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S Y N O P S I S

In this thesis, we study the interplay between shape, order and topo-
logical defects in two-dimensional soft condensed matter systems.
Curvature and topological defects introduce geometrical frustrations
in order. The strength of interactions, type and number of defects,
and the ground state that we start with impact the nature of frus-
tration. Different aspects of this problem are addressed in the thesis.
Motivation and results for each chapter are highlighted as follows :

Equilibrium of fluid membranes with tangent-plane order:
A two dimensional fluid membrane can have tangent-plane order

such as hexatic, nematic, tilt(vector) etc. When these membranes bend
the geometry induces distortions in the tangent-plane order leading
to geometric frustration.

In this chapter, we analyze the coupling between shape and order
in simplest model of fluid membrane with vector or nematic order.
The formulation we choose to analyze directly brings out the connec-
tion between shape of the membrane and topology of the field embed-
ded on the membrane. The shape and tangent-plane order field are
varied independently to derive the equations of equilibrium together
with the boundary conditions. The formulation developed, which is
traditionally used in the context of membranes can also be applied
to liquid crystals such as Sm-C, Sm-C∗ etc. We are in the process of
applying this formulation to consider dispirations in Sm-C∗.

Classification of 2D crystal ground states:
A carbon nanotube can be made by rolling graphene sheets into

cylinders of ∼ 1 nanometer diameter. Due to hexagonal symmetry of
graphene, one can choose a range of rolling directions with respect
to basis vectors of its lattice. This gives rise to different ground states.
Experimental and theoretical analysis show that the mechanical and
electronic properties of the nanotubes change drastically with the
rolling direction. In addition to tubular structures, carbon nanotori
have been observed experimentally and show high paramagnetic mo-
ments. This paramagnetic moment has been shown to depend criti-
cally on the crystalline structure. Thus, there is a need to characterize
and classify the different ground states of 2D crystals.

In this chapter, we study the different ground states of crystalline
order on a closed, compact surface of any genus without bound-
aries. In literature homotopy theory has been used to classify the
ground states of ordered media in presence of defects. But for sys-
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tems with discrete translational symmetry homotopy theory leads to
results which are incorrect, such as existence of +2 charge disclina-
tion. We adopt foliation theory from the study of dynamical systems
to classify the ground states of 2D crystals using ribbon graphs, called
separatrix, which decomposes a surface with crystalline order into
cylinders. The separatrix also provides a mechanism by which one
can generate a class of distinct ground states. Using the separatrix
we classify ground states of closed compact surfaces with crystalline
order having half-integer strength disclinations and dislocations.

Phenomenology of tent morphologies of polymer crystallites:
There is a significant difference between the growth of atomic crys-

tals and polymeric crystals. Polymeric crystals have connectedness.
This leads to interesting consequences regarding the shape and mor-
phology of polymer crystals. All the observed morphologies of poly-
mer crystallites are lamellar in nature. These either show spherulitic
structures composed of helicoids, or tent-like structures or scroll struc-
tures.

In this chapter, we focus on the tent morphology of polymer crys-
tallites and suggest arguments to explain the stability of this morphol-
ogy. Here, we attempt to solve the problem of why a crystallite should
buckle into the form of a tent using some simple notions from soft
condensed matter and geometry. We propose that polymer folds are
responsible for the 3D structure of tent morphology. A phenomeno-
logical model is formulated in which anisotropic line tension, due to
folds, help trap a disclination in the fold field. We obtain an exact so-
lution for two orthogonal solitons in 2D which satisfy the equations
of equilibrium and the corresponding boundary conditions. The soli-
tons split the crystal into sectors with uniformly oriented folds in
each sector. Further, the crystal lamella is buckled into the tent struc-
ture by a sliding mechanism such that the crystal order within the
finite thickness of the lamella is free of any topological defects.

Prof. Yashodhan Hatwalne Jaya Kumar. A

(Thesis supervisor)

Raman Research Institute
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1
I N T R O D U C T I O N

Soft matter is a subfield of condensed matter comprising a variety
of physical states that are easily deformed by thermal fluctuations.
They include liquids, colloids, polymers, foams, gels, granular mate-
rials, and a number of biological materials. The key features that are
common to all of these materials is that the energy scales of these sys-
tems are comparable with the thermal energy. At these temperatures,
quantum aspects are generally unimportant.

In this thesis, we study the interplay between shape, order and
topological defects in two-dimensional soft condensed matter sys-
tems. Curvature and topological defects introduce geometrical frus-
trations in order. The strength of interactions, type and number of
defects, and the ground state that we start with impact the nature
of frustration. Different aspects of this problem are addressed in the
thesis. The problem on polymer tent morphology (Chapter 4) was the
genesis for the all the problems dealt within this thesis.

This chapter presents a short introduction to some notions of soft
condensed matter systems that are used in later chapters. Each chap-
ter includes an introduction which motivates and poses the problem.

1.1 symmetry and order

Soft matter systems show a wide variety of phases which are charac-
terized by their symmetries, i.e. by transformations in orientational
and translational ordering in the system. Many soft materials form a
disordered (isotropic) phase at high temperatures but adopt ordered
structures, with different degrees of translational and orientational
order, at low temperatures. The transition from the isotropic phase
to ordered phase is said to be a symmetry breaking transition, be-
cause the symmetry of the isotropic phase (with full rotational and
translational symmetry) is broken at low temperatures.

The thesis deals exclusively with problems that are two dimen-
sional in nature. The physics of 2D condensed matter systems is a
rich and mature subject [1]. The field has been rejuvenated by its
new found applications to biological systems. Geometry and topol-
ogy lead to fascinating shapes of membranes and thin films. Every-
day experience with soap bubbles, the shape and dazzling structures
they take, are deceptive of the hard problems they pose [2]. The math-
ematics of minimal surfaces, which was motivated by study of soap
bubbles, after more than two centuries of work is still rich with open
conjectures [3]. A simple model of membrane with curvature elastic-
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2 introduction

ity leads to a vast vatiety of non-trivial equilibrium shapes. It has
been successful in explaining the disc-like structure of red blood cell
[4], shape and fluctuations in lipid bilayers [5], even string like excita-
tions in high energy physics [6].

1.1.1 Curvature

A fluid membrane with thickness much smaller than the lateral di-
mensions can be represented by a two-dimensional mathematical sur-
face. Based on similarities between fluid membranes (lipid bilayers)
and nematic liquid crystals, Helfrich [7] proposed the following ex-
pression for the curvature energy per unit area

fH =
(κ
2
H2 + κG K

)
, (1)

where H is the mean curvature, K is the Gaussian curvature (or intrin-
sic curvature), and κ, κG are the corresponding elastic constants.

In general for a surface parametrized by (σ1,σ2) and represented
by position vector R(σ1,σ2) (see fig. 1), the extrinsic curvature tensor
is [6]

Kij = ti.∂jn̂ , (2)

where i, j ∈ {1, 2} and ti = ∂R
∂σi

, n̂ = t1×t2
|t1×t2|

are the tangents and surface
normal respectively. The induced metric is defined by gij = ti.tj. Then
the mean and Gaussian curvatures are related to the curvature tensor
by: H = 1

2Tr(K
i
j), K = Det(Kij).

Figure 1: Parametrization of a surface.

1.1.2 Order

Introduction of order within the membrane further enriches the shape
phase diagram. A 2D membrane can have a vast range of internal or-
ders, with varying degrees of broken symmetries: nematic (director),
tilt (vector), hexatic (phase), crystal (strain) to name a few. The terms
in the free-energy depend on the symmetry properties of these or-
ders.



1.1 symmetry and order 3

1.1.3 Order + Curvature = Frustration

In two dimensional systems Gaussian curvature is a source of geo-
metric frustration [8, 9]. In presence of curvature the system may not
be able to take up a uniform ordered ground state. As an illustration
consider drawing "constant" vector (order) field on the surface of a
cube. Fig. 2 captures the essence of geometric frustration. We know
the uniform ordered state in a flat plane. When one tries to induce the
uniform state onto curved surface by flattening it, the state depends
on the "path" of flattening process.

Figure 2: Top: Cylinder is cut open along the axis and flattened to a plane
to mark the constant vectors. Now if the cylinder is glued back to-
gether and cut in any direction to flatten, the vectors still preserve
the directions. Bottom: A cube is opened up and flattened. Con-
stant vectors marked and glued back together. Now if the cube is
opened up by cutting along different sets of edges, you find that
on flattening vector could change direction. This happens because
cube has Gaussian curvature at each corners, where as the cylinder
has zero Gaussian curvature.

Note that the frustration is not due to any explicit coupling intro-
duced between order and curvature in the free energy. The frustration
is due to the requirement that the order (vector) should be tensorial,
i.e. independent of observer ("path").

On the other hand frustrations in order can be screened by curva-
ture. A standard example is tiling a plane by pentagons. On tiling a
plane with pentagons gaps open up (see fig. 3), which one can get rid
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of by stretching the pentagon. But a sphere can be tiled by pentagons,
to form dodecahedron, and get a stree-free configuration.

Figure 3: Two different tilings of a plane by pentagons wth gaps.

In chapter 2 we take into account the geometric frustration ("God is
in the detail") and derive the equilibrium shape of a membrane with
tangent plane order. On the other hand if we force the ordering prop-
erties to change through constraints from topology, applied force or
introducing defects, the membrane shows tendency to curve/buckle.

1.2 defects

Topological defects are stable configurations of matter such that small
regions of the sample are forced to be discontinuous by the topolog-
ical behavior of the configuration outside of them. These defects are
stable in the sense that they cannot be removed by a purely local
perturbation of the material, they must either be moved out to the
boundary of the sample or merged into other such topological de-
fects. Based on the symmetry properties of the phase a number of
different types of defects are possible.

The type of defect for a system with given symmetry is character-
ized and classified using homotopy theory [10]. Here an order param-
eter space is defined, which is a space of parameters that describes
changes in order parameter1 that leaves the energy invariant. For ex-
ample for systems with vector order in 2D, order parameter space is a
circle which corresponds to local rotations. Every point on the mem-
brane has an order parameter value, and it depends continuously on
the coordinates. Thus a loop on the membrane maps onto a loop in
order parameter space. The group structure of loops in the order pa-
rameter space can be used to characterize the defects.

In 2D two types of topological point defects are possible, namely
disclinations and dislocations (see fig. 4). Disclination is a defect in

1 An order parameter is a measure of the degree of order across the boundaries in
a phase transition system; it normally ranges between zero in one phase (usually
above the critical point) and nonzero in the other.
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Figure 4: A disclination is obtained by removing or inserting a sector
from/into the membrane. In 2D a dislocation can be modeled as a
disclination pair (remove and insert back a sector with some trans-
lation).

the orientation order whereas a dislocation is a defect in positional
order. Just like contour integrals in complex analysis, any contour
around the defect (singularity) contains all the information and is the
basis for homotopy theory.

The importance of defects in 2D systems were demonstrated from a
phase transition point of view by the Berezinsky-Kosterlitz-Thouless
transition [11, 12]. Soon after followed by the studies on defect in-
duced melting in 2D crystals [13].

1.2.1 Order + Defect = Curvature

Geometric effect of including topological defects are lucidly demon-
strated in flexible membranes with crystalline order. Disclinations in
crystals are an effect of removal or insertion of sectors of the mem-
brane, and would buckle the membrane into cones [14](see fig. 5,
taken from [14]). This notion was used to rationalize the observed
icosahedral geometry of virus capsids [15]. Further, studies on dislo-
cations and small angle grain boundaries [16] show how a defective
crystal can buckle into a roof like structure (see fig. 6, taken from [16]).

Figure 5: (a) Buckled positive disclination. (b) Buckled negative disclination.
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Figure 6: (a) Buckled dislocation pair. (b) Buckled small angle grain bound-
ary, modeled as an array of dislocation pairs.

1.2.2 Order + Curvature = Defect

When a membrane with internal order is deposited onto a substrate,
the geometry is fixed by the substrate. Then minimal frustration or
energy configuration would depend on distribution of defects (den-
sity) for the given geometry. Here analogy with electrostatics is used
to formulate the problem in terms of Green’s function to determine
the defect (charge) distribution [17, 18, 19].

1.3 classification : defect = curvature

In 2D crystals the internal stress or frustration in order due to defects
can be completely removed by including Gaussian curvature. Thus
crystals with point defects are surfaces with isolated Gaussian cur-
vatures, cone like points, called flat surfaces [20]. In chapter 3 the
properties and classification of defects are studied using flat surfaces.

1.4 polymer crystal

One of the long-standing challenges in the field of polymers is to
figure out how long interpenetrating and entangled polymer chains
organize into crystals upon cooling. Polymer crystals take up a wide
range of morphologies based on crystallization conditions [21].

The single crystals of polymers are grown from dilute solutions.
Usually such crystals are small, typically a few micrometres across,
and are plate-like with a regular shape that reflects that of the crys-
tal unit cell. The thickness is typically 10 nm and take up tent-like
structures (see fig. 7, taken from [22]).

The tent structure has similar characteristics as the example sys-
tems discussed: roof-like structures, which meet at a cone-like point
in the center. From our discussions in previuos sections it seems ob-
vious the crystal has the buckled structure due to presence of defects.
But the devil is in the details.
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Figure 7: (a) AFM topographic image showing the 3D structure of tent mor-
phology of polyethylene crystal, and (b) is the height field along
the line shown in (a). (c) Schematic of the tent structure.





2
E Q U I L I B R I U M O F F L U I D M E M B R A N E S W I T H
TA N G E N T- P L A N E O R D E R

Fluid membrane can have surprisingly varied structures, the most
common example being the cell membrane that is rich in structure as
well as functionality.

The radii of curvature involved are small, in other words curvatures
are large. For example a human red blood cell is 6− 8µm in diameter,
with membrane thickness ∼ 10nm. Biology is getting quantitative and
it appears that it will be increasingly important to solve problems
involving the shape and topology of fields by all the technical means
(analytical as well as numerics). Moreover we also have to consider
free boundary conditions which come up naturally in problems such
as translocation of polymer through pores [23].

Very often we cannot obtain analytical solutions to equations of
equilibrium and associated boundary conditions, which are non-linear
coupled differential equations. But one has to solve them numerically.
Nevertheless it always helps to write out the equations in an analyti-
cal form, together with the associated free boundary conditions.

The model we are analyzing is the simplest model with vector or
nematic order. Also we have not dealt with terms which couple the
curvature tensor to the vector [24] or nematic field [19]. It is fairly
straight forward to obtain the equations of equilibrium with these
higher order couplings included. The free-energy that we are work-
ing with is the lowest order that is applicable to both nematic and
vector order symmetries. Additional couplings depend on the partic-
ular symmetries (nemtaic or vector).

The formulation we choose to analyze directly brings out the con-
nection between shape of the membrane and topology of the field em-
bedded on the membrane. The power of the treatment due to Nelson
[9] is particularly significant in pointing out the connection between
elasticity and topology.

Our results are summarized in the equations of equilibrium (21),
together with boundary conditions (22). As is evident these equations
simplify considerably for minimal surfaces (H = 0).

2.1 elastic free energy of fluid membranes

The Helfrich free energy of a fluid membrane [7] is

FH =

∫
M

(κ
2
H2 + κG K

)
dS, (3)

9
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where H is the mean curvature, K is the Gaussian curvature (or intrin-
sic curvature), and κ, κG are the corresponding elastic constants. The
integral is over the distorted membrane surface M; dS =

√
gdσ1 dσ2,

where σ = {σ1,σ2} parametrizes the surface, and g = gσ = det [gµν]
is the determinant of the metric tensor gµν. Gaussian curvature is
a total differential [6], integrates to the boundary, and does not con-
tribute to the equations of equilibrium. However, it does contribute
to the boundary conditions. Stability conditions demand that κ be
positive.

For a membrane with surface tension σ we have the additional
contribution

Fs = σ

∫
dS, (4)

with σ > 0 for stability. For a fluid membrane σ = 0, but one can in
principle have tense membrane. So just for the sake of generality we
include this term.
FH and Fs account for the bulk contributions to the elastic free en-

ergy. For a membrane with a boundary we also need to consider the
contribution from the membrane edge:

Fe = γ

∮
∂M

dl, (5)

where γ is the coefficient of line tension. γ has to be positive for
stability.

With FH, Fs and Fe contributing to the total free-energy, Capovilla
et. al [25] have derived the full equations of equilibrium for a fluid
membrane. In what follows we discuss the additional contribution
from the tangent plane order.

2.2 elastic free energy of fluid membranes with tangent-
plane order

2.2.1 Flat membrane (freeze the bending degree of freedom)

Nonuniformity in the vector field costs elastic energy. Let m(x,y) de-
scribe the vector order on the flat membrane. The energy density for
small deformations in m has the squared gradient form, it is propor-
tional to (∂imj)

2. The independent invariants [24, 26] allowed by the
vectorial symmetry of m are the squared divergence, and the squared
curl of m. To the lowest (harmonic, or linear) order, the free energy
for distortions of m is

Fm =

∫ [
K1
2
(∇ ·m)2 +

K2
2
(∇×m)2

]
dS, (6)

where dS = dxdy. Very often, the “one-constant approximation"
K1 = K2 = Km simplifies the problem at hand, and is sufficient to
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yield qualitative results [26]. Within this approximation (6) reduces
to

Fm1 =
Km

2

∫
(∂imj)(∂imj)dxdy, (7)

{i, j} = {x,y}, and we have used the summation convention.
In a general deformation, the magnitude m as well as the orienta-

tion θ of the vector field m = m (cos θ, sin θ) (written in fixed labo-
ratory frame) change. If the magnitude of m is fixed (or changes in
the magnitude are very costly as would be the case deep into the
tangent-plane order phase) then m can be treated as a unit vector
m̂ = (cos θ, sin θ) with simple scaling of coordinates. In this case (7)
simplifies further to ”low temperature” elasticity [1]

Fθ =
Km

2

∫
(∇θ)2 dxdy, (8)

where ∇ is the gradient operator in Cartesian coordinates.

2.2.1.1 Deformable membrane

On a deformable membrane, the form (7) is still valid, albeit with
the replacement of ordinary, Cartesian divergence and curl operators
with their covariant versions, and with dS =

√
g dσ1 dσ2.

In the one-constant approximation

Fm =
Km

2

∫
(∇µmν)(∇µmν)dS, (9)

where ∇µ is the covariant partial derivative with respect to σµ, µ =

1, 2, superscripts (subscripts) denote contravariant (covariant) compo-
nents, and the summation convention is used.

For deformable membranes the gradient operator has to be mod-
ified to account for membrane curvature. Upon traversing a closed
loop surrounding a region with curvature, a parallel-transported vec-
tor does not return to its original orientation, but comes back rotated
[6]. Intrinsic curvature of the membrane necessarily introduces frus-
tration in the m̂- field. To obtain the analogue of the square-gradient
elasticity (8) we set up a local, orthonormal frame êi(σ), i = {1, 2} in
the tangent plane, where σ = σµ, µ = {1, 2} are internal coordinates
on the membrane parametrized via the three-dimensional position
vector R(σ). Thus m̂(σ) = (cos θ(σ), sin θ(σ)) in the local Cartesian
frame. In terms of the tangent vectors tµ = ∂µR = ∂R/∂σµ, the local
Cartesian basis êi = E

µ
i tµ, where components of E µi form a 2× 2

invertible matrix. E µi is known as the vierbein (“four legs" in German)
[27]. We reserve Greek letters for the coordinate (t) basis, and Latin
letters for the Cartesian (ê) basis. The e- basis is local, and can have
an arbitrary orientation in the tangent plane. Thus there is an O(2)-
freedom in its choice of the ê- basis. For deformable membranes the
square-gradient elastic free energy [28, 9]

Fθ =
KA
2

∫
(∂θ− A)2 dS, (10)
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where the spin connection A accounts for membrane curvature. The
components Aµ = (1/2) εij êi · ∂µêj, where ε12 = −ε21 = 1, ε11 =

ε22 = 0 is the antisymmetric symbol. In (10),

(∂θ− A)2 = (∂µθ−Aµ)g
µν(∂νθ−Aν),

the area element dS =
√
g dσ1 dσ2, g is the determinant of the metric

gµν = tµ · tν, and gµν is the inverse of gµν. The free energy (10)
is invariant under the local gauge transformation θ → θ+ψ, A →
A + ∂ψ.

The geometry of the membrane and the topology of the θ- field are
connected via [17]

∇× ∂θ = s n̂, (11)

∇×A = K n̂, (12)

where n̂ is the unit normal to the membrane,

s(σ) = 2π
∑
m

qm δ(σ− σm)/
√
g (13)

is density of disclination charges qm located at σm [17], and K(σ) is
the Gaussian curvature.

In what follows we first discuss the (Euler-Lagrange) equation of
equilibrium for Fθ corresponding to variations in the θ- field, keeping
the shape of the membrane fixed. It is straightforward to obtain the
θ- equation [17]

δFθ
δθ

= ∇ ·Dθ = 0, (14)

where we have introduced the notation Dθ = (∂θ− A), and the co-
variant divergence of a vector field V is given by

∇ ·V = (1/
√
g)∂µ(

√
gVµ)

. The variational problem of minimizing Fθ also gives the free bound-
ary condition. On the boundary R(b)(s) of the membrane parametrized
in terms of the arc-length s,

n̂(b) · ∂θ = 0, (15)

where the unit outward normal to the membrane boundary n̂(b) =

t̂(b) × n̂, with unit tangent to the boundary t̂(b) = ∂R(b)(s)/∂s, and
unit normal to the membrane n̂ (see fig. 8).

Next, we vary the shape R(σ) of the membrane, keeping the θ- field
fixed. For the shape variation we set

δR = tµ δR
µ
‖ + n̂ δR⊥, (16)

where δR‖ and δR⊥ are, respectively, the variations in the tangent
plane of the membrane and along its normal. Only the normal vari-
ations δR⊥ contribute to the bulk equations of shape equilibrium
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Figure 8: Darboux frame
{

t̂(b), n̂, n̂(b)

}
for a membrane with boundary.

(the Euler-Lagrange equations), whereas variations along the tangent
plane δRµ‖ (diffiomorphisms) contribute to the boundary conditions
[25]. In carrying out the shape variation, we wish to keep the θ- field
fixed (δθ = 0). A covariant (coordinate-independent) way of accom-
plishing this [29] is shown in fig. 9. In the figure the white curves la-
belled Σ and Σ ′ represent integral curves (field- lines) of the m̂- field
on the undeformed (M) and deformed (M ′) membrane respectively.
The m̂-field connects two nearby points R(σ) and R(σ + dσ) on Σ.
Upon shape variation along the membrane normal, R ′(σ) = R(σ) +

n̂(σ) δR⊥(σ), and R ′(σ+ dσ) = R(σ+ dσ) + n̂(σ+ dσ) δR⊥(σ+ dσ)

on Σ. The Lie-dragged vector m̂ then connects the points R ′(σ) and
R ′(σ+ dσ).

Figure 9: Lie dragging the m̂ - field.

We begin by finding the variation of the spin connection Aµ =

(1/2) εij êi · ∂µêj, with êk = E µ
k tµ. In the t- basis

δek = (δE µ
k + E ν

k δU
µ
ν ) tµ + E µ

k δVµ n̂, (17)
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where we used δtµ = δU
µ
ν tµ + δVµ n̂ with δU µ

ν = ∇νδRµ‖ + K
µ
ν ,

δVµ = ∇µδR⊥ +KµνδR
µ
‖ , with ∇ representing the covariant gradient

operator, and Kµν the curvature tensor. In the ê- basis

δek = ε l
k êl δ‖ + n̂ δ⊥, (18)

where δ‖,⊥ = δ‖,⊥(σ) are small variations. The term involving δ‖
corresponds to (infinitesimal) rigid anticlockwise rotation of the ê-
basis, and reflects the local gauge freedom. We fix the gauge by set-
ting δ‖ = 0 (this is most simply done by setting ê1 parallel to t1).
A comparison of (17) and (18) then gives δE µ

k = −E ν
k δU

µ
ν , and

δek = E
µ
k δVµn̂. Substituting for δek in δAµ = (1/2) εij δ(êi · ∂µêj)

gives δAµ = εijE αi δVαE
σ
j Kσµ. Using E αi E

σ
i = gασ and the prop-

erties of the antisymmetric symbol it can be shown that εijE αi E
σ
j =

εασ/
√
g = γασ (see appendix A.2), the unit covariant antisymmetric

tensor. Thus

δAµ = γασKσµ (∇α δR⊥ +Kαν δR
ν
‖ ). (19)

Although A does not transform as a vector (just as the Christoffel
connection, Γ ijk does not transform as a tensor), δA does transform
like one, as evidenced by (19). Using (19), we obtain

δFθ
δR⊥

= KA

[
γαβK

µ
β ∇αDµθ−K

µν(Dµθ)(Dνθ) −H(Dθ)
2
]

(20)

for the first variational derivative of the elastic free energy (10) with
respect to shape changes. In writing (20) we have discarded the term
KA (Dµθ)γ

αβ∇αK µ
β obtained through the variation, assuming single-

valued parametrization of membrane patches; γαβ∇αK µ
β = 0. The

second and third terms on the right hand side of (20) result from the
normal variations of the gµν and

√
g factors in the elastic free energy

(10) respectively.
Together with the known normal variations of the bend energy and

the surface tension terms (as given in for example in [25]) we have the
Euler-Lagrange equation for normal variation (also called the shape
equation)

δFθ
δR⊥

+
κ

2

[
2H(H2 −K) +∇2H

]
− 2σH = 0, (21)

for a membrane free of body forces. In (21) above, the first term is
given by (20).

The variational problem of minimizing the total elastic free en-
ergy (10) also yields free boundary conditions for membranes with
a boundary (edge). This is most conveniently done by describing the
bounding curve in the arc-length parametrization R(s), and employ-
ing a Darboux frame comprising of the unit tangent to the boundary
t̂(b)(s) = ∂R(s)/∂s, the unit surface normal at the boundary n̂(s), and
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the unit outward normal to the boundary n̂(b)(s) = t̂(b)(s) × n̂(s).
We use the notation ∇‖ = t

µ
(b)∇µ, ∇⊥ = n

µ
(b)∇µ, K‖ = t

µ
(b)t

ν
(b)Kµν,

K⊥ = n
µ
(b)n

ν
(b)Kµν, K‖⊥ = t

µ
(b)n

ν
(b)Kµν, D‖ = t

µ
(b)Dµ, and D⊥ =

n
µ
(b)Dµ. Corresponding respectively to variations along n̂(b), n̂, and

t̂(b), we have the following free boundary conditions accompanying
the shape equation:

KA
2

[
(Dθ)2 + (D⊥θ)

2
]
+
κ

2
H2 + κGK+ γkg + σ = 0, (22)

KA (D‖θ)K‖ − κ∇⊥H+ κG∇‖K‖⊥ − γK‖ = 0, (23)

κH+ κGK‖ = 0. (24)

2.3 coulomb gas model

As pointed out in [17], it is convenient to define the Airy stress func-
tion χ via Dµθ = γµν∂νχ so that the θ- equation (14) is identically
satisfied. However, χ has to obey the condition [17]

∇2χ = s−K (25)

that ensures compatibility between the shape of the membrane and
topology of the vector field embedded in it. To the lowest order, the
shape variation (21), that we have derived reduces to the “nonlinear,
hexatic von Kármán equation"

κ

KA
∇4f = (∂2yχ)(∂

2
xf) + (∂2xχ)(∂

2
yf) − 2(∂x∂yχ)(∂x∂yf), (26)

obtained by Deem and Nelson [17] using the Monge gauge height
function f(x,y). The free boundary conditions can also easily be recast
in terms of χ.

The formulation as developed above is amenable to be recast in
terms of the "source theory" of Schwinger [30]. Using Airy stress func-
tion (10) can be rewritten as,

Fθ =
KA
2

∫
M

(∇χ)2
√
g d2σ . (27)

The final free energy can be written in terms of source function
ρ(σ) as [17]

Fθ =
KA
2

∫ ∫
ρ(σ) G(σ,σ ′) ρ(σ ′) dS dS ′ , (28)

where the Green’s function G (σ,σ ′) is defined via

∇2σG
(
σ,σ ′)

)
=
δ(2) (R(σ) −R(σ ′))√

g(σ)
. (29)

Normal variation of (29) gives,

∇2δ⊥G = −∇µδVµ , (30)
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where δVµ = (Hgµν − 2Kµν) δR⊥∇νG. The equlibrium shape of a
membrane with tangent plane order were derived in [31] implicitly
assuming the Green’s function to be invariant with respect to shape
variation, but (30) above clearly shows this is not true. Further, we
have verified that variation in Fθ using (30) gives back the results (21)
derived in the previous section.

This formulation which is traditionally used in the context of mem-
branes can also to applied to liquid crystals such as Sm-C, Sm-C∗ etc.
We are in the process of applying this formalism to consider dispira-
tions in Sm-C∗ [32, 33].
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A
D I F F E R E N T I A L G E O M E T RY

a.1 derivation of the covariant version in terms of θ

The new, local, Euclidean basis vectors can always be written as a
linear combination of the tangent vectors in the coordinate basis:

êi = E
µ
i tµ , (31)

where êi , i = 1 , 2, forms the new, orthonormal basis, tµ = ∂R/∂σµ,
µ = 1 , 2, are the tangent vectors in the old coordinates σ, and the
components of E µ

i form a 2 × 2 invertible matrix. Following stan-
dard notation, we reserve Greek letters for the coordinate basis, and
Latin letters for the orthonormal basis. In terms of the local orthonor-
mal basis êi , the coordinate basis tµ can therefore be written by
switching the indices on the vielbein,

tµ = E i
µ êi , (32)

where

E
µ
i E

j
µ = δ

j
i ,

E i
µ E

ν
i = δνµ , (33)

where δνµ , δji are Kronecker deltas. Since the new basis êi is orthonor-
mal,

gµν e
µ
i e
ν
j = ηij , (34)

where gµν = tµ · tν is the coordinate metric and is the ηij is the
Euclidean (flat) metric. The coordinate metric

gµν = e i
µ e j

ν ηij . (35)

Using the orthonormal basis and the vielbein, any vector V =

Vµ tµ in the tangent plane of the membrane can be written as V =

V i êi , with V i = EiµV
µ. In the Euclidean basis, we can now express

any vector in the required form V = V (cos θ , sin θ), where V is
the magnitude of V. The two metrics can be used to raise and lower
the indices on vielbeins, for example Eµi = gµνE

ν
i . Vielbeins fa-

cilitate conversion of tensors into the Euclidean basis and vice versa.
The local orthonormal frame can have an arbitrary orientation in the
tangent plane. It is important to note that there is an O(2)- freedom in
choosing the local, orthonormal basis at a point on the membrane.
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Having defined θ, we now define covariant derivatives of a vector
field Vi(σ) written in the orthonormal basis. In the coordinate basis
the covariant derivative

∇µVν = ∂µV
ν + Γ νµλV

λ , (36)

where the term with the Christoffel connection Γ νµλ accounts for the
change in V(σ) under parallel transport through dσµ on the curved
surface [6]. In analogy, let us write

∇µV i = ∂µV
i + ω i

µ jV
j , (37)

and investigate the new connection ω i
µ j that, like the vielbein, has

mixed indices.
The strategy for expressing the new connection in terms of the

Christoffel connection is to compare the expression for the covariant
differential of a vector (a tensor, and therefore a coordinate indepen-
dent object) in the coordinate basis to that written in a mixed basis
(using vielbeins). The covariant differential in the coordinate basis

∇V = (∇µVν)dσµ ⊗ tν
= (∂µV

ν + ΓνµλV
λ)dσµ ⊗ tν. (38)

In the local, orthonormal basis

∇V = (∇µVi)dσµ ⊗ ti

= (∂µV
i +ω i

µ jV
j)dσµ ⊗ ti

= {∂µ(E
i
νV
ν) +ω i

µ jE
j
λV
λ}dσµ E σi ⊗ tσ

= Eσi(E
i
ν∂µV

ν + Vν∂µE
i
ν +ω i

µ jE
j
λV
λ)dσµ ⊗ tσ

= {∂µV
ν + Eνi(∂µE

i
λ)V

λ + Eνiω
i
µ jE

j
λV
λ}dσµ ⊗ tν. (39)

Thus
Γνµλ = Eνi(∂µE

i
λ)V

λ + Eνiω
i
µ jE

j
λV
λ, (40)

or,
ω

i
µ j = E

i
νΓ
ν
µλE

λ
j − E

λ
j ∂µE

i
λ . (41)

The new connection in the mixed basis ω i
µ j called the spin connection

because it is used to define the covariant derivatives of spinor fields
in curved space-time [28]. The spin connection is not a tensor. Note
that the placement of the Latin indices (up or down) is not important since
these refer to a local, orthonormal basis.

The relation (41) can be used to show that the covariant derivative
of the vielbein vanishes. First, we note that the covariant derivative
of a mixed, second rank tensor written in the mixed (part- old, part-
new) basis

∇µT i
σ = ∂µT

i
σ − Γ ν

µσ T i
ν +ω i

µ jT
j
σ, (42)
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where we have used the Christoffel connection as well as the spin
connection. Next, we multiply the expression for the spin connection
in terms of the Christoffel connection (41) by Ejσ to write

ω
i
µ jE

j
σ = EiνΓ

ν
µσ − ∂µE

i
σ. (43)

A comparison of (42) and (43) above shows that

∇µEiσ = 0, (44)

a result that is known as the “tetrad postulate".
We now show that the spin connection is antisymmetric in its Latin

indices, using the fact that the covariant derivative of the metric van-
ishes (i.e., the metric is compatible).

∇µηij = ∂µηij −ω k
µ i ηkj −ω

k
µ j ηki

= −ωµij −ωµji

= 0, (45)

implying ωµij = −ωµji. This antisymmetry allows us to write

ωµij = εijAµ, (46)

thus introducing the vector field A (in two dimensions ωµij has only
two independent components, given that it is antisymmetric in the
Latin indices). We now derive an explicit formula for A, using the
expression (41) for the spin connection in terms of the Christoffel
connection. Notice that the Christoffel connection

Γ
ν

µλ = tν · ∂µtλ, (47)

where we have used ∇µtλ = Kµλ n̂ = ∂µtλ − Γ
σ

µλ tσ. Using the prop-

erties of vielbeins and substituting for Γ ν
µλ in (41),

ω
i
µ j = E

λ
j

(
êi · ∂µtλ − ∂µE i

λ

)
= êi ·

[
∂µ(E

λ
j tλ) − tλ ∂µEλj

]
− E λj ∂µE

i
λ

= êi · ∂µêj − Eiλ∂µE
λ
j − E

λ
j ∂µE

i
λ

= êi · ∂µêj, (48)

i.e.,

Aµ =
1

2
εij êi · ∂µêj, (49)

where εij is the antisymmetric (Levi-Civita) symbol.
The spin connection involves derivatives of the local orthonormal

basis vectors, and tells us how the local orthonormal basis changes its
orientation along coordinate tangent vectors. As we have seen the cur-
vature tensor is the projection of the the derivatives of the coordinate
tangent vectors onto the surface normal. We therefore expect that the
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spin connection and the curvature tensor to be related. The form of
covariant derivatives defined using Christoffel connection and spin
connection is identical, moreover, the Riemann curvature can be writ-
ten solely in terms of the Christoffel connection and its derivatives.
This buttresses our expectation. In fact, show below that the curl of
A is the Gaussian curvature (this result is true for two-dimensional
surfaces embedded in three-dimensional Euclidean space).

To do this, it is convenient to write the Riemann curvature tensor in
the mixed basis. Using vielbeins, and the symmetry Rαβµν = Rµναβ,
we have

Rµνij = Rµναβ E
α
i E
β
j = E

α
i E

β
j Rαβµν = E αi gαλ E

β
j g

σ
β Rλσµν

= E σj Eiλ
(
∂µΓ

λ
σν − ∂νΓ

λ
µσ + Γ

λ
µαΓ

α
νσ + Γ

λ
ναΓ

α
µσ

)
, (50)

where we have written the Riemann curvature tensor in terms of the
Christoffel connection in the last step. We now claim that the spin
curvature [34]

Sµνij = ∂µΩνij − ∂νΩµij +ΩµikΩ
k
ν j +ΩνikΩ

k
µ j, (51)

obtained by crassly “replacing" Christoffel connections in (50) by spin
connections is identically equal to Rµνij. Proving the claim is straight-
forward but tedious. We do not give the details of the calculation, ex-
cept pointing out that it is based upon the identity (41) relating spin
connection to Christoffel connection, judicious insertion of vielbeins,
and their properties (32) - (35) [34].

a.2 anti-symmetric tensor

The term εijEi
αEj

β is anti-symmetric in α,β, and(
εijEi

αEj
β
) (
εlkEk

µEl
ν
)
=
(
gαµgβν − gανgβµ

)
. (52)

Thus εijEi
αEj

β = εαβ√
g = γαβ (Levi-Civita tensor [6]).
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C L A S S I F I C AT I O N O F 2 D C RY S TA L G R O U N D
S TAT E S

A carbon nanotube can be made by rolling graphene sheets into
cylinders of ∼ 1 nanometer diameter. Due to hexagonal symmetry
of graphene one can choose a range of rolling directions (see fig. 10,
taken from [35]) w.r.t basis vectors of the lattice. Experimental [36]
and theoretical [37] analysis show that the mechanical and electronic
properties change drastically with the rolling direction. Thus there is
a need to characterize the different structural properties of the tube. If
{~a,~b} are the basis vectors of the hexagonal lattice, then two integers,
[m,n], corresponding to rolling vector (m ~a+n ~b) uniquely specifies
the curvature and rolling direction of a tube.

Figure 10: Based on the rolling direction of graphene, the nano tubes are
classified as, A: Arm chair, B: Zig-Zag, C: Chiral.

In addition to tubular structures carbon nanotori have been ob-
served experimentally [38] and show high paramagnetic moments.
This paramagnetic moment has been shown to depend critically on
the crystalline structure [39]. Here along with rolling vector one has
to additionally specify the length of the tube used to form the torus.
Also, electronic properties of fullerenes with higher genus have been
studied numerically [40] (see fig. 11, taken from [40]).

To study elastic properties of above mentioned systems one needs
to specify the ground/reference state. In linear elasticity, where the
strain uij =

(
gij − ḡij

)
, the difference between the metrics corre-

sponding to deformed body and that of the undeformed (reference)
state of the body, usually the reference state ḡij = δij, the Kronecker
delta. On a manifold, even though the metrics coincide locally at each
patch, globally they may differ. Consider the case of a torus. Torus ad-
mits flat, everywhere constant metric in 4d [41] (see fig.12). But it still
can have structures which cannot be deformed to each other smoothly
(fig. 13).

23
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Figure 11: High genus fullerenes with heptagons and hexagons (no pen-
tagons) holey balls. (a) Two-fold axis of a 2040-atom genus 11

fullerene. (b) Five-fold axis. (c) Cut perpendicular to the five-fold
axis. (d) A genus 5 holey ball with 1896 atoms.

Figure 12: A circle can be made straight (geodesic), such that its curvature
w.r.t. the surface it is sitting in (geodesic curvature) is zero, by
embedding the circle on a cylinder as shown in the left. Similarly
a flat (zero Gaussian curvature) torus can be obtained by embed-
ding a flat cylinder in a 3d box, such that the open ends of the
cylinder lie on opposite faces of the box as shown in the right
figure. And then the opposite faces of the box are identified with-
out stretching in 4d. On identification of the opposite faces, the
cylinder becomes a torus. Notice that as in the case of the circle,
the torus is flat w.r.t. the box.

Figure 13: Chocolate-glazed doughnuts: Two different covers of a torus, of
the same geometry that are not deformable into each other, which
are not deformable to each other. With the loop formed by the
boundary of chocolate representing a coordinate axis, the two
tori have different winding numbers.
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This shows that although ḡij is Cartesian in each patch, its global
structure (like winding number) is left unspecified. To proceed with
linear theory of elasticity, this structure has to be fixed. So what
are the different ḡij’s possible? how many are there and how to
parametrize them? These are the questions of interest. In this chapter
we classify the different possible reference metrics, ḡij, in the sense
made clear in sec. 3.3.2.

The case of torus with different possible metrics has been widely
studied in mathematics literature from different points of view (Ale-
braic geometry [42], complex analysis [43], differential topology [44],
number theory [45]). Although its relevence to study of crystals has
been pointed out [34, 46, 47], no serious analysis exists in literature.

Further the crystal can have topological defects such as disclina-
tions and dislocations (see fig. 15). Presence of defects in crystal leads
to internal stresses. A collection of defects are modeled in the con-
tinuum as defect density field. A 2d crystal can relax its stress by
buckling into the 3rd dimension. The buckled shape of a 2d crystal in
presence of a single disclination was studied in [14]. Their asymp-
totic analysis shows that for a strain-free case (i.e. gij = ḡij) the
shape tends towards a cone, with the defect sitting at the apex. At
the nanoscale level, when virus capsids are modeled as made up of
2d elastic sheets [48], they have a facetted surface, with disclinations
sitting at cone like regions. Hence contrary to the realization of ḡij as
a smooth differentiable manifold, this chapter proposes that the refer-
ence space be generalized to an orbifold, a surface with conical singu-
larities. In contrast, recent studies on crystal growth [49] in presence
of defects, the reference space, ḡij, is modeled as non-Euclidean, i.e.
ḡij 6= δij, but smooth differentiable Riemannian manifold.

Homotopy theory has been used for description and classification
of defects in ordered media [10]. But as noted in [10] and [50], homo-
topy theory fails to classify all possible distinct defects in media with
broken translational order, and predicts some non-existent defect con-
figurations. Also one needs to build a higher dimensional abstract
space, internal space/order parameter manifold , to analyze the properties
of defect. The approach taken in this chapter is akin to Volterra con-
struction [1] (cut-deform-paste). The operations, as in Volterra con-
struction, are done in real space. This gives an operational definition
of generating topologically distinct configurations and classify them.

Poénaru [50] suggests adopting foliations, used in dynamical sys-
tems theory, to study systems with broken translational symmetry.
This approach was explored in [46, 47]. Here the metric is analyzed
from a quadratic differential point of view and its properties are stud-
ied to get a description of defects and textures in vector ordered
medium. This chapter expounds on the analogy and similarities with
dynamical systems theory to extract some useful results. Here special
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flat surfaces called translation surfaces are used to study the different
configurations of the crystal.

Advantage of the formulation used in this chapter is that it is
not merely classification, it also gives an operational method of con-
structing topologically distinct crystal configurations (such as wind-
ing number, disclination, dislocation) on surfaces of all genus. This
parallels the Volterra construction which is used to insert defects into a
continuum media, where sections of material are removed or inserted.
Fig. 14 shows the process over a tubular section enclosing the defect
line.

Figure 14: Volterra construction in 3d: The figure demonstrates the effect of
defects presence on concentric cylindrical sections of the medium.
The coordinate system on the top-left of each configuration indi-
cates the action on the lower cut face.

Volterra construction in 2d involves removing or inserting sectors
at a point. Here a dislocation can be modeled as a disclination dipole
(see fig. 15). The approach described in this chapter in a way general-
izes the Volterra construction.

Figure 15: Volterra construction in 2d: Figure on left is the construction of a
disclination and the one on right is a dislocation formed by a pair
of equal and opposite disclinations.

This chapter is organized as follows: in sec. 3.2 we motivate the
need to define surface with crystalline order through the gift wrap-
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ping problem and the reference space is modeled using orbifolds.
Mapping class groups are used for classification of reference space
based on Dehn twists. A finer classification using partial Dehn twists
is provided in sec. 3.3 using translation surfaces. Further we construct
a separatrix to decompose the surface into cylinders and classify
them. Sec. 3.4 gives a presciption to include disclinations and dis-
locations. Finally all surfaces with crystalline order with half-integer
strength disclinations and dislocations are completely classified by a
labeled separatrix.

3.1 crystalline order on a surface

Crystal order breaks continuous translation and rotation symmetries.
The continuous symmetries are reduced to discrete symmetries. Com-
patibility conditions constrain the type of discrete symmetries. For
example, the crystallographic restriction theorem [51] restricts the ro-
tational symmetries of a crystal to 2-fold, 3-fold, 4-fold, and 6-fold
(quasi-crystals are not considered here).

Different possible crystal symmetries in 2d fall under the class of
Wallpaper groups. Fig. 16 (taken from [52]) shows the 17 possible dis-
tinct groups. The discrete translation symmetry is captured by the
lattice. A lattice is a collection of points in E2 that are described in 2d
by

~R = n1 ~a1 +n2 ~a2 (53)

n1,n2 ∈ Z and ~a1, ~a2 ∈ R2 are the primitive vectors. For the analysis
below only the effect of breaking continuous symmetry is of concern.
In what follows we use a square lattice to simplify the discussion.
This doesn’t lead to a loss of generality.

3.2 gift wrapping problem

To make the problem more intuitive to handle, it is rephrased as the
gift wrapping problem.

Statement: Given: (see fig 17)

I) A 3d object to be gift wrapped, O, with no boundaries, i.e. if Σ
is the surface of O, then ∂Σ = 0,

II) An infinite elastic sheet of gift wrapping paper, U, with a wall-
paper group (G) on it,

with the following restrictions (fig. 18)

(a) Wrapping paper can be cut into simply connected (any loop in it
can be shrunk to a point) pieces of any shapes and sizes. We will
call each such piece a patch,
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Figure 16: 17 possible wallpaper groups

Figure 17: The wrapping problem.

(b) The paper can be stretched, compressed or sheared elastically (no
tearing allowed),

(c) While wrapped, the paper should not have wrinkles and folds on
the surface (one-to-one),

(d) On overlaps, the patterns must match on both patches (so that the
patching process is not visible),

(e) The wrapping must cover all surface of the object, but can leave
out pin holes (to accomodate defects).
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Figure 18: Schematic of wrapping rules:

Figure 19: Figure shows how three patches of wrapping paper can be glued
together such that the pattern is seamless and leaves a pin hole
at the point of intesection of boundaries of all three patches. The
pinhole left is the core of a +1/2 disclination (π rotation).

The same object can be wrapped in many different ways (wrapping
is an art). Given a wrapped object, the wrap can be deformed elasti-
cally to get another wrap that looks different. However certain wraps
cannot be deformed into each other via continuous deformations (see
fig. 13). Note that the torus with the twist is free of topological defects
such as dislocations and disclinations. This naturally leads to the fol-
lowing questions:

• How many such different wrappings are there?

• How does this number depend on the object O and point group
G?

In what follows we will call the gift wrapped surfaces as surfaces
with crystalline order. Formally it is defined as

Definition : A surface Σ in R3 together with

I) patches Uα which are subsets of R2,

II) differentiable maps φα : Uα → Σ,

is a surface with crystalline order with point symmetry group G iff:
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a)
{
Σ−

⋃
α
φα (Uα)

}
should be finitely many points (The number of

pin holes should be finite),

b) The transition function,
(
φ−1
α ◦φβ

)∣∣
overlap

, defined on the over-
lapping patches is discrete and belongs to G (see fig. 20).

Figure 20: Charts and maps on a surface with crystalline order. Here a part
of the surface sitting in 3d is covered by two patches with square
lattice symmetry and a transition map of rotation by π

2 .

As might be observed, the above definition is similar to that of a
manifold. The surface with crystalline order is a finitely punctured 2d
manifold with restricted discrete symmetery on the transition maps.
The neighbourhood of a puncture is called orbifold [41], formally de-
fined as a generalization of a manifold, wherein the space locally
looks like the quotient space of a Euclidean plane under the action
of the crystal point group, G. A cone with a positive deficit angle is a
canonical example of an orbifold (fig. 21). In general orbifold allows
negative deficit angles as well. Thus the reference space of a crystal
with disclination is an orbifold.

Figure 21: An orbifold formed by quotienting a plane by a discrete crystal
point group is a cone. If the group is a reflection along a straight
line, as in the right, then one gets a half plane with a boundary.
The grey area in the plane has a one-to-one map to the orbifold.
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To study the different classes of surfaces with crystalline order it
is essential to consider deformations that are not smooth. One such
deformation is a Dehn twist. Dehn twist is an operation of removing
a cylindrical section from a surface, twisting it around once such that
the boundaries remain the same, inserting it back into the surface.
Dehn twist relatively rotates the the boundaries by 2π (see fig. 22).

Figure 22: Figure on the right shows the operation of Dehn twist on a cylin-
drical section. The effect on the winding number is shown in the
left figure. Observe that there are no deformations at the bound-
aries.

In contrast to any operations like Dehn twist, a small smooth de-
formation can be represented by a tangent vector field on the surface.
The vector fields on M form a group, that is an infinite dimensional
group called Diff0(M). It is a subgroup of the diffeomorphism group,
Diff(M), which in addition to small deformations, can also twist
cylindrical sections of a surface and change the winding numbers
of loops on them.

To study the full non-linear elasticity one needs to consider the
whole infinite dimensional group Diff(M). Linear elasticity theory is
concerned withDiff0(M). To study the non-trivial deformations lead-
ing to twist and defects one needs to neglect or quotient out the small
deformations. We therefore define mapping class group MCG(M) :=
Diff(M)
Diff0(M) .

The theory of mapping class groups of surfaces is an active area
of research in mathematics [53]. Dehn [54] showed that MCG(M)

of a compact oriented surface is generated by Dehn twists on finite
number of sections.

3.2.1 Case study: Torus MCG(T2)

The mapping class group of a torus demonstrates the essential idea
of Dehn twist and gives a concrete example for study. The plane
and torus are the only topological spaces which can be covered by
crystalline patches without defects or boundaries. The mapping class
group of a plane is isomorphic to identity [53], hence trivial.

Torus provides the simplest non-trivial example for studying map-
ping class groups. One can build a defect free torus from a crystalline
wrap with a single parallelogram patch, with its vertices on lattice
points (see fig. 23). Using complex numbers simplifies the following
analysis. The parallelogram is uniquely specified by a pair of vectors
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or complex numbers {ω1,ω2}, such that Im
(
ω1
ω2

)
6= 0. This pair gen-

erates a set of lattice points

Ω(ω1,ω2) = {m ω1 +n ω2| m, n ∈ Z} , (54)

and the fundamental region spanned by the pair is (see fig. 23)

F(ω1,ω2) = {α ω1 +β ω2| α, β ∈ [0, 1]} . (55)

Figure 23: Generation of different surfaces with crystalline order on a torus
by Dehn twist. First column shows the vectors and the fundamen-
tal regions that form the torus. Last column shows the geometri-
cally equivalent tori with different winding numbers.

The fundamental region is rolled up and parallel sides are identi-
fied to form a torus. The same Ω can be generated by any other set
of vectors related to old ones by

Ω(ω1,ω2) = Ω(ω ′1,ω ′2)

⇒

(
ω ′1

ω ′2

)
=

(
a

c

b

d

)(
ω1

ω2

)
, a, b, c, d ∈ Z. (56)

To preserve the area of F in both basis, the determinent of the matrix
should be +1. The above transformations form the group SL(2, Z),
Special Linear group over Z, which is a set of 2× 2 matrix of integers
with determinent unity. Thus the mapping class group of the torus,
MCG(T2) is isomorphic to SL(2, Z). The group has infinitely many
elements that are generated by two transformations, namely S : z →
−1z and T : z→ z+ 1 , for all complex numbers z [41].
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Figure 24: Different class of surfaces are shown, only surfaces in the first
row are analyzed below.

3.2.2 Higher genus compact, closed, orientable surfaces

Since closed non-orientable surfaces are not embeddable in R3 they
are not considered in elasticity theory. All closed, compact, orientable
surfaces are topologically completely classified by the genus [41] (fig.
24). The universal procedure to obtain mapping class group using
Dehn twist on a surface of any genus is discussed in the mathematics
literature [53]. We just quote the results.

Theorem (Dehn-Lickorish theorem): [53] For genus g > 0, the map-
ping class groupMCG(M) is generated by finitely many Dehn twists about
nonseparating simple closed curves(A simple closed curve that doesn’t split
up the surface into two disconnected surfaces with boundaries, see fig. 25).

Theorem (Lickorish generators): [53] For genus g > 1, the Dehn
twists about the curves a1, ...,ag,m1, ...,mg, c1, ..., c(g−1) shown in fig.
25 generate MCG(M).

Figure 25: The figure at the top show separating curves. Bottom row shows
the Lickorish generators for a surface without defects.
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The closed curves/loops in the 2nd theorem specify the direction
in which a cut is to be made and a cylindrical section extracted (see
fig. 25). A canonical Dehn twist is applied on these sections and glued
back into the surface. Point topological defects such as disclinations
and dislocations are modeled as holes (called marked points in the
mathematics literature [53]). In presence of defects additional curves,
which are not deformable to each other have to be included in the
generating set. For example a torus with a pair of disclocations shown
in fig. 26 has three generators compared to two in the defect free case.

Figure 26: The three generating curves on a torus with two defects are
shown. The corresponding case for a dislocation pair is discussed
in sec. 3.4.0.1.

3.2.3 Need for finer structure/classification

MCG(M) does not fully classify and generate all the different configu-
rations possible for the crystalline surface. The Dehn twists relatively
rotated the two boundaries of the cylindrical sections by 2π. Since
the crystal has a lattice, one can twist by an integer number of lattice
spacings. Thus based on crystal symmetry and the boundary of the
exracted cylinder, the twists can be fractions of 2π (see fig. 27).

From fig. 28 we see that the boundary curve has to be along a
crystallographic axis1 , in order to apply a partial Dehn twist. In-
finitely many configurations related by smooth deformations belong
to a single class of surfaces with crystalline order. These deformations
change the local orientation of crystallographic axes. Thus it is best
to work with the undeformed reference state ḡij for classifying sur-
faces with crystalline order. From the previous section we know that
ḡij is flat and has conical singularities. The structure and properties
of flat surfaces with isolated conical singularities are studied in dy-
namical systems in the context of 2d billiards table problem [20]. The
geodesics on these flat surfaces are straight lines. With the identifica-
tion: geodesics on flat surfaces⇐⇒ crystallographic axes, the properties of

1 The crystallographic axes are lines along the basis vectors that we can draw in the
crystal lattice. These will define a coordinate system within the crystal
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Figure 27: Comparison between full and partial Dehn twists

Figure 28: Problem with implementing partial Dehn twists: Since in the case
of Dehn twists the boundary is not deformed the orientation of
cut made to extract the cylindrical section doesn’t matter. But for
partial Dehn twist the cut has to be along the crystallographic
axis. The cylindrical sections shown in the bottom row can un-
dergo Dehn twists, but any partial twist will make them incom-
patible to insert back into the surface.

geodesics in dynamical systems can be carried over to study surfaces
with crystalline order.

In the next section we discuss how any surface can be deformed to
a flat surface with conical singularity.

3.3 flat surfaces

The elastic deformations carried out in the previous section using
Diff0(M) are in-plane. One can also deform the surface along its
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normal. The Diff0(M) acts as reparametrization of the surface and
retains the Gaussian curvature KG. Deformations along normal can
change KG. For a closed compact surface of genus g with no bound-
aries, the integral of KG is related to genus g by the Gauss-Bonnet
theorem as ∮

KG
√
g d2σ = 2π(2− 2g). (57)

This implies that a torus, g = 1, can be deformed to have zero Gaus-
sian curvature everywhere. But a sphere or g > 2 surfaces cannot be
deformed into those with KG = 0 everywhere. A surface of genus g
can be deformed into a constant Gaussian curvature surface. If g = 0

(sphere) the constant curvature is positive. Similarly for g = 1 (torus)
it can have zero curvature everywhere. For genus g > 2, , curvature
can be made −1 everywhere. This is the essence of the Uniformization
theorem[41].

Figure 29: Flat surface and constant curvature surfaces form the extreme
models analyzed in this chapter. Flat surfaces have planar faces,
straight edges and isolated conical singular points and are ideal
for studying the properties of geodesics.

On the other hand a sphere can be flattened to a cube (fig. 29),
such that mean curvature is non-zero along the edges and Gaussian
curvature, KG 6= 0 only at the corners of the cube. These singular
points are locally conical in shape. For a cone with deficit angle α (fig.
30), ∫

Σ

KG
√
g d2σ = α

⇒ KG = α
δ(2)(~r−~r0)√

g
(58)

A flat surface has zero Gaussian curvature everywhere except at iso-
lated points. As mentioned in the previous section a flat surface is
simpler to work with as the geodesics on any patch which does not
include the conical singularity are straigth lines. These patches can
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Figure 30: To construct a cone out of paper, a sector of deficit angle α is
removed and the cut edges glued together. Then the cone is flat,
i.e. Gaussian curvature is zero, everywhere except the apex.

be flattened into a plane without stretching. This flattening also pre-
serves crystalline symmetries. Defects can be located at the isolated
singular points.

Now if a sphere is flattened to a cube, then it has 8 singular points
corresponding to its corners. Each corner has a deficit angle of π2 , thus
a +14 disclination. Therefore a sphere disclinations of total strength
+2, and a deficit angle of +4π as expected from Gauss-Bonnet theo-
rem (sec. 3.3). As shown in fig. 29, a genus one surface (torus) has
eight +14 disclination on the outer corners and eight −14 disclination
on the inside corners, which cancel each other. Hence total deficit
angle for a torus is zero. Similar calculation for a genus two surface
shows that there are eight more −14 disclinations corresponding to a
total deficit angle of −4π. From the Gauss-Bonnet theorem it follows
that for g > 2 the surface should have at least one defect.

In the next section we describe a particular representation of flat
surfaces with conical singularities (translation surfaces) of any genus,
that is best suited to exploit the properties of geodesics as described
in the theory of dynamical systems.

3.3.1 Translation surfaces

In this section we describe the construction of translation surfaces. To
represent the translation surface of arbitrary genus g, we proceed as
follows : Let 2g vectors, ~vi not all collinear be such that

~vi = ni ~a+mi ~b, ni,mi ∈ Z; i ∈ {1, 2, ...2g}

These vectors, as an ordered set {~v1,~v2, ...~v2g} , define a path P

in the lattice space (see fig. 31). Define another path P ′ with the re-
verse ordered set, {~v2g,~v(2g−1), ...~v1}. Both paths P and P ′ have same
start and end points by definition. If the paths don’t intersect, they
form a loop enclosing a polygon, that has all its vertices lying on
lattice points. Now glue/identify the sides corresponding to the pair
of vectors with the same label ~vi in P and P ′. The surface thus ob-
tained will have genus g. This can be verified by calculating the sum
of deficit angles (or interior angles) at each vertex of the patch, and
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using Gauss-Bonnet theorem. Thus a genus g, closed compact sur-
face without boundary can be covered by a single patch of wrapping
paper. Fig. 31 demonstrates the above construction for a genus two
surface.

Figure 31: Construction of paths P and P ′ on the crystalline lattice with prin-
cipal crystallographic axes along ~a and ~b. The horizontal lines
as well as the vertical lines of the lattice represent the geodesics.
Here sum of all internal angles φi’s equals π(n− 2), for an n-gon.
Hence the total deficit angle and the integral of Gaussian curva-
ture is −4π, implying it is a genus two surface by Gauss-Bonnet
theorem (57).

This construction gives a closed surface with genus g and one point
where all the vertices of the polygon will be glued together (see fig.
32). Hence the defect point will have an excess angle of 4π(g− 1). Fig.
32 demonstrates the gluing process to get a genus two surface.

Borrowing terminology from dynamical systems [20], the horizon-
tal geodesics (principal crystallographic directions in the crystal), as
shown in fig. 33 continue to be horizontal, flow in the same direction
as they cross any edge, and reemerge on the other identified edge.
Hence the surface can naturally be given a global direction. The sur-
faces thus generated are called translation surfaces as the tangent vec-
tors to the geodesics are only translated to different positions when
crossing an edge. Since the geodesics are always horizontal they do
not self intersect. Hence the parallel geodesics foliate the surface. The
crystallographic axes, being straight lines form the periodic geodesics
by construction.

We have thus succeeded in representing an arbitrary genus surface
with crystalline order having integral strength (integer multiple of
2π) disclinations. In order to implement partial Dehn twist, we need
to break up the translation surface into cylindrical sections. In the
following section we demonstrate how this is done.
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Figure 32: First row shows the construction of a torus and a handle. Second
row demonstrates the sequence of operations to build a genus 2

surface. Here the sides of an octagon (similar to the one of fig.
31) with identical markings are glued together. All vertices of the
octagon meet at a defect point with disclination strength −1. The
last row shows how a genus two surface can be cut open and
flattened out into an octagon.

Figure 33: The exit and reemergence of horizontal lines (geodesics) into the
polygon with identified (glued) edges. Being a translation surface,
all geodesics continue to flow in the same direction.

3.3.2 Decomposition of the translation surface into cylinders: Separatrix
diagram

We now give a prescription to construct a ribbon graph, called the
separatrix, to represent a translation surface. The separatrix helps to
break-up the surface into cylindrical sections on which partial Dehn
twists can be applied to generate different surfaces with crystalline
order.

The horizontal geodesics through the vertices of the polygon formed
by P and P ′ are the critical geodesics (see fig. 34). They start and end
on vertices, and hence connect two defects on the surface. We now de-
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velop each critical geodesics into ribbons by including regions on the
surface in the neighborhood of the critical geodesic upto the nearest
horizontal geodesics on both sides.

We now give a prescription to construct the separatrix from the
polygonal translation surface with all critical geodesics developed
into ribbons.

1. Starting from the polygonal translation surface identify the edges
with similar markings. Thus we obtain the actual surface with
crystalline order embedded in 3d space, with the ribbons em-
bedded in the surface (see fig. 35).

2. Retaining only the ribbons remove all the other portions from
the embedded surface to get the separatrix.

However it is difficult to draw figures for obtaining the separatrix
for higher genus surfaces with defects. The alternative way to ob-
tain the separatrix is to interchange the order of the operation de-
scribed above. This alternative procedure has the further advantage
that beginning with the translational polygon surface decorated with
ribbons, drawn on a piece of paper, one can obtain the separatrix
by cutting out ribbons with scissors and joining them by identifying
similarly marked edges. The schematics in fig. 3.3.2 demonstrates the
procedure.

Figure 34: The trace of a horizontal critical geodesic that starts from one ver-
tex and ends at another. There are other critical geodesics. For
example the horizontal geodesic begining at the origin. This par-
ticular geodesic starts at a vertex and directly ends at a vertex.
Figure on the right shows the development of a critical geodesic
into a ribbon.
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Figure 35: The ribbons on a polygonal translation surface (torus) are marked.
Edges with similar markings are glued together to get the actual
surface with crystalline order. Then ribbon is cut out of the sur-
face to get the separatrix.



42 classification of 2d crystal ground states

Figure 36: Top row shows the alternate construction of separatrix for a torus.
The grey regions in the patch are the ribbons, that are to be cut out
and glued together. Though the two tori have different crystalline
order (differs by a partial Dehn twist) the separatrix are the same.
It needs a label to further distinguish them. Similar construction
is carried out for a genus two surface in the second row. The
polygonal translation surface at the bottom for the genus two
surface is an octagon, with three vertices on the bottom edge (one
is hidden).
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As shown in fig. 3.3.2 the ribbon edges of the separatrix of genus
two surface forms loops. To reconstruct the actual surface all one has
to do is connect two loops by attaching cylindrical sections (see fig.
38). Each loop in the ribbon is labeled with width, height and twist
of the cylinders to be attached. The lengths are measured in terms of
number of lattice points through which the geodesics pass through.
Separatrix along with the labels uniquely specifies the surface with
crystalline order. Fig. 37 and 38 demonstrates the labeling and recon-
struction process for a genus two surface.

Figure 37: Example to demonstrate the labeling: Separatrix for a genus two
surface which differ by a partial Dehn twist are shown. The num-
ber in box for the separatrix are the label (width, height, twist
of cylinderical sections). The calculation of twist is shown in the
bottom-left figure.

We have thus succeeded in classifying surface with crystalline or-
der completely with partial Dehn twist and integer strength disclina-
tions, using separatrix. We now move on to include fractional strength
topological defects (disclinations and dislocations).
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Figure 38: Reconstruction of the actual surface with crystalline order from
the separatrix, by attaching cylinders. There are four loops corre-
sponding to the separatrix on the left. Based on the labels (width,
height and twist of cylinder) on the loops, cylinders are attached
to get the actual surface with crystalline order. In the first step
the separatrix is represented by a disc with holes having bound-
aries C2, C3, C4. The disc has a boundary C1. In the second step
C3 and C4 are connected by a cylinder, whose width, height and
twist are given by the label on C3 and C4. Same procedure is
implemented on C1 and C2 in the last step.

3.4 inclusion of half-integer strength topological de-
fects

Consider the modification of a flat translation surface shown in fig. 39.
The construction shown in fig. 39 introduces four defects, two pairs
of +12 and −12 strength disclinations at the end points of ~a and ~b.

Figure 39: A torus is generated by two vectors. Disclinations are included
into the torus by partitioning the horizontal vector into three vec-
tors, (~B, ~C, ~D) and then replacing one of them, ~C, by two vertical
vectors, (~a,~b), and one horizontal vector, ~c. Observe that the in-
ternal angle at the vertex corresponding to the starting point of
~a is (φ1 +φ2) = π, and hence a disclination of strength +12 . The
last figure shows how any vector can be decomposed into a hor-
izontal and vertical vector, to implement the above operation of
including defect. Using the above approach more defects can be
introduced by partitioning horizontal vectors, ~B, ~D or ~c.

Tracing the horizontal geodesics on the polygonal surface shown
in the center fig. 39, you can see that when the geodesic exits the
polygon at the newly introduced vertical vectors ~a or ~b, it reemerges
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with reversed direction (see fig. 40). The surface shown in fig. 40 is no
longer a translation surface. Although the direction of geodesics are
reversed, they continue to be horizontal and thus these surfaces will
be refered to as horizontal surfaces. Note that as in translation surfaces
the horizontal geodesics in horizontal surfaces either start and end
on defects or close on themself, and never self intersect. Given these
properties one can construct a separatrix that will decompose the
surface into cylinders [55].

Figure 40: Schematic to demonstrate regions in a torus with defects where
the geodesics change directions on crossing over an edge. First fig-
ure shows the reversal of geodesic direction on crossing ~a (sides
of the polygon idenitified in the direction of the vector). Second
figure shows that the geodesic direction is preserved on crossing
~A. In the last figure, geodesic reverses direction on crossing ~b.

Fig. 41 shows the construction of separatrix for an horizontal sur-
face. The horizontal surface differs from the translation surface be-
cause the latter allows only integer strength disclinations. In the sepa-
ratrix, defects sit at the vertices and its strength is indicated by the
number of ribbons attached to it. If there are n ribbons at a ver-
tex, then the deficit angle is (2 − n)π, thus disclination strength is
(1−n/2). For a translation surface the disclination strength is always
an integer, and hence will have even number of ribbons attached at
each vertex. As shown in fig. 41, the horizontal surface has vertices
with odd number of ribbons corresponding to half-integer strength
defects.

Figure 41: Construction of separatrix for a torus with ±1/2 strength discli-
nations. In the first step the polygonal surface is cut along middle
vector 7 and rearranged as in the second figure. Then the ribbons
are marked, cut out and joined together to get the separatrix. The
separatrix has two disconnected parts.
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3.4.0.1 Dislocation

In fig. 39, if the vertical vectors ~a and ~b were of half the lattice pa-
rameter, then in effect the disclinations pair-up into dipoles to form
dislocations. Now the defects are no longer sitting on lattice points
(see fig. 42). To build the separatrix of a polygonal surface the defects
have to be repositioned on a lattice, which can be achieved by scaling
all the vectors forming the polygonal surface by 2. Fig. 42 shows a
torus with dislocation and its corresponding separatrix which is the
same as in fig. 39, but the labels have double the values due to scaling.
The fact that the defect is a dislocation will be indicated by the label
(width, height, twist of the cylinder), in which the height of the cylin-
der connecting the two disconnected parts of the separatrix will be
zero, i.e. the outer boundaries of the disconnected parts of the ribbon
in fig. 42 are glued together.

Fig. 43 shows the significance of partial Dehn twist in presence of
dislocation. One can see that in presence of dislocation the effect of
partial Dehn twist parallels the dislocation motion known as disloca-
tion glide.

Figure 42: The disclinations in fig. 39 are transformed into dislocation by
reducing magnitudes of ~a and ~b to half the lattice spacing, as in
the second figure, and the vectors in this polygonal surface are
scaled by 2 to get the third figure (i.e. ~A ′ = 2~A and so on). The
corresponding sepratrix is shown in last figure.

Figure 43: The effect of partial Dehn twist on the torus with dislocation is
the same as plastic deformation called dislocation glide shown in
the last set of figures.

3.4.0.2 A sphere with four +12 disclinations: The tetrahedron model

Consider a canonical tiling of a tetrahedron by a triangular lattice
(fig: 44). Here each of the vertex has a disclination with deficit angle
π. The separatrix for the tetrahedron is made up of two disconnected
ribbons, with +1/2 disclinations sitting at each end (see fig. 44).
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Figure 44: A tetrahedron with triangular lattice can be opened up into a
parallelogram with the identifications shown. The thrid figure
shows corresponding separatrix. The effect of applying partial
Dehn twist is shown in the last figure.

Figure 45: A Rubik’s cube is equivalent to a flat sphere with eight disclina-
tions sitting at the corners. Partial rotations of a Rubik’s cube can
generate crystallographically distinct set of spheres. Figure on the
extreme right shows the deformed cube.

Thus in this section we have used the concepts used to study trans-
lation surfaces to construct separatrix and hence classify surfaces with
crystalline order which has half-integer disclinations.

3.4.0.3 A sphere with eight disclinations: The Rubik’s cube model

The surface of a Rubik’s cube is an example of Flat surface. Each
move corresponds to partial Dehn twist. If all the faces and corners
(defects) of the Rubik’s cube are identical then the standard moves
give equivalent surfaces with crystalline order. But partial rotations,
as in fig. 45, generate distinct crystal structures.

The canonical polygonal construction of cube is shown in fig. 46

(opened up box). Here one can see that the horizontal and verti-
cal geodesics (dotted lines in fig. 46) mix. This indicates that un-
like in translation or horizontal surfaces, the surface does not decom-
pose into cylinders alone. This is because of presence of +14 strength
disclinations. Work is in progress to further generalize the separatrix
method to any fractionally charged disclinations.
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Figure 46: The cube is opened up to give a flat surface. Notice that it is not a
translation surface as any horizontal geodesic in the bottom sec-
tion reemerges as a vertical geodesic (dotted line) on crossing an
edge. If the vertical parts are left out of the separatrix construction
one gets half ribbons as shown on the right.
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There is a significant difference between the growth of atomic crystals
and polymeric crystals. Polymeric crystals have connectedness. This
leads to interesting consequences regarding the shape and morphol-
ogy of polymer crystals. In this chapter we focus on the tent mor-
phology of polymer crystallites (see fig. 47) and suggest arguements
to explain the stability of this morphology.

Figure 47: Polyethylene mono-crystal decorated by vacuum deposition of
polyethylene. Polyethylene stripes show the four crystal growth
sectors.(Copyright : J. C. Wittmann, B. A. Lotz, ICS Strasbourg)

This chapter is organized as follows: we first discuss the phenomenol-
ogy and theoretical work about polymer crystallization. We then go
on to discuss the connection between topological defects and the
shape of the lamellar polymeric crystallites.

4.1 experimental facts :

Very strangely all the observed morphologies of polymer crystallites
are lamellar in nature. These either show spherulitic structures com-
posed of helicoids, or tent-like structures or scroll structures [56]. As
mentioned earlier polymer crystals are quite different from atomic
and small-molecular crystals because polymers have the special prop-
erty of connectivity. The surprising fact noticed above of finite thick-
ness really follows from the free-energy minimization of crystallites
with connectivity at non-zero temperature [57, 58]. Nevertheless within
the finite thickness the typical crystal for a polyethylene is orthorhom-
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bic [59] with the polymer stem along the c-axis (see fig. 48, taken from
[21]).

Figure 48: The crystal structure of polyethylene ([CH2 −CH2].). (a) General
view. (b) Projection along chain direction.

In a melt or solution a single connected polymer need not necessar-
ily be part of a single crystallite and can escape into melt or solution
(see fig. 49, taken from [21]). The typical thickness of polyethylene

Figure 49: Schematic representation of a composite fold surface consisting of
adjacently re-entrant folds and various elements of surface loose-
ness.

lamellae is 10nm with polymer lengths at least ten times higher. As
shown in fig. 50 (taken from [60]) the polymers fold and ren-enter the
lamellae such that the surface of the lamellae are made up of folds.
The minimal-energy packing of folds on the surface force the stem of
the polymer to have a non-zero tilt w.r.t. the lamellar surface normal
(see fig. 51, taken from [21]). This is not novel in liquid crystals. We
have cases with tilt order and it is not unusual to people working in
liquid crystal community [26]. But this appears in the novel context
of crystallization of polymeric lamellae.

Solution grown single crystals of polyethylene show tent morpholo-
gies with either four-, or six-sides. The crystallites are lamellar but not
flat and have faceted boundaries (see fig. 52, taken from [61]). Atomic
force microscopy studies [22] show that the folds have long range ori-
entational order and divide the crystal into sectors. The orientations
of the folds within each sector is constant and at the cross over the
crystal is bent along the line separating the sectors. Experimentalist
believe that " the fold direction in the single crystals is thought to be
along the growth face in each sector" [61] (see fig. 52). Tent morpholo-
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Figure 50: Polymer folding: (a) trans-gauche transitions are low energy
modes that help polymers fold well below their persistence
length, (b) polyethylene chain fold model used to study the free-
energy of the fold surface. The fold conformation shown has six
trans-gauche transitions such that the polymer re-enters the crys-
tal in the adjacent lattice site of the lamellae. A diagrammatic
representation of chain folding in polymer crystals is shown in
(c).

Figure 51: Sketch illustrating the tilt due to fold staggering. A single poly-
mer has multiple folds and form ribbons. Left figure shows a
ribbon of folded molecule seen normal to the ribbon plane and
on the right Stacking of consecutive ribbons seen along the ribbon
plane is shown.

gies of polethylene crystals can grow to tens of microns in size, and
are stable over time scale of months.

With this background we have to tackle the problem of tent mor-
phology of polymer crystallites. The problem is inherently very com-
plicated and involves notions of physics not quite exploited in soft
matter physics (see discussion in sec. 4.2.2).

4.2 phenomenological model of polymer crystallites

In what follows we attempt to solve the problem of why a crystallite
should buckle into the form of a tent choosing some simple notions
from soft condensed matter and geometry [6]. To the extent possi-
ble we try to satisfy the full equation of equilibrium as well as the
boundary conditions.

The lamellae of polymer crystals have following properties: (a) the
region of finite thickness is an orthorhombic crystal and its constituent
polymer chains have a tilt w.r.t. the lamella normal, (b) the surface of
the lamella is covered with folds which have long-range orientational
order (see fig. 52). Since the tilt is a result of fold packing (see fig. 51),
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Figure 52: Schematic representations of polyethylene single crystals: (a)
four-sided (lozenge-shaped) tent morphology, (b) six-sided
(truncated-lozenge-shaped) tent morphology. The drawing shows
the different sectors and its three dimensional shape. The fold di-
rection for a truncated-lozenge in 3D and its top view are shown
in (c). The fold directions in each sector is the same as the bound-
ary.

both fold field and tilt field can be used interchangeably. The proper-
ties and symmetries of these systems are captured by solid phases in
smectic layers with tilted molecules [62], with free energy

FST =

∫ (
µ uiju

ij +
λ

2
uiju

j
i

)
dS+

∫ (
Kθ
2
(∇θ)2 + V(θ−φ)

)
dS

+w

∫
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2
δiju

k
k)s

isj dS , (59)

where µ and λ are 2D Lamé coefficients, uij is the 2D strain field,
such that for a displacement field ~u

uij =
1

2

(
∂iuj + ∂jui

)
, (60)

and φ is the bond-orientaion angle of the 2D crystal such that the
change in φ is related to ~u as δφ = ∇× ~u. The θ-field is the fold-
orientation angle with ŝ = {cos(θ−φ), sin(θ−φ)}. The term corre-
sponding to w couples the fold-orientation to shear.

The potential V captures the coupling between fold- and bond- or-
der. The point group symmetries of the 2D crystal are expressed in
terms of V which breaks the local continuous rotation symmetry of
the θ-field explicitly. To simplify the analysis further, we assume the
2D crystal to have square symmetry. Consider the potential V in terms
of harmonics compatible with square symmetry. Let

V(θ−φ) =
h4
4

cos (4(θ−φ)) . (61)
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As discussed in the previuos section, for tent morphology, experi-
ments suggest that the folds are oriented along the growth face. This
is captured in the energetics by introducing anisotropic line tension
due to folds. We neglect the anisotropy in the line tension due to the
underlying bond-order of the crystal. We use the form of anisotropic
line tension used to study Langmuir mono layers vector order [63]

FL = γ

∮
ds− γθ

∮ (
ŝ.t̂
)
ds , (62)

where γ and γθ are isotropic and anisotrpic part of the line tension
respectively. t̂ is the unit tangent to the boundary.

The total free-energy of a crystal with tilt order having a boundary
is Ft = FST + FL. In the following section, we show how anisotropic
line tension due to folds leads to sector formation in the polymer
crystal.

4.2.1 Formation of sectors

To disentangle the effects of polymer stem tilt and folds, consider
a case where a polymer crystal has folds and pack together such
that there is no tilt, i.e. the polymer stems are normal to the lamella
surface. Then the θ- field from previous section purely corresponds
to folds. Further, the analysis can be simplified by neglecting the
coupling w [64]. Now the strain field and the fold-orientation field
are decoupled. Variation in fold-order gives the familiar Sine-Gordon
equation

∇2θ− h4
Kθ

sin(4(θ−φ)) = 0 . (63)

For the case h4 = 0, i.e. a fluid membrane with tilt order and
anisotropic line tension, eq. (63) reduces to Laplace’s equation [63].
Solving Laplace equation for arbitrary shape of the boundary is non-
trivial. They work with a circle boundary, noting that experimentally
observed domians are circular in shape. Analysis show that for cir-
cular domains that there exists a first-order phase transition between
two distinct textures: an exterior defect (virtual boojum) texture, and
an interior defect texture (see fig. 53, taken from [63]). Hence the
anisotropic line tension due to tilt order traps a disclination.

We expect a similar phenomenon in solid layer with tilt-order, though
the disclination/defect structure in this case is much more involved.
In hexatic films with tilt order the disclinations show novel star-defect
structures (see fig. 54, taken from [65]). Stability of this structure was
established in [66]. The defect effectively is a disclination in hexatic-
and tilt- order.
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Figure 53: The φ field which is a solution to Laplace’s equation with a point
defect sitting at a distance~rd from the center of a circular domain
of radius R is shown.

Figure 54: Calculated tilt- and hexatic-orientation pattern about the five-
armed star defect. The arrows represent the local orientation of
the tilt and the crosses the local orientation of the sixfold symmet-
ric bonds (hexatic).

Here we present an exact solution to eq. (63), in the form of two or-
thogonal solitons, with a +1 disclination in θ-field on an undistorted
crystal (uij = 0,φ = 0),

θ(x,y) = arctan
(

tanh(y/ω)

tanh(x/ω)

)
+ θo , (64)

where ω =
√
h4
Kθ

. A 3D plot of eq. (64) is shown in fig. 55.
As can be seen from fig. 56, the region surrounding the defect is

split into four sectors. Further the anisotropic line tension due to
folds, in the form of eq. (62), forces the boundary to be along the
fold directions. Thus inclusion of disclination in the fold-order neces-
sarily forces the field to have sectors and take up a boundary that is
facetted.

There is no closed analytic form for the energy (eq. (59)) of the θ-
field given by eq. (64). So energy for this configuration is calculated
numerically. The graph in fig. 57 shows the growth in energy with the
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Figure 55: Comparison of θ-functions with disclination at the origin: θ =

arctan(y/x) (left) and θ = arctan
(

tanh(y/ω)
tanh(x/ω)

)
(right, ω = 1). The

plateaus corresponding to constant orientation of θ-field can be
seen on the right plot.

Figure 56: A plot of vector field, ŝ = {cos(θ), sin(θ)}, corresponding to eq. 64

is shown in the center plot. Zoomed version of region close to de-
fect core (left) shows a normal disclination like field, but assymp-
totically far away the solution develops a 1D wall like structure
(right).

size of the crystal. The trend shows a linear increase in energy with
the length of the sides.

Even though this model doesn’t give the 3D structure of tent it
already captures the mechanism for formation of sectors and faceted
boundaries of the crystal. In next section we introduce tilt and study
its effects on the crystal structure.

4.2.2 Buckling of polymer crystal lamella

Detailed experimental studies [67, 68, 69] have identified a mode
of plastic deformations in the polymer crystal lamellae, wherein the
polymer chains can slide along their axes (see fig. 58, taken from [67]).
This sliding mode induces chain tilt with respect to lamella normal.

One can start by assembling a flat polymer crystal lamella with
oriented folds and no tilt, and then slide the polymers along their
chain axis to get the preferred tilt (see fig. 59). Thus if we start with
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Figure 57: Figure on the left shows the approximate boundary on which the
fold order is tangential. On numerical integration of FST over the
region shown, of length L, we get the plot on right. For L >> ω,
FST ∼ L.

Figure 58: Schematic illustrations of different degrees of fineness of slip : (a)
fine slip, (b) coarser slip, (c) shearing of a lattice that has a large
lattice translation vector in the chain direction.

the fold orientation given by eq. (64), due to square crystal symmetry,
inclusion of tilt forces the lamella to take on a tent structure .

The tent obtained using the above mechanism has a novel bend
structure compared to usual bend in membranes (see fig. 60). The
bend transformation is plastic and the curvature energy is captured
by an effective h4-term. For more details regarding the tilt-curvature
coupling see B.1.

Thus far we have managed to clarify the structure and stability of
the tent morphology with four sides. One can follow similar analysis
to study the six sided tent, which is a result of including sin(2(θ−φ))
term in eq. (61).
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Figure 59: Buckling transition due to inclusion of tilt: (a) A flat lamella with
folds but no tilt, (b) constant fold structure with no sectors which
on inclusion of tilt will end up in state (c). The cross section of
the lamella is shown on top of (c). Fold structure with orthogonal
soliton is shown in (d) and (e) is the corresponding buckled tent-
structure, along with the tilt structure of the cross-section.

Figure 60: Bend structure: both (a) and (b) show cross section of membranes
with same curvature. (a) is due to elastic deformation (splay) and
(b) is due to plastic deformation (slide).
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A D D E N D U M T O C H A P T E R 4

b.1 coupling between fold/tilt and curvature

(A) Theory of thin plates (Föppl-von Kármán (FvK) theory)

Large deflections in thin plates are described by 4th order non-
linear partial differential equations of the form [70]:

E h3

12(1− ν2)
∆2f− h

∂

∂xβ

(
σαβ

∂f

∂xα

)
= P, (65)

∂σαβ

∂xβ
= 0, (66)

where E→ Young’s modulus of the (homogeneous and isotropic) plate material,

ν→ Poisson’s ratio,

h→ thickness of the plate,

f→ out-of-plane deflection of the plate,

P → external normal force per unit area of the plate,

σαβ → stress tensor

α,β→ indices that take values of 1 or 2. (67)

Eq. (65) is derived by shape variation of the elastic energy

Fplate = FHooke + Fbend,

with FHooke =
∫
uαβσ

αβdA and Fbend =
∫ (
κ
2H

2 + κGK
)
dA,

where the integral is over the surface having mean curvature H,
Gaussian curvature K, and strain tensor uαβ. In the FvK theory
of thin plates, the bend coefficients are given by [70]

κ =
Eh3

24(1− ν2)
and κG = −

Eh3

12(1+ ν)
, (68)

however, see section (D) below.

(B) In addition to the above elastic free energy, we have the elastic
energy of the ŝ-field

fs =
K1
2
(∇ · ŝ)2 + K2

2
(∇× ŝ)2 (69)

where ŝ = {cos θ, sin θ}, defined w.r.t. x-axis.

61



62 addendum to chapter 4

(C) The lowest order and most relevent coupling between deforma-
tions in the ŝ-field and curvature of the plate (lamella) is of the
form

fc = η H (∇ · ŝ). (70)

(D) Canonical bending leads to splay deformation in the stems. Re-
sults of the fully covariant shape variation as well as variation
in ŝ are given in Chapter 2. These are nonlinear, coupled partial
differential equations.

As noted in Section 4.2.2 the bend in polymer crystal lamellae is
a result of polymers sliding along their stem, with no splay. The
elastic modulus κ does not correspond to the conventional bend
elastic constant in standard FvK plate theory. A bend deforma-
tion of lamellar mid-plane via the sliding mode does cost energy
because relative sliding of the stems changes overlap between
neighbouring stems, and therefore the inter-stem interaction en-
ergy. The bend term with elastic coefficient κ that we use in Fbend
describes the energy cost for bend from relative sliding of stems.

To make the analysis analytically tractable we assume that the
lamellae are inextensible, do not employ the fully covariant the-
ory of Chapter 2, and use the Monge gauge for our calculation.
Note that the sliding mode preserves Monge gauge if the poly-
mer stems are along z-axis. With these assumptions the total free
energy (excluding the Gaussian curvature term, which integrates
out to the boundary) is

FT =

∫
(
K1
2
(∇ · ŝ)2 + K2

2
(∇× ŝ)2 + h4

4
cos(4θ)

+
κ

2
(∇2f)2 + η(∇2f)(∇ · ŝ)

)
dx dy. (71)

Upon variation, δFT/δf = κ∇4f+ η∇2(∇ · ŝ) = 0. Therefore

∇2f = −
η

κ
(∇ · ŝ). (72)

On eliminating the curvature term from eq. (71), it effectively
renormalizes the coefficient K1 to

(
K1 −

η2

κ

)
= K̃. Within the one

constant approximation, FT reduces to

FT =

∫ (
K̃

2
(∇isj)2 +

h4
4

cos(4θ)
)
dx dy.

Now (∇isj)2 = (∇θ)2 [28], so the above equation reduces to
eq.(63). The corresponding solution eq.(64) leads to the form of
H shown in fig. 61.
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Figure 61: Mean curvature H is concentrated along two straight lines which
intersect at right angles. The crystal is split into four sectors with
flat regions separated by soliton walls in curvature. (Here K̃

h4
=

1).

A possible set of height functions that satisfy eq. (72) are

∇f = −
η

κ
ŝ. (73)

Heuristically, using the ansatz

f = α ω log(cosh(x/ω)) +α ω log(cosh(y/ω)) (74)

a tent like structure is obtained (see fig. 62) that satisfies eq. (73)

upto a normalization function, for α = η
κ and ω =

√
h4
Kθ

. The
phase of the normalized vector field ∇f, with f given by eq. (74),
yields an exact solution for the non-linear elliptic Sine-Gordon
equation (eq. (63)).

Figure 62: Plot of height function given by eq.(74)
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