asymptotic flatness. Notwithstanding this the considerations of sections 5.3 and 5.4
establish the unitary equivalence of the standard KS representation of the holonomy, back-
ground exponential and flux operators with their representations on L ( , d )2

KSΔ μ . In
section 5.5 we use the characterization of section 5.2 to show that elements of Δ satisfy a
weakened version of the asymptotic conditions satisfied by elements of .
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5.1. The algebras  and 

We denote by  the *-algebra of functions of  generated by the elementary functions
(2.6) and (2.7), with ∗ relation given by complex conjugation. By the same arguments as
those given in [13], any element A[ ]a ∈ can be written as

( )A a A[ ] [ ] , (5.1)l la π=

for some l e e E E( , , , ¯ , , ¯ )n N1 1 = … … ∈ , A[ ]lπ as in (2.14), and a GPol( )l l∈ , where
GPol( )l is the set of functions on Gl that depend polynomially on the SU(2) and U(1) entries

and the complex conjugates of these entries. Given l a, , la for which (5.1) holds, a is said to
be compatible with l, l is said to be compatible with a and l,a are said to be mutually
compatible. That a given mutually compatible pair l,a uniquely specifies a GPol( )l l∈
follows from the continuity of al together with the denseness of [ ]l π in Gl. If l l′ ⩾ and l is
compatible with a, then l′ is compatible with a and

a a p , (5.2)l l l l,= ◦′ ′

with p G G:l l l l, →′ ′ the map induced by the way probes in l are written in terms of probes in l′
as described in section 2.3.3 (see [13] for a proof of this claim).

On  we define the norm:

Asup [ ] , . (5.3)
A

a a a 


∥ ∥ ≔ ∈
∈

When a is written as in (5.1), the lemma of section 4 implies:

( )a A a gsup [ ] sup ( ) . (5.4)
A

l l
g G

l
l

a


π∥ ∥ = =
∈ ∈

Being a sup norm, (5.3) is compatible with the product and complex-conjugation star relations
on . The completion  of  in the norm (5.3) is then a unital C* algebra. We
denote the Gel’fand spectrum of  by Δ. Δ is a compact, Hausdorff space and

C ( ) Δ≃ where C ( )Δ is the C* algebra of continuous functions on Δ. We denote by
CCyl( ) ( )Δ Δ⊂ the subalgebra of continuous functions corresponding to  in the

Gel’fand identification.
From [23], the fact that  separates points in , implies that  is topologically dense

in Δ or, equivalently, that Δ is the completion of  in the Gel’fand topology. To see that
 separates points in , we proceed as follows. Given A Aa a ′ ≠ ″ ∈ we want to find
a ∈ such that A A[ ] [ ]a a′ ≠ ″ . It is enough to consider elements of the form Ēa β= .
Setting A A Aa a a≔ ′ − ″ the condition translates to show that for any A 0a ≠ there exists
Ēa ∈ such that A[ ] 1Ēβ ≠ . Since A 0a ≠ we can find a local chart where at least one of its
components, say A1

1, is nonzero. Further, we can find a small enough open ball U where this
component is of definite sign, say A 0U1

1 ∣ > . By using semianalytic bump functions similar
to those used in step (iii) of the master lemma (see equation (A7) of [13]) one can construct an
electric field Ēa ∈ with support in U such that Ē 0U1

1 ∣ > and with all remaining compo-
nents being zero. Then s E A E A¯ ¯ 0i

a
a
i

U 1
1

1
1∫ ∫≔ = >Σ . One can further take Ēa such that

s 2 π∉ so that A[ ] e 1E
s

¯
iβ = ≠ .

5.2. Characterization of the spectrum Δ

Recall from 2.3.1 and 2.3.2, that SUHom( , (2)) and UHom( , (1)) denote the space of
homomorphisms from the groupoid of paths  to the group SU(2) and from the Abelian
group of electric fields  to the group U(1). As in the case of compact Σ, the spectrum admits
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a characterization in terms of these homomorphisms. More in detail, each element of the
spectrum is in unique correspondence with a pair of homomorphisms, one member of the pair
in SUHom( , (2)) and the other in UHom( , (1)) i.e. there is a bijection between Δ and

SU UHom( , (2)) Hom( , (1)) × . As in the compact Σ case [13], we construct this bijec-
tion as follows.

First recall from standard Gel’fand theory that elements of the spectrum are in corre-
spondence with C* algebraic homomorphisms from  to . Accordingly, given such a
homomorphism ϕ Δ∈ define:

s SU: (2), (5.5) →ϕ

( ) ( )p s p h , (5.6)
C

D

p C
Dϕ↦ ≔ϕ

and

u U: (1), (5.7) →ϕ

( )( )E u E¯ ¯ . (5.8)Ēϕ β↦ ≔ϕ

As in [13], one can verify that the ∗-homomorphism properties of ϕ imply that
s SUHom( , (2))∈ϕ and u UHom( , (1))∈ϕ . Conversely, given s SUHom( , (2))∈
and u UHom( , (1))∈ one can find ϕ Δ∈ such that u u=ϕ and s s=ϕ as follows. ϕ is first
defined as a ∗-homomorphism from  to  by:

( )( ) ( )a s e s e u E u E( ) ( ), , ( ), ¯ , , ¯ , (5.9)l n N1 1aϕ ≔ … …

where l e e E E( , , , ¯ , , ¯ )n N1 1= … … is compatible with a. From the homomorphism properties
of s and u, and the considerations of section 5.1 one can verify that (5.9) is independent of the
choice of l and satisfies the ∗-homomorphism properties [13]. Finally one can show
boundedness of ϕ by means of equation (5.4), so that ϕ admits a unique extension to 
[13]. Thus ϕ Δ∈ , and by construction u u=ϕ and s s=ϕ .

5.3. Realization of the KS Hilbert space as the space L2 Δ;dμKS
� �

Fix a KS state E0,∣ 〉 where Ea is an asymptotically flat electric field. We wish to define a
positive linear functional (PLF) on  associated to this state12. Given a ∈ and
l ∈ compatible with a, let âl be the operator on the KS Hilbert space associated to al.
Define:

E a E a g( ) 0, ˆ 0, ( )d , (5.10)l
G

l l
l

a ∫ω μ≔ =

where d lμ is the Haar measure on the group Gl normalized so that d 1
G l

l
∫ μ = . The second

equality in (5.10) is described in appendix B.2 of [13]. That this definition is independent of
the choice of compatible label l ∈ follows from the ‘cylindrical consistency’ of the
measures l{ , }l μ ∈ , as shown in appendix C.3 of [13]. Positivity is also easily verified from
the integral representation in (5.10).

12 Since we have not shown that the operators (3.2), (3.3) induce a representation of  on the KS Hilbert space,
we here verify explicitly that expectation values yield a well defined PLF on .
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From the master lemma and equation (5.1) one finds ω is bounded:

a g a g( ) ( )d sup ( ) . (5.11)
G

l l
g G

l
l l

a a∫ω μ= ⩽ = ∥ ∥
∈

equation (5.11) serves two purposes. On the one hand it tell us that A[ ] 0 ( ) 0a aω= ⟹ = ,
so that ω is well defined on the abstract algebra  (i.e. it respects all quotienting relations
like 0E E E E¯ ¯ ¯ ¯1 2 1 2

β β β− =+ ). On the other hand, the boundedness property implies the existence

of a unique extension of ω to C ( ) Δ≃ [20]. It then follows by Riesz–Markov theorem
that ω defines a regular measure KSμ on Δ satisfying:

( ) d , (5.12)KSa a∫ω μ=
Δ

where in the RHS of (5.12) a is seen as an element of C ( )Δ via the standard Gel’fand
identification.

We now show that L ( , d )KS
2

KS Δ μ≃ as Hilbert space representations of . Note
that E0, KS∣ 〉 ∈ is a cyclic state i.e. the action of  on E0,∣ 〉 yields a dense subspace

KS in KS .13 Next, choose an element C ( )0Ψ Δ∈ such that

1 on . (5.13)0
2Ψ Δ=

Define the vector space C C{ ( ), ( )}C ( ) 0a a Ψ Δ Δ≔ ∈ ∈ ⊂Δ and equip C ( ) Δ with
the inner product

( ) ( ) ( ), * d , , . (5.14)0 0 0 0 KSa b a b a b ∫Ψ Ψ Ψ Ψ μ= ∈
Δ

Define V :E C, KS ( )0  →Ψ Δ by V E( ˆ 0, )E, 00 a aΨ∣ 〉 ≔Ψ where â denotes the KS operator
correspondent of the element a ∈ and C ( )0aΨ Δ∈ as in equation (5.14) above. Then it
is straightforward to check using equations (5.13), (5.14) and (5.12) that VE, 0Ψ is a one to one
map from KS to C ( ) Δ which preserves the inner product. It follows that VE, 0Ψ admits a

unique extension from KS to L ( , d )2
KSΔ μ . From the fact that  is commutative, it

follows that VE, 0Ψ unitarily maps the KS representation of  to a representation by

multiplication on L ( , d )2
KSΔ μ by the continuous functions in C ( ) Δ⊂ . Since the

holonomies and background exponentials are represented as bounded operators in the KS
representation, and since elements of  are finite polynomials in these basic operators, it
follows that  is represented as an algebra of bounded operators on KS . This
boundedness is readily seen in the representation on L ( , d )2

KSΔ μ as a consequence of the
boundedness of continuous functions on the compact Haussdorff space Δ.

Finally, note that L ( , d )2
KSΔ μ supports not only the operator algebra  but also its

C* completion, . Once again, since continuous functions on compact Haussdorff space
are bounded, it follows that elements of  are represented as bounded operators on
L ( , d )2

KSΔ μ . It follows by using the inverse map VE,
1

0Ψ
− that we may define the action of

elements of  on KS also as bounded operators on KS . This completes the demon-
stration that L ( , d )KS

2
KS Δ μ≡ as Hilbert space representations of .

13 The action of a background exponential changes the label E of E0,∣ 〉 to any desired background field state label
and appropriate finite sums and products of holonomy operators change the label 0 of E0,∣ 〉 to any desired LQG spin
net label. It follows the dense set of the finite span of KS spinnets may be obtained by the action of operators in
.
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Next we note that the identification of KS with L ( , d )2
KSΔ μ is not unique. The non-

uniqueness is two fold. First, as seen above, the map VE, 0Ψ may be defined for any C ( )0Ψ Δ∈
subject to equation (5.13). Second, it is easy to check that the PLF Eω of equation (5.10) is
independent of the choice of E i.e. for any a ∈ and any E E,1 2 subject to the asymptotic
conditions (2.1) ( ) ( )E E1 2a aω ω= . Thus the unitary map VE, 0Ψ may be defined for any E
subject to (2.1) and any C ( )0Ψ Δ∈ . In the compact case, there is a natural choice, namely
E = 0 and 10Ψ = and this together with the natural action of flux operators as derivations
yields the unitary equivalence of L ( , d )2

KSΔ μ and KS as Hilbert space representations of the
holonomy, background exponential and fluxoperators [13].

In contrast, in the asymptotically flat case, there is no such natural choice because E = 0
is not consistent with the requirements of asymptotic flatness (2.1). In order to proceed
further, we make some choice, E, consistent with (2.1) and, henceforth, set 10Ψ = and use the
notation V VE E, 10≔ Ψ = . As we shall see in the next section, the unitary equivalence of the KS

representation of holonomies and background exponentials with the one on L ( , d )2
KSΔ μ

defined by VE can be extended to include the action of flux operators. While, in contrast to the
action of operators in , the explicit action of the flux operators on (a dense subspace of)
L ( , d )2

KSΔ μ will involve the choice of E, the extension will be seen to hold for any choice of
E subject to (2.1).

5.4. Action of fluxes on L2 Δ; dμKS
� �

The discussion of section 5.3 indicates that elements C ( )a  Δ∈ ≃ have a dual inter-
pretation: when seen as elements of C ( )Δ they are ‘wavefunctions’ in the L2 representation,
i.e. vectors in the Hilbert space; when seen as elements of , they are naturally associated
with operators â on the Hilbert space KS . Accordingly, when we use the former inter-
pretation we shall refer to a as a wavefunction and when we use the latter we shall denote a by
â and refer to it as an operator.

Let us fix a ‘reference’ KS spinet E0,∣ 〉 as before. The wavefunction associated to a KS
spinnet s E, ˜∣ 〉 via the map VE is then given by: T Cyl( )s E E˜β Δ∈− , where T A[ ]s ∈ is the
spin network function associated to s [20], A[ ]E E˜ β ∈− the background exponential
function (2.7), and T ,s E E˜β − the respective elements in Cyl( )Δ under the Gel’fand identifi-
cation Cyl( ) Δ≃ .14

From the action of the flux operator F̂S f, on KS spinnets (3.5), and the above, E-
dependent identification of KS spinnets with elements of Cyl( )Δ , we obtain the following
action of the fluxes in the latter space:

( )( ) ( )F T F T F E E Tˆ ˆ ¯ . (5.15)S f
E

s E S f s E S f s E,
( )

¯ ,
LQG

¯ , ¯β β β= + +

As indicated in section 5.3, even though the natural choice E = 0 is not available if we
wish to describe asymptotically flat geometries, all different choices of asymptotically flat
‘reference’ E yield unitarily equivalent Hilbert spaces. The unitary transformation that maps
the wave functions in the ‘E′ representation’ associated with VE′ to those in the ‘E repre-
sentation’ associated with VE is given by the multiplication operator:

( ) ( )U L Lˆ : , d , d (5.16)E E,
2

KS
2

KSΔ μ Δ μ→′

14 Notice that there are no elements in Cyl( )Δ that could correspond to ‘ Ẽβ ’ or ‘ Eβ ’ since these labels do not satisfy
the required fall off (2.9). However E E˜ − ∈ is a valid label for the background exponentials.
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. (5.17)E EΨ β Ψ↦ ′−

The multiplicative operators from  remain unaltered by this action, whereas flux
operators (5.15) in the E′ representation are mapped into the corresponding flux operators in
the E representation:

U F U Fˆ ˆ ˆ ˆ (5.18)E E S f
E

E E S f
E

, ,
( )

, ,
( )=′

′
′

as can be verified by straightforward computation.

5.5. Asymptotic behaviour of elements of Δ.

From section 5.1, the quantum configuration space Δ is a topological completion of the
classical configuration space of connections . Since elements of  are subject to the
asymptotic conditions (2.2), one may interpret this feature of Δ as evidence for the incor-
poration of (2.2) in the quantum theory. However, as we note in section 6, while topologically
dense,  is measure theoretically sparse in Δ with respect to the measure KSμ . Since
expectation value computations in quantum theory do not obtain contributions from zero
measure sets, if there exists a measure theoretically thick set in Δ whose elements can be
thought of as blatantly violating the conditions (2.2), we would conclude that these conditions
do not leave an imprint in quantum theory. That this is not so follows from the fact that every
element of Δ satisfies a quantum analog these conditions. This quantum analog can be thought
of as weaker than the classical conditions (2.2). To see this we proceed as follows.

From section 5.2, every element of the quantum configuration space Δ is identified with
an element of UHom( , (1)) . In particular since  Δ⊂ , every A ∈ defines

h UHom( , (1))A ∈ through h E A U( ¯) ( ) e (1)A E
A E

¯
i ¯

a
i

i
a∫β= = ∈Σ . The asymptotic fall offs

on A (2.2) ensure that the integral A Ēa
i

i
a∫

Σ
is well defined for every Ē ∈ by virtue of the

boundary conditions (2.9)on elements of  . This in turn ensures the well- definedness of hA.
However, given the conditions (2.9), the conditions (2.2) are only sufficient (rather than
necessary) for the well definedness of this integral. For example, consider a connection A
with asymptotic behaviour

( )f

r

g x

r

C

r r
A

d

d

ˆ

( log )
(5.19)i

i i

2 2
= +α

α α

with f r e( ) cos( )r= andC i
α constant. A by parts integration shows that the contribution of the

first term to the integral EA ¯
a
k

k
a∫

Σ
(with Ē ∈ ) is finite and it is easy to check the finiteness

of the contribution of the second term. Clearly A ∉ . Nevertheless, h UHom( , (1))A ∈

with h E UA( ¯) ( ) e (1)E
E

A
A

¯
i ¯

a
i

i
a∫β= = ∈Σ . Since elements of Δ include all homomorphisms

in UHom( , (1)) such connections are also a part of the quantum configuration space. Thus,
instead of the detailed fall offs (2.2), such quantum connections A′ satisfy the weaker
condition that the integral:

A E E¯ ¯ . (5.20)b
i

i
b ∫ ′ < ∞ ∀ ∈

Σ

Of course not every homomorphism arises from a connection field; just as in the spatially
compact case, there may be no connection field associated with a given homomorphism. To
see this, note that the homomorphisms defined by elements of  have a ‘smooth’ dependence
with respect to the background field which allows the computation of the functional derivative
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of any such homomorphism with respect to its background field dependence. More in detail,
h UHom( , (1))A ∈ is defined through h E A E( ¯ ) exp(i ¯ )A a

i
i
a ∫∈ = so that

A x hi ( )h

E x A¯ ( )
A =δ

δ
. However, it is possible to define elements of UHom( , (1)) which are not

functionally differentiable15.
For such ‘distributional’ elements of Δ which cannot be realised as a connection field, a

quantum analogue of condition (5.20) is provided by the defining property of elements of Δ:
namely that every such element yields a well defined element of UHom( , (1)) . It is in this
sense that elements of the quantum configuration space satisfy a weakened version of the
classical fall offs (2.2).

Note that the quantum configuration space is an enlargement of the classical one in two
different ways. First, as in the compact case, the elements of Δ may be ‘distributional’ in the
sense that the homomorphisms they define are not functionally differentiable with respect to
their electric field argument. Second, elements of Δ satisfy the (distributional) analog of the
weaker boundary condition (5.20) than (2.2). The weakening of the functional differentia-
bility property may be thought of as indicative of a certain ‘blindness’ of (distributional)
elements of Δ to the differential structure of the manifold (the differential structure is, after all,
what allows the definition of infinitesimal variations of Ē and the consequent computation of
the functional derivative. We speculate in closing that the weakened asymptotic behaviour
may similarly be thought of as an insensitivity to the function space structure underlying the
infinite dimensional symplectic structure of the classical phase space. More in detail, one
expects that pairs of elements, one in the space of variations of the classical triad field and one
in (the tangent space to)  lie in the tangent space to the infinite dimensional classical phase
space. From this point of view the condition (2.2) and the (variation of the) condition (2.1)
could, in a more rigorous treatment, possibly be seen as linked to the function space topology
of the phase space. The weakened condition (5.20) is too coarse to define typical function
space topologies and in this sense the weakened asymptotic behaviour of elements of Δ could
be seen to arise from their insensitivity to the detailed function space structure.

6. The quantum configuration space as a projective limit

In section 2.3.3 we defined the label set , the spaces G l{ , }l ∈ , and the maps
p G G l l{ : , }l l l l, → ′ ⩾ ∈′ ′ . It is easy to verify that if l l l″ ⩾ ′ ⩾ then p p pl l l l l l, , ,= ◦″ ′ ′ ″.
Further, by the same argument as given in [13], the maps pl l, ′ can be shown to be surjective.
The projective limit space ̄ can then be constructed from the family G p( , { }, { })l ll ′ as in
[26] as follows.

One first considers the space Gl l ≔ ×∞ ∈ . A point in ∞ is then given by a collection
of points x G{ }l l∈ for every l ∈ . ∞ is given the so-called Tychonov topology [20], i.e.
the weakest topology such that the canonical projections

p G: (6.1)l l →∞
∞

x x{ } (6.2)l l↦′

are continuous. Under this topology, ∞ is compact and Hausdorff [20]. Next, one considers
the subset of ∞ given by:

15 As an example consider A ∈ and UHom( , (1))ϕ ∈ such that t( )ϕ is nowhere differentiable in . Then
E A E¯ ( ¯ )a

i
i
a∫ϕ→ is a non-functionally differentiable element of UHom( , (1)) .
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{ }x p x x l l¯ : { } ( ) , , (6.3)l l l l l, = ∈ = ∀ ′ ⩾′∞ ′

with the topology induced by ∞. One can then show that ̄ is also compact and Hausdorff
[26]. Finally, the projections p G: ¯

l l → defined by p pl l ̄≔ ∣∞ can be shown to be
continuous and surjective [26].

The proof that ̄ is homeomorphic to Δ is the same as the one given in [13] following
[25] and consists in showing that C ( ¯ ) and C ( ) Δ ≡ are isomorphic as C* algebras.
This is done by constructing a norm preserving ∗-isomorphism T, between Cyl( ) Δ ≡
and

( ) ( )( )p G CCyl ¯ Pol ¯ , (6.4)l L l l
* ∪≔ ⊂∈

given by:

( )T : Cyl ¯ (6.5) →

f f p T f f( ) . (6.6)l l l lπ= ◦ ↦ ≔ ◦

Finally, one makes use of Stone–Weierstrass theorem to show that the completion of Cyl( ¯ )
coincides with C ( ¯ ) . Since C ( )Δ can be seen as the completion of Cyl( )Δ , it follows that

C C( ¯ ) ( ) Δ= as C* algebras. By Gel’fand theory it then follows that ̄ and Δ are
homeomorphic

As in [13], one can consider the two separate projective limit spaces ¯ H and ¯ B asso-
ciated to G p( , { }, { })H γ γγ′ and G p( , { }, { })B Υ ΥΥ′ , and show that ¯ ¯ ¯H B  = × . From
this perspective, it may look as if one got a ‘too big’ space, somehow involving two copies of
space of connections. Let us clarify this point. ̄ is understood as a topological completion of
.  embeds in ̄ via the map lπ of section 2.3.3:

¯ ¯ ¯ (6.7)H B   → = ×

( ){ }{ } { }A A A A[ ] [ ] , [ ] , (6.8)lπ π π↦ = γ Υ

since by virtue of (2.19) A{ [ ]}l π ∈ ∞ lies in ̄ (6.3). Above we also displayed the
embedding in the ¯ ¯H B × picture of ̄, where A[ ]πγ and A[ ]πΥ are respectively given by
the first n and last N components of (2.14). This product structure allows for other,
inequivalent embeddings, for instance:

¯ (6.9) →

{ }( )A A[ ], Id , (6.10)Gπ↦ γ Υ

and in this sense one could perhaps argue that ̄ is ‘too big’. However the interpretation of ̄
as a completion of  is only with respect to the ‘correct’ embedding (6.8).

The description of the measure KSμ on ̄Δ ≈ can also be given in terms of cylindrically
consistent measures { }lμ on G{ }l exactly as in [13], and the same argument given to show
that ¯ ⊂ is of measure zero applies here as well.

7. Gauge transformations and asymptotic symmetries: classical considerations

We describe the group of gauge transformations, Aut, in section 7.1 and the group of
asymptotic symmetries, AutE̊ , in section 7.2. The asymptotic behaviour of elements of Aut
and AutE̊ displayed in sections 7.1 and 7.2 is derived as follows. We study the space of Ck 1−
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SU(2) rotations and Ck diffeomorphisms subject to the restriction that their combined action
preserves the space of classical triad fields with fall offs (2.1). In appendix C.2 we show that
this restriction on SU(2) rotations and diffeomorphisms completely specifies their asymptotic
behaviour. The restriction is a priori weaker than the restriction that such transformations
preserve both the asymptotic fall offs on the triad as well those on the connection (2.2).
However, as can be easily verified, the additional restriction of preservation of (2.2) is
automatically satisfied by the transformations subject to the behaviour specified by the
considerations of appendix C.2.

The conditions derived in appendix C.2 are as follows. The diffeomorphisms asymptote
to a combination of rotations, translations and ‘odd supertranslations’ (odd supertranslations
are defined in [19]). Diffeomorphisms with trivial rotational part are accompanied by SU(2)
transformations which asymptote to identity and diffeomorphisms with non-trivial rotational
part are accompanied by SU(2) transformations which compensate for this rotation so as to
preserve the flat triad at infinity. Comparison with the asymptotic fall offs of the finite
transformations generated by the su(2) multipliers and shift vectors which serve as smearing
functions for the SU(2) Gauss Law, the spatial diffeomorphism constraint and the total
angular and linear momenta in the C∞ setting of [19] allow us to identify which of the
transformations of the previous paragraph are to be interpreted as gauge transformations and
which as asymptotic symmetries16. This comparison indicates we identify gauge transfor-
mations with combinations of diffeomorphisms with trivial rotational and translational parts
together with SU(2) transformations which asymptote to identity, and that we identify
asymptotic symmetries with combinations of diffeomorphisms with non-trivial rotational and
translational parts together with SU(2) transformations which compensate for the rotational
diffeomorphism so as to leave the fixed flat triad invariant at infinity.

In section 7.3 we show that Aut is a normal subgroup of AutE̊ and that the quotient group
Aut AutE̊ is the finite dimensional group SU (2)3 ⋊ . In section 7.4 we display the action of

semianalytic elements of Aut and AutE̊ on the holonomy, flux and background exponential
functions. The reason for the additional restriction of semianalyticity is that these functions
are defined using semianalytic probes and the semianalyticity of these probes as well as the
Poisson bracket algebra of these functions is preserved by semianalytic elements of
Aut, AutE̊.

7.1. Kinematical gauge group Aut

A kinematic gauge transformation a consists of a pair g( , )ϕ where g is a C SU, (2)k 1−

internal rotation, ϕ is a Ck diffeomorphism and a g( , )ϕ= is connected to identity17.
The transformation a g( , )ϕ≡ acts on phase space as:

( ) ( )g A g A g A g g g( , ) · · · * , (7.1)a a a a
1 1ϕ ϕ ϕ≔ = − ∂− −

( )g E g E g E g( , ) · · · * . (7.2)a a a 1ϕ ϕ ϕ≔ = −

*ϕ denotes push-forward so for instance: g x g x( * )( ) ( ( ))1ϕ ϕ≡ − .

16 [19] specifies the asymptotic fall offs of the multipliers. In appendix D we use these conditions on the multipliers
to deduce corresponding conditions on the finite SU(2) transformations and diffeomorphisms generated by these
multipliers.
17 We shall say that a is connected to identity if there exists a one parameter family of automorphisms
a s s( ) Aut, [0, 1]∈ ∈ such that (i) a (0) Id= , a a(1) = (ii) for every point p in Σ, s p p s( )( ) ( )ϕ ≕ is continuous
with respect to the topology of Σ and (iii) for every point p Σ∈ , g s p( , ) is continuous in SU(2).

Class. Quantum Grav. 32 (2015) 135011 M Campiglia and M Varadarajan

23



As explained in the beginning of section 7 the considerations of appendix C.2 together
with the classical phase space analysis [18, 19] and the considerations of appendix D imply
the following asymptotic conditions as r → ∞ on each such gauge transformation a:

( )( )
g x

x

r
O r1( )

ˆ
, (7.3)1

λ
= + + ϵ− −

( )( )x x s x O r( ) ˆ , (7.4)ϕ = + +α α α ϵ−

where

( ) ( )x xˆ ˆ , (7.5)λ λ− =

( ) ( )s x s xˆ ˆ , (7.6)− = −α α

and λ and sα are respectively C C,k k 1+ functions on the sphere. It follows from appendices
C.2 and C.1 that the set Aut of all such gauge transformations preserves the asymptotic
conditions (2.1) and (2.2). From appendix C.4 it follows that Aut is a group. From (7.2) one
finds the composition rule on Aut has the following ‘semi-direct product’ form:

( )( )g g g g( , ) , * , . (7.7)ϕ ϕ ϕ ϕ ϕ′ ′ = ′ ◦ ′

7.2. Group AutE̊

In the Cartesian chart x{ }α there is a preferred flat metric q̊ δ=αβ αβ with isometries generated

by (asymptotic) rotations R SO (3)∈β
α and translations t 3∈α :

x R x t . (7.8)→ +α
β
α β α

From the analysis of [18, 19] we expect that the group of these asymptotic isometries is
represented on the phase space variables A E( , ). We refer to this putative ‘symmetry’ group as

AutE̊ .
Recall that the fall-off conditions on the electric field E are such that the zeroth order

value of E at infinity is fixed by the triad E̊
α
(2.1). Whereas under asymptotic translations E̊

α

remains invariant, under asymptotic rotations it changes as

E R E˚ ˚ , (7.9)→α
β
α β

thus violating the fall-offs (2.1). If however the asymptotic rotation is accompanied by an
internal SU(2) rotation g̊ satisfying

R gE g E˚ ˚ ˚ ˚ , (7.10)1 =β
α β α−

then the boundary condition (2.1) is preserved. This discussion suggests that elements of
AutE̊ may be obtained by augmenting those in Aut with appropriate rotational and
translational diffeomorphisms, together with gauge transformations of the type (7.10). Indeed
as explained in the beginning of section 7 this is exactly what happens.

We proceed as follows. We define every element a AutE̊∈ to be in correspondence with
a pair g( , )ϕ where g is a Ck 1− SU(2) gauge transformation, ϕ a Ck diffeomorphism, and
a g( , )ϕ= is connected to identity (where by connected to identity we mean that there exists

a path in AutE̊ subject to the conditions (i)–(iii) of footnote 17). Each such element has phase
space action given by (7.2). As explained in the beginning of section 7, the considerations of
appendix C.2 together with the classical phase space analysis [18, 19] and the considerations
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of appendix D then imply the following conditions on g( , )ϕ as r → ∞:

( )( )
g x g

x

r
O r( ) ˚

ˆ
, (7.11)1

λ
= + + ϵ− −

( )( ) ( )x R g x t s x O r( ) ˚ ˆ , (7.12)ϕ = + + +α
β
α β α α ϵ−

where λ and sα are as in (7.5), (7.6) and R g SO( ˚) (3)∈β
α is given by the adjoint action of g̊

where we identify su(2) with the 3 of the Cartesian chart. In other words, it is the matrix
satisfying,

( ) ( )g x g R g x˚ ˚ ˚ . (7.13)1τ τ=α
α β

α β
α

−

Condition (7.13) can be seen to be equivalent to (7.10) by noting that E̊ τ=α
α and

R R( )1 =β
α

α
β− .

It follows from appendix C that the set AutE̊ of all such transformations preserve the
asymptotic conditions (2.1) and (2.2) and that AutE̊ is a group. From (7.2) it follows that the
group composition rule on AutE̊ has the same ‘semi-direct product’ form (7.7) as in the Aut
case. For later purposes we display the asymptotic form of a composed element
g g g g g( , ) ( , )( , ) ( * , )ϕ ϕ ϕ ϕ ϕϕ″ ″ ≔ ′ ′ = ′ ′ (see appendix C.4):

( )g gg r O r˚ ˚ (even) , (7.14)1 1″ = ′ + + ϵ− − −

( )( ) ( )R gg x R g t t O r˚ ˚ ˚ (odd) . (7.15)ϕ″ = ′ + ′ + + +α
β
α β

β
α β α ϵ−

7.3. AutE̊ Aut=

From the above discussion it is clear that Aut AutE̊⊂ . We now show it is actually a normal
subgroup. Let a AutE̊∈ and b Aut∈ . Since both groups are defined to be connected to
identity, there exist paths a s( ) AutE̊∈ and b s( ) Aut∈ with parameter s [0, 1]∈ such that
a b(0) (0) Id= = and a a b b(1) , (1)= = . Using (7.14), (7.15) it is straightforward to verify
that

c s a s b s a s( ) ( ) ( ) ( ) , (7.16)1≔ −

satisfies the fall-offs associated to Aut. Since c (0) Id= , c s( ) represents a path in Aut so that

c aba(1) Aut1= ∈− . This shows normality of Aut AutE̊⊂ . We now describe the resulting

quotient group Aut AutE̊ .
Elements of Aut AutE̊ are equivalence classes a a[ ], AutE̊∈ where two elements

a a, AutE̊′ ∈ are equivalent if aa Aut1′ ∈− . Let us denote by

SUt g: Aut , : Aut (2), (7.17)E E˚ 3 ˚
→ →

the maps that assign to a AutE̊∈ the value of its asymptotic translation and SU(2) rotation
respectively. Thus for a g( , )ϕ= as in (7.11) and (7.12), a tt( ) = ⃗ and a gg( ) ˚= . We now
show that

a a a a a at t g g[ ] [ ] ( ) ( ), ( ) ( ), (7.18)= ′ ⟺ = ′ = ′
so that the space of equivalence classes may be identified with SU (2)3 × . We will later
describe the product rule between equivalence classes.

From equations (7.14), (7.15) one has that for any c aAut, AutE̊∈ ∈ : ac at t( ) ( )= and
ac ag g( ) ( )= . This establishes the ⟹ implication in (7.18). To prove the converse we will
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construct a particular family of AutE̊ elements with prescribed asymptotic values and show
they exhaust all classes.

Any element g SU˚ (2)∈ can always be written as

g̊ e , (7.19)n̂= θ

where n n S suˆ ˆ (2)i
i

2τ≡ ∈ ⊂ and [0, 2 ]θ π∈ (values greater than 2π can be reached by
flipping n̂, e en n(2 ) ˆ (2 ) ˆ=π α π α+ − − ). This parametrization is one-to-one except at the ‘poles’
g 1˚ = ± , where 0, 2θ π= and n Sˆ 2∈ is undetermined. Given n S( ˆ, ) [0, 2 ]2θ π∈ × and
t 3⃗ ∈ define the diffeomorphisms:

x x t f r( ) ( ), (7.20)tϕ ≔ +α α α
⃗

( )x R x( ) e . (7.21)n
nf r

( ˆ, )
ˆ ( )ϕ ≔θ

α
β
α θ β

Here f is a semianalytic Ck interpolating function such that f r( ) 1= for r r2> and f r( ) 0=
for r r1< (see equation (A7) of [13] for explicit example of such function). In addition we
require that f r t( ) 1′ ≪ ∣ ⃗ ∣− so as to ensure invertibility of tϕ α

⃗ .
18 R (e )nf rˆ ( )

β
α θ is the (r-

dependent) SO(3) rotation associated to the (r-dependent) SU(2) element enf rˆ ( )θ as in
equation (7.13). The inverse of (7.21) is given by n( ˆ, )ϕ θ− . By construction tϕ ⃗ and n( ˆ, )ϕ θ are
semianalytic diffeomorphisms that asymptote to a given translation and rotation respectively.
Finally define19

( )( )b e , Aut . (7.22)( )t n
n

t n
E

, ˆ,
ˆ

ˆ,
˚ϕ ϕ≔ ◦ ∈θ

θ
θ⃗ ⃗

By construction we have b tt( )t n( , ˆ, ) = ⃗θ⃗ and bg( ) et n
n

( , ˆ, )
ˆ=θ

θ⃗ . We now take care of a subtlety
due to the SU(2) parametrization being used. At 0θ = , b 1( , )t n t( , ˆ,0) ϕ=⃗ ⃗ is independent of n̂
and no issue arises. At 2θ π= , b 1( , )t n t n( , ˆ,2 ) ( ˆ,2 )ϕ ϕ= − ◦π π⃗ ⃗ depends on n̂. We thus need to
show that all such elements are in the same class, that is:

( )( )b b n n S1, Aut, ˆ, ˆ . (7.23)( )t n t n n n( , ˆ ,2 )
1

, ˆ,2 ( ˆ ,2 )
1

ˆ,2
2ϕ ϕ= ◦ ∈ ∀ ′ ∈π π π π⃗ ′

−
⃗ ′

−

To show (7.23) we need to find a one parameter family of diffeomorphisms Autsϕ ∈ such

that Id0ϕ = and n n1 ( ˆ ,2 )
1

( ˆ,2 )ϕ ϕ ϕ= ◦π π′
− . Consider a path n s Sˆ ( ) 2∈ such that n nˆ (0) ˆ= and

n nˆ (1) ˆ= ′. Then

(7.24)( )s n s n( ˆ ( ),2 )
1

ˆ,2 ,ϕ ϕ ϕ≔ ◦π π
−

provides such path.
We finally show that any element in AutE̊ is equivalent to one of the elements (7.22). Let

a AutE̊∈ with asymptotic values t ⃗ and g̊ e n̂= θ . We want to show that

18 Let ˜ :t
3 3 ϕ →⃗ be the map induced by tϕ ⃗ on

3 by setting ˜ Idt Br1ϕ ∣ =⃗ where Br1 is the solid ball of radius r1 in
3 . Let D x x t x f r( ) ˜ ( ) ˆ ( )tϕ δ≔ ∂ = + ′α

β
β

α
β
α α

β⃗ be the differential of such map. Condition f r t( ) 1′ ≪ ∣ ⃗ ∣− implies that

D x( ) ( )1
β
α− exists and its coefficients are bounded as functions on 3 . A version of Hadamard theorem then tells ˜

tϕ ⃗ is

invertible in 3 (see theorem 6.2.3 of [28]). It then follows that ˜ Idt B
1

r1ϕ ∣ =⃗
−

so that it can be extended to Σ to define

an inverse for tϕ ⃗.
19 To see that (7.22) is connected to identity consider the path b s( ) (e , )s n

st n s
ˆ

( ˆ, )ϕ ϕ≔ ◦θ
θ⃗ . Then b s( ) Id= and

b b(1) t n( , ˆ, )= θ⃗ .
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( )c b a , (7.25)t n, ˆ,
1≔ θ⃗ −

is in Aut. By construction c has Aut-type fall-offs, so that all we need to show is that it is
connected to identity. Let a s( ) AutE̊∈ be a path connecting identity at s = 0 to a at s = 1. Set
t s a st( ) ( ( ))⃗ ≔ and g s a sg˚ ( ) ( ( ))≔ . For reasons that will become clear in a moment, we
choose a parametrization s a s( )↦ such that each time g s˚ ( ) goes through 1− , it stays there for
some closed interval s s s[ , ] [0, 1]i i1 2∈ ⊂ (this can always be achieved by an appropriate

reparametrization s s s( )→ ′ ). A path n s s( ˆ ( ), ( ))θ that is continuous in S [0, 2 ]2 π× and
satisfies g se ˚ ( )s n s( ) ˆ ( ) =θ can then be constructed as follows: for g s 1˚ ( ) ≠ − , the values of
n s s( ˆ ( ), ( ))θ are uniquely defined and the path is continuous. When g s˚ ( ) goes through 1− , n̂
may undergo a ‘flip’ n nˆ ˆ→ − . For s s s[ , ]i i1 2∈ where g s 1˚ ( ) = − , we specify n sˆ ( ) so as to
implement this flip in a continuous fashion i.e. we hold θ fixed at 2π and continuously deform
n̂ to n̂− . The corresponding path b t s n s s( ( ), ˆ ( ), ( ))θ⃗ is thus continuous in AutE̊ (in the sense of
footnote 17) and

( )c s b a s( ) ( ), (7.26)t s n s s( ), ˆ ( ), ( )
1≔ θ⃗ −

provides the continuous path in Aut connecting identity with c (7.25).
The above discussion establishes the one to one correspondence (7.18) which allow us to

parametrize elements in the quotient space by pairs t g SU( , ˚) (2)3⃗ ∈ × . We now discuss the
product rule.

Recall the product on the quotient space is defined by a a aa[ ][ ] [ ]′ ≔ ′ . Given
a a, AutE̊′ ∈ with asymptotic values t g, ˚⃗ and t g, ˚′⃗ ′, the asymptotic values of the product
a aa″ ≔ ′ can be read-off from (7.14), (7.15) (see appendix C.4). From this we conclude the
product rule on the quotient space is:

( ) ( )( ) ( )t g t g R g t t gg, ˚ , ˚ ˚ , ˚ ˚ , (7.27)⃗ ′⃗ ′ = ′⃗ + ⃗ ′

which corresponds to the semidirect product of translations with SU(2) rotations,
SUAut Aut (2)E̊ 3= ⋊ .

We conclude the section with some comments. An analogous analysis in metric variables
(where the relevant groups are the diffeomorphism parts of Aut, AutE̊) shows that there can
be two possible quotient groups: The standard isometry group of Euclidean space

SO (3)3 ⋊ , or its cover SU (2)3 ⋊ . Which one arises depends on the topology of the
manifold [14]. For simple topologies, for instance 3Σ = , the quotient group has only the SO
(3) factor. In [14] it is described how certain topologies, associated with an SU(2) factor in the
quotient group, support half-integer spin states in quantum theory. We will recover this result
when studying asymptotic symmetries in quantum theory. In particular we will find that there
are no ‘new’ half-integer spin states arising from the use of triad rather than metric variables.
Eventhough in the triad formulation the quotient group has always an SU(2) rather than SO(3)
factor, the condition for existence of nontrivial half-integer spin sates is still the same as the
one described in [14] for metric variables.

7.4. Action of Aut;AutE̊ on elementary phase space functions

Since gauge transformations are a subset of asymptotic symmetry transformations, the action
of Aut on elementary phase space functions can be obtained by suitable restriction of that of
AutE̊ on these functions. Accordingly, we focus on the action of the larger group AutE̊ . Given
g a( , ) AutE̊ϕ ≡ ∈ , we define its action on phase space functions F A E[ , ] by:
a F A E F a A a E( · )[ , ] [ · , · ]1 1≔ − − so that ab F a b F( ) · · ( · )= . The elementary phase
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space functions (2.6), (2.8), (2.7) then transform as follows:

a h A g f e h A g b e· ( ) ( ( ( ))) ( ) ( ( ( ))), (7.28)e e
1

( )ϕ ϕ= ϕ
−

a F E F E· ( ) ( ), (7.29)
*

S f S g fg, ( ), 1= ϕ ϕ −

( )a A A· [ ] e [ ], (7.30)E
a E

a E¯
i , ¯

· ¯β β= α

where b e f e( ), ( ) denote the beginning and end points of the edge e and

( ) ( )( )a E E g g a E gg, ¯ Tr *
¯ Tr · ¯ . (7.31)a

a
a

a
1 1⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦∫ ∫α ϕ≔ ∂ = ∂

Σ Σ
− −

Note that the set of phase space functions above is not preserved by action of arbitrary
elements of AutE̊ because such elements do not, in general, preserve the semianalyticity
property of the probes. In order that the semianalyticity is preserved we further restrict
attention to those elements of AutE̊ which are semianalytic. It is then straightforward to check
that such elements form a group. Let us call this group Aut (sa)E̊ .

Next, we show that the transformation laws (7.28)–(7.30) hold. Since edges and surfaces
are of compact support, equations (7.28) and (7.29) follow by the same argument as in the
case of compact Σ [9]. To show (7.30) it will be convenient to study separately the actions
g g· ( , Id) ·E E¯ ¯β β≡ and · (Id, ) ·E E¯ ¯ϕ β ϕ β≡ , and later combine them by
g g( , ) ( , Id) (Id, )ϕ ϕ= ◦ . Even though asymptotic rotations do not admit such ‘splitting’ in
phase space, one can make sense of such splitting in the space of connections  and of
‘barred’ electric fields  .

First we notice that if ρ is a scalar density such that I ∫ ρ≔ < ∞
Σ

and ϕ a diffeo-

morphism of Σ then I *∫ ϕ ρ=
Σ

. In particular for E ATr[ ¯ ]a
a*

1ρ ϕ= − and Diffϕ ∈ ∞ this

implies

· . (7.32)E E¯ · ¯ϕ β β= ϕ

On the other hand, g · Ēβ is given by the exponential of:

( )E g A g g g gE g A E g gTr ¯ Tr ¯ Tr ¯ . (7.33)a
a a

a
a

a
a

1 1 1 1⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎤⎦∫ ∫ ∫+ ∂ = + ∂

Σ Σ Σ
− − − −

Both integrals on the RHS are convergent since g g r O r˚ (even) ( )1 1= + + ϵ− − − and
g r O r(odd) ( )a

2 2∂ = + ϵ− − − . We thus conclude that g · eE
g E

g E¯
i ( , ¯)

· ¯β β= α . Applying this
result to g · E· ¯βϕ and using (7.32) we obtain (7.30) with a g( , )ϕ= .

By construction, (7.28), (7.29) and (7.30) provide a representation of Aut (sa)E̊ on
holonomies, fluxes and background exponentials.

8. Gauge transformations and asymptotic symmetries: quantum
implementation

As in compact space LQG, we restrict attention to convenient subgroups of the automorphism
groups Aut , AutE̊ . The restricted subgroups are chosen so as to incorporate the property of
semianalyticity in such a way that the ensuing quantum theory is tractable, elegant and
structurally rich20. As seen in the previous section, the set of holonomy-background

20 See section 9.3 for further discussion on the role of semianalyticity.
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exponential-flux functions is invariant under the action of the subgroup Aut (sa)E̊ of semi-

analytic elements of AutE̊ . Here we further restrict the set of these transformations by a
requirement of connection to identity. More in detail, we define the quantum symmetry group
AutE

sa
˚
to be the set of elements of Aut (sa)E̊ which are connected to identity by paths in

Aut (sa)E̊ 21. It is easy to see that AutE
sa
˚
is a subgroup of Aut (sa)E̊ . We also define Aut(sa) to be

the set of semianalytic elements of Aut. It is easy to check that Aut(sa) is a subgroup of

Aut (sa)E̊ . Finally we define the quantum gauge group Autsa to be the set of elements of
Aut(sa) which are connected to identity by paths in Aut(sa). It is straightforward to check that

Autsa is a subgroup of Aut(sa). The groups AutE
sa
˚
, Autsa are to be thought of as the quantum

counterparts of the classical groups AutE̊ , Aut. Clearly we have that Autsa is a subgroup of

AutE
sa
˚
. It is then straightforward to see that the arguments of section 7.3 apply unchanged if we

replace AutE̊ , Aut by AutE
sa
˚
, Autsa. It follows that Autsa is a normal subgroup of AutE

sa
˚
and

that the quotient group Aut AutE
sa
˚

sa is, once again, SU (2)3 ⋊ .

In section 8.1 we present a unitary action of AutE
sa
˚
on KS . This unitary action, restricted

to Autsa, is used to construct an Autsa-invariant Hilbert space Aut in section 8.2. Section 8.3
discusses the unitary action of asymptotic rotations and translations on Aut . Supplementary
material to this section is given in appendix E.

8.1. Unitary representation of AutE̊sa on the KS Hilbert space

We wish to construct unitary operators U a a( ) : , AutE
KS KS sa

˚ → ∈ satisfying

U ab U a U b a b( ) ( ) ( ), , AutE
sa
˚= ∈ and such that they implement the analogue of the

transformations (7.28), (7.29), (7.30) for the corresponding operators (3.2), (3.3), (3.5). The
natural candidate is:

U a s E U a s a E( ) , e ( ) , · , (8.1)a Ei ( , ) LQG≔ α

withU a s( )LQG the usual action of Autsa on spin networks and a E· as in (7.2). In the case of
compact Σ the phase a E( , )α in (8.1) is given by (7.31). This strategy does not work in the
present case since the integral (7.31) is not guaranteed to be convergent if we replace Ēa by
Ea. Fortunately the divergent term is a total derivative that can be removed without affecting
the composition property of the phases (equation (8.8) below) required for the satisfaction of
U ab U a U b( ) ( ) ( )= . Given a g( , )ϕ= , let

g g˚ lim , (8.2)
r

≔
→∞

be the zeroth order term of g. Thus g 1˚ = for a Autsa∈ and for asymptotic translations,
whereas for asymptotic rotations g̊ is an internal rotation that ensures E̊ is fixed under the
action of a. We define the phase a E( , )α in (8.1) by

a E a E( , ) ( , ), (8.3)∫α ρ≔
Σ

21 Note that any element in Aut (sa)E̊ is connected to identity by paths in Aut E̊ . However it is not clear if any of these

paths lie completely in Aut (sa)E̊ . This is why we explicitly define AutE
sa
˚
. Similar comments apply to the necessity of

defining Autsa .
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with

a E a E gg E gg( , ) Tr · Tr ˚ . (8.4)a
a a

a1 1⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ρ ≔ ∂ − ∂− −

In appendix E.1 we show that the integral (8.3) is finite. We now verify U a( ) is a

representation of AutE
sa
˚
:

U a U a U aa a a( ) ( ) ( ) , Aut . (8.5)E
sa
˚′ = ′ ∀ ′ ∈

The action on a KS spinnet s E,∣ 〉 of the operators on each side of (8.5) is:

U a U a s E U aa s aa E( ) ( ) , e e ( ) , · (8.6)a a E a Ei ( , · ) i ( , ) LQG′ = ′ ′α α′ ′

U aa s E U aa s aa E( ) , e ( ) , · , (8.7)aa Ei ( , ) LQG′ = ′ ′α ′

where we used that U aa U a U a( ) ( ) ( )LQG LQG LQG′ = ′ and a a E aa E· ( · ) ( ) ·′ = ′ . In
appendix E.2 we show that

aa E a a E a E( , ) ( , · ) ( , ), (8.8)α α α′ = ′ + ′

from which (8.5) follows.
It is straightforward to check thatU a( ) preserves the inner product between KS spinnets.

Finally, one can verify thatU a( ) implements the transformations (7.28), (7.29), (7.30) for the
operators (3.2), (3.3), (3.5):

U a h U a g f e h g b e( ) ˆ ( ) ( ( ( ))) ˆ ( ( ( ))) (8.9)e e
† 1

( )ϕ ϕ= ϕ
−

U a F U a F( ) ˆ ( ) ˆ (8.10)
*

S f S g fg,
†

( ), 1= ϕ ϕ −

( )U a U a( ) ˆ ( ) e ˆ , (8.11)E
a E

a E¯
† i , ¯

· ¯β β= α

where a g( , )ϕ= . Again, because of the compact support property of e and S, (8.9) and (8.10)
follow from the same arguments given in the case of compact Σ [9]. Equation (8.11) can be
shown by the same steps given in equation (C5) of [9] thanks to (8.8) and the fact that (8.3)
satisfies (see appendix E.1):

( ) ( )a E E a E a E, ¯ ( , ) , ¯ , (8.12)α α α+ = +

with a E( , ¯)α as in (7.31).

8.2. Group averaging and Autsa invariant Hilbert space Aut

8.2.1. Setup. In this section we denote KS spinnets labels as s E( , )ψ = , and the action of

Aut , AutE
sa sa

˚
on these labels as a · ψ . Let KS be the dense subspace of KS given by the

finite linear span of KS spinnets. Let

{ }
{ }

a U a

a U a

Ph Aut , ( ) ,

Sym Aut : ( ) Ph . (8.13)

sa

sa

ψ ψ

ψ ψ

≔ ∈ ∝

≔ ∈ = ⊂
ψ

ψ ψ
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We start with the candidate for a group averaging map as in [9]:

( )U a( )

0 if Sym Ph

( ) if Sym Ph , (8.14)

c

c[ ]
Aut Sym

†

sa

⎧
⎨⎪

⎩⎪
∑η ψ η ψ=

⊊

=

ψ ψ

ψ ψ ψ
∈ ψ

where the sum is over the set of right cosets of Autsa by Symψ , that is, the set of distinct
Symψ -orbits a Sym Autsa⊂ψ for all a Autsa∈ . ac is a choice of representative on each orbit
c and [ ]η ψ are as yet unspecified positive constants that depend only on the Autsa-orbit [ ]ψ of
ψ, that is a Auta[ · ] [ ] saη η= ∀ ∈ψ ψ . From the same arguments as in [9], (8.14) gives a well
defined antilinear map : KS KS η → ′ ( KS ′ the algebraic dual of KS ), satisfying

U a a( ( ) ) ( ) Aut , (8.15)saη ψ η ψ= ∀ ∈

( ) ( ) ( ), 0 , .

(8.16)

1 2 2 1 1 1 1 2 KS⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦η ψ ψ η ψ ψ η ψ ψ ψ ψ= ⩾ ∀ ∈

The last property allows one to define the inner product ( ) ( ) ( )[ ]1 2 1 2η ψ η ψ η ψ ψ〈 ∣ 〉 ∣ ∣ 〉 〉 ≔ ∣ 〉 ∣ 〉η
that is used in the definition of the Autsa-invariant Hilbert space Aut [1, 9].

There remains to be imposed a third requirement on η that allows to define ‘observables’
in Aut from operators in KS . Let  be the set of operators on KS such that O ∈ satisfies
(i) both O and O† are defined on KS and their action preserves KS ; (ii)
U a O OU a a( ) ( ) Aut= ∀ ∈ . Following [1] we require:

( ) ( )O O O, , .

(8.17)

1 2
†

1 2 1 2 KS ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦η ψ ψ η ψ ψ ψ ψ= ∀ ∈ ∀ ∈

This condition ensures that all such O obey, as operators in Aut , the same adjointness
relations as operators in KS . In particular, if O is unitary as operator in KS , it guarantees O
is unitary as an operator in Aut . As in [9], we shall see that (8.17) determines the coefficients

[ ]η ψ within a ‘superselection sector’ (see below).
It is however not obvious that condition (8.17) will guarantee a unitary action of

asymptotic rotations and translations,U b b( ), AutE
sa
˚∈ , since these operators do not belong to

 for the following reason: whereas  defined above consists of operators that commute
‘strongly’ with the gauge group, asymptotic rotations and translations commute ‘weakly’ with
the gauge group. That is, instead of satisfying (ii) in the definition of , they satisfy: (ii)’:
given a Autsa∈ , OU a U a O( ) ( )= ′ for some a Autsa′ ∈ . Whereas (i) and (ii)’ are sufficient
conditions to be able to define O as an operator on Aut , it is a priori not clear that such
operator will satisfy the correct adjointess properties. In section 8.3 we will verify that
rotations and translation do act unitarily in Aut .

8.2.2. Superselection sectors. By ‘superselection sector’ we will mean a subspace of Aut
such that any two elements in the subspace can be mapped into each other by an operator in 
or by someU b b( ), AutE

sa
˚∈ .22 If ( )η ψ∣ 〉 and ( )η ψ∣ ′〉 lie in the same (different) superselection

sector, we shall say that ψ∣ 〉 and ψ∣ ′〉 lie in the same (different) superselection sector.

22 The inclusion ofU b b( ), AutE
sa
˚∈ in this definition may be redundant. It may be the case that any superselection

sector defined only with respect to  is automatically invariant under the action of U b b( ), AutE
sa
˚∈ .
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Given an asymptotically flat Ea, we define its rank sets as in [9] by

V x E{ : rank ( ) 0}, (8.18)E
0 Σ≔ ∈ =

V x E{ : rank ( ) 1}, (8.19)E
1 Σ≔ ∈ =

V x E{ : rank ( ) 2}. (8.20)E
2 Σ≔ ∈ ⩾

In appendix E.3 we show the rank sets can be decomposed into finite union of semianalytic
submanifolds. Diff -classes of these sets can be used as partial labels for superselection sectors
as follows.

By the same arguments given in [9], it follows that

s E O s E i V V V V, , 0 ( ) ˚ ˚ , (8.21)
E E E E

0 0 2 2′ ′ ≠ ⟹ = =
′ ′

( )( )ii V V n( ) dim 3, 0, 1, 2 (8.22)n
E

n n n
E∩ ∪ < =′
′

′≠

iii s V s V( ) ˜( ) ˚ ˜( ) ˚ , (8.23)
E E

0 0∩ ∩γ γ= ′

where s s˜( ), ˜( )γ γ ′ are the graphs of the spin networks, and dim denotes the dimension of the
sets in (ii) (which are also composed of finite union of semianalytic submanifolds, see
appendix E.3). As in [9], these conditions imply that for any pair of KS spinnets s E,∣ 〉 and
E s,∣ ′ ′〉 lying in a same superselection sector there exists a diffeomorphism ϕ such that (8.21),
(8.22) and (8.23) hold with V( )n

Eϕ ′ in place of Vn
E′ and s( )ϕ ′ in place of s′.

8.2.3. Group averaging in the absence of rank 1 backgrounds. We now focus on a particular
class of superselection sectors, and discuss how the coefficients [ ]η ψ are determined. The type

of states we consider are the analogue of those described in section 7 of [9]: s E,ψ∣ 〉 = ∣ 〉 such
that: (1) V E

1 is of zero measure, (2) the only infinitesimal Autsa-symmetries of Ea are those
associated toV E

0 , (3) s is an SU(2) gauge invariant spin network, (4) Ph Sym=ψ ψ . Conditions
(1) to (4) give a set of consistent restrictions in the sense described in [9].23 Next, we define

{ }a a a e e e sSym Sym Aut : Id, ( ˜) ˜ ˜ ,

(8.24)

s E V
0

( , )
0

sa E
2

≡ ≔ ∈ = = ∀ ∈ψ

where V E
2 is the closure of V E

2 , e s˜ ∈ denotes the edges in s (as one dimensional manifolds)
and a e g e e( ˜) ( , )( ˜) ( ˜)ϕ ϕ≡ ≔ . It is easy to verify that Sym0

ψ is a normal subgroup of Symψ ,
and as in [9] we assume the corresponding quotient group

D Sym Sym (8.25)0≔ψ ψ ψ

is finite, this finiteness being expected from that of the group of allowed edge permutations of
s( )γ and of the discrete symmetries of the background. By the same arguments given in [9],

condition (8.17) is then satisfied if and only if

C D (8.26)[ ]η =ψ ψ

for some constant C 0> . Thus, the ambiguity in the coefficients [ ]η ψ is reduced to one
constant per each superselection sector.

23 Condition (3) should actually be improved upon to allow for gauge variant spin networks, see discussion of
section 9B in [9].
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8.3. Asymptotic rotations and translations on Aut

8.3.1. Unitary action. We now discuss the analogue of condition (8.17) for asymptotic
rotations and translations24:

( ) ( )U b U b b( ) ( ) , , Aut .

(8.27)

E
1 2

†
1 2 1 2 KS sa

˚⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦η ψ ψ η ψ ψ ψ ψ= ∀ ∈ ∀ ∈

We first note that the coefficients [ ]η ψ determined in the last section by equation (8.26) satisfy

b, Aut . (8.28)b
E

[ · ] [ ] sa
˚η η= ∀ ∈ψ ψ

The reason is the same as to why (8.26) is Autsa invariant: There is a one to one
correspondence between elements of Sym Sym0

ψ ψ and elements of Sym Symb b· ·
0 =ψ ψ

b b b bSym Sym1 0 1
ψ ψ

− − given by: s s b s b[ ] Sym Sym Sym [ ]0 0 1= ∈ ⟺ ∈ψ ψ ψ
− Symb·ψ

Symb·
0

ψ , so that D Db·∣ ∣ = ∣ ∣ψ ψ .
We now show that equation (8.28) implies equation (8.27). Consider the following

equivalent form of equation (8.27):

U b U b b( ( ) )( ( ) ) ( )( ) , , Aut , (8.29)E
KS sa

˚η ψ ϕ η ψ ϕ ψ ϕ= ∀ ∈ ∀ ∈

Using (8.14), the left hand side of (8.29) can be written as:

( )U b U b U b a b( ( ) )( ( ) ) . (8.30)b
c

c[ · ]
Aut Sym

† 1

bsa ·

∑η ψ ϕ η ψ ϕ= ψ
∈

−

ψ

Next, we note that b bSym Symb·
1=ψ ψ

− and that there is a one to one correspondence

between Aut Symsa ψ and b bAut ( Sym )sa
1

ψ
− given by

( )b b b bc cAut Sym Aut Sym . (8.31)sa
1 1

sa∈ ⟺ ∈ψ ψ
− −

Further, b a b b bcc
1 1∈− − . Thus, the sum on the right hand side of (8.30) takes the same form

as the sum in the definition of [ ]( )η ψ ϕ∣ 〉 ∣ 〉 . Using (8.28), equation (8.29) follows.

Recall from section 7.3 that SUAut Aut (2)E
sa
˚

sa
3= ⋊ . Let b b, Autt g

E
˚ sa

˚∈⃗ denote

representatives of a translation t 3⃗ ∈ and a rotation g SU˚ (2)∈ . The unitary action of t g, ˚⃗ ⃗
on ) ( ) Autψ η ψ∣ ≔ ∣ 〉 ∈ can then be written as:

( )( )( )( ) ( ) ( )U t U b U g U b) , ˚ ) . (8.32)t g̊ψ η ψ ψ η ψ⃗ ≔ ≔⃗

8.3.2. FS ‘spin 1/2 from gravity’ states. In [14], FS provide a general argument for the
appearance of half-integer spin states in a quantum theory of the gravitational field. The
argument may be summarized as follows. Consider a theory of quantum gravity with states
given by wavefunctions of the 3-metric on the spatial slice. The diffeomorphism constraint
implies the physical wavefunctions are invariant under the action of diffeomorphisms that are
trivial at infinity and connected to identity. Let us denote by ‘gauge’ such diffeomorphisms.
Let FSϕ be a diffeomorphism that interpolates between a 2π rotation at infinity with identity in
the interior (for instance take FS ( ,2 )3

ϕ ϕ≔ τ π as in equation (7.21)). Doubly connectedness of

24 If (8.27) holds for some b, it automatically holds for b ba′ = and b ab″ = , a Autsa∀ ∈ , so that the set of

independent conditions in (8.27) are parametrized by Aut AutE
sa
˚

sa . Similarly, one has that U b( ), U ab( ) and U ba( ),
define the same operator on a AutAut sa ∀ ∈ .
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SO(3) implies that FS FSϕ ϕ◦ is guage (an argument for this follows from the discussion
leading to equation (7.24)). Thus on the physical space:

ˆ ˆ Id. (8.33)FS FSϕ ϕ =

We now ask if FSϕ is gauge, i.e. if it can be continuosly deformed to identity in such a way
that it stays trivial at infinity. It turns out that the answer depends on the topology of the
manifold Σ. The characterization of all possible topologies for which FSϕ is not gauge is
available in the mathematics literature and described in [14]. Manifolds Σ with such
topologies are termed ‘spinorial’. For spinorial manifolds, there are states ψ such that

ˆ . (8.34)FSψ ϕ ψ ψ′ ≔ ≠

It then follows that the state ψ ψ′ − exhibits half-integer spin behaviour under the asymptotic
2π rotation:

( ) ( )ˆ . (8.35)FSϕ ψ ψ ψ ψ′ − = − ′ −

The adaptation of these ideas to our model are straightforward. We only need to keep
track of additional SU(2) rotations25. In our language, half-integer spin states can arise if

SU1 (2) Aut AutE
sa
˚

sa− ∈ ⊂ acts non-trivially in Aut . Let

( )b 1, , (8.36)1 FSϕ≔ −−

be a representative of the type given in section 7.3. If Σ is not spinorial, we can deform b 1−
through Aut by deforming the diffeomorphisms while keeping the 1− factor fixed. In this way
one then obtains a new representative b 1( , Id)1′ ≔ −− . It is easy to see that
U b s E s E( ) , ,1′ ∣ 〉 = ∣ 〉− for all KS spinnets. This implies U 1( ) Id− = on Aut so that no
half-integer spin states arise.

For spinorial Σ the argument above does not apply and half-integer spin states may be
constructed as in the above FS argument, for instance by considering states of the form

E E( )*
¯ ¯

FSϕ∣ 〉 − ∣ 〉. Note that in this case 1( , Id) AutE
sa
˚− ∉ as there is no path in AutE

sa
˚

connecting this element to identity. In particular 1( , Id)− is not a representative of

SU1 (2) Aut AutE
sa
˚

sa− ∈ ⊂ as it was in the non-spinorial manifold case.

8.3.3. Comments on eigenstates of linear and angular momentum. We conclude the section
with some comments regarding the possibility of finding states with definite linear or angular
momentum. A first example is given by the case where 3Σ = and E: 0, ˚

0ψ∣ 〉 = ∣ 〉 where 0

denotes the trivial spin network and E̊
a
the flat triad on 3 . The corresponding Aut-invariant

state ( )0η ψ∣ 〉 is left invariant under U g U t g SU t( ˚), ( ), ˚ (2), 3⃗ ∀ ∈ ⃗ ∈ and hence ( )0η ψ∣ 〉 is

a state with zero linear and angular momenta. A similar state with E̊
a
replaced by a

spherically symmetric triad (but not translation invariant) yields a state with zero angular
moment and indefinite linear momentum. We have not succeeded in finding examples of
normalizable states in Aut with definite nonzero momenta. On the other hand, while we do
not do so here, distributional states with definite linear/angular momenta can be constructed
by group averaging over the appropriately weighted action of asymptotic translations/
rotations on suitable states in Aut .

25 Another difference which does not alter the argument is the presence of odd supertranslations which are non-
trivial at infinity but still ‘gauge’.
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9. Conclusions

9.1. Summary of results

In this work we developed a quantum kinematics for asymptotically flat gravity that suitably
addresses the classical asymptotic conditions on the triad and connection variables of the
theory. The quantum kinematics supports a unitary representation of the gauge group Autsa

(suitably restricted by the requirement of semianalyticity and connectedness to identity) of
internal rotations which asymptote to identity and spatial diffeomorphisms which asymptote
to odd supertranslations. The kinematics also supports a unitary representation of the larger
group AutE

sa
˚
of asymptotic symmetries (also subject to semianalyticity and connectedness to

identity restrictions) which, modulo gauge, asymptote to non-trivial rotations and translations
at spatial infinity. Similar to the case of compact space LQG, solutions to the Gauss Law and
spatial diffeomorphism constraints are identified with states which are invariant under the
action of Autsa. We constructed a large sector of the Hilbert space of such gauge invariant
states using group averaging methods. As in the case of compact space LQG, this sector is
superselected with respect to the action of a certain set of gauge invariant observables26. We
showed that the group of asymptotic rotations and translations (obtained as the quotient of the
symmetry group AutE

sa
˚
by the gauge group Autsa) is implemented unitarily on this sector.

Finally, following FS [14] we showed that for Σ with appropriate topology, the gauge
invariant Hilbert space contains states that change by a sign under a 2π rotation.

9.2. Remarks and caveats of a technical nature

While, in sections 3–6, we used asymptotic boundary conditions corresponding to finite
differentiability versions of the so called ‘parity’ conditions [17–19], our considerations in
these sections are expected to go through for any choice of asymptotic conditions which
implement asymptotic flatness in such a way that the phase space is realized as a cotangent
bundle over the configuration space of connections. The subsequent developments in
sections 7 and 8 do, however, depend on the detailed choice of these parity conditions. More
in detail, the demonstration of the finiteness of the phase factors (7.31) and (8.3) as well as the
composition property (8.8) depend crucially on the parity conditions and would have to be
checked explicitly for any other choice of asymptotic behaviour.

Regarding the restriction to semianalytic fields: the KS background electric field labels
have the double condition of satisfying (2.1) and being semianalytic. In appendix A we show
there exist a rich family of functions satisfying both the required fall-offs and semianaliticity
conditions. Similarly, the group elements of Autsa and AutE

sa
˚
are required to be semianalytic in

addition to possess the fall-offs described in sections 7.1 and 7.2. Explicit examples of such
(connected to identity) elements with nontrivial asymptotic translations and rotations appear
in section 7.3. It is possible to construct by the same methods examples of Autsa elements
with non-trivial asymptotic supertranslations.

Our final remark is concerned with a technicality in our treatment of group averaging in
section 8.2.3: similar to [9] we assumed finiteness of the group Dψ defined in equation (8.25).

9.3. The role of semianalytic structures

Let us first discuss the role of semianalytic structures in compact space LQG. One may
attempt to view compact space LQG (on a Ck Cauchy slice admitting a semianalytic

26 We do not expect that these ‘kinematical’ superselection sectors will be preserved by the Hamiltonian constraint.
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structure) as a quantization of a Hamiltonian formulation of gravity withCk 1− triads andCk 2−

connections defined on this slice.
In this view, the classical holonomy-flux algebra may be obtained by smearing electric

fields along semianalytic Ck surfaces S and semianalytic Ck 1− functions f thereon; and by
smearing the connections along semianalytic Ck edges. This algebra is invariant under
semianalytic Ck 1− SU(2) rotations and semianalytic Ck diffeomorphisms. Therefore the
kinematical gauge group of LQG is taken to be the semidirect product of semianalytic SU(2)
rotations with semianalytic diffeomorphisms. In the process, we see that the generic finite
differentiability gauge transformations of the classical theory have been restricted to be
semianalytic. Nevertheless, since the quantum theory is so elegantly formulated for the
semianalytic category and since the quantum excitations which are invariant under both the
kinematical gauge transformations as well as the (putative) action of the Hamiltonian con-
straint are expected to be very different from the kinematic ones, it is a good strategy to
explore where this relatively mild restriction leads us to. Indeed, our view is that (i) this
strategy is likely to be too conservative to construct the final quantum theory but (ii) that
nevertheless pursuing this strategy will provide enough information to motivate more radical
but educated departures therefrom so as to construct fundamental quantum spacetime struc-
tures. Indeed, in the final picture one would perhaps expect that the spacetime manifold only
emerges at scales much larger than the Planck scale. Similar remarks apply to the KS
representation for compact spaces. Therefore our view is that one should not worry too much
about the exact class of differential structures one uses in quantum theory relative to classical
theory.

At this point it is necessary to make the following caveat regarding classical Hamiltonian
theory in the Ck setting. The infinitesimal transformations generated by the diffeomorphism
and Hamiltonian constraints involve single spatial derivatives of the fields so that the infi-
nitesimal variations of the fields suffer a drop of degree of differentiability. Consequently,
these transformations do not leave the phase space of finite differentiability fields invariant.
While it may well be the case that the consideration of finite transformations remedies this
defect for flows corresponding to a combination of arbitrary shifts and non-vanishing lap-
ses27, we are not aware of a demonstration of this property. However, with our view on
classical structures emerging from quantum ones at large distance scales, we are not unduly
concerned if such a property holds; it is enough for us that the quantum theory is based on
structures which are similar but not necessarily identical to the classical case. Since the
problems discussed in this paragraph disappear for C∞ fields, in our view, it is an acceptable
strategy to (a) restrict the C∞ category to the semianalytic one so as to construct an algebra
which admits an elegant quantization for which a large class of diffeomorphisms (namely the
semianalytic ones) act unitarily, (b) to define kinematically gauge invariant states as those
invariant under suitable semianalytic transformations and (c) to then attempt to impose the
Hamiltonian constraint on this space.

Relative to the compact case, in the asymptotically flat case we need to specify not only
the differential structure of the fields considered but also their asymptotic behaviour. Once
again for the reasons discussed above, the simplest consistent Hamiltonian formulations are
defined in the C∞ setting. The fall offs we would like to use are those provided by the parity
conditions of [17, 19]. As indicated in section 2.2 the subleading terms in these fall offs are
only defineable in the C∞ setting. Nevertheless, guided by the role of semianalytic structures

27 If the lapse vanishes, standard results [29] indicate that the diffeomorphism constraint smeared with a Ck 1− shift
generates Ck 1− diffeomorphisms. Such diffeomorphisms in general map a Ck 1− tensor field to a Ck 2− one, so that
phase space is not preserved.
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in quantum theory in the compact space setting, we would like to base our considerations on
the Ck semianalytic differential structure while still making contact with the parity conditions
in some way. For the phase space variables, this leads to the conditions (2.1), (2.2) which are
closely related to the parity conditions in that while the leading order terms look identical to
those for the C∞ case, the fall offs of the subleading terms are restricted by their finite
differentiability. Similarly, the asymptotic behaviour of the gauge and symmetry transfor-
mations (as described in sections 7.1 and 7.2) is closely related to their C∞ counterparts in
appendix D.

9.4. Future work

Our considerations are based on the KS representation which is a generalization of standard
compact space LQG [6, 7, 9, 12, 13] to account for non-trivial ‘background’ spatial geo-
metries, the LQG representation being associated with a ‘zero background spatial geometry’
state corresponding to a vanishing (and hence, degenerate) triad field. Two distinct research
directions suggest themselves depending on whether one views the KS representation as
fundamental or whether one views the KS representation as an effective description of fun-
damental LQG excitations. If one views the KS representation as fundamental, the next step
would be to develop an understanding of the Hamiltonian constraint operator in this repre-
sentation. If one views the LQG representation as fundamental then it would be of great
interest to use the KS kinematics developed here as a template for the development of
asymptotically flat LQG, building on the earlier work of [10, 11].

Irrespective of which line of thought one pursues, key physical issues can only be
addressed once one has an adequate understanding of the Hamiltonian constraint (in the LQG
context see [31–36]; in the KS context see [37, 38]). In our view, the two most important and
crucial issues are the existence of (A) a quantum positive energy theorem28 and (B) a unitary
representation of asymptotic Poincare transformations (including time translations and boosts,
both of which require an understanding of the Hamiltonian constraint operator). Indeed, any
understanding of these issues, even without a full understanding of the Hamiltonian constraint
itself, would be very exciting and would go a long way in showing the physical viability of
the theory.
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Appendix A. Semianalyticity of functions on χ 0 U0ð Þ from that of functions on S2.

U( )0 0χ can be given an analytic structure compatible with the preferred Cartesian chart xα. In
(1)–(3a) below we shall treat U( )0 0χ as an analytic manifold with this analytic structure.

(1) Let S2 denote the topological 2 sphere. We endow S2 with an analytic atlas and denote the
resulting analytic manifold by Sw

2 so that S2 and Sw
2 are identical as point sets and

topologies. Let u v( , )N S, be the (analytic) stereographic coordinate charts associated with

28 See [30] for first steps, albeit in the context of self dual rather than real connection variables.
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S N S S,2 2 − where N S, are the North and South Poles of S2. Define the natural analytic
map g U S: ( ) w0 0

2χ → in the charts xα and u v( , )N S, as:

u v
x

x

x

x
u v

x

x

x

x
( , )

1
,

1
, ( , )

1
,

1
. (A.1)N S

1

3

2

3

1

3

2

3

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟=

− −
=

+
−

+

This implies that given any analytic chart xA on Sw
2, we have that:

(i) g x x x( ) ( )A A≡α α are analytic functions of xα.
(ii) ( )r x x x x x( ) , ( )A=α α

α
α are analytic coordinates on U( )0 0χ .

(2) Consider a maximal Cn semianalytic atlas on S2 which contains the analytic charts of (1).
This atlas endows S2 with the structure of a Cn semianalytic manifold. We refer to it as
Sn

2 so that as point sets and topologies S S Sw n
2 2 2= = . It is easy to check that the function

g is a semianalytic function from U( )0 0χ to Sn
2.

(3) (a) Let f S: n
2 → be a Cn semianalytic function. Define h f g U: ( )0 0 χ= ◦ → . It is

easy to check that h is a semianalytic function using the fact that f and g are semianalytic
functions. (This can be checked by using semianalytic charts on Sn

2, analytic ones on
U( )0 0χ and then applying proposition A.4 and definition A.11 of [22]). In terms of the

preferred Cartesian chart on U( )0 0χ and any analytic chart xA on Sw
2 (which, by (2) is also

a semianalytic chart on Sn
2), we may write h f x x( ( ))A≡ α . Using the expression of

Cartesian derivatives in terms of spherical ones in (4) below, it follows that h is Cn.
Hence h is a semianalytic function from U( )0 0χ as an analytic manifold to Sn

2.
(3) (b) Let us restore the semianalytic Ck structure which U( )0 0χ inherits from Σ. It

immediately follows from (3a) that for n k⩽ , h is Cn semianalytic function from
U( )0 0χ Σ⊂ to Sn

2 and that for n k> , h is a Ck semianalyic function from U( )0 0χ Σ⊂ .
(4) Start with:

x
q x˚ ( ). (A.2)

a
ab

b⎜ ⎟⎛
⎝

⎞
⎠

∂
∂

= ∂α α

In spherical r x( , )A coordinates the flat metric q̊ab takes the form:

s r r q x xd d d d , (A.3)AB
A B2 2 2= +

where qAB is the unit sphere metric. Then in spherical coordinates (A.2) becomes:

x
x r q x( ) ( ) . (A.4)r r

AB
B A

2∂
∂

= ∂ ∂ + ∂ ∂α α α
−

( )x r q xˆ ˆ . (A.5)r
AB

B A
1= ∂ + ∂ ∂α α

−

Appendix B. Electric field boundary conditions in terms of fluxes

In this appendix we present the first steps in coding the classical boundary conditions (2.1) in
terms of limiting behaviour of fluxes associated with families of surfaces obtained by
translations ‘towards infinity’ of a suitably chosen surface. The surfaces considered are all in
the asymptotic region KΣ⧹ and in the rest of this section we shall work in the preferred
Cartesian chart x x x x( , , )1 2 3 ≡ ⃗ in this region. Unit vectors are normalized with respect to the
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coordinate metric. We denote the unit vector along the Ith direction (I 1, 2, 3= ) by Î and the

unit vector along x ⃗ by x̂ so that x
x

x
ˆ = ⃗

∣ ⃗ ∣
with x x x x1

2
2
2

3
2∣ ⃗ ∣ = + + .

For each I 1, 2, 3= , let S x I( , )0⃗ be the planar disc of radius r0 centred at x0⃗ with unit
normal Î , with x r,0 0∣ ⃗ ∣ chosen so that the disc is contained entirely in KΣ⧹ . Thus we have that

{ }( )S x I x x x r r r r I, : , , · ˆ 0 . (B.1)0 0 0⃗ = ⃗ ⃗ = ⃗ + ⃗ ⃗ ⩽ ⃗ =

Let S x I( , )R 0⃗
+ be the rigid translation of S x I( , )0⃗ by the vector R Rx Rˆ , 00⃗ = > . Let S x I( , )R 0⃗

−

be the rigid translation of S x I( , )0⃗ by the vector x R2 0− ⃗ − ⃗ so that S x I( , )R 0⃗
− is obtained by

reflecting S x I( , )R 0⃗
+ through the origin while assigning its orientation such that its unit normal

is also Î . Let f x x S x I( ), ( , )I
i

0⃗ ⃗ ∈ ⃗ be the su(2) valued smearing function associated with
S x I( , )0⃗ . Define the smearing functions f I

i
,± associated with S x I( , )R 0⃗

± by appropriate

translations of fI
i:

( )( )f x f x R , (B.2)I
i

I
i

, ⃗ = ⃗ − ⃗
+

( )( )f x f x x R2 . (B.3)I
i

I
i

, 0⃗ = ⃗ + ⃗ + ⃗
−

Then it is easy to check that the fall-off conditions (2.1) on the triad field induce the
following limiting behaviour on the fluxes on the above families of probes for each
I 1, 2, 3= :

( )F d S f xlim , (B.4)( ) ( )R
S x I f

S x I
I I

i I
, ,

,

2
R I0 ,

0
∫= ⃗

→∞
⃗

⃗
=±

±

( ) ( ) ( )R F d S f x h x d S f xlim ˆ , (B.5)( ) ( ) ( )R
S x I f

S x I
I I

i I
i
I

S x I
I I

i
, ,

,

2
ˆ 0

,

2
R I0 ,

0 0

⎛
⎝⎜

⎞
⎠⎟∫ ∫− ⃗ = ⃗

→∞
⃗

⃗
=

⃗
±

±

( ) ( ) ( )R F d S f x R h x d S f xlim ˆ 0, (B.6)( ) ( ) ( )R
S x I f

S x I
I I

i I
i
I

S x I
I I

i1
, ,

,

2
ˆ

1
0

,

2
R I

i
0 ,

0 0

⎛
⎝⎜

⎞
⎠⎟∫ ∫− ⃗ − ⃗ =ϵ

→∞
+

⃗
⃗

= −
⃗

±
±

for some 0ϵ > . Here d S x x I J Kd d ,I J K
2 ≔ ≠ ≠ and h x( ˆ )i

I
0 is the evaluation of the (even)

function hi
I which parameterizes the next to leading order part of the triad (see equation (2.1))

at the point x̂0 on the unit 2-sphere. We have used the summation convention over repeated
occurrences of the su(2) index i but not over the Cartesian coordinate index I.

It is easy to verify that the existence of su(2) valued functions hI on the unit 2-sphere for
which equations (B.4), (B.5), (B.6) are satisfied for all choices of f x, ˆI

i
0 imply an asymptotic

expansion of Ea of the form:

( )
E E

h x

r
g˚ ˆ

, (B.7)i i
i

i= + +α α
α

α

with r glim 0r i
1 =ϵ α

→∞
+ . This is however not the full set of conditions on Ea. For example,

there is no control over the fall-offs of gi∂β
α. This requires further specifications, involving

pair of surfaces approaching to each other at appropriate rates. Whereas we do not envisage
obstacles in doing so, we leave for future work the determination of a full set of conditions on
fluxes capturing (2.1).

We conclude by showing that conditions (B.4), (B.5), (B.6) hold in the quantum theory
defined by the KS representation in the following sense. Consider any KS spinnet s E,∣ 〉.
From section 3.1, each such background triad state label Ei

a satisfies the asymptotic condi-
tions (2.1) for some appropriate h x( ˆ)i

a . Since the spinnet graphs are confined to some
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compact region, it follows that for large enough R the surfaces S x I( , )R 0⃗
± do not intersect the

graph underlying the spinnet label s. It follows that the standard LQG contributions to the
action of flux operators associated with these surfaces vanish for sufficiently large R. This
implies that

F s E s Eˆ , , , (B.8)( ) ( )S x I f E S x I f, , , , ,R I R I0 , 0 ,
λ=⃗ ⃗±

±
±

±

( ) ( )d S f x E x , (B.9)( ) ( )
E S x I f

S x I
a I

i
i
a

, , ,
,

2
,R I

R
0 ,

0
∫λ = ⃗ ⃗⃗

⃗ ±
±

± ±

so that, for sufficiently large R the KS spinnet s E,∣ 〉 is an eigenvector of the operators
F̂S x I f( , ),R I0 ,⃗±

±
. It is then easy to check that if we replace the classical fluxes in the conditions

(B.4), (B.5) by their quantum eigenvalues (B.9), these conditions hold.

Appendix C. Supplementary material for section VII

C.1. Preservation of  and E̊ by AutE̊

Let ϕ and g be a Ck diffeomorphism and Ck 1− SU(2) rotation as in section 7.2,

( )( )x R x t s x O r( ) ˆ , (C.1)ϕ = + + +α
β
α β α α ϵ−

( )( )
g x g

x

r
O r( ) ˚

ˆ
, (C.2)1

λ
= + + ϵ− −

where sα is a Ck 1+ odd function on the sphere and λ a Ck even function on the sphere. In this
section we show that for any asymptotically flat electric field Ea

E̊∈ as in (2.1) and any
connection Aa ∈ as in (2.2) one has:

( )E x R E r O r* ( ) ˚ (even) , (C.3)1ϕ = + +α
β
α β ϵ− −

( )A x r O r* ( ) (odd) , (C.4)2 2ϕ = +α
ϵ− −

( )g x E x g x gE g r O r( ) ( ) ( ) ˚ ˚ ˚ (even) , (C.5)1 1 1= + +α α ϵ− − − −

( )( )g x A x g x g x g x r O r( ) ( ) ( ) ( ) ( ) (odd) , (C.6)1 1 2 2− ∂ = +α α
ϵ− − − −

where ‘(even)’ denote Ck even functions on the sphere and ‘(odd)’ denoteCk 1− odd functions
on the sphere (from here onwards, all appearances of ‘(even)’ and ‘(odd)’ will refer to
functions with these degrees of differentiability). Our main tool will be given by general
properties of remainders described in appendix C.5.

We first note that from appendix C.3 1ϕ− has the asymptotic expansion:

( ) ( )( )x R x t s x O r( ) ˆ , (C.7)1 1ϕ = + ′ + ′ +α
β

α β α α ϵ− − −

with t R t( )1′ = −α
β
α β− and s x R s R x( ) ( ) ( ( ))1 1′ = −α

β
α β− − . Next we note that:

( )x R r O r( ) (even) , (C.8)1ϕ∂ = + +β
α

β
α ϵ− −

( ) ( )x R r O r( ) (even) . (C.9)1 1 1ϕ∂ = + +β
α

β

α ϵ− − − −
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The Cartesian coordinate expression of (C.3) consists of a product of three terms:

( ) ( ) ( )E x x x E x* ( ) det ( ) ( ) ( ) . (C.10)1 1 1⎡⎣ ⎤⎦⎡⎣ ⎤⎦⎡⎣ ⎤⎦ϕ ϕ ϕ ϕ ϕ= ∂ ∂α
β

α β− − −

From (C.9) and (C.68) one finds: x r O rdet( ( )) 1 (even) ( )1 1ϕ∂ = + + ϵ− − − . From (C.8),
(C.7) and equation (C.87) one has: x R r O r( ( )) ( ) (even) ( )1 1 1ϕ ϕ∂ = + +β

α
β
α ϵ− − − − . Finally,

from (2.1) and (C.87) one finds: E x E r O r( ( )) ˚ (even) ( )1 1ϕ = + +β β ϵ− − − . Multiplying these
three expansions one obtains (C.3).

The Cartesian coordinate expression of (C.4) consists of a product of two terms:

(A x x A x* ( ) ( ) ( ) . (C.11)1 1⎡⎣ ⎤⎦⎡⎣ ⎤⎦ϕ ϕ ϕ= ∂α α
β

β
− −

The first term is given by (C.9). The second term is A x r O r( ( )) (odd) ( )1 2 2ϕ = +β
ϵ− − − − by

use of equation (C.88). Multiplying the two terms and using equation (C.69) one
recovers (C.4).

Next, taking the complex conjugate and transpose of (C.2) one gets:

( )g x g r O r( ) ˚ (even) . (C.12)1 1 1= + + ϵ− − − −

equation (C.5) follows straightforwardly by multiplying the expansions of g (C.2), Ea (2.1) ,
and g 1− (C.12) and use of equation (C.69). Similarly the linear in Aa term in (C.6) directly
follows by use of equation (C.69). The inhomogeneous term in (C.6) follows by multiplying

g x r O r( ) (odd) ( )2 2∂ = +α
ϵ− − with (C.12) and using equation (C.69).

C.2. Characterization of AutE̊ as symmetry group of E̊

In this section we refer to AutE̊ as the set of pairs g( , )ϕ′ ′ leaving the space of asymptotically
flat electric fields E̊ invariant:

{ }( )g g E g EAut , : , . (C.13)E a
E

a
E

˚

*
1 ˚ ˚ ϕ ϕ≔ ′ ′ ′ ′ ′ ∈ ∀ ∈−

Here g′ are Ck 1− SU(2) rotations and ϕ′ Ck diffeomorphisms of Σ. The purpose of the section
is to show that the (component connected to identity of the) set (C.13) coincides with what is
referred to as AutE̊ in section 7.2. Let 1ϕ ϕ≔ ′− and g g

*
1 1ϕ≔ ′ ′− − so that

g g 1( , )( , ) ( , Id)ϕ ϕ′ ′ = and condition (C.13) takes the form g E g( )*( )a
E

1 1 ˚ϕ ∈− − . For the
particular case of an electric field Ea that exactly coincides with the flat E̊

a
in the asymptotic

region (for sufficiently large r), condition (C.13) reads29:

( )( ) ( )E g E g x E r O r
*

˚ ( ) ˚ (even) . (C.14)1 1 1ϕ′ ≔ = + +α α α ϵ− − − −

It will be convenient to work with undensitized quantities. Taking the determinant of E′α on
both sides of (C.14) and using equation (C.68) one finds E r O rdet( ) 1 (even) ( )1′ = + + ϵ− − .
From equation (C.71) any power of the determinant obeys similar fall-offs. Since

E Edet( ) det( ˚)
*

1ϕ′ = − (for large enough r) one can then obtain an ‘undensitized’ version of
(C.14):

( ) ( ) ( )e g e g x e r O r
*

˚ ( ) ˚ (even) , (C.15)1 1 1ϕ′ = = + +α α α ϵ− − − −

29 Such an electric field can be obtained by interpolating E̊
a
for r r2> with a zero electric field for r r r1 2< <

through a function f r( ) of the type given in equation (A7) of [13] by E x f r E( ) ( ) ˚a a= .
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where e E Edet ( )1 2′ ≔ ′ ′α α− and e̊α is the flat undensitized triad associated to E̊
α
. Setting

q e ei i′ ≔ ′ ′αβ α β one finds q q r O r˚ (even) ( )1′ = + +αβ αβ ϵ− − where q̊αβ is the contravariant flat
metric in the asymptotic region. Writing q ′αβ in terms of q′αβ by the standard inverse matrix
formula and using (C.68), (C.70) one finds:

( )q x q r O r( ) ˚ (even) , (C.16)1′ = + +αβ αβ
ϵ− −

where q̊ δ=αβ αβ is the flat metric in the asymptotic region. We then conclude ϕ satisfies:

( )q x q r O r C x˚ ( ) ˚ (even) ( ). (C.17)
*

1 1ϕ = + + ≕αβ αβ
ϵ

αβ
− − −

We now use (C.17) to determine the asymptotic form of ϕ. In what follows we use q̊αβ to rise
and lower indices. Let

D x x( ) ( ), (C.18)ϕ≔ ∂α
β

α
β

so that from the definition of push-forward in (C.17) we have:

C x D x D x( ) ( ) ( ). (C.19)=αβ α
μ

βμ

equation (C.17) and its first derivative then read:

( )C x r O r( ) (even) , (C.20)k
1

1
1δ= + +αβ αβ

ϵ−
−

− −

( )C x r O r( ) (odd) (C.21)k
2

2
2∂ = +γ αβ

ϵ−
−

− −

(subscripts in remainders denote number of derivatives with known fall-offs, see
appendix C.5). For later purposes, we note that the r (odd)2− term in (C.21) is of Cartesian
degree of differentiability k 1− (this follows as direct consequence of the r (even)1− term in
(C.14) being of Cartesian degree of differentiability k). From the ‘integrability condition’

ϕ ϕ∂ ∂ = ∂ ∂γ β
α

β γ
α:

D x D x( ) ( ), (C.22)∂ = ∂γ αβ α γβ

one can verify the identity:

( ) ( )D D C C C
1

2
, (C.23)1∂ = ∂ + ∂ − ∂γ αβ

β

μ
α γμ γ αμ μ αγ

−

where D 1− is the inverse matrix of D. Contracting indices in (C.20) we find
D x D x O r( ) ( ) 3 ( )0

1= +αβ
αβ

− which implies Dα
β is bounded. Equations similar to (C.19)

(C.20) hold for an analysis of the push forward of the contravariant metric with D replaced
by D 1− . As a result, we have that D 1

α
β− is also bounded. This, together with equations (C.23)

and (C.21) imply:

( )D x O r( ) . (C.24)0
2∂ =γ α

β −

Let r, ,θ ϕ denote polar coordinates. Integration of (C.24) along the radial direction implies
that D r Dlim ( , , ) ( , )r θ ϕ θ ϕ≕→∞ . Angular integration of (C.24) at fixed r followed by
taking the r → ∞ then implies that D asymptotes to a constant matrix:

R D xlim ( ). (C.25)
r

≔α
β

α
β

→∞
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From (C.20) and (C.19) this matrix is orthogonal. Furthermore, since ϕ is connected to
identity, it has to be a rotation30. It will be convenient to factor out this rotation and write ϕ
and D as:

( )x R x y x D x R D x( ) ( ) , ( ) ¯ ( ), (C.26)ϕ = + =α
β
α β β

α
β

γ
β

α
γ

where

D x Y x Y x y x¯ ( ) ( ), ( ) ( ), (C.27)δ= + = ∂α
β

α
β

α
β

α
β

α
β

with

( )Y x Y x O rlim ( ) 0, ( ) . (C.28)
r

0
2= ∂ =α

β
γ α

β
→∞

−

The overall rotation does not affect relations (C.19) and (C.21) and one has:

C D D¯ ¯ , (C.29)=αβ α
μ

βμ

( ) ( )Y D D C C C¯ 1

2
¯ . (C.30)1∂ ≡ ∂ = ∂ + ∂ − ∂γ αβ γ αβ

β

μ
α γμ γ αμ μ αγ

−

We now determine the form of y x( )α . Contracting the second equation in (C.28) with x̂γ

and using x̂r∂ = ∂γ
γ one finds Y O r( )r 0

2∂ =α
β − . Integrating with respect to r and using the

first equation in (C.28) we find:

( )Y x O r( ) . (C.31)0
1=α

β −

From the first equation in (C.27) and (C.31) it is easy to verify that:

( ) ( )D x O r¯ ( ) . (C.32)1
0

1δ= +
α

β
α
β− −

Using (C.32) and (C.21) in (C.30) one finds:

( )Y x r O r( ) (odd) . (C.33)2
0

2∂ = +γ β
α ϵ− − −

Contracting (C.33) with x̂γ one obtains Y r O r( ) (even) ( )r
2

0
2∂ = +β

α ϵ− − − so that

( )( )Y x r f x O r( ) ˆ , (C.34)1
1

1= +β
α

β
α ϵ− − −

where fβ
α is even. That the remainder in (C.34) is O1 rather than O0 can be seen by applying

∂γ to (C.34) and comparing the result with (C.33). Contracting (C.34) with x̂ β we obtain an
equation for yr∂ α which upon integration over r gives:

( )( ) ( )y x rf x y x O r( ) ln ˆ ˚ ˆ , (C.35)2= + +α α α ϵ−

where

( ) ( )f x x f xˆ ˆ ˆ (odd), (C.36)≔ =α β
β
α

y x˚ ( ˆ)α an integration ‘constant’ and the fact that the remainder is O2 follows from the same
logic as in (C.34). In order to further determine the form of the terms in (C.35), we apply ∂β to

(C.35) and compare the result with (C.34). In spherical coordinates r x( , )A we have:

30 Even if we drop the connected to identity condition on ϕ, the preservation of the triad at infinity in (C.14) implies
ϕ is orientation preserving so that D can only asymptote to a rotation.
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r D x D xˆ ˆ , (C.37)A
A r

1∂ = + ∂β β β
−

where sphere indices A B, , … are raised with the unit sphere metric and DA is the derivative
on the unit sphere (see equation (A.5)). Acting on (C.35) with (C.37) we get:

( )( ) ( ) ( )y x r rD x D f x r x f x r D x D y x O r( ) ln ˆ ˆ ˆ ˆ ˆ ˚ ˆ .

(C.38)

A
A

A
A

1 1 1
1

1∂ = + + +β
α

β
α

β
α

β
α ϵ− − − − −

In order for (C.38) to be compatible with (C.34) it must be the case that D x D f xˆ ( ˆ) 0A
A =β

α

which is only satisfied if f x c( ˆ) = =α α constant. From the parity condition (C.36) this
constant must be zero and we conclude that f 0=α .31 Finally, for the third term in (C.38) to
be compatible with (C.34) we must have:

( ) ( )y x t s x˚ ˆ ˆ , (C.39)= +α α α

with tα constant and sα of odd parity. Note that from equation (C.33) we have that s∂ ∂γ β
α is of

Cartesian degree of differentiability k 1− (this differentiability coming from that in the
leading order term of (C.21)). Thus s x( )α is of Cartesian degree of differentiability k 1+ as a
function on U0. This in turn implies s x( ˆ)α is Ck 1+ as a function on the sphere.

To summarize, we have thus far shown that ϕ has the asymptotic form:

( )( )x R x t s x y x( ) ˆ ( ) , (C.40)1ϕ = + + +α
β
α β β β β

with y x O r( ) ( )1 2=α ϵ− and s x( ˆ)α a Ck 1+ odd function on the sphere. We finally show that
y O r( )k1 =α ϵ− .

If one computes q x C x˚ ( ) ( )
*

1ϕ ≡αβ αβ
− from (C.19) and (C.40) one gets:

( )C x x O r( ) 2 ( ) . (C.41)s( 1
1

)δ= + ∂ +αβ αβ α
ϵ− −

β

Comparing (C.41) with (C.20) we conclude that the r (even)1− part of Cαβ in (C.20) is given
by s2 ( )∂ α β . Equation (C.21) can then be written as:

( )C x s x O r( ) 2 ( ) . (C.42)k( ) 2
2∂ = ∂ ∂ +γ αβ γ α β

ϵ
−

− −

We now show y x O r( ) ( )k1 =α ϵ− by induction. Assume we know

( )y x O r( ) , (C.43)p1 1=α ϵ
−

−

where p k3 ⩽ ⩽ . We then have:

( )D x s x O r¯ ( ) ( ) , (C.44)p 2
1δ= + ∂ +α

β
α
β

α
β ϵ

−
− −

which in turn implies:

( ) ( )D x s x O r¯ ( ) ( ) , (C.45)p
1

2
1δ= − ∂ +

α

β
α
β

α
β ϵ−

−
− −

as can be verified from the inverse matrix formula and equations (C.68), (C.70). Using (C.45)
and (C.42) in (C.30) one obtains:

( )Y x s x O r( ) ( ) . (C.46)p 2
2∂ = ∂ ∂ +γ αβ γ α β

ϵ
−

− −

31 In the absence of parity conditions the resulting diffeomorphisms x x rcln↦ +α α α are a spatial version of the
so-called ‘logarithmic translations’ [40].
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The supertranslation terms on both sides simplify and we get:

( )y x O r( ) . (C.47)p1 2
2∂ ∂ =γ β

α ϵ
−

− −

Integrating with respect to r in similar way as done earlier for equation (C.33) one finds
y x O r( ) ( )p1 =α ϵ− as desired.

Now, recall that the diffeomorphism featuring in the definition (C.13) is 1ϕ ϕ′ ≡ − . From
appendix C.3 one finds ϕ′ has the same type of expansion, with leading rotation R( )1

β
α− . This

concludes the specification of ϕ′ in (C.13).
We now discuss the SU(2) part. Recall that we require g to be such that (C.14) holds. If

(C.14) holds then acting with *ϕ on (C.14) implies that the following condition must hold:

( )( )g x E g x E r O r( ) ˚ ( ) *
˚ (even) . (C.48)1 1ϕ= + +α β ϵ− − −

From equations (C.1), (C.3) of appendix C.1 together with our considerations above which
show that ϕ satisfies (C.1), we have that E r O r*( ˚ (even) ( ))1ϕ + + =β ϵ− −

R E r˚ (even)+ +β
α β

O r( )1 ϵ− − which implies that:

( )g x E g x R E r O r( ) ˚ ( ) ˚ (even) . (C.49)1 1= + +α
β
α β ϵ− − −

Note that the left hand side expresses the adjoint action of g x( ) so that it must equal R x E( ) ˚β
α β

for some rotation matrix R x( )β
α . Conversely from the 2 to 1 map from SU(2) to SO(3), R x( )β

α

uniquely specifies g x( ) upto a sign. Since R x Rlim ( )r =β
α

β
α

→∞ and since g x( ) is continuous
in xα, we have that g x glim ( ) ˚r =→∞ with g̊ being the constant SU(2) rotation satisfying

g E g R E˚ ˚ ˚ ˚1 =α
β
α β− . From (C.49) it is then straightforward to conclude that g x( ) must be of the

form

( )( )g x g x r O r( ) ˚ ˆ , (C.50)0
1λ= + + ϵ− −

with λ an even function on the sphere. By comparing derivatives of (C.49) and (C.50) one can
conclude that the remainder term in (C.50) is O r( )1 ϵ− − . By comparing the r (even)1− term in
(C.50) with the one in (C.49) one concludes it is of Cartesian degree of differentiability k,
which in turn implies x( ˆ)λ is Ck as a function on the sphere. Thus g x( ) is an SU(2) rotation as
in section 7.2. This directly implies g x( )1− is of the same type (see equation (C.12)). Finally
from equation (C.73) one finds that g g

*
1 1ϕ′ = − − is also of the form given in 7.2, with leading

term g g˚ ˚ 1′ ≡ − . This concludes the characterization of AutE̊ elements.

C.3. Asymptotic form of ϕ−1

Given the asymptotic form of 1ϕ ϕ≡ ′− :

( ) ( )( )x R x t s x O r( ) ˆ , (C.51)kϕ = + + +α
β
α β β β ϵ−

we want to find the asymptotic form of 1ϕ ϕ′ = − . We first show that (C.51) implies:

( )x R x O( ) (1). (C.52)1
0ϕ′ = +α

β

α β−

From (C.51) we have that there exists r M, 00 > s.t. r r0∀ > we have that

x R x M( ) ( ) . (C.53)ϕ − <
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ϕis a homeomorphism of Σ so that B r( ( ))0ϕ is closed and B r( ( ))0ϕ ∂ = B r( ( ))0ϕ∂ where
B r( )0 is the interior of the sphere of cartesian radius r0 together with its boundary B r( )0∂ .
Since for r r0> we have that x( )ϕ is also in the asymptotic region, there exists r0′ such that

B r B r( ( )) ( )0 0ϕ ⊂ ′ . This means that if x r( ) 0ϕ∣ ∣ > ′ then r r0> so that for x r( ) 0ϕ∣ ∣ > ′ we have
from equation (C.53) that x R x M( ) ( )ϕ∣ − ∣ < which is the same as the statement that for
x r0∣ ∣ > ′, we have that x R x M( ( ))1ϕ∣ − ∣ <− which is same as R x x M( ) ( )1 1ϕ∣ − ∣ <− − which
means that x R x O( ) ( ) (1)1 1

0ϕ = +− − .
Let D x x( ) ( )ϕ= ∂β

α
β

α so that

( )( )D x R s x O r( ) ( ) . (C.54)k 1
1δ= + ∂ +β

α
γ
α

β
γ

β
α ϵ

−
− −

From inverse matrix formula and equations (C.68), (C.70) one finds:

( ) ( ) ( )( )D x R s x O r( ) ( ) . (C.55)k
1 1

1
1δ= − ∂ +

β

α

β

γ
γ
α

γ
α ϵ− −

−
− −

The inverse derivative formula tells:

( ) ( )x D x( ) ( ) . (C.56)1ϕ ϕ∂ ′ = ′α
β

α

β−

Substituting (C.52) in the RHS of (C.56) and using that O x O r( ( ) ) ( )0
1

0
1ϕ∣ ′ ∣ =ϵ ϵ− − − − and

s x s R x O r( ( )) ( ( )) ( )1
0

2ϕ∂ ′ = ∂ +γ
α

γ
α − − by Taylor expansion (see footnote 33) one finds:

( )( ) ( ) ( )x R s R x O r( ) ( ) , (C.57)1 1
0

1ϕ δ∂ ′ = − ∂ +α
β

β

γ
γ
α

γ
α ϵ− − − −

which upon integration leads to:

( ) ( ) ( )x R x s R x c O r( ) ( ) , (C.58)1 1
1ϕ′ = − + +α

β

α β α α ϵ− − −

where cα are integration constants. The condition x( ( )) Idϕ ϕ′ = fixes c t= −α α. That the
remainder in (C.58) is O r( )k

ϵ− can be shown by induction using equation (C.56): assume the
remainder isO r m k( ), 2m 1 ⩽ ⩽ϵ

−
− for ϕ′ on the RHS of (C.56) and compute ϕ∂ ′α

β from this
equation. Using equation (C.87) with D x( ) ( )1

β
α− seen as the Ck 1− function (C.55) and ϕ′ seen

as aCm 1− diffeomorphism, one obtains x( )ϕ∂ ′ =α
β R( ) (1 δ −β

γ
γ
α− s R x( ( )))1∂ +γ

α − O r( )m 1
1 ϵ

−
− −

which implies the remainder of ϕ′ is O r( )m
ϵ− .32

C.4. Asymptotic form of AutE̊ compositions

Let g g( , ), ( , ) AutE̊ϕ ϕ′ ′ ∈ as in (7.11) and g g g g g( , ) ( , )( , ) ( * , )ϕ ϕ ϕ ϕ ϕϕ″ ″ ≔ = ′ ′ . Defi-
nition (C.13) implies g( , ) AutE̊ϕ″ ″ ∈ so that from section C.2 it has also the asymptotic
form:

( )( ) ( )x R g x t s x O r( ) ˚ ˆ , (C.59)ϕ″ == ″ + ″ + ″ +α
β
α β α α ϵ−

( )g x g r O r( ) ˚ (even) , (C.60)1 1″ = ″ + + ϵ− − −

where R SU SO: (2) (3)→β
α denotes the Adjoint action of SU(2) defined by equation (7.10).

From ϕ ϕϕ″ = ′ and using properties as in appendix C.5 one finds

32 The last induction step m = k makes use of the Ck 1+ Cartesian differentiability of sα (in its role of s∂γ
α term in

(C.55)) by the same reason described in footnote 34.
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( ) ( ) ( )R g R g R g˚ ˚ ˚ , (C.61)″ = ′β
α

μ
α

β
μ

( )t R g t t˚ , (C.62)″ = ′ +α
μ
α μ α

( )( ) ( )s x R g s x s R g x( ) ˚ ( ) ˚ . (C.63)″ = ′ + ′α
μ
α μ α

From g g g*ϕ″ = ′ and the properties of appendix C.5 one finds g gg˚ ˚ ˚″ = ′. This is consistent
with (C.61) since R g R g R gg( ˚) ( ˚ ) ( ˚ ˚ )′ = ′γ

α
β
γ

β
α .

From these properties it follows that the set of AutE̊ elements with trivial asymptotic
rotations and translations form a subgroup of AutE̊ . The group Aut is defined as the com-
ponent connected to identity of this subgroup (one can verify that the connected to identity
property as defined in footnote 17 is preserved under the group operations).

C.5. Properties of remainders

A Cp
field is said to be O r( )n

β− ( n p k0 ⩽ ⩽ ⩽ ; 0β ⩾ ) if for m n0, ,= … the coefficients
of the mth partial derivatives in the Cartesian chart are bounded by cr mβ− − for some constant
c. The case when n = p is denoted by O r( )β− as presented in section 2.2. Product of
remainders satisfies:

( ) ( )( )O r O r O r , (C.64)m n m nmin( , )=β γ β γ− − − −

as can be verified by taking derivatives on the left hand side. We now describe the behaviour
under various operations of functions of the form:

( )f x f f x O r( ) ( ) , (C.65)0 1
1= + + ϵ− −

( )a x a x O r( ) ( ) , (C.66)2
2= + ϵ− −

where f is Cp, a is C p′, p p k0 ,⩽ ′ ⩽ , f0 = constant and

( ) ( )f x g x r a x b x r( ) ˆ , ( ) ˆ , (C.67)1 2
2= =

with g x( ˆ), b x( ˆ) respectively C p 1+ , C p 1′+ , functions on the sphere.
We first consider the product of functions: Given f x a x( ), ( ) and

f x f f x O r( ) ( ) ( )0 1
1′ = ′ + ″ + ϵ− − as in (C.65), it is easy to verify that their product is again of

the type (C.65), (C.66) with:

( )( )f x f x f f f f x f f x O r( ) ( ) ( ) ( ) , (C.68)0 0 0 1 0 1
1′ = ′ + ′ + ′ + ϵ− −

( )f x a x f a x O r( ) ( ) ( ) . (C.69)0 2
2= + ϵ− −

Next we note that when f 00 ≠ :

( )f x f f f x O r1 ( ) ( ) . (C.70)0
1

0
2

1
1= − + ϵ− − − −

To see (C.70), use Taylor expansion around t = 1 of the function t t1↦ to obtain:
f x f f f x O r1 ( ) ( ) ( )0

1
0

2
1 0

1= − + ϵ− − − − . The appropriate bounds on the derivatives of

the remainders can be obtained by induction as follows. Assume f x f1 ( ) 0
1= −−

f f x O r( ) ( )n0
2

1
1+ ϵ− − − . Writing f x f x f x(1 ( )) (1 ( )) ( )2∂ = − ∂α α and using (C.64) one

concludes that the derivative of the remainder is O r( )n
2 ϵ− − . This in turn implies the

remainder is O r( )n 1
1 ϵ

+
− − .
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More generally one can verify that:

( )f x f f f x O r( ( )) ( ) , (C.71)0 0
1

1
1λ= + +λ λ λ ϵ− − −

for any λ ∈ and f 00 ≠ . This can again be shown by induction: assume

f x f f f x O r( ) ( ) ( )n0 0
1

1
1λ= + +λ λ λ ϵ− − − (n = 0 case is obtained by Taylor expansion of

t t↦ λ). From f x f x f x f x( ( )) ( ( ))(1 ( )) ( )λ∂ = ∂α
λ λ

α and using (C.64) and (C.70) one
concludes that the derivative of the remainder is O r( )n

2 ϵ− − , which in turn implies the
remainder is O r( )n 1

1 ϵ
+

− − .
We now describe the behaviour of functions (C.65), (C.66) under composition with

diffeomorphisms. To simplify the discussion we first consider diffeomorphisms with
asymptotic trivial rotational part. Consider a Cl, l k0 ⩽ ⩽ diffeomorphism with asymptotic
form

( )( )x x y x O r( ) ˚ ˆ , (C.72)ϕ = + +α α α ϵ−

with y x˚ ( ˆ)α a Cl 1+ function on the sphere (the case l = k, y x t s x˚ ( ˆ) ( ˆ)= +α α α corresponds to
the diffeomorphisms of section C.2). For f as in (C.65) we have:

( )f x f f x O r( ( )) ( ) . (C.73)0 1
1ϕ = + + ϵ− −

To show (C.73) we need to verify that:

( )f x f f x O r( ( )) ( ) , (C.74)0 1 0
1ϕ = + + ϵ− −

( )f x f x O r n l p( ( )) ( ) , 1, , min( , ). (C.75)n
1 0

( 1)
n n1 1

ϕ∂ …∂ = ∂ …∂ + = …β β β β
ϵ− + −

( l pmin( , ) is the differentiability of f ϕ◦ ). First, notice that argumentation similar to that
after equation (C.52) implies that diffeomorphisms (C.72) do not change O r( )0

β− bounds:

( ) ( )F x O x F x O x( ) ( ) ( ) , (C.76)0 0 ϕ= ⟺ =β β− −

where x x x( ) ( ) ( )ϕ ϕ ϕ∣ ∣ ≔ α α and x r∣ ∣ ≡ . We thus have:

( )f x f f x O r( ( )) ( ( )) . (C.77)0 1 0
1ϕ ϕ= + + ϵ− −

Taylor expanding f x( ( ))1 ϕ around x we find:33

( )f x f x O r( ( )) ( ) . (C.78)1 1 0
2ϕ = + −

From (C.77) and (C.78) we conclude (C.74). To show (C.75) we use chain rule formula to
take the nth partial derivative of f x( ( ))ϕ ,

( )f x C x f x( ( )) ( ) ( ( )), (C.79)
m

n

1
n n

m
m1 1

1
1∑ϕ ϕ∂ …∂ = ∂ …∂β β β β

γ γ
γ γ

=
…
…

33 Let x x( )ϕ′ ≔α α , r x( )ϕ′ ≔ ∣ ∣ and x x rˆ′ = ′ ′α α . Using that x x O (1)0′ = + it is easy to verify using Taylor
approximation that r r O r(1 ( ))1 1

0
1′ = +− − − and x x O rˆ ˆ ( )0

1′ = + − . The latter implies g x g x O r( ˆ ) ( ˆ) ( )0
1′ = + − .

Using these expansions for f x r g x( ) ( ˆ )1
1′ = ′ ′− one obtains (C.78). Analogous considerations for functions of the form

f x r g x n( ) ( ˆ), 0n
n= >− leads to f x f x O r( ) ( ) ( )n n

n
0

( 1)′ = + − + .
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where:

C x x x( ) ( ) ( ), (C.80)
n

m

iIm
jm iIm

m
iI

j iI1

1
1

1
1

1
1

1∑ ϕ ϕ≔ ∂ …∂ ⋯∂ …∂β β
γ γ

β β
γ

β β
γ

…
…

where the sum is over all distinct partitions I I, , m1 … of n{1, , }… with I i i{ , , }k I I
j1

k k
k= … ,

i i iI I I
j1 2

k k k
k< < … < (thus jk is the cardinality of Ik and j j nm1 + … + = ). The formula

(C.79), (C.80) is a realization to the present case of an abstract chain rule formula described in
appendix A of [39].

From (C.65) and (C.76) we have the following rough bound:

( ) ( )f x O r( ( )) . (C.81)m
0

( 1)
m 1

ϕ∂ …∂ =γ γ
− +

Using (C.81) and the following rough bounds on derivatives of ϕ:

( )x O x O r n( ) (1), ( ) , 1, (C.82)n n
0 0ϕ ϕ∂ = ∂ = >−

one can verify that all m n< terms in (C.79) are O r( )n
0

( 2)− + whereas the m = n one is
O r( )n

0
( 1)− + . It then follows that:

( ) ( )f x f x O r( ( )) ( ( )) , (C.83)n
0

( 2)
n n1 1

ϕ ϕ∂ …∂ = ∂ …∂ +β β β β
− +

where we have used that for m = n, equation (C.80) reduces to:C
n

n
n

n
1

1
1

1ϕ ϕ= ∂ …∂β β
γ γ

β
γ

β
γ

…
… . Using

(C.65) for f in the right hand side of (C.83) we obtain

( ) ( )f x f x O r( ( )) ( ( )) . (C.84)n
1 0

( 1)
n n1 1

ϕ ϕ∂ …∂ = ∂ …∂ +β β β β
ϵ− + −

Finally, Taylor expanding the first term in (C.84) around x we find34:

( ) ( ) ( )f x f x O r( ( )) ( ) . (C.85)n
1 1 0

( 2)
n n1 1

ϕ∂ …∂ = ∂ …∂ +β β β β
− +

Using (C.85) in (C.84) we obtain the desired result (C.75). For later use in appendix D we
note that the proof goes through if p l k= = = ∞, so that the analogue of equation (C.73)
still holds in the smooth setting. The only difference is that in this case the O r( )n

0
( 1) ϵ− + −

bounds in (C.75) are in general of the form c rn
n( 1) ϵ− + − with n-dependent constants cn.

This result can be used to show that the composition of (C.65) with a C l diffeomorphism
with nontrivial rotation

( ) ( )( )x R x y x O r( ) ˚ ˆ , (C.86)ϕ = + +α
β
α β β ϵ−

is given by

( )f x f f R x O r( ( )) ( ( )) , (C.87)0 1
1ϕ = + + ϵ− −

where R x R x( ) ≡α
β
α β. To see (C.87), write x R x( ) ( )ϕ ψ=α

β
α β with x R x( ) ( ) ( )1ψ ϕ≔α

β
α α− .

Next, note that F x O r F R x O r( ) ( ) ( ( )) ( )= ⟺ =β β− − . It follows that f R x f( ( )) 0= +
f R x O r( ( )) ( )1

1+ ϵ− − . Using (C.73) for f R x( ( )) in place of f x( ) and x( )ψ α in place of x( )ϕα

one obtains (C.87), where it is easily verified that f R x( ( ))1 satisfies the same conditions of the
type (C.67) which are satisfied by f x( )1 .

34 See footnote 33. When p l⩽ , the condition g x( ˆ) being C p 1+ is used to obtain the n = p case of (C.85).
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We finally show that for ϕ as in (C.86) and a x( ) as in (C.66) one has:

( )a x a R x O r( ( )) ( ( )) . (C.88)2
2ϕ = + ϵ− −

This can be seen by writing a x r x a x r x( ) [ ( ) ( )][1 ( )]= , r x x x( ) ≡ α α , and noting that: the
function f x r x a x( ) ( ) ( )≔ is of the form (C.65) (with f 00 = ), and so it satisfies (C.87);

r x1 ( ) is also of the form (C.65) (with f 00 = and f r1
1= − ) and so

r x r O r1 ( ( )) 1 ( )1ϕ = + ϵ− − . Substituting these expansions in

a x r x a x r x( ( )) [ ( ( )) ( ( ))][1 ( ( ))], (C.89)ϕ ϕ ϕ ϕ=

one obtains (C.88).

Appendix D. Phase space description of gauge and asymptotic symmetry
group

In this appendix we study the classical phase space description of gauge and asymptotic
symmetries. After reviewing the infinitesimal generators as described in [19], we study the
corresponding finite transformations. As in [17–19], we restrict attention to C∞

fields.

D.1. Infinitesimal transformations

In standard phase space description, the kinematical gauge transformations are generated by
the Gauss and diffeomorphism constraints:

( )[ ]G E A E D E A[ ] Tr , , [ ] Tr . (D.1)a
a

a
a a

a⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦∫ ∫Λ Λ ξ≔ − ∂ + ≔
Σ Σ

ξ

The fall-off conditions

( ) ( )( )
( )

x

r
O r S x O r

ˆ
, ˆ , (D.2)i

i
1Λ

λ
ξ= + = +ϵ α α ϵ− − −

with x( ˆ)λ even and S x( ˆ)α odd ensure the well-definedness of the constraints as phase space
functions. Their action is then given by:

[ ]
[ ]

{ }
{ }A A A G D A

E E E G D E

( , ) · , [ ] [ ], ,

( , ) · , [ ] [ ], , (D.3)

a a a a a

a a a a




Λ ξ Λ Λ Λ ξ

Λ ξ Λ Λ ξ

≔ − − ∂ = +

≔ − = +
ξ

ξ

and their commutator evaluates to:

( )( )( , ), , [ , ], [ , ] , (D.4) ⎡⎣ ⎤⎦Λ ξ Λ ξ Λ Λ Λ Λ ξ ξ′ ′ = − ′ + + ′ − ′′ξ ξ

which corresponds to a representation of the Poisson bracket algebra of the constraints (D.1).
Equations (D.3), (D.4) represent the infinitesimal version of (7.2) and (7.7) respectively. In
the case of asymptotic symmetries, the fall-off of SU(2) multiplier and shift are:

( )( )x

r
O r

ˆ
, (D.5)i

R
i

i

2
1Λ Λ

λ
= + + ϵ− −

( )( )T R S x O rˆ , (D.6)2ξ = + + +α α α α ϵ−
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where

E E
1

2
˚ ˚ . (D.7)R

i
ijk a

j
R k

aΛ ϵ≔

The phase space action of these generators is given by the same expressions as in the Aut
case, equation (D.3), and the commutator of generators by (D.4). This action is generated via
Poisson brackets by well-defined phase space functions representing the total linear and
angular momenta of the spacetime [18, 19].

D.2. Finite transformations

We now describe the asymptotic form of the finite transformations associated to the above
infinitesimal generators. We proceed in steps:

D.2.1. Flow equations. Given a pair ( , )Λ ξ as in (D.5), (D.6) we wish to solve the ‘flow
equation’ a t ad d ( , )t tΛ ξ= . Writing a g( , )t t tϕ= and assuming the composition law (7.7)
this translates into:

( )
t

d

d
, (D.8)t

a a
tϕ ξ ϕ=

t
g g g

d

d
. (D.9)t t tΛ= − ξ

Conversely, it is easy to verify that the flow equations (D.8) and (D.9) together with (7.7)
yield the infinitesimal transformations of section D.1 so that (7.7) is indeed a finite version of
these infinitesimal transformations.

D.2.2. Asymptotic form of diffeomorphisms (D.8). We show the diffeomorphisms tϕ obtained
by integrating (D.8) have asymptotic form as in (7.12). Define the following vector fields in
the asymptotic region:

T R Y Y S˚ , ˚ , , (D.10)ξ ξ ξ δ≔ + ≔ − ≔ −α α α α α α α α α

so that

Y˚ , (D.11)ξ ξ= +α α α

Y S , (D.12)δ= +α α α

( )O r . (D.13)δ =α ϵ−

Let t̊ϕ be the flow of ξ̊α
and define

˚ (D.14)t t t
1

ψ ϕ ϕ≔ ◦
−

Y Y˚ . (D.15)t t *

1
ϕ≔α α−

It is easy to verify that tψ is the flow of the t-dependent vector field Yt
α, that is, x x( )t 0ψ ==

and

( )
t

x Y x
d

d
( ) ( ) . (D.16)t t tψ ψ=α α
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Indeed, one has:

( ) ( )
( ) ( ) ( ) ( )

t
x x

y
x x

d

d
˚ ( ) ˚ ˚ ( )

˚

( ) ( ) ,

(D.17)

t t t t

t

t t
1 1

1

ϕ ϕ ξ ϕ ϕ
ϕ

ϕ ξ ϕ= − +
∂

∂
α α

α

β
β− −

−

( )( ) ( )x x˚ ( ) ˚ ( ) , (D.18)t t t*

1
ξ ψ ϕ ξ ψ= − +α α−

( ) ( )Y x˚ ( ) , (D.19)t t*

1
ϕ ψ=

α−

where in going from the first to second line we used the local coordinate expression for the
push-forward of vector fields: X x y x X x( * ) ( ) ( ( )) ( ( ))1 1ϕ ϕ ϕ ϕ= ∂ ∂α α β β− − , and in going to the

last line we used that ˚ ˚ ˚
t

a a

*

1
ϕ ξ ξ=

−
.

t̊ϕ is given by:

x R x c˚ ( ) ( ) , (D.20)t t tϕ = +

with R x R x( ) ( )t t≡ β
α β the rotation generated by Rα (so that R x R R x( ) ( ( ))

t t t
d

d
=α α ) and

c R R T t( ) ( ) dt t

t

t
0

1∫= ′α
β
α

γ
β γ

′
− the translation piece. The nontrivial result we will show is that:

( )( )x x s x O r( ) ˆ , (D.21)t tψ = + +α α α ϵ−

with s x( ˆ)t
α odd. From (D.21), (D.20), (D.14) the desired result (7.12) directly follows.

Condition (D.21) can be expressed as:

( )( )x x s x O r( ) ˆ , (D.22)t t 0ψ = + +α α α ϵ−

( ) ( )( )x x s x O r n( ) ˆ , 1, 2, ,

(D.23)

t t
n

0n n1 1
ψ∂ …∂ = ∂ …∂ + + = …β β

α
β β

α α ϵ− −

where O r( )0
γ− denotes bounded by cr γ− for some constant c. We first show (D.22) and then

provide an induction argument for (D.23). The integrated version of (D.16) reads:

( )x x Y x t( ) ( ) d . (D.24)t

t

t t
0

∫ψ ψ= + ′′ ′
α α α

Let

( )y x Y x t( ) ( ) d . (D.25)t

t

t t
0

∫ ψ≔ ′′ ′
α α

Boundedness of Y α implies boundedness of Yt
α which in turn implies implies boundedness of

y x( )t
α . Thus x( )tψ stays in the asymptotic region and y x O r( ) ( )t 0

0=α :

x x y x( ) ( ) (D.26)t tψ = +α α α

( )x O r . (D.27)0
0= +α

We now use (D.27) to determine the asymptotic form of the integrand in (D.24):

( ) ( ) ( )Y x S x x( ) ˚ ( ) ˚ ( ) . (D.28)t t t t t t*

1

*

1
ψ ϕ ψ ϕ δ ψ= +α α α− −
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For the first term in (D.28) we have:

( )( ) ( )( )S x R S R x R y x c˚ ( ) ( ) ( ) , (D.29)t t t t t t t*

1 1ϕ ψ = + +α
β

α β− −

( ) ( )( )R S R x O r( ) , (D.30)t t
1

0
1= +

β

α β− −

where we used a Taylor expansion to zeroth order yielding a remainder which is O r( )0
1− .35

For later purposes we denote the first term in (D.30) by

( ) ( )S x R S R x( ) ( ) . (D.31)t t t
1≔α

β

α β−

The second term in (D.28) is O r( )0
ϵ− . We thus conclude that:

( ) ( )Y x S x O r( ) ( ) . (D.32)t t t 0ψ = +α α ϵ−

Integrating with respect to t as in (D.24), and using that derivatives with respect to x commute
with the t integral we conclude:

( )( )x x s x O r( ) ˆ , (D.33)t t 0ψ = + +α α α ϵ−

where

( ) ( )s x S x tˆ ˆ d . (D.34)t

t

t
0

∫≔ ′′
α α

We thus recover equation (D.22). We now show (D.23) for n = 1. Let

D x x( ) ( ). (D.35)t tψ≔ ∂β
α

β
α

Differentiating (D.16) with respect to xβ we find that D x( )tβ
α satisfies the differential

equation36:

t
D x M x D x

d

d
( ) ( ) ( ), (D.36)t t t=β

α
γ
α

β
γ

with

( )M x Y x( ) ( ) . (D.37)t t tψ≔ ∂γ
α

γ
α

For fixed x and β, (D.36) represents an ordinary differential equation for the three-component
vector v t D x( ) ( )t=α

β
α . The solution with initial condition D x( )t 0 δ=β

α
β
α

= is then given by:

D x M x t( ) Texp ( )d , (D.38)t

t

t
0

⎜ ⎟⎛
⎝

⎞
⎠∫= ′′β

α

β

α

M x t M x M x t t( )d ( ) ( )d d . (D.39)
t

t

t t

t t
0 0 0

∫ ∫ ∫δ= + ′ + ″ ′ + ⋯
′

″β
α

β
α

γ
α

β
γ

′ ′

We now describe the asymptotic form of M x( )tγ
α . There are two contribution to this matrix:

( ) ( )( ) ( )M x S x x( ) ˚ ( ) ˚ ( ) . (D.40)t t t t t*

1

*

1
ϕ ψ ϕ δ ψ= ∂ + ∂β

α
β

α
β

α− −

35 Taylor expansions in (D.30), (D.43) and (D.56) are realized along the lines described in footnote 33.
36 We assume that, as in the compact manifold case, x( )tψ is smooth as a function from  Σ× to Σ. In particular
this implies x x( ) ( )x t t t x tψ ψ∂ ∂ = ∂ ∂α α which is what is being used to obtain (D.36). Similar considerations are needed
when showing the remaining n 1> terms of (D.23).
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For the first term in (D.40) we have:

( ) ( )( ) ( )( ) ( )S x R R S R x R y x c˚ ( ) ( ) ( ) ,

(D.41)

t t t t t t t t*

1 1ϕ ψ∂ = ∂ + +β
α

μ

α

β
ν

ν
μ− −

( ) ( )( ) ( )R R S R x O r( ) , (D.42)t t t
1

0
2= ∂ +

μ

α

β
ν

ν
μ− −

( )S x O r( ) , (D.43)t 0
2= ∂ +β

α −

where we Taylor expanded to zeroth order obtaining a remainder which is O r( )0
2− and used

(D.31) to express the first term in compact form. The second term in (D.40) is O r( )0
1 ϵ− − and

we conclude that:

( )M x S x O r( ) ( ) . (D.44)t t 0
1= ∂ +β

α
β

α ϵ− −

Using (D.44) in (D.39) we obtain (only the linear term in M contributes, higher order ones are
already O r( )0

2− ):

( )D x s x O r( ) ( ) , (D.45)t t 0
1δ= + ∂ +β

α
β
α

β
α ϵ− −

which corresponds to n = 1 of equation (D.23). We now sketch the argument for the general n
case. For n 1, 2,= … Define the tensors:

D x x( ) ( ). (D.46)t tn n1 1
ψ≔ ∂ …∂β β

α
β β

α
…

( )( )M x Y x( ) ( ) . (D.47)t t tn n1 1
ψ≔ ∂ …∂β β

α
β β

α
…

In order to avoid notational clutter we are omitting an ‘n’ label in the name of each tensor;
tensors associated to different values of n are only distinguished by the number of indices
they have. The n = 1 case corresponds to the tensors (D.35), (D.37).

Differentiating (D.16) n times, commuting t and x derivatives (see footnote 36) and using
chain rule one obtains a system of differential equations in t satisfied by the tensors
D x( )tn 1β β

α
… :

t
D x C x M x

d

d
( ) ( ) ( ), (D.48)t

m

n

t t
1

n n

m

m1 1

1

1
∑=β β

α
β β
γ γ

γ γ
α

…
=

…
…

…

where [39],

C x D x D x( ) ( ) ( ), (D.49)t t tn

m

iIm
jm iIm

m

iI
j iI1

1
1

1
1

1
1

1∑≔ …β β
γ γ

β β
γ

β β
γ

…
…

… …

where the sum is over partitions of n{1, , }… as described for equation (C.80). For given n,
equation (D.48) involves the differentials of order m n⩽ . The only occurrence of the nth
order differential is in the m = 1 term, for which (D.49) becomes:

C x D x( ) ( ). (D.50)t tn n1 1
=β β

γ
β β
γ

… …

All remaining m 1> sumands of (D.48) involve differentials of order strictly less than n. If
we collectively denote these terms by:
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N x C x M x( ) ( ) ( ), (D.51)t
m

n

t t
2

n n

m

m1 1

1

1
∑≔β β

α
β β
γ γ

γ γ
α

…
=

…
…

…

equation (D.48) takes the form:

t
D x M x D x N x

d

d
( ) ( ) ( ) ( ). (D.52)t t t tn n n1 1 1

= +β β
α

γ
α

β β
γ

β β
α

… … …

For fixed x, and n 1β β… , equation (D.52) represents an inhomogenous ordinary linear
differential equation in t for the three dimensional vector v t D x( ) ( ), 1, 2, 3tn 1

α≔ =α
β β
α
… .

Since the source term N x( )tn 1β β
α
… depends on the differentials of order smaller than n, the

solutions can be obtained iteratively. For n 1> , the general solution to (D.52) with initial
condition D x( ) 0t 0n 1

=β β
α
… = is given by:

( )D x D x D x N x t( ) ( ) ( ) ( )d , (D.53)t t

t

t
t

0

1
n n1 1∫= ′β β
α

μ
α

ν

μ
β β
ν

…
−

′ … ′

where D x( ) ( )t
1

β
α− is the inverse matrix of D x( )tβ

α (the invertibilty of this matrix follows from
the fact that it is the differential of a diffeomorphism). In order to determine the asymptotic
form of (D.53) we need to study the fall-offs of (D.51). This requires knowledge of the fall-
offs of the differentials of tψ up to order n 1− (which we assume are given) as well as
knowledge of the fall-offs of (D.47). For the latter there are two contributions:

( ) ( )( (( ) ( )M x S x x( ) ˚ ( ) ˚ ( ) . (D.54)t t t t t*

1

*

1

n n n1 1 1
ϕ ψ ϕ δ ψ= ∂ …∂ + ∂ …∂β β

α
β β

α
β β

α
…

− −

For the first term in (D.54) we have:

( ) ( )( )( ) ( )( ) ( )S x R R R S x˚ ( ) ˚ ( ) , (D.55)t t t t t t t*

1 1
n

n

n

n1
1

1

1ϕ ψ ϕ ψ∂ …∂ = … ∂ …∂β β
α

μ

α

β
ν

β
ν

ν ν
μ− −

( )S x O r( ) , (D.56)t
n

0
1

n 1
= ∂ …∂ +β β

α − −

where we Taylor expanded to zeroth order obtaining a remainder which isO r( )n
0

1− − and used
(D.31) to express the first term in compact form. The second term in (D.54) is O r( )n

0
ϵ− − and

so it follows that:

( )M x S x O r( ) ( ) . (D.57)t t
n

0n n1 1
= ∂ …∂ +β β

α
β β

α ϵ
…

− −

Going now to (D.51), one can verify that the highest order term is given by the m = n sumand,
for which (D.49) becomes the product of n first order differentials:

C x D x D x( ) ( ) ( ). (D.58)t t tn

n

n

n

1

1

1

1≔ …β β
γ γ

β
γ

β
γ

…
…

Using that D x O r( ) ( )t 0
1δ= +β

γ
β
γ − and (D.57) we conclude:

( )N x S x O r( ) ( ) . (D.59)t t
n

0n n1 1
= ∂ …∂ +β β

α
β β

α ϵ
…

− −

Using (D.59) in (D.53) one obtains the nth condition in equation (D.23).

D.2.3. Step 3: integrating the flow equation (D.9). A solution to (D.9) is given by:

( ) ( )g
*

Te , (D.60)*t t
t( )d

t

t0

1⎛
⎝⎜

⎞
⎠⎟

∫ϕ= ϕ Λ ′′
−
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where T denotes the ordered matrix product so that

( )( ) ( )
t

d

d
Te

*
( )Te . (D.61)* *

t
t

t( )d 1 ( )d
t

t

t

t0

1

0

1∫ ∫ϕ Λ=ϕ Λ ϕ Λ′ − ′′
−

′
−

We assume that (D.60) is the unique solution to (D.9) with initial condition g 1t 0 == . It is then
straightforward to verify that a g( , )t t tϕ= satisfies the one-parameter subgroup property
a a at s t s= + with the product rule given by equation (7.7).

Next, we argue that the explicit expression (D.60) satisfies the analogue of the fall-offs
described in equation (7.11). Consider first the SU(2)-valued function arising from the time
ordered exponential in (D.60) satisfying (D.61). For Λ and aξ as in (D.5), (D.6) and the
smooth version of composition property (C.73) described in section C.5 we obtain

( ) ( )r O r
*

˚ (even) . (D.62)t
1 1 1ϕ Λ Λ= + + ϵ− − − −

Note that here and in the following equations, the terms r O r(even) ( )1 1+ ϵ− − − are in general
t-dependent. Let

( )h e Te . (D.63)*t
t t˚ ( )d

t

t0

1∫≔ Λ ϕ Λ− ′′
−

It satisfies

t
h h

d

d
˜ (D.64)t t tΛ=

with

( )( ) ( ) ( )r O r˜
*

e ˚ e (even) , (D.65)t t
t t1 ˚ ˚ 1 1Λ ϕ Λ Λ= − = +Λ Λ ϵ− − − − −

where again we used the composition property (C.73). The expression for ht can then be
written as:

h Te . (D.66)t
t˜ d

t

t
0

∫= Λ ′′

Writing down the explicit power series defining the ordered matrix product and using the fall-
off in (D.65) one finds

( )h r O r1 (even) . (D.67)t
1 1= + + ϵ− − −

From equations (D.63), (D.60), and composition property (C.73) we find:

( )g r O re (even) , (D.68)t
t ˚ 1 1= + +Λ ϵ− − −

which is what we wanted to show37.

37 Note that ˚ RΛ Λ θ= = (see equation (D.7)) so that the rotation of the fiducial flat triad E̊
a
by etΛ̊ is exactly

‘undone’ by the leading order part of tϕ .
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Appendix E. Supplementary material for section VIII

E.1. Finiteness of α a;Eð Þ

From the fall-offs of g and its derivative:

( ) ( )g g r O r g r O r˚ (even) , (odd) , (E.1)a
1 1 2 2= + + ∂ = +ϵ ϵ− − − − − −

we find:

( )( )
( ) ( )

gg g g r O r

gg r O r

˚ (even) ,

˚ (odd) , (E.2)

a a

a

1 1 1 1

1 3 3

∂ = ∂ + +

= ∂ + +

ϵ

ϵ

− − − − −

− − − −

where we used that g̊ 0a
1∂ =− . Using (E.1), (E.2) and the fact that a E· a satisfies the fall-off

conditions (2.1),

( )a E E r O r· ˚ (even) , (E.3)1 1= + +α α ϵ− − −

the asymptotic form of the first term in (8.4) is found to be:

)( ( )( )a E gg E gg r O rTr · Tr ˚ ˚ (odd) , (E.4)1 1 3 3⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦∂ = ∂ + +α
α α

α ϵ− − − − −

where we used E̊ 0∂ =α
α

to bring E̊
α
inside the derivative.

We now focus on the total derivative term in (8.4). Using that E ETr[ ] Tr[ ˚ ] 0a a= =
together with, (E.1), (E.3), we find:

( ) ( )E E gg r O rTr ˚ ˚ (even) , (E.5)1 2 2⎡⎣ ⎤⎦− = +α α ϵ− − − −

from which we obtain the following asymptotic form for the second term in (8.4):

)( ( )E gg E gg r O rTr ˚ Tr ˚ ˚ (odd) . (E.6)1 1 3 3⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦−∂ = − ∂ + +α
α

α
α ϵ− − − − −

Adding (E.4) and (E.6) we find

( )a E r O r( , ) (odd) . (E.7)3 3ρ = + ϵ− − −

so that a E( , )α is finite.
We conclude with two observations related to equation (E.5). First, we note that using

(E.5), a E( , )α can alternatively be written as,

a E a E gg S E gg( , ) Tr · d Tr ˚ ˚ . (E.8)a
a a

a1 1⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦∫ ∮α = ∂ −
Σ

−
∞

−

The form (E.8) makes it explicit that the ‘additional’ surface term is sensitive only to the
limiting value of Ea. Second, we note that for Ēa ∈ we have

( )E gg r O rTr ¯ ˚ (even) , (E.9)1 2 2⎡⎣ ⎤⎦ = +α ϵ− − − −

so that

S E ggd Tr ¯ ˚ 0. (E.10)a
a 1⎡⎣ ⎤⎦∮ =

∞
−

Equation (E.9) follows from the same argument given for equation (E.5). Equation (E.10)
implies that if one uses formula (8.3) with Ēa ∈ , one recovers the phase factor for ‘barred’
electric fields, equation (7.31). This in turn implies equation (8.12).
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E.2. Equation (8.8)

Let a g( , )ϕ= , a g( , )ϕ′ = ′ ′ and

( )( )a g aa g g, * , . (E.11)ϕ ϕ ϕϕ″ = ″ ″ ≔ ′ = ′ ′

The phase associated to a″ is

a E a E( , ) ( , ), (E.12)∫α ρ″ = ″
Σ

with ρ in (8.4) evaluated on the group element (E.11):

( )( )a E a a E g g g g E g g( , ) Tr · · * * Tr ˚ , (E.13)a
a a

a1 1 1⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ρ ϕ ϕ″ = ′ ∂ ′ ′ − ∂ ″ ″− − −

( )a a E gg a E g g E g gTr · · * Tr · Tr ˚ . (E.14)a
a

a
a a

a1 1 1⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ϕ= ′ ∂ + ′ ∂ ′ ′ − ∂ ″ ″− − −

We now focus on the total derivative term in (E.14). Using the expansion (E.1) for g and g′
and the fact that g g* ˚ ˚ϕ ′ = ′ (since g̊′ is a constant) we find:

g gg˚ ˚ ˚ , (E.15)″ = ′

( )g gg g g gg r O r˚ ˚ * ˚ ˚ (even) , (E.16)2 2ϕ″ = ′ + ′ − ′ + + ϵ− − −

( ) ( )g g gg g g g g r O r1˚ ˚ ˚ * ˚ ˚ (even) . (E.17)1 1 1 1 2 2ϕ″ ″ = + ′ ′ − + + ϵ− − − − − − −

The relevant terms appearing in E g gTr[ ˚ ]a 1″ ″− are then:

( )E gg a E gg r O rTr ˚ Tr · ˚ (even) , (E.18)1 1 2 2⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦= ′ + +α α ϵ− − − − −

where the equality follows from equation (E.9) together with the fact that a E E· a a ′ − ∈ ,
and

( )
( )

g E g g g g E g g g

E g g r O r

Tr ˚ ˚ * ˚ * Tr ˚ ˚ ˚

* Tr ˚ (even) , (E.19)

1 1
*

1 1 1

1 2 2

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

ϕ ϕ ϕ

ϕ

′ ′ = ′ ′

= ′ ′ + +

α α

α ϵ

− − − − −

− − − −

where in the last equality we again used equation (E.9) since,

( ) ( )g E g E r O r˚ ˚ ˚ (even) . (E.20)
*

1 1 1 1ϕ = + +α α ϵ− − − − −

From (E.17), (E.18) and (E.19) it follows that

E g g a E gg E g g XTr ˚ Tr · ˚ * Tr ˚ , (E.21)a a1 1 1⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ϕ″ ″ = ′ + ′ ′ +α α− − −

where,

( )X r O r(even) , (E.22)a 2 2= + ϵ− − −

collects the remainder terms arising in (E.17), (E.18) and (E.19).
Using equation (E.21) in (E.14), and recalling the definition of ρ (equation (8.4)),

equation (E.14) becomes:

a E a E a a E X( , ) ( · , ) * ( , ) , (E.23)a
aρ ρ ϕ ρ″ = ′ + ′ + ∂
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Integrating (E.23) over Σ we find that the total derivative term in (E.23) give zero contribution

since dS X 0a
a∮ =∞ for Xa as in (E.22). Finally, using a E* ( , )∫ ϕ ρ ′ =

Σ

a E a E( , ) ( , )∫ ρ α′ = ′
Σ

we obtain (8.8).

E.3. Properties of the rank sets

In this appendix we show that the rank sets (8.18), (8.19), (8.20) as well as the intersections
given in equation (8.23) can be decomposed into finite union of semianalytic submanifolds. In
[9] this result followed from the fact that the sets can be described in terms of semianalytic
functions, together with compactness of Σ. The rank sets here are also described in terms of
semianalytic functions (see equations (6.4)–(6.9) of [9]). Below we adapt the proof to the
present case by dividing Σ into an ‘inside’ compact region and an ‘outside’ non-compact
region where Ea is of rank 3.

In the following we work with a given fixed electric field Ea of the type described in
section 2. The fall off conditions (2.1) allow us to find r0 such that Ea is of rank 3 for points
outside the 2-sphere Sro (with respect to the Cartesian chart x{ }α ). Let us fix r r0> , and denote
by rΣ the compact, ‘inside’ region so that in the Cartesian chart

x x x x r{ : ( ) ( ) ( ) }r
3 1 2 2 2 3 2 2Σ Σ⧹ = ⃗ ∈ + + > . We can describe rΣ in terms of a semi-

analytic function fr such that f x{ ( ) 0}r rΣ = = and f x{ ( ) 0}r rΣ Σ⧹ = > . We define fr by

( )f x x r x r( ) for

0 elswhere
(E.24)r

m2 2⎪

⎪

⎧
⎨
⎩

= ⃗ − ⃗ >

where the first line refers to the Cartesian chart x{ }α with x x x x( ) ( ) ( )1 2 2 2 3 2∣ ⃗ ∣ ≡ + + , and
m k> .

It follows that V f f V{ 0} ({ 0} )E
r r

E
2 2∪ ∩= > = and V f V{ 0}n

E
r n

E∩= = for
n 0, 1= . Thus, all rank sets and their intersections (8.23) are of the form
X f f s{ 0} { 0}r i

n
i i1∩= = = for some given semianalytic functions f i n: , 1,i Σ → = … and

choices of symbols s { , , }i ∈ = < > . We now adapt the proof given in appendix B of [9] to
show that such X is a finite unions of submanifolds. In the following the index α stands for

r n, 1, ,α = … so that X f s{ 0}∩= α α α with sr= ‘ = ’.
Let U{ , }I Iχ be a semianalytic atlas of Σ compatible with the functions f{ }α . That is, each

UI admits a semianalytic partition compatible with the functions fα. We recall that a semi-
analytic partition means a decomposition of the form:

( )U U V , (E.25)I I I
II I∪χ′ ≔ = σ σ

where , ,I I
n
I

1 I
σ σ σ≔ … is a sequence of nI symbols ,< > or = and V I

Iσ is defined in terms of

analytic functions h i n, 1,i
I

I= … , on UI′ by V h{ 0}I
i
n

i
I

i
I

1I
I∩ σ≔σ = . The compatibility of the

functions fα with the partition means there exists analytic functions f U{ : }I
II ′ →ασ such that

f f . (E.26)I V
I

V
1

I Iχ◦ =α ασ
−

σ σ

Thus, on each local chart the set of interest takes the form:

( ){ } { } { }( )X U f s h x h x0 ( ) 0 ( ) 0 . (E.27)I I
I I

n
I

n1 1 I I∩ ∪ ∩ ∩ ∩χ σ σ= …σ α ασ α

The sets featuring in the union (E.27) can be realized as sets of a new partition ofUI′ defined
in terms of the functions h f{{ }, { }}i

I I
Iασ . By proposition A.9 of [22] it follows that every

x UI∈ has an open neighborhood UI
x such that
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( )X U finite union of analaytic submanifolds. (E.28)I I
x∩χ =

This in turn implies that X UI
x∩ is a finite union of semianalytic submanifolds of Σ. Now, the

(uncountable) collection of such open sets U{ }I
x cover Σ and in particular rΣ . Since the latter

is compact, it follows there exists a finite subfamily W U{ } { }I
x⊂β that covers rΣ . Thus

Wr ∪Σ ⊂ β β. Since X rΣ⊂ it follows that

( )X X W finite union of semianalytic submanifolds. (E.29)∪ ∩= =α α
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