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Experimental test of environment-assisted invariance

L. Vermeyden,1 X. Ma,1 J. Lavoie,2 M. Bonsma,1 U. Sinha,1,3 R. Laflamme,1,4,5 and K. J. Resch1

1Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
2Group of Applied Physics, University of Geneva, CH-1211 Geneva 4, Switzerland

3Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, India
4Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada

5Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
(Received 10 September 2014; published 29 January 2015)

Envariance, or environment-assisted invariance, is a recently identified symmetry for maximally entangled
states in quantum theory with important ramifications for quantum measurement, specifically for understanding
Born’s rule. We benchmark the degree to which nature respects this symmetry by using entangled photon pairs.
Our results show quantum states can be (99.66 ± 0.04)% envariant as measured using the quantum fidelity, and
(99.963 ± 0.005)% as measured using a modified Bhattacharya coefficient, as compared with a perfectly envariant
system which would be 100% in either measure. The deviations can be understood by the less-than-maximal
entanglement in our photon pairs.
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Symmetries play a central role in physics with wide-
reaching implications in fields as diverse as spectroscopy and
particle physics. It is therefore of fundamental importance
to identify and understand new symmetries of nature. One
of these more recently identified symmetries in quantum
mechanics has been named environment-assisted invariance,
or envariance [1]. It applies in certain cases where a composite
quantum object consists of a system part, labeled S, and an
environment part, labeled E. If some action is applied to the
system part only, described by some unitary transformation
US, then the state is said to be envariant under US if another
unitary applied to the environment UE can restore the initial
state. This can be expressed,

US|ψSE〉 = (uS ⊗ 1E)|ψSE〉 = |ηSE〉, (1)

UE|ηSE〉 = (1S ⊗ uE)|ηSE〉 = |ψSE〉. (2)

Envariance is an example of an assisted symmetry [2] where
once the system is transformed under some unitary US, it
can be restored to its original state by another operation
on a physically distinct system: the environment. Examples
where quantum mechanics predicts such behavior includes the
invariance of the Bell singlet state under collective rotations
and nonlocal dispersion cancellation in energy-time entangled
pairs [3].

Envariance is a uniquely quantum symmetry in the fol-
lowing sense. A pure quantum state represents complete
knowledge of the quantum system. In an entangled quantum
state, however, complete knowledge of the whole system does
not imply complete knowledge of its parts. It is therefore
possible that an operation on one part of a quantum state
can alter the global state, but its local effects are masked by
incomplete knowledge of that part; the effect on the global state
can then be undone by an action on a different part. In contrast,
complete knowledge of a composite classical system implies
complete knowledge of each of its parts. Thus transforming
one part of a classical system cannot be masked by incomplete
knowledge and cannot be undone by a change on another part.

Envariance plays a prominent role in work related to
fundamental issues of decoherence and quantum measure-
ment [1,2,4]. Decoherence converts amplitudes in coherent
superposition states to probabilities in mixtures and is central
to the emergence of the classical world from quantum
mechanics [5,6]. Mathematically the mixture appears in the
reduced density operator of the system which is extracted from
the global wave function by a partial trace [7,8]. This partial
trace limits the approach for deriving, as opposed to separately
postulating, the connection between the wave function and
measurement probabilities known as Born’s rule [9], since the
partial trace assumes Born’s rule is valid [1,10]. Envariance
was employed in a derivation of Born’s rule which sought
to avoid circularity inherent to approaches which rely on
partial trace [1]. For comments on this derivation, see, for
example, [10–12].

In the present work, we subject envariance to experimental
test in an optical system. We use the polarization of a single
photon to encode the system S, and the polarization of a second
single photon to encode the environment E. We subject the
system photon to a wide range of polarization rotations with
the goal of benchmarking the degree to which we can restore
the initial state by applying a second transformation on the
environment photon. We then use these results, with a recent
theory proposed in [13], to test Born’s rule.

Our test requires a source of high-quality two-photon
polarization entanglement, an optical setup to perform unitary
operations on zero, one, or both of the photons, and polariza-
tion analyzers to characterize the final state of the light. Our
experimental setup is shown in Fig. 1. We produce pairs of
polarization-entangled photons using spontaneous parametric
down-conversion (SPDC) in a Sagnac interferometer [14–16].
In the ideal case, this source produces pairs of photons in the
singlet state,

|ψSE〉 = 1√
2

(|H 〉S|V 〉E − |V 〉S|H 〉E), (3)

where |H 〉 (|V 〉) represents horizontal (vertical) polarization,
and S and E label the photons. This state is envariant
under all single qubit unitary transformations and has the
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FIG. 1. (Color online) Experimental setup. The entangled pho-
ton pairs are created using type-II spontaneous parametric down-
conversion. The pump laser is focused on a periodically poled
KTP crystal and pairs of entangled photons with anticorrelated
polarizations are emitted. The pump is filtered using a band-pass filter,
and polarization controls adjust for the alterations due to the coupling
fibres. The entangled photon pairs are set so one photon is considered
the system, and the other is considered the environment. After the
source the unitary transformations are applied. A three-wave-plate
combination is required to apply an arbitrary unitary transformation:
quarter wave plate (QWP), half wave plate (HWP), QWP. A set of
this combination of wave plates is mounted on each translation stage
which can slide the wave plates in and out of the path of the incoming
photons. The photons are then detected using polarizing beam splitters
(PBS) and two wave plates to take projective measurements. The
counts are then analyzed using coincidence logic.

convenient symmetry that uS = uE for any choice of uS.
We pump a 10-mm periodically poled KTP crystal (PPKTP),
phase-matched to produce photon pairs at 809.8 nm and
809.3 nm from type-II down-conversion using 6 mW from
a CW diode pump laser with center wavelength 404.8 nm.
The output from the source is coupled into single-mode fibers,
where polarization controllers correct unwanted polarization
rotations in the fiber. The light is coupled out of the fibers
and directed to two independent polarization analyzers. Each
analyzer consists of a half wave plate (HWP), quarter wave
plate (QWP), and a polarizing beam splitter (PBS). Between
the fiber and the analyzers are two sets of wave plates—a
QWP, a HWP, then another QWP—which can be inserted as a
group into the beam paths to implement controlled polarization
transformations. Photons from both ports of each PBS are
detected using single-photon counting modules (Perkin-Elmer
SPCM-AQ4C) and analyzed using coincidence logic with
a 1-ns coincidence window, counting for 5 s. We typically
measured total coincidence rates of 5.4 kHz across the four
detection possibilities for photons S and E.

For our experiment, we implemented rotations about the
standard x̂, ŷ, and ẑ axes of the Bloch sphere; in addition
we implemented rotations about an axis m̂ = (x̂ + ŷ + ẑ)/

√
3.

The wave-plate angles used to implement rotations by an angle
θ about the x̂, ŷ, and ẑ axes are shown in Table I; the angles
to implement rotations about m̂ were determined numerically
using MATHEMATICA.

Our experiment proceeds in three stages as depicted in
Fig. 2: first characterizing the initial state (I), then character-
izing the state after a transformation is applied to the system
photon (II), and finally characterizing the state after that same
transformation is applied to both system and environment

TABLE I. Wave-plate settings used to implement polarization
rotations. The angles α, β, and γ are the wave-plate angles for the
first QWP, the HWP, and the second QWP, respectively. The angle θ

is the rotation angle of the polarization about the specified axis on the
Bloch sphere.

Rotation axis α(θ ) β(θ ) γ (θ )

x̂ π/2 −θ/4 π/2
ŷ π/2 + θ/2 θ/4 π/2
ẑ π/4 −π/4 − θ/4 π/4

(III). We record a tomographically overcomplete set of
measurements at each stage, performing the 36 combinations
of the polarization measurements, |H 〉, |V 〉, |D〉 = (|H 〉 +
|V 〉)/√2, |A〉 = (|H 〉 − |V 〉)/√2, |R〉 = (|H 〉 + i|V 〉)/√2,
and |L〉 = (|H 〉 − i|V 〉)/√2 on each photon and counting
for 5 s for each setting. The states were then reconstructed
using the maximum likelihood method from Ref. [17]. This
procedure was repeated for a diverse range of transformations.
We configured our setup to implement unitary rotations in
multiples of 30◦ from 0◦ to 360◦ about each of the x̂, ŷ, ẑ, and
m̂ axes. The data acquisition time for this procedure over the
set of 13 rotation angles about each axis was approximately 6 h.
The source was realigned before each run to achieve maximum
fidelity with the singlet state from 0.985 to 0.990.

Figures 3(a)–3(a) show the real and imaginary parts of
the reconstructed density matrix of the quantum state at the
three stages in the experiment, I, II, and III, respectively. The
fidelity [18] of the state with the ideal |ψ−〉 state during these
samples of two of the stages are 0.987 for both I (a) and III
(c), respectively, and is defined as [5]

F (ρ,σ ) = {Tr[(
√

ρσ
√

ρ)1/2]}2
. (4)

We can use this definition to calculate the fidelity between the
state at stages I and III. Comparing between the states shown
in Figs. 3(a) and 3(c) the resulting fidelity is 0.995.

The summary of the results from our experiment is shown
in Fig. 4. The colored data points in Figs. 4(a)–4(d) show
the fidelity of the experimentally reconstructed state at stage
III with the reconstructed state from the initial stage I, i.e.,
F (ρI

expt,ρ
III
expt), as a function of the rotation angle for rotations

about the x̂, ŷ, ẑ, and m̂, respectively. The open circles show the
theoretical expectation for the fidelity between the measured
state at stage I with the expected state in stage III, calculated
by acting the unitaries on the measured state from stage I, i.e.,

FIG. 2. (Color online) Experimental measurement procedure.
We investigated the impact of each unitary transformation by
performing quantum state tomography at three different stages:
directly on the initial state with no unitary transformations (I), on
the state with a transformation applied to the system photon (II), and
on a state with the same transformation applied to both the system
and environment photon (III).
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FIG. 3. (Color online) (a) The real and imaginary parts of the
reconstructed density matrix of the initial state from the source (stage
I of the procedure). It has 0.987 fidelity [18] with the ideal. (b) The
system photon is transformed using wave plates set to implement
the rotation of 90◦ about the x̂ axis, stage II. The resulting density
matrix shown has 0.488 fidelity with the ideal initial state, 0.501
with the initial reconstructed state, and 0.995 with the expected
state, calculated by transforming the density matrix from (a). (c)
The reconstructed density matrix after the same unitary from (b) is
applied to both photons, stage III. This state has a 0.987 fidelity with
the ideal, 0.995 with the reconstructed state from (a), and 0.997 with
the expected state calculated by transforming the state from part (a).

F (ρI
expt,ρ

III
th ). The fidelities are very high, close to the limit of 1,

in all cases and we see reasonable agreement with expectation.
We considered the effects of Poissonian noise and wave-

plate calibration on our results and found that these effects
were too small to explain the deviation between F (ρI

expt,ρ
III
expt)

and F (ρI
expt,ρ

III
th ). To account for this, we characterized the

fluctuations in the state produced by the source itself by
comparing the state produced in subsequent stage I in the
data collection; recall that stage I for each choice of unitary is
always the same (no additional wave plates inserted) and thus
provides a good measure of the source stability. Specifically,
we calculated the standard deviation in the fidelity of the
state produced at stage I in the i th round of the experiment
to that produced in the next, (i + 1)th, stage I, F (ρI,i

expt,ρ
I,i+1
expt ).

The standard deviation in these fidelities calculated from the
data taken within each set of rotation axes are shown as
representative error bars on the plots in Figs. 4(a)–4(d). The
standard deviation of this quantity over all the experiments
was 0.0008. We characterize the difference between the
measured and expected fidelities by calculating the standard
deviation in the quantity, F (ρI

expt,ρ
III
expt) − F (ρI

expt,ρ
III
th ), for

each experiment. [This is the difference between the colored
and open data points in Figs. 4(a)–4(d) over all experiments,

calculated to be 0.002.] This value is comparable to the error in
the fidelity due to source fluctuations. Refer to the Appendix to
see the comparison between stage I and stage II, which would
not fit on the scale of Fig. 4.

From our data, we extract the average fidelity F (ρI
expt,ρ

III
expt)

for the set of measurements made for each unitary axis and
show the results in Table II. As measured by the average
fidelity, our experiment benchmarks envariance to 0.9966 ±
0.0004,[(99.66 ± 0.04)% of the ideal] averaged over all
rotations.

Fidelity has conceptual problems as a measure for testing
quantum mechanics, since the density matrix we used to com-
pute the fidelity is reconstructed using state tomography, which
is under the assumption of Born’s rule. The Bhattacharyya
coefficient (BC) is a measure of the overlap between two
discrete distributions P and Q, where pi and qi are the
probabilities of the ith element for P and Q, respectively.
The BC is defined [19]:

BC =
∑

i

√
piqi . (5)

If we normalize the measured tomographic data by dividing
by the sum of the counts, we can treat this as a probability
distribution. The BC then can be calculated using the dis-
tribution of measurements at each stage in the experiment,
directly analogous to the approach used with fidelity. It should
be noted that the BC has some limitations when applied in this
case. If two quantum states produce identical measurement
outcomes, its value is 1. Unlike fidelity though, it is not the
case that the BC goes to 0 for orthogonal quantum states.
For example, the BC for two orthogonal Bell states measured
with an overcomplete set of polarization measurements is 7/9.
Furthermore, the value of the BC is dependent on the particular
choice of measurements taken. While we are employing
a commonly used measurement set for characterizing two
qubits, other choices would produce different BCs. Neverthe-
less, this metric can be employed to quantify the envariance
in our experiment without quantum assumptions, making it
appropriate for testing quantum mechanics.

The Bhattacharyya coefficients from our measured data are
shown in Figs. 4(e)–4(h). We normalize the measured counts
from stages I and III to give us probability distributions
pI

expt and pIII
expt. The colored data points in Figs. 4(e)–4(h)

show the BC between these distributions, BC(pI
expt,p

III
expt).

The open circles are a theoretical expectation of the BC
given the tomographic measurements from stage I; for these
theoretical values we used state tomography, and thus assumed
quantum mechanics, to obtain the expected distribution pIII

th
and calculate the expected BC, BC(pI

expt,p
III
th ).

Using an analogous procedure to that employed with the
fidelity, we estimate the uncertainty in the BC by comparing
subsequent measured distributions in stage I throughout the
experiment, i.e., BC(pI,i

expt,p
I,i+1
expt ). A representative error bar

calculated from the data for a set of unitaries around the same
axis are shown in Figs. 4(e)–4(h). The standard deviation
in this quantity over all the data is 0.00005. As before we
characterize the difference between the measured and expected
BCs as the standard deviation of the quantity BC(pI

expt,p
III
expt) −

BC(pI
expt,p

III
th ) which is 0.00009 over all experiments. As
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FIG. 4. (Color online) Analysis of the experimental results. (a)–(d) The fidelity analysis results for unitary rotations about x̂, ŷ, ẑ, and m̂

axes as functions of the rotation angle. The colored data points are the comparison between stage I and stage III (comparing the source state and
the state after the unitary has been applied to both qubits). The open circles show a theoretical comparison. (e)–(h) The quantum Bhattacharyya
results comparing stage I and stage III in the colored data points for each of the four axes, with the open circles being the theoretical comparison.
For plots which include a comparison of stages I and II (applying the unitary to one qubit only) and theoretical comparisons, see the Appendix.
The error bar for each graph is the standard deviation of comparisons of source state measurements during the experiment.

before, this value is comparable to the error due to source
fluctuations. Data showing the BC between stages I and II
are shown in the Appendix along with analogous theoretical
comparison. A summary of the BC analysis results are in
Table II. The average measured BC is 0.99963 ± 0.00005
((99.963 ± 0.005)% of the ideal) across all tested unitaries.

It has been shown that envariance can be used to derive
Born’s rule [1,9]. Our experiment places a bound on the degree
of envariance, so it is natural to ask whether our results place a
similar bound on Born’s rule. However, the derivation does not
relate bounds on envariance to those on Born’s rule. In order
to find such a bound, we explore an extension of quantum
mechanics proposed by Son [13]. Son’s theory generalizes
Born’s rule, replacing the familiar power of 2 which relates
wave functions to probabilities with a power of n. Below we

TABLE II. Summary of the results for comparing stages I
and III using fidelity and Bhattacharyya coefficient (BC) analysis
and averaging over each unitary rotation. The overall average is
representative of the overall envariance of our state.

Rotation axis Average fidelity Average BC

x̂ 0.997 ± 0.001 0.9997 ± 0.0001
ŷ 0.9973 ± 0.0007 0.99966 ± 0.00008
ẑ 0.9984 ± 0.0006 0.99975 ± 0.00007
m̂ 0.9941 ± 0.0007 0.9994 ± 0.0001
Overall average 0.9966 ± 0.0004 0.99963 ± 0.00005

summarize Son’s theory and use it to put a bound on n using
our experimental data.

We first consider measurements on a pair of qubits in the
maximally entangled singlet state using standard quantum
mechanics. We define measurement observables â = �α · �σ1

and b̂ = �β · �σ2 where �α, �β are unit vectors and �σ1, �σ2 are the
Pauli matrices for the two qubits. The result of measurements
a and b for qubits 1 and 2, respectively, can take on the values
±1. The correlation function is defined by

E = 〈ab〉 = Pa=b − Pa �=b, (6)

where Pa=b and Pa �=b are probabilities that a = b and a �= b,
respectively. The correlation function only depends on the
angle 2θ between �α and �β for the singlet state. From Born’s
rule, we have the probability amplitudes ψa=b and ψa �=b

satisfy Pa=b = |ψa=b|2 and Pa �=b = |ψa �=b|2. Therefore, the
correlation function in standard quantum mechanics is given
by

EQM(θ ) = |ψa=b|2 − |ψa �=b|2 = − cos 2θ. (7)

We now consider Son’s theory, where Born’s rule is
generalized to be Pa=b = |ψa=b|n and Pa �=b = |ψa �=b|n, and
the correlation function is, thus,

E(θ,n) = |ψa=b|n − |ψa �=b|n, (8)

where standard quantum mechanics is the special case
E(θ,2) = EQM(θ ). As in standard quantum mechanics, Son
assumed that the correlation function depends only on the
angle between measurement settings. Son showed that the
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FIG. 5. (Color online) Generalized correlations for the singlet
state as a function of n using Son’s theory [13]. The correlation as
a function of θ is shown for n = 1 (dashed blue line), n = 2 (purple
line), n = 5 (dash-dotted brown line), and n = 10 (dotted green line).
The n = 2 case corresponds to standard quantum mechanics.

constraints | ∂ψa=b

∂θ
|2 + | ∂ψa �=b

∂θ
|2 ∝ 1 and |ψa=b|n + |ψa �=b|n = 1

and the boundary condition E(0,n) = −1 and E(π
2 ,n) = 1 are

sufficient to solve for E(θ,n). See [13] for further details on
the deviation. Figure 5 shows E(θ,n) for different values of n.

In the experiment, we rotated one qubit while leaving the
other qubit unchanged during stage II (see Fig. 2). If we use
the same measurement basis on both qubits for that rotated
state, we are effectively measuring the singlet state input with
two measurement bases with angle θ apart. For example, we
can choose the rotation axis and the measurement basis to
be [ẑ,(D,A)], where the first qubit is rotated around ẑ axis,
while measurements on the qubits are done in the (D,A) basis.
Since the rotation axis ẑ is orthogonal to the measurement basis
(D,A), we could view the rotation of qubit as a rotation of the
measurement basis in the x̂ − ŷ plane of the Bloch sphere. For
a rotation angle φ, the angle between the two measurement
bases is given by 2θ = π − |π − 2φ|. We could derive the
prediction of E(φ,n) from Son’s theory, and test it with our
data.

Son’s derivation assumes a perfect singlet state which must
be relaxed to obtain a comparison with experiment. For a
realistic state, the correlation function will not necessarily
depend only on θ . In his derivation, Son additionally assumed
E(0,n) = −1 and E(π/2,n) = 1, i.e., perfect correlations,
which are not experimentally achievable. To relax these
assumptions, we consider the difference between two cor-
relation functions measured for a general state ρ and the
ideal state |ψ−〉, E(φ,n,ρ) and E(φ,n,|ψ−〉), where φ is the
rotation angle of one of the settings. For n ≈ 2, we make
the assumption that E(φ,n,ρ) − E(φ,n,|ψ−〉) ≈ E(φ,2,ρ) −
E(φ,2,|ψ−〉). Thus for states close to the ideal singlet state
and for n close to 2, we have the following relation:

E(φ,n,ρ) ≈ E(φ,n,|ψ−〉) + E(φ,2,ρ) − E(φ,2,|ψ−〉).
(9)

We calculated E(φ,2,ρ) and E(φ,2,|ψ−〉) from standard
quantum mechanics, and use Son’s theory to calculate
E(φ,n,|ψ−〉). For a given set of data Eexp(φi), we find ρ

and n to minimize the objective function L = i[E(φi,n,ρ) −
Eexp(φi)]2/[δEexp(φi)]2, where δEexp(φi) is the standard devi-
ation of the correlation function Eexp(φi) predicted assuming
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FIG. 6. (Color online) Correlation functions versus the rotation
angle φ. The experimental correlations are extracted from our data
for the case where the rotation axis and the measurement bases are
given by [ẑ,(D,A)], [ẑ,(R,L)], [ŷ,(D,A)], [ŷ,(H,V )], [x̂,(R,L)],
and [x̂,(H,V )] shown as red squares, blue circles, green up-triangles,
yellow down-triangles, black empty squares, and pink diamonds,
respectively, as a function of the rotation angle φ. Error bars are of
the size 0.003 which are too small to be seen in the figure. The best
fit using Eq. (9) for each correlation is shown as a line whose color
matches the corresponding data points. These fits yield estimates for
the value of n of {2.04, 2.01, 2.00, 2.01, 2.01, and 2.00}, respectively.

Poissonian count statistics. Figure 6 shows the results of fitting
the correlation functions for six sets of data. From this, we
extracted n = 2.04,2.01,2.00,2.01,2.01,2.00; averaging these
results and using their standard deviation to estimate the
uncertainty yields n = 2.01 ± 0.02 in good agreement with
Born’s rule where n = 2 and supporting our initial assumption.

In conclusion, we have experimentally tested the property
of envariance on an entangled two-qubit quantum state. Over
a wide range of unitary transformations, we experimentally
showed envariance at (99.66 ± 0.04)% when measured using
the fidelity and (99.963 ± 0.005)% using the Bhattacharyya
coefficient. Deviations from perfect envariance are in good
agreement with quantum theory and can be explained by
our initial state fidelity and fluctuations in the properties of
our state. We also considered the possibility that all of the
deviation from envariance stemmed from a modification of
Born’s rule where probabilities arise from taking the wave
function to the power n rather than the conventional power of 2,
a model described in [13]. Fitting our experimental data to this
model yielded a value of n = 2.01 ± 0.02 in good agreement
with Born’s rule. Our results serve as a benchmark for the
property of envariance, as improving the envariance of the
state significantly would require substantive improvements in
source delity and stability. It would be interesting to extend
tests of envariance to a higher dimensional quantum state and
to other physical implementations.
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FIG. 7. (Color online) Summary of of the experimentally measured fidelity and the Bhattacharyya coefficient for a wide range of unitaries.
(a)–(d) The fidelity analysis results for unitary rotations about x̂, ŷ, ẑ, and m̂ axes as functions of the rotation angle. The colored data points
are the comparison between stage I and stage III, and stage I and stage II. The open circles show the theoretical comparison which takes the
state from stage I and applies theoretical unitaries. (e)–(h) The Bhattacharyya results comparing stage I and stage III, and stage I and stage II,
in the colored data points for each of the four axes, with the open circles being the theoretical comparison.

APPENDIX: ADDITIONAL EXPERIMENTAL DATA

Our experiment procedure included three stages, I measure-
ments of the source, II measurements after we apply the unitary
to only one qubit, and III measurements after applying the
same unitary to both qubits. The fidelities and Bhattacharyya
coefficients between stages I and II, and stages I and III as a
function of the rotation angle are shown in Fig. 7 for rotation

axes, x̂, ŷ, ẑ, and m̂. Figures 7(a)–7(d) show the fidelity, and
Figs. 7(e)–7(h) show the Bhattacharyya coefficient (BC). The
open circles show the theoretical expectation for various uni-
taries. For the fidelity comparison the theoretical model applies
perfect unitaries to the imperfect measured state. For the BC
comparison the theoretical model applies perfect unitaries to
the reconstructed state from stage I. We observe very good
agreement between the measured and predicted results.
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