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We show that in the first-order gravity theory coupled to axions the instanton number of the Giddings-
Strominger wormhole can be interpreted as the Nieh-Yan topological index. The axion charge of the baby
universes is quantized in terms of the Nieh-Yan integers. Tunneling between universes of different
Nieh-Yan charges implies a nonperturbative vacuum state. The associated topological vacuum angle can be
identified with the Barbero-Immirzi parameter.
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I. INTRODUCTION

The study of the topology change of spacetime due to
quantum fluctuations dates back to Wheeler [1], and con-
tinues to be a fascinating endeavor for physicists. While a
complete and consistent quantum theory of gravity is still
missing, one hopes that an analysis of the role of geometrical
or topological fluctuations might bring out certain qualitative
features of small-scale gravity that are otherwise difficult to
unravel. In fact it is this perspective from which the func-
tional integral formulation of quantum gravity can still be
thought to be relevant [2], even though this theory is known
to exhibit perturbative nonrenormalizability.
There exists a considerable amount of literature regard-

ing gravitational instantons which are responsible for the
change in topology of spacetime, both in pure and matter-
coupled gravity theories. Among these, what we shall be
concerned with in this paper is the wormhole instanton
[3–8]. These are known to appear in the Euclidean theory of
gravity coupled to antisymmetric tensor gauge field of rank
two. Their existence as finite action solutions of axionic
gravity was first noted by Giddings and Strominger [6].
Whereas the wormhole itself acts as a bridge connecting
two asymptotically flat universes, the semiwormhole,
which is just the half of it, can be interpreted as an
instanton which leads to the creation or annihilation of a
baby universe. Each such small universe has the topology
of a three-sphere at any instant of time. This instanton
effectively tunnels between two topologically distinct three
geometries, namely, R3 and R3 þ S3. Subsequently, these
authors have used these configurations to study various low
energy effects, e.g., loss of coherence and CP violation.
Wormhole physics has also been applied by Coleman to
argue that the cosmological constant should vanish and
that coupling constants in general should get renormalized

[9–12]. That the effects of topology change due to a small
wormhole can be represented by the insertion of an
effective local vertex operator in the correlation functions
has been observed in Ref. [13].
In quantum field theory, any nontrivial instanton physics

is generally associated with the emergence of a non-
perturbative quantum vacuum which supercedes the naive
perturbative vacuum state [14]. Such a nontrivial structure
is essentially characterized by an additional free parameter
in the theory, namely, a topological coupling constant.
These nonperturbative effects can be ascribed solely to the
existence of a topological density in the classical theory
itself, which could be included as an additional term in an
effective Lagrangian. Such a term will come multiplied
by the same topological parameter which shows up as the
vacuum angle in the quantum theory. Thus, even though
topological densities, being total divergences, do not affect
the classical dynamics, they do show up in the quantum
theory. For example, in gauge theories such as the Quantum
Chromodynamics (QCD), the origin of the famous θ
vacuum lies in the fact that there exists a topological
density in the theory, namely, the Pontryagin class, which
can be added to the original Lagrangian alongwith a free
coefficient θ. Although classical physics remains insensitive
to this addition, quantum theory perceives it and exhibits
a nonperturbative structure of the vacuum. While the naive
perturbative vacua are degenerate and are characterized
by different values of the winding number, the instanton
configurations break this degeneracy by tunneling between
these vacua. As a result, the true vacuum state, also known as
the θ vacuum, is a superposition of all the perturbative vacua
weighted by θ-dependent phases.
Similar to gauge theories, gravity theory in four dimen-

sions also admits an effective Lagrangian with additional
terms which are topological densities. However, for gravity,
there are three such terms, namely, Euler, Pontryagin and
Nieh-Yan [15–18]. Whereas the first two depend on the
curvature tensor, the third depends only on torsion [15].
In other words, Nieh-Yan invariant can be nontrivial only
for configurations with a nonvanishing torsion. There exist
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many examples of gravitational instantons carrying non-
trivial Euler and Pontryagin numbers [19–22]. However,
configurations that correspond to nonzero Nieh-Yan num-
bers as well as satisfy the equations of motion are not
known to exist in pure gravity theory. Since torsion is
identically zero in second-order gravity, such configura-
tions, if possible, can necessarily live only in the first-order
formulation (with or without matter) where tetrad and spin
connection are treated as independent fields [23]. In view of
this, axionic gravity, which admits a first-order theory with
nonvanishing torsion and exhibits instanton solutions,
appears as a natural candidate where Nieh-Yan instantons
can exist.
Also, keeping the general features of instanton physics

in the case of gauge theories in mind, there is a reason to
believe that the semiwormhole instanton in axionic gravity
must represent tunneling between topologically distinct
“vacua.” The topological numbers characterizing these
vacua could be associated with one of three possible
topological classes in gravity theory, namely, Pontryagin,
Nieh-Yan or Euler. However, such an interpretation has
been missing so far.
Here we provide a unified answer to both the issues

raised above. First, we set up a first-order formulation of
gravity theory coupled to axionic matter, which admits the
Giddings-Strominger wormholes as solutions. Then, we
show that within this framework, the wormholes can be
interpreted as torsional pseudoparticles, whose instanton
number is the same as the Nieh-Yan index of the baby
universe created (or annihilated) by the instanton.
Torsional instantons have also been discussed earlier in

theories of gravity with or without matter [24–27]. Among
the pure gravity configurations, the one found by Hanson
and Regge [24] is neither a solution of equations of motion
nor does it carry a Nieh-Yan charge. On the other hand, the
Chandia-Zanelli instantons [25], which are not solutions of
equations of motion, do carry nontrivial Nieh-Yan number.
The torsion is purely geometric in these cases, having its
origin in the degeneracy of the tetrad. In contrast, in our
case here, the torsion is generated by the antisymmetric
tensor gauge field (or axion) through a special choice of
its coupling to gravity.
In the next section, we present a first-order action

formulation for axionic gravity with nonvanishing torsion.
This theory is then used to provide a new interpretation of
the instanton number of the (semi)wormholes. We also find
that the axion charge is quantized in terms of Nieh-Yan
integers. Next, we discuss the nontrivial vacuum structure
originating due to wormhole effects which introduce an
angular parameter η as a new quantum coupling. This
constant is the inverse of the Barbero-Immirzi parameter of
loop quantum gravity [28]. The details of the large gauge
transformations which induce a change of the Nieh-Yan
number are also elaborated. Finally, we make a few
concluding remarks.

II. FIRST-ORDER LAGRANGIAN FOR
AXIONIC GRAVITY

We study the following first-order Lagrangian density
for (Euclidean) gravity theory coupled to an antisymmetric
tensor gauge field of rank two:

Lðe;ω; BÞ ¼ −
1

2κ2
eeμI e

ν
JRμν

IJðωÞ þ 1

2κ
eHμναeIμDνðωÞeαI

þ βeHμναHμνα ð1Þ

where Rμν
IJðωÞ¼ ∂ ½μω IJ

ν� þω½μILων�LJ, DμðωÞeIν ¼ ∂μeIνþ
ωμ

IJeνJ, Hμνα ¼ ∂ ½μBνα�. The internal metric is Euclidean:
ηIJ ¼ diag½1; 1; 1; 1�. In the second term above, the tor-
sional current Jμνα ¼ eI½μDνðωÞeα�I , which is totally anti-

symmetric in its indices, has been coupled to the field
strength Hμνα. This coupling induces a nonvanishing
torsion in this first-order theory. The coupling constant β
is dimensionless.
The Lagrangian, being a functional of three independent

sets of fields eIμ;ωμ
IJ, and Bμν, leads to three sets of

equations of motion. We discuss these next.

A. Spin connection equation

Varying (1) with respect to ωμ
IJ, we obtain the following

expression of torsion in terms of the field strength:

Tαβ
I ≡ 1

2
D½αðωÞeIβ� ¼ − κ

2
eμIHαβμ:

The spin connection may be decomposed into a torsionless
part ωμ

IJðeÞ and contortion Kμ
IJ as

ωμ
IJ ¼ ωμ

IJðeÞ þ Kμ
IJ: ð2Þ

Using the identity Kμνα ¼Kμ
IJeνIeαJ ¼Tμαν−Tνμα−Tαμν,

we obtain

Kμνα ¼
κ

2
Hμνα: ð3Þ

B. Bμν equation

A variation of (1) with respect to Bμν yields

∂μ

�
e
2κ

gμμ
0
gνν

0
gαα

0
eI½μ0Dν0 ðωÞeα0�I þ 2βeHμνα

�
¼ 0:

This, upon using the connection equation, leads to

∂μ½eHμνα� ¼ 0: ð4Þ
Notice that this is the same equation for Bμν as obtained in
the case without torsion. Also, due to the fact that the field
strength Hμνα is an exact form, there is a corresponding
Bianchi identity:

ϵμναβ∂αHβμν ¼ 0: ð5Þ
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C. Tetrad equation

The only remaining set of equations of motion comes from the variation of the Lagrangian with respect to the tetrad.
The variations of the individual terms in (1) can be written as

δ

�
1

2
eeμI e

ν
JRμν

IJðωÞ
�
¼ e

�
eνJRρν

KJðωÞ − 1

2
eKρ RðωÞ

�
δeρK

δ½eHμναeIμDνðωÞeαI� ¼ −eHμνα½eKρ eIμ þ 2eIρeKμ �ðDνðωÞeαIÞδeρK
þ eH να

ρ0 ½eIρDνðωÞeαI þ eIνDαðωÞeρIeIαDρðωÞeνI�eðρ
0

K δeρÞK

δ½eHμναHμνα� ¼ −e½eKρ HμναHμνα − 3H να
ðρ HμÞναe

μ
K�δeρK; ð6Þ

which lead to

RρσðωÞ −
1

2
gρσRðωÞ

¼ κ½ðgσμeIνðD½αðωÞeρ�IÞ
− κβðgρσHμνα − 6gμρHσναÞÞ þ ðρ↔σÞ�Hμνα

þ κ½gρσeIμ þ gμ½σeIρ��ðDαðωÞeIνÞHμνα: ð7Þ

Next, we note that using Eq. (2), the curvature tensor
Rμν

IJðωÞ can be expressed in terms of the curvature tensor
Rμν

IJðωðeÞÞ of the torsionless connection ωðeÞ as

Rμν
IJðωÞ ¼ Rμν

IJðωðeÞÞ þD½μðωðeÞÞK IJ
ν� þ K IL

½μ Kν�LJ:

ð8Þ

This along with Eq. (3) allows us to rewrite the tetrad
equation of motion (7) as

RρσðωðeÞÞ −
1

2
gρσRðωðeÞÞ

¼ −κ2F2
a½gρσHμναHμνα − 6Hρ

μνHσμν�; ð9Þ

where F2
a ¼ β − 1

8
is the redefined coupling constant. Also,

here we have made use of the fact that the contributions
from the second term in Eq. (8) vanish when the equations
of motion for ωIJ

μ and Bμν are used:

eνJD½μðωðeÞÞK IJ
ν� ¼ 0: ð10Þ

Equation (9) represents the second-order theory as
obtained from the first-order Lagrangian (1). Notice that
this equation is exactly the same as the Einstein equation
in Giddings-Strominger theory [6], which admits worm-
hole solutions.

III. WORMHOLE

In order to discuss the wormhole configurations in this
theory, we write the metric following [6] as

ds2 ¼ dτ2 þ aðτÞ2½dχ2 þ sin2 χdθ2 þ sin2 χ sin2 θdϕ2�:
ð11Þ

Here τ ∈ ½−∞;∞� is the Euclidean time and χ ∈ ½0; π�,
θ ∈ ½0; π�, and ϕ ∈ ½0; 2π� are the three angles describing a
three-sphere of radius aðτÞ. For the antisymmetric tensor
field strength, we adopt the ansatz,

Hτab ¼ 0; Habc ¼ 1ffiffiffi
g

p ϵabchðτ; χ; θ;ϕÞ; ð12Þ

where ϵτabc ¼ ϵabc is the totally antisymmetric density on
the three-sphere whose indices are lowered using the
induced three-metric gab.
Now we proceed to find the explicit functional form of

hðτ; χ; θ;ϕÞ. From the equation of motion (4) for Bμν, we
notice that h in Eq. (12) is independent of the coordinates
χ; θ;ϕ:

h ¼ hðτÞ:
The Bianchi identity ∂ ½τHχθϕ� ¼ 0 fixes the aðτÞ depend-
ence of hðτÞ as

hðτÞ ¼ κQ
3!a3ðτÞ ; ð13Þ

where Q is a dimensionless constant. For an appropriate
normalization, Q turns out to be the axion charge, which is
given by the integral of the field strength over any three-
surface: Z

d3x ϵabcHabc ¼ 2π2κQ: ð14Þ

The above ansatz for Hμνα, when inserted into the tetrad
equations of motion (9), leads to

_a2ðτÞ ¼ 1 −
κ4F2

aQ2

18a4ðτÞ : ð15Þ

This equation describes the Giddings-Strominger wormhole
configuration. For the minimum value a0 ¼ 18−1

4κðFaQÞ12 of
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the scale factor, _aðτÞ ¼ 0. This corresponds to the size of the
throat of the wormhole. The explicit form of the solution, as
discussed in [6], shows that this configuration interpolates
between two asymptotically flat surfaces which are topo-
logically R3 at any instant of time. The wormhole at any
fixed time represents an incontractible three- sphere. Starting
with some large radius at τ → −∞, the wormhole attains
the minimum size a0 at τ ¼ 0 and then again reaches the
maximal radius at τ → ∞. On the other hand, the half-
wormhole represents a tunneling configuration for an R3

geometry at τ ¼ −∞ to R3 þ S3 at τ ¼ 0 [6].
In the next section, we demonstrate that the first-order

gravity theory allows a new interpretation of these instanton
configurations as torsional pseudoparticles (Nieh-Yan
instantons).

IV. TORSION INSTANTON

A. Nieh-Yan topological charge

The semiwormhole configuration in the first-order
theory is associated with a nontrivial torsion. The asso-
ciated Nieh-Yan index, which is the only topological
invariant associated with torsion, is defined as [15]

NNY ¼ 1

2π2κ2

Z
M4

d4x ϵμναβ

× ½eIμeJνRαβ
IJðωÞ − 2ðDμðωÞeIνÞðDαðωÞeIβÞ�: ð16Þ

The integrand above is a total divergence:

NNY ¼ −
1

π2κ2

Z
M4

d4x ∂μ½ϵμναβeIνDαðωÞeIβ�: ð17Þ

For a four-manifold M4 with a compact boundary ∂M, this
reduces to

NNY ¼ −
1

π2κ2

Z
∂M

d3x ½ϵabceIaDbðωÞeIc�:

For the Giddings-Strominger configuration, the only com-
pact boundaries of the four-manifold are the baby universes
which are topologically S3. Using the decomposition of the
spin connection and the expression for Kμ

IJ, the Nieh-Yan
number of the semiwormhole thus becomes

NNY ¼ 1

π2κ2

Z
S3
d3x ½ϵabcKabc�

¼ 1

2π2κ

Z
S3
d3x ϵabcHabc ¼ Q: ð18Þ

This implies an exact equality between the Nieh-Yan index
of the instanton and axion charge Q carried away by the
baby universe. It is well known that the Nieh-Yan index of
a compact manifold can be expressed as the difference
of SOð5Þ and SOð4Þ Pontryagin numbers of the same

manifold [25]. Thus, for ∂M ¼ S3, the winding number
is nothing but a combination of the homotopy indices
associated with π3½SOð5Þ� and π3½SOð4Þ�, which are known
to be integers:

NNYjS3 ¼ π3½SOð5Þ� þ π3½SOð4Þ� ¼ Z þ Z þ Z: ð19Þ

Thus, if the initial configuration, which is topologically R3,
has zero axion charge, instanton effects would lead to a
final configuration with a nonvanishing axion charge −Q,
where Q ¼ P

iQi is the sum of charges carried away by all
the baby universes.
It is important to note that since the Nieh-Yan number is

an integer, the axion charge as related to it through Eq. (18)
is quantized. A similar quantization property of axion
charge has been noticed in the context of oriented bosonic
strings coupled to the antisymmetric tensor field Bμν [29].
However, in that case, the integers associated with the axion
charge have a different origin, namely, the nontrivial third
cohomology group (with integer coefficients) H3ðS3; ZÞ of
the three-sphere.

B. Action of instanton

In order to compute the action, we make use of the
connection equation (3) and identities (8) and (10) to write

RðωÞ ¼ RðωðeÞÞ − κ2

4
HρλσHρλσ; ð20Þ

where Hμνα are given by Eq. (12) for the wormhole
solution. The above equation along with (3) and (9) allows
us to rewrite the Lagrangian density (1) as

Lðe;BÞ ¼ −
1

2κ2
eRðωðeÞÞ þ eF2

aHμνρHμνρ ¼ 12eF2
ah2ðτÞ:

The resulting action for a semiwormhole (instanton) reads

S ¼
Z

d4xLðe; BÞ

¼ 2π2

3
κ2F2

aQ2

Z
∞

τ0

dτ
a3ðτÞ

¼ 2π2

3
κ2F2

aQ2

Z
∞

a0

daðτÞ a−3ðτÞ
�
1 −

a40
a4ðτÞ

�−1
2

¼ π3

6
ffiffiffi
2

p FaQ; ð21Þ

where in the second line we have used Eq. (15).
Importantly, the action for the instanton is finite, and is
expected to contribute nontrivially in the functional integral
for this theory.
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V. η VACUUM

Half-wormholes induce quantum tunneling between
classical vacuum states of different Nieh-Yan numbers
NNY. For each such state, this number is given by the
difference of the total positive and negative charges carried
by the baby universes in that state. This implies that the
quantum vacuum is a linear superposition of the classical
vacua:

jηi ¼
X
NNY

eiηNNY jNNYi: ð22Þ

The transition amplitude between states of different Nieh-
Yan numbers can then be calculated in the same manner as
in the gauge theories [14].
We adopt a dilute gas approximation where the instantons

(anti-instantons), which carry a Nieh-Yan (axion) charge þ1
(−1), arewidely separated in the interpolating four geometry.
We also assume each of the baby universes in the initial and
final states to be of charge �1. Let the initial vacuum state
jNi

NY¼Niþ−Ni
−i have Ni

� universes of charges�1 at some
early time and the final vacuum state jNf

NY ¼ Nf
þ − Nf

−i
have Nf

� universes of charge �1 at distant future. As time
progresses, we include the contribution of nþ instantonic
configurations, each of these creating a baby universe of
Nieh-Yan chargeþ1 in the final state as depicted in Fig. 1(a).
In addition, we can have n− configurations, each annihilating
a baby universe of charge−1 in the initial state as depicted in

Fig. 1(b). Similarly, we can have n̄� half-wormholes, each
annihilating a baby universe of Nieh-Yan charge þ1 from
the initial state or creating a baby universe of charge −1 in
the final state as depicted in Fig. 1(c) and (d), respectively.
However, among these, the diagrams (a) and (b) represent
equivalent configurations, since they describe the same
tunneling process, i.e., one that induces a change in the
Nieh-Yan charge by þ1 between the initial and final states.
Similarly, diagrams (c) and (d) represent the same amplitude
inducing a change of the Nieh-Yan charge by −1. Thus, the
nþ þ n̄− ¼ N configurations should be treated as indistin-
guishable, and so should be the n− þ n̄þ ¼ N̄ semiworm-
holes. The difference of the initial and final Nieh-Yan
numbers is fixed:

Nf
NY − Ni

NY ¼ ðnþ − n̄þÞ − ðn− − n̄−Þ ¼ N − N̄:

In the dilute gas approximation, each configuration contrib-
utes a factor proportional to e−SKVT to the path integral,
where S is the action (21) corresponding to an instanton or
anti-instanton and K represents the contribution from quan-
tumfluctuationsaround thewormholesolution.ThefactorVT
is the volume of the interpolating four-manifold which comes
due to an integration over the location of each instanton
(anti-instanton). Here K is assumed to be real [7] and it is
independent of VT in the large volume limit. The cumulative
contribution of all the instantons and anti-instantons of
charge �1 to the path integral can be written as

hNf
NYje−FT jNi

NYi ¼ A
X∞
N¼0

X∞
N̄¼0

1

N!N̄!
ðe−SKVTÞNþN̄ ½δðNf

NY−N
i
NYÞ;ðN−N̄Þ�

¼ A
Z

2π

0

dη
X∞
N¼0

X∞
N̄¼0

eiηðNi
NY−N

f
NYþN−N̄Þ ðe−SKVTÞN

N!

ðe−SKVTÞN̄
N̄!

¼ A
Z

2π

0

dη eiηðNi
NY−N

f
NYÞ exp ½2e−SKVT cos η�: ð23Þ

Here, A is a normalization factor and F has been defined to be the formal analogue of the vacuum energy of the system,
although its precise relation to the energy in gravity theory is not clear [4]. This allows us to write the instanton and
anti-instanton contributions to the transition amplitude for the nonperturbative quantum η vacua of Eq. (22) as

N NY

N
NY

(a)
N NY

N
NY

(b)

N − 1
NY

N NYN NY

− 1
NY

(c) (d)

FIG. 1. Tunneling configurations
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hη0je−FT jηi ¼ Aδðη − η0Þ exp ½2e−SKVT cos η�: ð24Þ

The main thrust of the above result is that the vacuum
energy receives an η-dependent modification of the size
Fη ¼ −2e−SKVcosη due to tunneling effects. This vacuum
energy has been evaluated earlier in [6] for the ground state
constructed as a linear combination of perturbative vacuum
states with different baby universe number.
The fact that there exists a nonperturbative η vacuum can

be captured, like in QCD, through an effective Euclidean
Lagrangian containing Nieh-Yan topological density with
coefficient η as an additional term:

Leff ¼ Lþ iηINY; ð25Þ
where L is the original Lagrangian as defined in (1). It is
well known that in a first-order gravity Lagrangian, the
addition of Nieh-Yan density does not change the classical
dynamics. The topological coupling constant η multiplying
this term is identified [16,17] as the inverse of the Barbero-
Immirzi parameter of loop quantum gravity. To sum it up,
we have found an η vacuum in first-order gravity, which is a
result of tunneling between perturbative vacua labeled by
different Nieh-Yan indices. This is a clear realization of the
suggestion made earlier [30] that Barbero-Immirzi param-
eter should show up through a rich vacuum structure in
quantum gravity [16,17,31–33].
Since Nieh-Yan density is P and T odd, the η parameter

is a quantum coupling constant violating these symmetries.
Like in the case of the θ vacuum of QCD [14], let us
consider the expectation value of the Nieh-Yan index in the
η vacuum, which, according to equations (23) and (25) is
given by

hηj
Z

d4x INYjηi ¼
i

VT
d
dη

ðln e−FηTÞ ¼ −2iKe−S sin η;

ð26Þ
where K is a calculable quantity leaving η as the only free
parameter in this expression. We emphasize that the
instanton effects reflected by this equation are insensitive
to the specific details of the origin of torsion. For example,
as fermions couple to contortion, the divergence of the axial
current would get a contribution as in Eq. (26) for any
configuration with a nontrivial Nieh-Yan number. This is
because the axial anomaly is known to be related to the
expectation value of the Nieh-Yan index [25]. Thus, the
electric dipole moment of the neutron can develop a
dependence on the Barbero-Immirzi parameter η (see
Ref. [2,34] for earlier discussions on parity violating effects
in gravity).
We have already discussed how the Nieh-Yan number

can be expressed in terms of the contortion field Kμνα

[Eq. (18)]. We conclude this section by discussing the
nature of large gauge transformations which induce change
of the Nieh-Yan number of a perturbative state.

A. Large gauge transformations

Let us consider the following transformation of Kμνα:

δKμνα ¼
1

3!g
ϵμναβζ

β; ð27Þ

where g is the determinant of the four-metric gμν.
Also, here we have introduced a “gauge vector” ζβ ≔
ðΛðτÞ
2π2

; 0; 0; 0Þ, where ΛðτÞ is a smooth function of τ such
that Λð−∞Þ ¼ 0 and Λð∞Þ ¼ 1. Since the gauge vector
is nonvanishing at infinity, it represents a “large” gauge
transformation of the contortion field. To be specific, we
can choose [14]

ΛðτÞ ¼ 1

2
ð1þ tanh τÞ:

Hence, under (27), the change in the Nieh-Yan number is
given by

δ

Z
d4x ϵμναβ∂μKναβ ¼

Z
d4x ∂μζ

μ ¼ ΛðτÞjþ∞
−∞ ¼ 1:

ð28Þ

Our analysis in this paper is based on a first-order theory
of gravity where the source of torsion is an axion. However,
there can be other matter-induced sources of torsion and
also those of a geometric origin [23–25]. Our discussion
above generically applies to the η vacuum generated by all
such sources of torsion.

VI. CONCLUDING REMARKS

Here we provide a new interpretation of the instanton
number of the Giddings-Strominger (semi)wormhole in
terms of the Nieh-Yan topological invariant. The nonpertur-
bative vacuum structure arising due to tunneling between
states of different Nieh-Yan numbers is found to be charac-
terized by the topological coupling constant η, which can
be identified with the Barbero-Immirzi parameter of loop
quantum gravity. Thus, η emerges as an exact analogue of
the θ angle in gauge theories. That the Barbero-Immirzi
parameter has such a topological origin was anticipated
earlier in [30] and demonstrated in [16] in the context of
classical canonical gravity. Subsequently, this idea has been
explored in several places [17,31–33]. However, there has
been no analysis or demonstration of possible nonperturba-
tive effects that could be induced by Nieh-Yan instantons in
the quantum theory of gravity. Our work here provides a
concrete example of an instanton which can be used to
extract the quantum physics associated with the Nieh-
Yan invariant, or equivalently, with the Barbero-Immirzi
parameter.
We also find that the axion charge is given in terms of the

homotopy integers associated with the Nieh-Yan invariant,
and hence is quantized. There is a similar quantization
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condition in bosonic string theory with an axion coupling.
Whether these two constraints are independent or are
related is to be understood.
Finally, we emphasize that although our analysis here

was based on the axionic wormholes, the essential features
of the η vacuum as unraveled here are expected to go
through for any other configuration corresponding to a
nontrivial torsion in the first-order theory. This can be
appreciated by noticing that the discussions on Nieh-Yan
number and large gauge transformations have been for-
mulated entirely in terms of the contortion field Kμνα,
which can be generated either by some other matter
coupling or by a nontrivial geometry.
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