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We study analytically an intermittent search process in one dimension. There is an immobile target at the
origin and a searcher undergoes a discrete time jump process starting at x0 ≥ 0, where successive jumps are
drawn independently from an arbitrary jump distribution fðηÞ. In addition, with a probability 0 ≤ r < 1, the
position of the searcher is reset to its initial position x0. The efficiency of the search strategy is characterized
by the mean time to find the target, i.e., the mean first passage time (MFPT) to the origin. For arbitrary jump
distribution fðηÞ, initial position x0 and resetting probability r, we compute analytically the MFPT. For the
heavy-tailed Lévy stable jump distribution characterized by the Lévy index 0 < μ < 2, we show that, for
any given x0, the MFPT has a global minimum in the ðμ; rÞ plane at (μ�ðx0Þ; r�ðx0Þ). We find a remarkable
first-order phase transition as x0 crosses a critical value x�0 at which the optimal parameters change
discontinuously. Our analytical results are in good agreement with numerical simulations.
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The study of search strategies has generated tremendous
interest in the last few years, as they have found a wide
variety of applications in various areas of science. For
instance, they play an important role in diffusion-controlled
reactions [1]—with implications in the context of genomic
transcription in cells [2]—or in computer science [3], like
in the quest of solution of hard optimization problem.
More recently, search processes have been intensively
studied in behavioral ecology [4]. In that context, searching
for a target is a crucial task for living beings to obtain food
or find a shelter [4]. In this case, the survival of a species is
conditioned, to a large extent, to the optimization of the
search time. Hence, the characterization of the efficiency of
search algorithms has generated a huge interest during the
last few years, both experimentally [4–6] and theoretically
[7–12].
When studying animal movements during their search or

foraging period, it has proven to be useful to model their
outwardly unpredictable dynamics by random walks (RWs)
[1,7–12]. The increasing number of experimental data for
various animals [4–6], have stimulated the study of several
search strategies based on RWs. In particular, multiple
scales RWs, where phases of local diffusion alternate with
long range nonlocal moves, have been put forward as a
viable and efficient search strategy. For instance, these
nonlocal moves can be modeled by Lévy flights [7,8], or by
the so called “intermittent” RWs [9].
Recently, an intermittent strategy, where a locally dif-

fusive searcher is reset randomly with a constant rate to its
initial position, has been introduced and demonstrated to be
rather efficient in searching a fixed target located at the
origin in all dimensions [11–16]. In particular, it was shown

that the mean capture time of the target, a natural measure
of the efficiency of the search process, is finite and becomes
minimal for an optimal choice of the resetting rate. Apart
from the issue of search, this resetting move also drives the
system to a nonequilibrium stationary state which has been
characterized fully both for a single Brownian motion
[11,12,15] and spatially extended systems including fluc-
tuating interfaces [17] or reaction-diffusion systems [18] (in
the latter case with a different resetting procedure). In the
last years, stochastic processes with random restarts have

FIG. 1 (color online). Illustration of the search strategy which
combines long jumps (Lévy flights) and random resettings, with
probability r, at the initial position x0. Here, the search time,
i.e., the first passage time in 0 where the target is located is
Tx0ðμ; rÞ ¼ 9 while there have been two resettings, at step 4 and
7. The integers n and m with n ¼ 6 and m ¼ 2 here illustrate the
notations in the renewal equation in Eq. (4).
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also been used in computer science as a useful strategy to
optimize search algorithms in hard combinatorial problems
as well as in simulated annealing [3,19].
In all these situations discussed above, the local explo-

ration process is typically diffusive. However animal
movements on a local scale are not always diffusive
[7,8] and the jump distribution between two successive
positions may itself have heavy tails, such as in Lévy
flights. It is then natural to ask, for such jump processes
with heavy tails, whether resetting to the initial position
also makes the search of a target more efficient. In this
Letter, we introduce a simple model that combines jump
processes with heavy tails and random resetting to the
initial position. Indeed, we demonstrate that resetting is an
efficient search strategy even when the local moves are not
Brownian, but are instead heavy tailed. In particular, our
analytical results demonstrate that this model has a rather
rich behavior even in the simple one-dimensional setting,
where it exhibits a rather surprising first-order phase
transition. Even though our results concern the one-
dimensional case, they are of interest given that 1D
searching is highly relevant to biological applications, in
particular to the process of finding location of specific
DNA sequences by proteins [1,20].
For simplicity, we define the model in one dimension.

Higher-dimensional generalizations of the model are
straightforward. In our model, the searcher moves in
discrete time on a line, starting from the initial position
x0 ≥ 0. The target is located at the origin. At time step n,
the current location xn of the searcher is updated via the
following rules (see Fig. 1):

xn ¼
�
x0 with probability r;

xn−1 þ ηn with probability 1 − r;
ð1Þ

where 0 < r < 1 denotes the probability of a resetting
event and the jump lengths ηn’s are independent and
identically distributed (i.i.d.) random variables each drawn
from a probability density function (PDF) fðηÞ with a
heavy tail fðηÞ ∼ jηj−1−μ for large jηj, with a Lévy index
0 < μ < 2. Here, we consider the class of Lévy stable
processes for which the Fourier transform of the jump
distribution is given by f̂ðkÞ ¼ Rþ∞

−∞ eikηfðηÞdη ¼ e−jakjμ,
where a sets the scale of the jumps (we set a ¼ 1 in
the following). The heavy tail is reflected in the small
k behavior of f̂ðkÞ ∼ 1 − jkjμ þ � � � as k → 0. The case
μ ¼ 2 corresponds to ordinary random walks, while
μ < 2 describes Lévy flights where the jumps are typically
very large [21].
In the following, we consider the case of “myopic

search” where the search ends when the walker crosses
the origin (the location of the immobile target) for the first
time, (see Fig. 1). The efficiency of the search process is
conveniently characterized by the average search time

hTx0ðμ; rÞi, which depends on x0, μ, and r. In this
Letter, we obtain an exact expression for hTx0ðμ; rÞi given
in Eq. (7). For a fixed x0, we then optimize hTx0ðμ; rÞiwith
respect to the two parameters μ and r and find the optimal
parameters μ�ðx0Þ and r�ðx0Þ as a function of x0. Naively,
one might have expected that the optimal parameters are
μ� ¼ r� ¼ 0, independently of x0. Instead we find, quite
remarkably, that these optimal values μ�ðx0Þ and r�ðx0Þ
exhibit a rather rich and surprising behavior, as functions
of x0. We show indeed that there exists a critical value
x�0 ≃ 0.58 (its value determined numerically) such that the
optimal strategy depends crucially on whether x0 > x�0 or
x0 < x�0. When x0 > x�0, the optimal parameters are inde-
pendent of x0, and are given by

μ�ðx0 > x�0Þ ¼ 0; r�ðx0 > x�0Þ ¼ r�>; ð2aÞ

where r�> ¼
ffiffiffiffiffiffiffiffiffiffiffi
e − 1

p

2

� ffiffiffi
e

p
−

ffiffiffiffiffiffiffiffiffiffiffi
e − 1

p �
¼ 0.22145…: ð2bÞ

In Eq. (2a), μ� ¼ 0 actually means the limit μ� → 0.
On the other hand, for x0 < x�0, the optimal values μ�ðx0Þ
and r�ðx0Þ depend continuously on x0, both of them being
monotonically decreasing functions of x0. In particular, in
the limit where x0 → 0þ, we find

r�ðx0 → 0þÞ ¼ r�0 ¼ 1=4; ð3aÞ

μ�ðx0 → 0þÞ ¼ μ�0 ¼ 1.2893…; ð3bÞ

where μ�0 is the solution of a transcendental equation given
in Eq. (10). Moreover, we find that the optimal parameters
μ�ðx0Þ and r�ðx0Þ exhibit a discontinuity as x0 crosses the
value x�0 (see Fig. 3). This behavior is typically a character-
istic of a first order transition at x�0.
In order to compute the mean search time, or the mean

first passage time (MFPT), hTx0ðμ; rÞi, to the origin (x ¼ 0),
we introduce the cumulative distribution function (CDF)
Qx0ðr; nÞ ¼ Proba:½Tx0ðμ; rÞ > n�. The CDF Qx0ðr; nÞ is
thus the survival probability, i.e., probability that the walker
starting from x0 does not cross the origin up to step n in
presence of resetting. Obviously, one has hTx0ðμ; rÞi ¼P

n≥0Qx0ðr; nÞ. To compute Qx0ðr; nÞ, we write a recursion
relation for this quantity, by using the fact that the resetting
dynamics in Eq. (1) is Markovian. At a fixed time step n, we
denote by m the number of steps elapsed since the last
resetting (see Fig. 1). The probability of a reset at step n −m
followed by no resetting during m steps is rð1 − rÞm. Using
this fact, we get (see [17] for the derivation of a similar
equation in a continuous time setting)
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Qx0ðr; nÞ ¼
Xn−1
m¼0

rð1 − rÞmQx0ðr; n −m − 1ÞQx0ð0; mÞ

þ ð1 − rÞnQx0ð0; nÞ; ð4Þ

where Qx0ð0; nÞ is the survival probability in the absence
of resetting (i.e., r ¼ 0). The first term on the right hand side
of Eq. (4) accounts for the event where the last resetting
before step n takes place at step n −m (see Fig. 1) with
0 ≤ m ≤ n − 1. The evolution from step n −m to step n
occurs without resetting and the survival probability during
this period is Qx0ð0; mÞ, while Qx0ðr; n −m − 1Þ accounts
for the survival probability from step 1 to step n −m − 1 in
presence of resetting. The last term in Eq. (4) corresponds to
the case where there is no resetting event at all up to step n,
which occurs with probability ð1 − rÞn.
To solve Eq. (4), we introduce its generating function

~Qx0ðr; zÞ ¼
P

n≥0Qx0ðr; nÞzn. Multiplying both sides of
Eq. (4) by zn and summing over n, we arrive at the result

~Qx0ðr; zÞ ¼
~Qx0(0; ð1 − rÞz)

1 − rz ~Qx0(0; ð1 − rÞz) : ð5Þ

This formula [Eq. (5)] relates the survival probability in
presence of resetting (r ≥ 0) to the one without resetting
(r ¼ 0). A relation, similar in spirit to Eq. (5), was derived
in the context of intermittent search in a confined system
[22], though the actual dynamics there is quite different
from the present model. Fortunately, for any continuous
and symmetric jump distribution fðηÞ, the Laplace trans-
form (LT) of ~Qx0ð0; zÞ with respect to x0 (the case of no
resetting), can be explicitly computed using the so-called
Pollaczek-Spitzer formula [23–25]:

Z
∞

0

~Qx0ð0; zÞe−λx0dx0 ¼
1

λ
ffiffiffiffiffiffiffiffiffiffi
1 − z

p φðz; λÞ; ð6aÞ

φðz; λÞ ¼ exp

�
−
λ

π

Z
∞

0

dk
λ2 þ k2

ln (1 − zf̂ðkÞ)
�
: ð6bÞ

Hence, Eq. (5) together with Eq. (6) allow us to compute
the CDF of the search time Tx0ðμ; rÞ. Note that Eqs. (5)
and (6) are actually valid for arbitrary jump distributions
fðηÞ, including, in particular, the Lévy case in which we are
interested.
A useful characteristic of the full PDF of Tx0ðμ; rÞ is

its first moment, on which we now focus. Noting the
simple identity hTx0ðμ; rÞi ¼ ~Qx0ðr; 1Þ, one obtains from
Eq. (5)

hTx0ðμ; rÞi ¼ ~Qx0ðr; 1Þ ¼
~Qx0ð0; 1 − rÞ

1 − r ~Qx0ð0; 1 − rÞ ; ð7Þ

where ~Qx0ð0; 1 − rÞ can, in principle, be computed from
Eq. (6). The first observation is that when x0 ¼ 0, the MFPT
is totally independent of the jump distribution fðηÞ. Indeed,
in this limit, ~Qx0¼0ð0; zÞ is given by the Sparre Andersen

theorem [21,26], which states that ~Qx0¼0ð0; zÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
1 − z

p
.

Therefore, for x0 ¼ 0, one obtains a universal result

hTx0¼0ðμ; rÞi ¼
1ffiffiffi
r

p
− r

; ð8Þ

which is independent of μ and has a minimum at
r�ðx0 ¼ 0Þ ¼ 1=4, where the minimal MFPT is
T�ðx0 ¼ 0Þ ¼ 4. The question is: what happens
when x0 > 0?
To get some insights for x0 > 0, we first perform a small

x0 expansion of hTx0ðμ; rÞi. This requires the large λ

expansion of the LT of ~Qx0ðr; zÞ in Eq. (6). For the case
of purely stable jumps, i.e., f̂ðkÞ ¼ e−jkjμ , this yields to
lowest nontrivial order (see Supplemental Material [27]):

hTx0ðμ; rÞi ¼
1ffiffiffi

r
p ð1 − ffiffiffi

r
p Þ −

x0ffiffiffi
r

p ð1 − ffiffiffi
r

p Þ2
1

π

×
Z

∞

0

ln ½1 − ð1 − rÞe−kμ �dkþOðx20Þ: ð9Þ

We can now look for the optimal parameters r�ðx0Þ and
μ�ðx0Þ that minimize hTx0ðμ; rÞi in Eq. (9), for a fixed
(small) x0. To the lowest order, we find r�ðx0Þ ¼
1=4þOðx0Þ while limx0→0þμ

�ðx0Þ ¼ μ�0, where μ�0 is the
unique solution, on the interval (0,2), of the equation:

Z
∞

0

kμ
�
0 ln k

expðkμ�0Þ − 3=4
dk ¼ 0: ð10Þ

Solving Eq. (10) via MATHEMATICA yields μ�0 ¼ 1.2893…,
as announced in Eq. (3). From Eq. (9), one finds that the
optimal MFPT is given by T�ðx0Þ ¼ hTx0ðμ�; r�Þi ¼
4þOðx0Þ. This perturbative calculation for small x0
demonstrates the nontrivial fact that, for small x0, there
exists a nontrivial optimal set of parameters (r�ðx0Þ;
μ�ðx0Þ) given in Eq. (3). This leading order perturbation
theory can, in principle, be extended to higher orders in x0.
To proceed beyond the perturbative calculation presented

above, we perform numerical simulations of the resetting
dynamics in Eq. (1). For a given x0, we compute numeri-
cally hTx0ðμ; rÞi by sampling 107 to 9 × 107 (depending on
x0) independent realizations of the resetting dynamics
[Eq. (1)], for different values of the parameters r and μ.
In Fig. 2, we show hTx0ðμ; rÞi as a function of μ and r for
three different values of x0. As shown in Fig. 2(a), for
x0 < x�0 ≈ 0.58, hTx0ðμ; rÞi exhibits a global minimum at a
nontrivial value of μ�ðx0Þ and r�ðx0Þ which are both
decreasing functions of x0 [see Figs. 3(a) and 3(b),
respectively]. In the limit x0 → 0, these curves converge

PRL 113, 220602 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

28 NOVEMBER 2014

220602-3



to our exact results in Eqs. (3). In contrast, for x0 > x�0,
our simulations show [see Fig. 2(c)] that the minimum
of hTx0ðμ; rÞi is instead reached at μ�ðx0 > x�0Þ ¼ 0.
Figure 2(b) shows the critical case x0 ¼ x�0. Quite remark-
ably, the values of the optimal parameters μ�ðx0Þ and
r�ðx0Þ exhibit a sharp discontinuity as x0 crosses the
critical value x�0 ≈ 0.58, as shown in Fig. 3.

The case x0 > x�0.—Our numerical simulations clearly
indicate that, for x0 > x�0, μ

�ðx0 > x�0Þ ¼ 0 but r�ðx0 > x�0Þ
is a nontrivial constant independent of x0. We can actually
compute this constant analytically (see Supplemental
Material [27]). Using the hint from the simulations that
μ� ¼ 0, we analyze Eq. (6) in the limit μ → 0. In this limit,
we find [27]

lim
μ→0

hTx0ðμ; rÞi ¼
1ffiffiffi

r
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ð1 − rÞ=ep
− r

: ð11Þ

As a function of r, hTx0ðμ → 0; rÞi in Eq. (11) has a unique
minimum at the optimal value r�> given in Eq. (2b).
Substituting r ¼ r�> in Eq. (11) gives the optimal value
of the MFPT

T�ðx0 > x�0Þ ¼
2

ffiffiffi
e

p ð ffiffiffi
e

p þ ffiffiffiffiffiffiffiffiffiffiffi
e − 1

p Þ
e − 1

¼ 5.6794…: ð12Þ

In Fig. 4, we show a plot of hTx0ðμ; rÞi for x0 ¼ 1 > x�0,
computed numerically, as a function of r and for different
small values of μ. This plot confirms that, as μ → 0,

the numerical data do converge to our exact results in
Eqs. (11) and (12).
Interestingly, our numerics also reveal the existence of a

second special value xc0 ≈ 0.56 < x�0, suggesting the fol-
lowing scenario as x0 is increased from 0 to ∞. As x0
increases, starting from 0, hTx0ðμ; rÞi admits a single global

minimum at Xð1Þ
min ¼ ðμ�ðx0Þ > 0; r�ðx0ÞÞ [see Fig. 2(a)]

until x0 reaches the value x0 ¼ xc0. At this point, a second

local minimum appears at Xð2Þ
min ¼ ðμ ¼ 0; r�>Þ. The value of

hTx0ðμ; rÞi at this local minimum at Xð2Þ
min however remains

higher than the one at Xð1Þ
min until x0 > x�0. Therefore, in this

range, when xc0 < x0 < x�0, there are two competing local

minima with Xð1Þ
min being the global minimum, and Xð2Þ

min
being a metastable minimum [see Fig. 2(b)]. When x0
increases beyond x�0, then Xð2Þ

min becomes the global mini-
mum [see Fig. 2(c)]. This is then a typical scenario for a
first order phase transition, as clearly illustrated in Fig. 3.
This second value xc0 can actually be estimated analytically

by studying the stability of the local minimum Xð2Þ
min starting

from large x0 where it is also a global minimum.We compute
the sign of the derivative of ∂hTx0ðμ; rÞi=∂μ evaluated at
μ ¼ 0 and r ¼ r�> given in Eq. (2b). A straightforward
computation, using Eqs. (6) and (7) shows that

sgn

�∂hTx0ðμ; rÞi
∂μ

	




r¼r�>;μ¼0

¼ sgn½lnðx0Þ þ γE�; ð13Þ

where γE ¼ 0.57721… is the Euler constant. The slope does
change sign from positive to negative as x0 crosses from
above the value xc0 ¼ e−γE ¼ 0.56146… < x�0 ≈ 0.58. Our
numerical estimate of xc0 is fully in agreement with the exact
value xc0 ¼ e−γE .
To summarize, for a searcher undergoing stable Lévy

jump processes with resetting in one dimension, we showed
that the MFPT to a fixed target at the origin has a rich phase
diagram as a function of the Lévy index μ, the resetting
probability r, and the starting position x0. In particular, the
optimal parameters (μ�ðx0Þ; r�ðx0Þ) that minimize the
MFPT exhibit a surprising first-order phase transition at a
critical value x�0. Our study leads to several open questions.
For example, how generic is this first-order phase transition?
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Does it depend only on the tail or on other details of the
jump distribution? Also, does this transition exist in higher
dimensions and in presence of multiple searchers? These
questions remain outstanding for future studies.
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FIG. 4 (color online). hTx0ðμ; rÞi vs r—comparison between
numerical results for small μ and analytical prediction for μ → 0.
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