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ABSTRACT
We present a model of large-scale dynamo action in a shear flow that has stochastic, zero-mean
fluctuations of the α parameter. This is based on a minimal extension of the Kraichnan–Moffatt
model, to include a background linear shear and Galilean-invariant α-statistics. Using the first-
order smoothing approximation we derive a linear integro-differential equation for the large-
scale magnetic field, which is non-perturbative in the shearing rate S , and the α-correlation
time τα . The white-noise case, τα = 0 , is solved exactly, and it is concluded that the necessary
condition for dynamo action is identical to the Kraichnan–Moffatt model without shear; this
is because white-noise does not allow for memory effects, whereas shear needs time to act.
To explore memory effects we reduce the integro-differential equation to a partial differential
equation, valid for slowly varying fields when τα is small but non-zero. Seeking exponential
modal solutions, we solve the modal dispersion relation and obtain an explicit expression for
the growth rate as a function of the six independent parameters of the problem. A non-zero
τα gives rise to new physical scales, and dynamo action is completely different from the
white-noise case; e.g. even weak α fluctuations can give rise to a dynamo. We argue that, at
any wavenumber, both Moffatt drift and Shear always contribute to increasing the growth rate.
Two examples are presented: (a) a Moffatt drift dynamo in the absence of shear and (b) a Shear
dynamo in the absence of Moffatt drift.
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1 IN T RO D U C T I O N

The magnetic fields observed in many astrophysical bodies – such as the Sun, stars, galaxies and clusters of galaxies – are thought to
be generated by electric currents in the turbulent plasma flows in these objects (Moffatt 1978; Parker 1979; Krause & Rädler 1980;
Ruzmaikin, Shukurov & Sokoloff 1998; Kulsrud 2004; Brandenburg & Subramanian 2005). The field shows structure on a wide range of
scales, both smaller and larger than that of the underlying turbulence. Of particular interest to the present investigation is the large-scale
ordered structure of the field. When the turbulent motions are helical (i.e. when mirror-symmetry is broken), the well-known α-effect can
amplify seed magnetic fields and maintain them in the face of turbulent dissipation (Moffatt 1978; Parker 1979; Krause & Rädler 1980).
However, it is not clear whether astrophysical turbulence has a mean helicity that is large enough to sustain such a large-scale turbulent
dynamo. A natural question arises: is there dynamo action for turbulence whose helicity vanishes (not instantaneously, but) on average?
Kraichnan (1976) considered dynamo action when α is a stochastic quantity with zero mean, and demonstrated that the α fluctuations
would contribute to a decrease in the turbulent diffusivity. When the fluctuations are large enough, there is negative diffusion, and the
magnetic field grows on all spatial scales, with the fastest rates of growth on the smallest scales. The Kraichnan model was generalized
by Moffatt (1978), to include a statistical correlation between the fluctuations of α and its spatial gradient. In the simplest case this
correlation contributes a constant drift velocity to the dynamo equation, and does not influence dynamo action. A feature common to
astrophysical flows is velocity shear, and it is only relatively recently that the question of large-scale dynamo action in shear flows with α

fluctuations began receiving attention (Vishniac & Brandenburg 1997; Sokolov 1997; Silant’ev 2000). The interest in this question has grown
significantly, and a number of investigations have pursued this problem both analytically and numerically (Proctor 2007, 2012; Brandenburg
et al. 2008; Yousef et al. 2008; Kleeorin & Rogachevskii 2008; Rogachevskii & Kleeorin 2008; Sur & Subramanian 2009; Heinemann,
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McWilliams & Schekochihin 2011; McWilliams 2012; Mitra & Brandenburg 2012; Richardson & Proctor 2012; Tobias & Cattaneo 2013).
The numerical simulations of Yousef et al. (2008) and Brandenburg et al. (2008) are demonstrations of large-scale dynamo action in a shear
flow with turbulence that is, on average, non-helical. The evidence for the growth of a large-scale magnetic field seems compelling, as can be
seen from the ‘butterfly diagrams’ of fig. 3 in Yousef et al. (2008) and fig. 8 in Brandenburg et al. (2008). It is also significant, as shown in
fig. 10 of Brandenburg et al. (2008), that the α parameter fluctuates about a mean value close to zero.

The goal of this paper is to study large-scale dynamo action by extending the Kraichnan–Moffatt (KM) model in a minimal manner, in
order to include a background linear shear flow. This is done in Section 2 where the α fluctuations are required to respect Galilean invariance
(GC), a symmetry natural to linear shear flows. The integro-differential equation governing the evolution of the large-scale magnetic field
is derived in Section 3, using the first-order smoothing approximation (FOSA), shearing coordinates and Fourier representation similar to
Sridhar & Subramanian (2009a,b), Sridhar & Singh (2010), Singh & Sridhar (2011). This equation is non-perturbative in the shearing rate
S, and the α-correlation time τα . With no further approximation, this is applied in Section 4 to the case of white-noise α fluctuations (for
which τα = 0 ) and general conclusions are derived regarding the limited nature of dynamo action. In Section 5 the integro-differential
equation is simplified to an ordinary differential equation, when τα �= 0 is small and the large-scale magnetic field is slowly varying. This is
used to explore one-dimensional propagating waves in Section 6: the dispersion relation is solved and an explicit expression for the growth
rate function is obtained. In Section 7 we present an interpolation formula for the growth rate and study dynamo action due to Kraichnan
diffusivity, Moffatt drift and shear. We conclude in Section 8.

2 D E F I N I T I O N O F T H E M O D E L

2.1 Outline of the Kraichnan–Moffatt model

Following Kraichnan (1976) we model small-scale turbulence in the absence of mean motions as random velocity fields, {v(X, τ )}, where
X = (X1, X2, X3) is the position vector with components given in a fixed orthonormal frame (e1, e2, e3), and τ is the time variable. The
ensemble is assumed to have zero-mean isotropic velocity fluctuations, with uniform and constant kinetic energy density per unit mass, and
slow helicity fluctuations. Zero-mean isotropic velocity fluctuations imply that:

〈vi〉 = 0 ;
〈
vivj

〉 = δij v
2
0 ;

〈
vi

∂vj

∂Xn

〉
= εinj μ(X, τ ) , (1)

where v2
0 = 〈v2/3〉 = two-thirds of the mean kinetic energy density per unit mass, and μ(X, τ ) = 〈v · (∇ ×v)〉/6 = one-sixth of the helicity

density. Uniform and constant kinetic energy density per unit mass means that v2
0 is a constant number across the ensemble. Let �0 be the

eddy size and τ c be the velocity correlation time. The correlation time need not equal the ‘eddy turnover time’ τ 0 = �0/v0 : for instance,
τ c ∼ τ 0 for fully developed turbulence, whereas τ c � τ 0 for a v which is close to white-noise. By slow helicity fluctuations we mean that
the spatial and temporal scales of variation of μ(X, τ ) are assumed to be much larger than �0 and τ c.

When electric currents in the fluid give rise to a magnetic field, the action of the stochastic velocity field makes the magnetic field
stochastic as well. Let B(X, τ ) be the meso-scale magnetic field, obtained by averaging over the above ensemble. Then the space-time
evolution of B(X, τ ) is given by the dynamo equation (Moffatt 1978; Krause & Rädler 1980; Brandenburg & Subramanian 2005):

∂B
∂τ

= ∇ × [ α(X, τ )B ] + ηT∇2 B ; ∇· B = 0 , (2)

where

α = −2τcμ(X, τ ) , ηT = η + ηt = total diffusivity,

η = microscopic diffusivity , ηt = τcv
2
0 = turbulent diffusivity. (3)

The above expressions for the turbulent transport coefficients α and ηt are valid in the high-conductivity limit, under the FOSA, assuming
isotropic background turbulence. The next step is to consider α(X, τ ) itself to be drawn from a superensemble, while ηT is kept constant. It
is assumed that α(X, τ ) is a statistically stationary, homogeneous, random function of X and τ with zero mean, α(X, τ ) = 0 , and two-point
space-time correlation function:

α(X, τ )α(X ′, τ ′) = 2A(X − X ′)D(τ − τ ′) , with

2
∫ ∞

0
D(τ ) dτ = 1 , A(0) = ηα ≥ 0 . (4)

Here ηα is the α-diffusivity, introduced first by Kraichnan (1976). The meso-scale field is split as B = B + b, where B is the large-scale
magnetic field which is equal to the superensemble-average of the meso-scale field, and b is the fluctuating magnetic field. An equation for
B is derived in section 7.11 of Moffatt (1978), using FOSA for the fluctuating field:

∂B
∂τ

= ∇ × [ V M ×B
] + ηK∇2 B ; ∇· B = 0 , (5)
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where

ηK = ηT − ηα = Kraichnan diffusivity ,

V M = −
(

∂A(ξ )

∂ξ

)
ξ=0

=
∫ ∞

0
α(X, τ )∇α(X, 0) dτ = Moffatt drift velocity , (6)

are the two new constants that determine the behaviour of the large-scale magnetic field. Note that the α diffusivity contributes a decrement
to the diffusivity, and hence aids dynamo action. The general solution to (5) in an infinitely extended medium is:

B(X, τ ) =
∫

d3K

(2π)3
exp[iK · X] B̃(K , τ ) , (7)

where

B̃(K , τ ) = B̃0(K ) exp
[−ηKK2τ − iK · V Mτ

]
; K · B̃0 = 0 . (8)

Thus the large-scale magnetic field is a linear superposition of transverse waves that translate uniformly with velocity V M , while their
amplitudes grow or decay according to whether ηK is negative or positive. The growth/decay rates are proportional to K2, so the fastest
growing/decaying modes are those with the smallest spatial scales ∼ a few �0 .

2.2 The Kraichnan–Moffatt model with shear

In the presence of a background linear shear flow with velocity field V (X), the dynamo equation (2) acquires an additional term, ∇×[V ×B],
on the right hand side. For V = SX1e2, the dynamo equation is(

∂

∂τ
+ SX1

∂

∂X2

)
B − SB1e2 = ∇ × [ α(X, τ )B ] + ηT∇2 B , ∇· B = 0 . (9)

Splitting B = B + b, and Reynolds averaging equation (9), we find that the evolution of the large-scale field is governed by(
∂

∂τ
+ SX1

∂

∂X2

)
B − SB1e2 = ∇ ×E + ηT∇2 B , ∇· B = 0 , (10)

where E = α(X, τ )b(X, τ ) . (11)

To calculate E , the electromotive force (EMF), we need to solve for the fluctuating field, b(X, τ ), whose evolution is determined by(
∂

∂τ
+ SX1

∂

∂X2

)
b − Sb1e2 = ∇ × [ αB

] + ∇ × [ αb − αb
] + ηT∇2b ,

∇· b = 0 , with initial condition b(X, 0) = 0 . (12)

The physical assumption behind the choice of the initial condition b(X, 0) = 0 is that the homogeneous part of equation (12) has only
decaying solutions. Then the origin of time can always be chosen such that the solution of the homogeneous part has already decayed. Then
the b(X, τ ) which contributes to the EMF in equation (11) is the one whose source is ∇×[ αB ].

We now need to specify the statistics of the α fluctuations. Shear flows possess a natural symmetry, called Galilean invariance in Sridhar
& Subramanian (2009a,b), which is related to measurements made by observers, whose velocity with respect to the lab frame (X, τ ) is equal
to that of the background shear flow. All these comoving observers may be labelled by ξ = (ξ1, ξ2, ξ3) , the position of the origin of the
comoving observer at the initial time zero. The position of the origin of the comoving observer at time τ is given by

Xc(ξ , τ ) = (ξ1, ξ2 + Sτξ1, ξ3) . (13)

GI is the property of the form-invariance of a quantity that is transformed to the rest frame of any comoving observer, with ξ ∈ R
3 . For GI

α fluctuations, an n-point correlator given in the lab frame must equal a correspondingly constructed n-point correlator in the frame of any
comoving observer. Therefore, for GI α fluctuations, we must have:

α(X (1), τ1) . . . α(X (n), τn) = α(X (1) + Xc(ξ , τ1), τ1) . . . α(X (n) + Xc(ξ , τn), τn) . (14)

It may be verified that, for GI α fluctuations, the dynamo equation (9), and equations (10) and (12) for the large-scale and fluctuating fields,
is Galilean Invariant.1

Equations (9), (10) and (12) do not depend explicitly on time, so if we also require that the α fluctuations have time-stationary statistics,
then we can expand the set of observers to include comoving observers whose origin of time may be shifted by an arbitrary constant amount.

1 We have argued that the GI α statistics of equation (14) is the one that respects the natural symmetry of a linear shear flow. However, this symmetry can be
broken, if the sources of the α fluctuations picked out a special frame. In this case, equation (14) need not be true, and (9)–(12) would no longer respect the
symmetry of GI.
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All comoving observers can be labelled by the coordinates, (ξ , τ0), where τ 0 is the time read by the clock of a comoving observer at position
ξ at time 0. Therefore α fluctuations that are GI and time-stationary must satisfy:

α(X (1), τ1) . . . α(X (n), τn) = α(X (1) + Xc(ξ , τ1 + τ0), τ1 + τ0) . . . α(X (n) + Xc(ξ , τn + τ0), τn + τ0) . (15)

It should be noted that the general requirements of Galilean–Invariance (and the additional specialization to time-stationarity), given in
equations (14) and (15), will continue to hold, regardless of the details of an underlying more detailed theory based on velocity correlators.

Our model is now fully defined by equations (10) and (12) for the large-scale and fluctuating magnetic fields, B(X, τ ) and b(X, τ ),
together with either general Galilean–Invariant α statistics (equation 14) or time-stationary Galilean–Invariant α statistics (equation 15). To
derive a closed equation for B(X, τ ), it is necessary to do the following: solve equation (12) to get b(X, τ ) as a functional of α(X, τ ) and
B(X, τ ). Use this in equation (11) to get the EMF E(X, τ ) as a functional of B(X, τ ) and various n-point α correlators, which are required
to be either general GI (equation 14) or time-stationary GI (equation 15). The α correlators are specified quantities, so E can be thought of as
a functional only of B. Using this form for E in equation (10) will result in a closed integro-differential equation for B .

The above program is best realized in sheared coordinates (x, t), which are defined in terms of the lab coordinates (X, τ ) as:

x1 = X1 ; x2 = X2 − SτX1 ; x3 = X3 ; t = τ . (16)

The inverse transformation is:

X1 = x1 ; X2 = x2 + Stx1 ; X3 = x3 ; τ = t . (17)

The x are the Lagrangian coordinates of fluid elements in the background shear flow. Using equation (13) for the definition of the function
Xc , the shearing coordinate transformation and its inverse can also be written as x = Xc(X, −τ ) and X = Xc(x, t) . Since all comoving
observers are equivalent, every comoving observer has corresponding sheared coordinates. We want to recast all the equations (9)–(15) in
terms of new fields that are functions of (x, t). These are the meso-scale field H(x, t) = B(X, τ ) , the large-scale field H(x, t) = B(X, τ ),
the fluctuating field h(x, t) = b(X, τ ), the fluctuating alpha a(x, t) = α(X, τ ), and the large-scale EMF E(x, t) = E(X, τ ) .2 Then equations
(9), (10) and (12) give:

∂H
∂t

− SH1e2 = ∇ × [ aH ] + ηT∇2 H , ∇· H = 0 ; (18)

∂H
∂t

− SH1e2 = ∇×E + ηT∇2 H , ∇· H = 0 , E = ah ; (19)

∂h
∂t

− Sh1e2 = ∇× [ aH
] + ∇× [ ah − ah

] + ηT∇2h ,

∇· h = 0 , with initial condition h(x, 0) = 0 ; (20)

where ∇ = ∂

∂x
− e1St

∂

∂x2
is a time-dependent operator. (21)

Equations (18)–(20) are homogeneous in x = (x1, x2, x3), although explicitly dependent on t through the operator ∇ of equation (21). We
now rewrite the n-point correlators of equations (14) and (15) in the new variables. By definition, the left hand sides of both equations are
α(X (1), τ1) . . . α(X (n), τn) = a(x(1), t1) . . . a(x(n), tn) . The right hand sides can be worked out in a straightforward manner by applying the
transformations of (16) and (17), and the results stated simply:

(i) A general Galilean–Invariant n-point correlator satisfies:

a(x(1), t1) . . . a(x(n), tn) = a(x(1) + ξ , t1) . . . a(x(n) + ξ , tn) , (22)

for all ξ ∈ R
3 . Therefore, general GI implies spatial homogeneity of the correlators in sheared coordinates. This is entirely consistent with

the homogeneity of equations (18)–(20) for the magnetic fields.
(ii) If a Galilean–Invariant n-point correlator has the additional symmetry of being time-stationary, then

a(x(1), t1) . . . a(x(n), tn) = a(x(1) + ξ − Sτ0x
(1)
1 e2, t1 + τ0) . . . a(x(n) + ξ − Sτ0x

(n)
1 e2, tn + τ0) , (23)

for all ξ ∈ R
3 and τ0 ∈ R . Equations (18)–(23) complete the definition of our model in sheared coordinates.

Henceforth we develop the theory for time-stationary GI statistics, for which the n-point correlators obey equation (23). We first note
that, for τ 0 = 0, this reduces to (22): therefore every time-stationary GI correlator is also spatially homogeneous, when the base temporal

2 The new vector fields are component-wise equal to the old vector fields, in that both are resolved along the fixed basis (e1, e2, e3). For instance, H1(x, t) =
B1(X, τ ) and so on.
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points (t1, . . . , tn) are not shifted. But τ 0 need not be zero; it can take any real value. When the base temporal points are allowed to be shifted
by τ 0 �= 0, the constraints on a time-stationary GI (instead of a general GI) n-point correlator are more severe. It must have the property of
invariance under unequal displacements of the spatial base points (x(1), . . . , x(n)). This is a richer, four-dimensional set of allowed variations,
indexed by (ξ , τ0), and hence is satisfied by only a subset of all the GI functions obeying equation (22). This stronger constraint has entered
the problem due to the additional requirement of time-stationarity. The restriction imposed is, indeed, strong enough to determine completely
useful forms of the lowest order correlators. The one-point correlator a(x, t) = 0 by assumption. From equation (23), the time-stationary GI
two-point correlator must satisfy:

a(x, t)a(x′, t ′) = a(x + ξ − Sτ0x1e2, t + τ0)a(x′ + ξ − Sτ0x
′
1e2, t ′ + τ0) ,

for all ξ ∈ R
3 and τ0 ∈ R , so it is also true for the particular values ξ = −x′ − St ′x ′

1e2 and τ 0 = −t ′. Then a(x, t)a(x′, t ′) =
a(x − x′ + St ′(x1 − x ′

1)e2, t − t ′)a(0, 0) , so that the general form of the two-point correlator is:

a(x, t)a(x′, t ′) = F (x − x′ + St ′(x1 − x ′
1)e2, t − t ′) , (24)

where the two-point correlation function F (R, s) is a real function of one vector and one scalar argument. As expected from equation (22),
the correlation function is homogeneous, and depends on x and x′ only through their difference (x − x′). However, it is not time stationary in
the sheared coordinates.3 Henceforth we use the factored form, F (R, t) = A(R)D(t) , to make contact with equation (4) used in the earlier
discussion of the KM model without shear. Then

a(x, t)a(x′, t ′) = 2A
(

x − x′ + St ′(x1 − x ′
1)e2

)
D(t − t ′) ,

2
∫ ∞

0
D(t) dt = 1 , A(0) = ηα > 0 . (25)

We also define the correlation time for the α fluctuations:

τα = 2
∫ ∞

0
dt t D(t) . (26)

The spatial correlation function is A(R), where R = x − x′ + St ′(x1 − x ′
1)e2 is the relative separation vector of fluid elements due to shear.

In the absence of shear, S = 0, the separation R = x − x′, and the right hand side of (25) is 2A(x − x′)D(t − t ′) = 2A(X − X ′)D(τ − τ ′) .
Hence, as expected, for zero shear, equation (25) reduces to equation (4), which applies to the KM model described earlier. For non-zero
shear the separation R is a time-dependent vector. Furthermore, for a general function A(R) and St ′ �= 0, it is evident that the two-point
correlator will be an anisotropic and time-dependent function in (x − x′).

Having presented our model in detail, it is useful to review the principal assumptions and limitations. The model is intended to be a
minimal extension of the KM model of Section 2.1 to include a linear shear, and we have followed suit in making the simplifying assumptions
of locality and isotropy. By this we mean: in the defining equation (9) for the meso-scale field, the relationship between the EMF and the
meso-scale field is local and instantaneous, and the transport coefficients are isotropic. Specifically, EMF E(X, τ ) = α(X, τ )B − ηt∇ ×B,
where ηt is a scalar constant, and α is a pseudo-scalar stochastic function with GI statistics. The α fluctuations have a 2-point correlator which
is taken to be of the factored form in equation (25). No restriction is placed on the forms of the functions A(R) and D(t): they could be either
dependent on shear or not; it is just that our model does not specify this.

3 E QUAT I O N FO R T H E L A R G E - S C A L E M AG N E T I C FI E L D

In order to derive a closed equation for the large-scale magnetic field we exploit the homogeneity of the problem in the sheared coordinates x,
and work with Fourier variables k ∈ R

3 which are conjugate to them. Given any T (x, t) – which could be a (pseudo) scalar, vector or tensor

function – let T̃ (k, t) = ∫ d3x exp (−i k· x)T (x, t) be its Fourier transform. Thus we use {H̃(k, t) , ã(k, t) , H̃(k, t) , h̃(k, t) , Ẽ(k, t)} to
denote the Fourier transforms of {H(x, t) , a(x, t) , H(x, t) , h(x, t) , E(x, t)} . Similarly, we can also define the Fourier variables K ∈ R

3,
which are conjugate to the fixed coordinates X . Then, given any T (X, τ ) – which could be a (pseudo) scalar, vector or tensor function – let
T̃ (K , τ ) = ∫ d3X exp (−i K · X)T (X, τ ) be its Fourier transform.

The first step is to solve for h̃(k, t) as a functional of the stochastic field ã(k, t) and the large-scale magnetic field H̃(k, t). This is carried
out below in the FOSA, by dropping the terms ∇×[ ah − ah] in equation (20). We also drop ηT∇2h, although this is not a necessary feature
of FOSA. Hence:

∂h
∂t

− Sh1e2 = ∇×M , ∇· h = 0 , h(x, 0) = 0 , (27)

3 By construction the two-point correlator is, indeed, time stationary in the lab frame (X, τ ) and all the associated comoving observers. To see this, use (16)
in (24): the left hand side is α(X, τ ) . . . α(X ′, τ ′) by definition. The right hand side is F (X − X ′ − S(τ − τ ′)X1e2 , τ − τ ′), so the correlation function is
time-stationary in the lab coordinates but no longer homogeneous, as expected.
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where M(x, t) = a(x, t)H(x, t) is a stochastic source field, and ∇ is the time-dependent operator defined in (21). Fourier transforming, we
get

∂h̃
∂t

− Sh̃1e2 = iK ×M̃ , K · h̃ = 0 , h̃(k, 0) = 0 ,

K (k, t) = e1(k1 − St k2) + e2k2 + e3k3 ,

M̃(k, t) = 1

(2π)3

∫
d3k′ ã ∗(k′, t) H̃(k + k′, t) . (28)

Equation (28) can be integrated directly componentwise, and the solution which satisfies both constraints, K · h̃ = 0 and h̃(k, 0) = 0 , written
as:

h̃(k, t) =
∫ t

0
dt ′
[
iK (k, t ′) ×M̃(k, t ′)

]
+ e2S

∫ t

0
dt ′
∫ t ′

0
dt ′′
[
iK (k, t ′′)×M̃(k, t ′′)

]
1
. (29)

The double time integral can be reduced to single time integral by noting that∫ t

0
dt ′
∫ t ′

0
dt ′′ f (t ′′) =

∫ t

0
dt ′(t − t ′)f (t ′) .

Then the FOSA solution for the fluctuating magnetic field can be written as:

h̃(k, t) =
∫ t

0
dt ′
{

iK (k, t ′) ×M̃(k, t ′) + e2S(t − t ′)
[
iK (k, t ′)×M̃(k, t ′)

]
1

}
. (30)

Equation (30) should be used to calculate the Fourier transform of the EMF:

Ẽ(k, t) =
∫

d3x exp (−i k· x) E(x, t) =
∫

d3x exp (−i k· x) a(x, t) h(x, t)

= 1

(2π)3

∫
d3k1 d3k2 δ(k1 + k2 − k) ã(k1, t) h̃(k2, t)

= 1

(2π)3

∫
d3k1 d3k2 δ(k1 + k2 − k)

∫ t

0
dt ′
{ [

iK (k2, t
′) ×ã(k1, t)M̃(k2, t ′)

]
+ e2S(t − t ′)

[
iK (k2, t

′) ×ã(k1, t)M̃(k2, t ′)
]

1

}
(31)

is given in terms of the quantity ã(k1, t)M̃(k2, t ′) , which has to be calculated. Using equation (28) for M̃,

ã(k1, t)M̃(k2, t ′) = 1

(2π)3

∫
d3k3 ã(k1, t)ã∗(k3, t ′) H̃(k2 + k3, t

′) (32)

is a convolution of the large-scale magnetic field and the Fourier-space two-point correlator. We now compute the latter using equation (25)
for time-stationary Galilean–Invariant α fluctuations:

ã(k1, t)ã∗(k3, t ′) =
∫

d3x1d3x3 exp (−i k1· x1 + i k3 · x3) a(x1, t)a(x3, t ′)

= 2D(t − t ′)
∫

d3x1d3x3 exp [−i(k1· x1 − k3· x3)]A
(

x1 − x3 + St ′(x11 − x31)e2

)
.

Using new integration variables, r = x1 − x3 and r ′ = 1
2 (x1 + x3) , we get

ã(k1, t)ã∗(k3, t ′) = 2D(t − t ′)
∫

d3r d3r ′ exp
[
−i(k1 − k3)· r ′ − i

2
(k1 + k3)· r

]
A
(

r + St ′r1e2

)
= 2D(t − t ′)(2π)3 δ(k1 − k3)

∫
d3r exp (−i k1· r)A

(
r + St ′r1e2

)
.

Another change of the integration variable to R = r + St ′r1e2 gives us a compact form for the two-point correlator:

ã(k1, t)ã∗(k3, t ′) = 2D(t − t ′)(2π)3 δ(k1 − k3) Ã
(

K (k1, t
′)
)

,

where Ã(K ) =
∫

d3R exp (−i K · R) A(R) . (33)

Ã(K ) is the complex spatial power spectrum of α fluctuations, with Ã(−K ) = Ã∗(K ) because A(R) is a real function. The δ-function in
equation (33) implies that a shearing wave labelled by k1 is uncorrelated with any other shearing wave with k1 �= k3 . Also each shearing
wave has a time-dependent complex power because the argument of Ã is a time-dependent wavevector, although the time correlation function
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3776 S. Sridhar and N. K. Singh

D is stationary. Thus the α fluctuations may be thought of as a superposition of random and mutually uncorrelated shearing waves. Using
equation (33) in (32), we get a simple expression:

ã(k1, t)M̃(k2, t ′) = 2D(t − t ′)Ã
(

K (k1, t
′)
)

H̃(k1 + k2, t
′) . (34)

When equation (34) is substituted in (31) we obtain a compact expression for the EMF:

Ẽ(k, t) = 2
∫ t

0
dt ′ D(t − t ′)

{
Ũ(k, t ′) ×H̃(k, t ′) + e2S(t − t ′)

[
Ũ(k, t ′) ×H̃(k, t ′)

]
1

}
, (35)

where

Ũ(k, t ′) =
∫

d3k1

(2π)3
iK (k − k1, t

′)Ã
(

K (k1, t
′)
)

(36)

is a complex vector field that can be written in terms of the quantities, ηα and V M, appearing in the KM theory without shear. Using the
linearity of the function K : i.e. K (k − k′, t ′) = K (k, t ′) − K (k′, t ′), we see that

Ũ(k, t ′) = iK (k, t ′)
∫

d3k′

(2π)3
Ã
(

K (k′, t ′)
) −

∫
d3k′

(2π)3
iK (k′, t ′)Ã

(
K (k′, t ′)

)
= iK (k, t ′)

∫
d3K ′

(2π)3
Ã
(

K ′) −
∫

d3K ′

(2π)3
iK ′Ã

(
K ′)

= iK (k, t ′)A(0) − ∂A(ξ )

∂ξ

∣∣∣∣∣∣
ξ=0

= iK (k, t ′)ηα + V M , (37)

where we have transformed to a new integration variable K ′ = K (k′, t ′) = (k′
1 − St ′k′

2 , k′
2 , k′

3) – which has unit Jacobian giving d3k′ = d3K′

– and used the definitions of ηα and V M given in equations (4) and (5).
Substituting (37) for Ũ(k, t ′) in (35), we obtain an explicit expression for the EMF:

Ẽ(k, t) = 2ηα

∫ t

0
dt ′ D(t − t ′)

{
iK (k, t ′) ×H̃(k, t ′) + e2S(t − t ′)

[
iK (k, t ′) ×H̃(k, t ′)

]
1

}
,

+ 2
∫ t

0
dt ′ D(t − t ′)

{
V M×H̃(k, t ′) + e2S(t − t ′)

[
V M ×H̃(k, t ′)

]
1

}
. (38)

Fourier transforming equation (19), the equation governing the large-scale field is

∂H̃
∂t

− SH̃ 1e2 = iK (k, t) ×Ẽ − ηTK2(k, t) H̃ , K (k, t) · H̃ = 0 . (39)

Equation (39), together with equation (38), gives a closed, linear integro-differential equation for the large-scale magnetic field, H̃(k, t),
which is the principal general result of this paper. This mean-field equation depends on the three parameters (ηα , V M , S) , as well as the
time-correlation function D(t) . It should be noted that the theory is likely to overestimate the growth rates of high wavenumber modes because
the dissipative term, ηT∇2h , was dropped in the FOSA equation (27).

4 W HITE-NOISE α F L U C T UAT I O N S

For white-noise α fluctuations the normalized correlation function is DWN(t) = δ(t) , the Dirac delta-function. From equation (26), we have
τα = 0 , which agrees with the notion of no memory [to explore memory effects it is necessary to consider D(t) �= δ(t) which, in general, will
have τα �= 0, and this is taken up later]. In the rest of this section we study dynamo action due to white-noise α fluctuations. From equation
(38) the EMF for white-noise is

ẼWN(k, t) = [ iK (k, t)ηα + V M ] ×H̃(k, t) , (40)

which depends on the large-scale field at the present time only, because white-noise carries no memory of the past. Substituting (40) in (39),
we get the following partial differential equation (PDE) for the large-scale magnetic field:

∂H̃
∂t

+ [ ηKK2 + i K · V M

]
H̃ = SH̃ 1e2 , K (k, t) · H̃ = 0 . (41)

We can solve this by defining a new field F̃(k, t) through

H̃(k, t) = G̃(k, t) F̃(k, t) , (42)
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Stochastic alpha shear dynamo 3777

where

G̃(k, t) = exp

{
−
∫ t

0
dt ′ [ ηKK2(k, t ′) + i V M · K (k, t ′)

] }
= exp

{−ηK

[
k2t − Sk1k2t

2 + (S2/3)k2
2 t

3
] − i

[
(V M · k) t − (S/2)VM1k2t

2
]}

(43)

is a shear-diffusive Green’s function in which the Kraichnan diffusivity ηK contributes to the amplitude, and the Moffatt drift velocity V M

contributes only to the phase. Using (42) and (43) in (41), we see that F̃(k, t) must obey

∂ F̃
∂t

= SF̃ 1e2 , K (k, t) · F̃(k, t) = 0 . (44)

The solution is given by F̃(k, t) = F̃(k, 0) + e2St F̃ 1(k, 0) , where F̃(k, 0) is any vector which satisfies k · F̃(k, 0) = 0 . From (42) we have

H̃(k, 0) = F̃(k, 0), so the solution to (41) may be written as:

H̃(k, t) = G̃(k, t)
[

H̃(k, 0) + e2St H̃ 1(k, 0)
]

, k · H̃(k, 0) = 0 . (45)

Whereas (45) is a complete and compact form of the solution to the problem of white-noise α fluctuations, it is also useful to view the problem
in real space, instead of Fourier space. We begin with the expression for the EMF in real space. Using (40), and the fact that d3k = d3K ,

k · x = K · X and H̃(k, t) = B̃(K , τ ) , we have

EWN(X, τ ) = EWN(x, t) =
∫

d3k

(2π)3
exp (ik· x) ẼWN(k, t)

=
∫

d3K

(2π)3
exp (iK · X) [ iKηα + V M ] ×B̃(K , τ )

= ηα∇×B + V M×B . (46)

Thus the EMF for white-noise alpha fluctuations with shear is identical in form to the EMF for the KM case without shear. The physical
reason why shear does not explicitly contribute to EWN is that white-noise has zero correlation time, giving shear no time to act. This is true
for any finite value of the rate of shear parameter.

Substituting (46) in (10), we get the following PDE for the large-scale magnetic field:(
∂

∂τ
+ SX1

∂

∂X2

)
B − SB1e2 = ∇× (V M×B

) + ηK ∇2 B , ∇· B = 0 . (47)

The general solution of (47) can be written down, using the Fourier space solution (45) derived earlier:

B(X, τ ) = H(x, t) =
∫

d3k

(2π)3
exp (ik· x) H̃(k, t)

=
∫

d3k

(2π)3
exp [ iK (k, τ )· X] G̃(k, τ )

[
H̃(k, 0) + e2Sτ H̃ 1(k, 0)

]
. (48)

This is a superposition of shearing waves, whose growth or decay is controlled by Green’s function G̃(k, τ ) . We note some general properties:

(1) In the limit of no shear, S = 0 , equation (47) reduces to (5). Thus the KM problem corresponds to the case of white-noise (τα = 0) and
no shear (S).

(2) Weak α fluctuations have ηα < ηT so that ηK > 0 . Waves of all wavenumbers k eventually decay. ‘Axisymmetric’ waves, whose
shear-wise wavenumber k2 = 0 , decay as exp [−ηKk2t] .4 The asymptotic decay of non-axisymmetric waves (k2 �= 0) is more rapid, like
exp [−ηK(S2/3)k2

2 t
3] .

(3) Strong α fluctuations have ηα > ηT so that ηK < 0 . Waves of all wavenumbers k eventually grow. Axisymmetric waves grow like
exp [|ηK|k2t] , due to negative diffusion. Non-axisymmetric waves grow even more rapidly, like exp [|ηK|(S2/3)k2

2 t
3] , where shear acts in

conjunction with the negative diffusion due to α fluctuations.
(4) The Moffatt drift velocity V M contributes only to the phase and does not determine the growth or decay of the large-scale magnetic

field.

Therefore, the necessary condition for dynamo action for white-noise α fluctuations is that they must be strong, i.e. ηK < 0 . This
condition is identical to the KM case of no shear. To explore the effects of the Moffatt drift V M and Shear S on the growth rate, it is necessary
to consider τα �= 0, thereby allowing for memory effects.

4 We use the term ‘axisymmetric’ in the sense in which it is often used in local treatments of disc-dynamos, where it is conventional to take (e1, e2, e3) to be
unit vectors along the radial, azimuthal and vertical directions.
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5 AXISYMMETRIC LARGE-SCALE MAG NETI C FI ELDS W HEN τα IS SMALL

We now ask: is it possible that, when τα �= 0, there is dynamo action even for weak α fluctuations, i.e. when ηK > 0 ? To answer this question
in generality, it is necessary to deal with the linear integro-differential equation defined by equations (38) and (39); such an analysis is beyond
the scope of this paper. In this section we derive the PDE governing the evolution of large-scale magnetic field which evolves over times
much larger than τα . Then we answer the above question by considering the dynamo action of the memory effect due to non-zero τα and ηα ,
but without either Moffatt drift or shear.

5.1 Derivation of the governing equation

We begin by noting that the normalized time correlation function, D(t), has a singular limit, i.e. lim
τα→0

D(t) = DWN(t) = δ(t). The limit of

small but non-zero τα corresponds to looking at functions D(t) that are, in some sense, close to the Dirac delta-function. However we are
saved from the task of considering variations in function space, because the EMF depends on D(t) only through a time integral:

Ẽ(k, t) = 2
∫ t

0
ds D(s)

{
Ũ(k, t − s)×H̃(k, t − s) + e2Ss

[
Ũ(k, t − s)×H̃(k, t − s)

]
1

}
(49)

is the same as equation (35), rewritten by changing the integration variable from t ′ to s = t − t ′ . The complex velocity field Ũ =
iK (k, t ′)ηα + V M is as defined in (37). Since the limit limτα→0 Ẽ(k, t) = ẼWN(k, t) = Ũ(k, t) ×H̃(k, t) is evidently non-singular, we make
the ansatz that, for small τα , the EMF can be expanded in a power series in τα :

Ẽ(k, t) = ẼWN(k, t) + Ẽ
(1)

(k, t) + Ẽ
(2)

(k, t) + · · · (50)

where ẼWN(k, t) ∼ O(1) and Ẽ
(n)

(k, t) ∼ O(τn
α ) for n ≥ 1. Below we verify this ansatz up to n = 1, for slowly varying magnetic fields.

We want to work out Ẽ(k, t) to first order in τα , for t � τα . Since D(s) is strongly peaked for times s ≤ τα and becomes very small for
larger s, most of the contribution to the integral in (49) comes only from short times 0 ≤ s < τα . Hence in (49) we can (i) set the upper limit of
the s-integral to +∞ ; (ii) keep the terms inside the { } in the integrand up to only first order in s. We also note that, for k2 �= 0, the magnitude of

K (k, t) = e1(k1 − St k2) + e2k2 + e3k3 increases without bound, leading to rapid time variations of H̃(k, t). Henceforth we restrict attention
to axisymmetric modes for which k2 = 0 . This implies that K (k, t − s) = K (k, t) = k = (k1, 0, k3) , and Ũ(k, t − s) = Ũ(k) = ηαi k + V M.
We also write:

H̃(k, t − s) = H̃(k, t) − s
∂H̃(k, t)

∂t
+ · · · , (51)

where it is assumed that |H̃| � s|∂H̃/∂t | � s2|∂2 H̃/∂t2| , s3|∂3 H̃/∂t3|, etc . Then

{} of equation (49) = Ũ(k) ×H̃(k, t) + s

{
−Ũ ×∂H̃

∂t
+ e2S

[
Ũ ×H̃

]
1

}
+ O(s2) . (52)

The integral over s can now be performed. Using the properties of D(τ ), given in (4) and (26), we get:

Ẽ(k, t) = ẼWN(k, t) + τα

{
−Ũ ×∂H̃

∂t
+ e2S[Ũ ×H̃]1

}
+ O(τ 2

α ) . (53)

In order to get an expression for the EMF accurate to O(τα), we need ∂H̃/∂t only to O(τ 0
α ) = O(1) . Using (53) in (39) we have

∂H̃
∂t

∣∣∣∣
O(1)

= SH̃ 1e2 + ik ×ẼWN(k, t) − ηTk2 H̃ = SH̃ 1e2 − [ ik· Ũ + ηTk2]H̃ . (54)

When this is used in equation (53), we obtain an expression for the EMF,

Ẽ(k, t) =
[

1 + ηTk2τα + i (k· Ũ)τα

]
Ũ×H̃ + Sτα

[
H̃ 1e2×Ũ +

(
Ũ ×H̃

)
1
e2

]
, (55)

accurate to O(τα), which verifies the ansatz of equation (50) up to n = 1, as claimed. Equation (55) for the EMF is valid only when the

large-scale magnetic field is slowly varying; to lowest order this condition can be stated as |H̃| � τα|∂H̃/∂t | . Using equation (54) for

∂H̃/∂t , we see that the sufficient condition for equation (55) to be valid is that the following three dimensionless quantities be small:

|Sτα| � 1 , |ηKk2τα| � 1 , |kVMτα| � 1 . (56)
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Substituting (55) in (39) we obtain

∂H̃
∂t

=
[
SH̃ 1e2 − ηKk2 H̃ − i (k· V M)H̃

] [
1 + i (k· V M)τα − ηαk2τα

]
+ Sτα

[
VM2H̃ 3 − VM3H̃ 2 − i ηαk3H̃ 2

]
[ −i k3e1 + i k1e3 ] ,

with k = (k1 , 0 , k3) , and k1H̃ 1 + k3H̃ 3 = 0 . (57)

Equation (57) is the linear PDE that determines the evolution of an axisymmetric, large-scale magnetic field which evolves over times that
are much larger than τα . The three drivers of this evolution are (i) the diffusivities ηα and ηK ; (ii) the Moffatt drift V M; (iii) shear S .
These parameters must satisfy the three conditions given in (56), which also involves the wavenumber k. Only the condition on shear is
independent of the wavenumber k , and it implies the following: whereas the full equations (39) and (38) are non-perturbative in both S and τα ,
equation (57) above is valid only when |Sτα| � 1 .

It is readily verified that the τα = 0 limit of equation (57) is identical to the k2 = 0 case of equation (41), which describes axisymmetric
white-noise α fluctuations. Hence the solution can be obtained by setting k2 = 0 in equations (45) and (43). Here it is seen that shear
contributes to the linear-in-time stretching of the field lines along the shear-wise (e2) direction, and the Moffatt drift causes the field to
oscillate sinusoidally at angular frequency ω = k · V M . It is only the Kraichnan diffusivity that contributes to the growth rate, γ = −ηKk2 .
Hence the necessary condition for dynamo action is that ηK = ηT − ηα < 0, just like in the more general non-axisymmetric white-noise case
treated in Section 4.

5.2 The Kraichnan problem with non-zero τα

We want to understand the combined effect of the α fluctuations when V M = 0 and S = 0, but ηα > 0 and τα > 0 . Then there is a new length
scale in the problem, whose corresponding wavenumber can be defined as

kα = (ηατα)−1/2 > 0 . (58)

When S = 0 and V M = 0 , two of the three conditions in (56) are met trivially, and the third one implies that |k| must be small enough such
that |ηKk2τα| � 1 . However, |k| can be larger or smaller than kα . We consider |k| > kα to be high wavenumbers, and |k| < kα to be low
wavenumbers. Setting S = 0 and V M = 0 in equation (57), we get

∂H̃
∂t

= ηKk2

[(
k

kα

)2

− 1

]
H̃ , with k = (k1 , 0 , k3) and k1H̃ 1 + k3H̃ 3 = 0 . (59)

This is the original Kraichnan problem for axisymmetric modes, modified by a new factor given in [ ]. The solutions are of the exponential

form, H̃(k, t) = H̃0(k) exp (γ t) , where k· H̃0(k) = 0 . Substituting this in equation (59), we get the growth rate as

γ = (ηKk2
α

) ( k

kα

)2
[(

k

kα

)2

− 1

]
, when |ηKk2τα| � 1 . (60)

Let us rewrite the growth rate in terms of a new characteristic frequency, defined by

σ = |ηK|k2
α =
( |ηT − ηα|

ηα

)
1

τα

≥ 0 . (61)

Then (60) can be rewritten as

γ = ± σ

(
k

kα

)2
[(

k

kα

)2

− 1

]
, when |k| � kα√

στα

, (62)

where the ± signs correspond to the cases of weak α fluctuations (ηK > 0) and strong α fluctuations (ηK < 0), respectively. As Fig. 1
shows, for the weak case γ is negative for low wavenumbers and positive for high wavenumbers, and is exactly the opposite for the strong
case. Hence there is a high wavenumber dynamo for weak α fluctuations, and a low wavenumber dynamo for strong α fluctuations.5 As
noted earlier, the high wavenumber behaviour is likely an overestimate because the dissipative term, ηT∇2h, was dropped in the FOSA
equation (27).

6 G ROW T H R AT E S O F M O D E S W H E N τα I S NON-ZERO

We consider one-dimensional propagating modes for the general case when all the parameters (ηα, S, V M, τα) can be non-zero. Below
we derive the dispersion relation and study the growth rate function. When the wavevector k = (0, 0, k) points along the ‘vertical’ (±e3)

5 It should be noted that this behaviour is not contradictory to the white-noise case: in the limit τα → 0, both kα → ∞ and σ → ∞, and γ → ∓(σ/k2
α)k2 =

−ηKk2 which is in agreement with the results for the white-noise case.
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Figure 1. Growth rate γ /σ as a function of |k/kα | , when S = 0 and V M = 0 . Weak (ηK > 0) and strong (ηK < 0) α fluctuations are shown by bold and
dashed curves, respectively.

directions, H̃ 3 must be uniform and is of no interest for dynamo action. Hence we set H̃ 3 = 0, and take H̃(k, t) = H̃ 1(k, t)e1 + H̃ 2(k, t)e2 .

The equation governing the time evolution of this large-scale magnetic field is obtained by setting k1 = 0, k3 = k and H̃ 3 = 0 in
equation (57):

∂H̃
∂t

=
[
SH̃ 1e2 − ηKk2 H̃ − i kVM3 H̃

] [
1 + i kVM3τα − ηαk2τα

]+ S
[

i kVM3τα − ηαk
2τα

]
H̃ 2e1 , (63)

We seek modal solutions of the form

H̃(k, t) =
[
H̃ 01(k)e1 + H̃ 02(k)e2

]
exp (λt) . (64)

Substituting this in equation (63) yields the following dispersion relation for the two (±) modes:

λ± = − [ηKk2 + i kVM3

] [
1 + i kVM3τα − ηαk

2τα

]
± |S|

√[
ikVM3τα − ηαk2τα

] [
1 + i kVM3τα − ηαk2τα

]
. (65)

Of particular interest is the growth rate γ = Re{λ} , because dynamo action corresponds to the case when γ > 0 . From the dispersion relation
(65) we have

γ± = Re{λ±} = ηKk2
(
ηαk2τα − 1

) + τα(kVM3)2 ± |S| [χ2
R + χ2

I

]1/4
cos (ψ/2) ,

where tan (ψ) = χI

χR

,

χR = ηαk
2τα

(
ηαk

2τα − 1
) − (kVM3τα)2 ,

χI = −kVM3τα

(
2ηαk2τα − 1

)
. (66)

Note that both λ and γ are linear in the rate of shear S, when the parameters (ηK, ηα , VM3, τα) are independent of S. Define the dimensionless
quantities

�± = γ±τα , β = ηαk2τα ,

εS = Sτα , εK = ηKk2τα , εM = kVM3τα . (67)

Here �± are the dimensionless growth rates of the ± modes. β = (k/kα)2 is a measure of the wavenumber k in units of the characteristic
wavenumber kα defined in equation (58), and can take any non-negative value. (εS , εK , εM) must all be small by the three conditions in (56)
under which the basic mean field equation (57) is valid. There is just one constraint involving β and εK, coming from β + εK = ηTk2τα > 0 .
Thus the parameter ranges are given by

0 ≤ β < ∞ , β + εK > 0 ,

|εS| � 1 , |εK| � 1 , |εM| � 1 . (68)

Multiplying equation (66) by τα > 0 , we obtain the dimensionless growth rates,

�± = εK(β − 1) + ε2
M ± |εS|

[
β2(β − 1)2 + ε2

M

(
2β2 − 2β + 1

) + ε4
M

]1/4
cos (ψ/2) ,
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where tan (ψ) = εM(1 − 2β)

β(β − 1) − ε2
M

, (69)

as a function of the four dimensionless parameters (β , εS , εK , εM). Let �> be the larger of �+ and �−, and �< be the smaller of �+ and �−.
Then, from equation (69), we have

�>
<

= εK(β − 1) + ε2
M ± |εS|

[
β2(β − 1)2 + ε2

M

(
2β2 − 2β + 1

) + ε4
M

]1/4 | cos (ψ/2)| . (70)

Note that �> increases, whereas �< decreases linearly with the shearing rate S, when the parameters (ηK, ηα , VM3, τα) are independent of S.

6.1 The growth rate function �>

We now study the behaviour of �> , given in equation (70), as a function of the four parameters ( β , εS , εK , εM) for the range of parameter
values given in (68). Of these, the three parameters (εS , εK , εM) can be taken to be independently specified, taking positive and negative
values, so long as their magnitudes are small. But β ≥ 0 is subject to the constraint β + εK > 0 . Therefore we can rewrite the conditions of
(68) as

|εS| � 1 , |εK| � 1 , |εM| � 1 ,

For εK ≤ 0 , have |εK| < β < ∞ ; For εK > 0 , have 0 ≤ β < ∞ . (71)

Taking advantage of the smallness of |εM|, the expression for �> in equations (70) can be simplified by (i) noting that (2β2 − 2β + 1) ≥ 1/2 for
any real β implies that ε2

M(2β2 − 2β + 1) � ε4
M, so the ε4

M term inside the [ ]1/4 can be dropped; (ii) taking the limit εM → 0 in |cos (ψ/2)| .
The two special cases, β = 0 and β = 1 , are dealt with first. Then we take up the general case, and derive a simple expression for �> for
arbitrary positive β, so long as it is not too close to the special values (0 , 1) . Taken together, the two special cases and the general case
enable us to write a simple, good approximation to �> as a function of the four parameters ( β , εS , εK , εM), all independently varying: the
εs being small in magnitude, and 0 < β < ∞ .

1. Case β = 0 :
From (71) we must have εK > 0 , whereas εS and εM can be of either sign. From (70) we have tan (ψ) = −(1/εM) → ±∞ for small and

negative/positive εM , which implies that | cos (ψ/2)| = 1/
√

2 . Hence:

�> � − εK + ε2
M + 1√

2
|εS| |εM|1/2 . (72)

2. Case β = 1
From (71) we can see that all the three small parameters, (εK , εS , εM) , can be of either sign. From (70) we have tan (ψ) = (1/εM) →

±∞ for small and positive/negative εM , which implies that | cos (ψ/2)| = 1/
√

2 . Hence

�> � ε2
M + 1√

2
|εS| |εM|1/2 . (73)

3. General Case: β > 0 but not too close to 0 or 1
Excluding two narrow strips around 0 and 1 , we consider the parameter ranges:

|εS| � 1 , |εK| � 1 , |εM| � 1 ,

and βmin ≤ β < (1 − βmin) and (1 + βmin) < β < ∞ ,

where Max{|εK| , |εM|} � βmin � 1 . (74)

Note that this is not only compatible with conditions (71), but they are only slightly less general. The small parameters (εK , εS , εM) can
be of either sign. Since βmin � |εM| , we have: (i) In �> of (70), the term [ ]1/4 � [β2(β − 1)2]1/4 = √ |β(β − 1)| ; (ii) tan (ψ) � εM(1 −
2β)/β(β − 1) → 0 for small and positive/negative εM , which implies that |cos (ψ/2)| = 1 . Hence

�> � εK(β − 1) + ε2
M + |εS|

√
|β(β − 1)| . (75)

Our analysis of dynamo action below is based on the above three cases.

7 DY NA M O AC T I O N D U E TO K R A I C H NA N D I F F U S I V I T Y, M O F FAT T D R I F T A N D S H E A R

We are now ready to deal directly with the physical properties of dynamos driven by Kraichnan diffusivity, Moffatt drift and Shear. From the
three cases considered above in (72)–(75), we write down:

�> � εK(β − 1) + ε2
M + |εS|

[
β2(β − 1)2 + ε2

M

4

]1/4

, (76)
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3782 S. Sridhar and N. K. Singh

Figure 2. Growth rate function �> plotted as a function of β, for εK = 0.1, |εM| = 0.1 and |εS| = 0.1. The bold line corresponds to the exact expression of
equation (70), and the ‘+’ symbols correspond to the interpolation formula of equation (76).

as a simple interpolation formula, valid for the independent variations of all four parameters: as before the three εs are small, but can freely
take positive and negative values; β is now free to take any positive value in an unconstrained manner:

|εS| � 1 , |εK| � 1 , |εM| � 1 , 0 < β < ∞ . (77)

Fig. 2 compares the general formula (70) for the dimensionless growth rate �> , with the interpolation formula given in equation (76) above;
as may be seen it is an excellent fit to (70). Note that, even though εK > 0 (corresponding to weak α fluctuations), �> is positive for a range
of values of β , allowing for dynamo action. A general property of equation (76) is that, for fixed β and εK , the dimensionless growth rate �>

is a monotonically increasing function of both |εM| and |εS| . Hence we arrive at an important conclusion:

Both Moffatt drift and shear always act to increase the growth rate of travelling waves of the form, B(X3, τ ) = [B1e1 +
B2e2] exp(ikX3 + λτ ) , where B1 and B2 are arbitrary constants and λ is a complex frequency.

We have already considered the combined effect of non-zero τα and Kraichnan diffusivity in Section 5.2. Below we present two examples of
dynamo action due to non-zero τα in conjunction with Moffatt drift and Shear.

7.1 A Moffatt drift dynamo

We consider the case of zero shear, εS = 0, but general values of εK and εM. This can be thought of as the KM problem, discussed in Section 2.1,

generalized to include a non-zero τα . From equation (63) we see that, for S = 0, the two components of H̃(k, t) evolve independently. The
growth rate given by equation (76) is

�> � εK(β − 1) + ε2
M . (78)

The simplest cases are when one of εK and εM is zero: εM = 0 has already been discussed in Section 5.3, so let us consider the complementary
case εK = 0 . Then �> = ε2

M is non-negative, so that the dimensional growth rate

γ> = (V 2
M3τα

)
k2 (79)

is negatively diffusive, with negative-diffusion coefficient equal to (V 2
M3τα) . This growth is due to an extra term, iV 2

M3ταk(e3 ×H̃), in the
EMF of equation (55). Thus Moffat drift and a non-zero α-correlation time together can enable dynamo action. This should be contrasted
with the white-noise case where the Moffatt drift does not influence the growth rate. The remarkable thing is just that a constant drift velocity
can enable a dynamo in the absence of any other generative effect. This is only possible if the relation between mean EMF and mean field
has a memory effect. Rheinhardt et al. (2014) is another example where there is a drift velocity (a γ effect), analogous to the Moffat drift in
the case of the Roberts flow III.

Now we go on to look at the more general problem. When εK and εM are both non-zero, then ηK and VM3 are also non-zero; this gives
rise to a new time-scale in the problem:

τ∗ = (|ηK|/V 2
M3) > 0 . (80)

Below we consider the behaviour of the dimensional growth rate γ > , as a function of the wavenumber k , for weak and strong α fluctuations.
As we will see, the nature of dynamo action depends on whether τα is larger or smaller than τ ∗ .
Weak α fluctuations: This has 0 < ηα < ηT, so that ηK and εK are both positive. The dimensional growth rate can be written as

γ> = σ

{(
k

kα

)4

+
[

τα

τ∗
− 1

](
k

kα

)2
}

, (81)
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Stochastic alpha shear dynamo 3783

Figure 3. Growth rate γ >/σ plotted as a function of |k/kα | for weak α fluctuations, when S = 0 . Panels (a) and (b) correspond to the case when τα/τ ∗ = 0.1
and 10.0, respectively. Note that the growth rate is always positive for high wavenumbers.

where σ = |ηK|k2
α is the characteristic frequency defined in equation (61). High wavenumbers, |k| > kα , always grow, with γ > being a

positive and monotonically increasing function of |k| . This behaviour is opposite, in a qualitative sense, to the white-noise case where weak
α fluctuations always imply decaying large-scale fields. When |k| � kα , the growth rate tends to the asymptotic form γ > → σ (k/kα)4 which
is independent of the Moffatt drift. There are two cases to study: (a) Case τα < τ ∗ : for small enough wavenumbers |k| < kα

√
1 − τα/τ∗ ,

the growth rate is negative; for very small wavenumbers, there is positive diffusion with γ > ∝ − k2 . For large enough wavenumbers
|k| > kα

√
1 − τα/τ∗ , the growth rate becomes positive and tends to being negatively super-diffusive (γ > ∝ k4) for very large wavenumbers.

The graph is given in Fig. 3(a).

(b) Case τα > τ ∗ : the growth rate γ > is always positive for all wavenumbers k . Therefore, τα > τ ∗ is a sufficient condition for dynamo
action at all wavenumbers. This is equivalent to requiring that the Moffatt drift and the α-correlation time be large enough such that:

V 2
M3τα > ηK > 0 . (82)

As can be seen from Fig. 3(b), the growth is negatively diffusive (γ > ∝ k2) when |k| � kα , and negatively super-diffusive (γ > ∝ k4) when
|k| � kα .
Strong α fluctuations: this has 0 < ηT < ηα , so that ηK and εK are both negative. The dimensional growth rate is

γ> = σ

{
−
(

k

kα

)4

+
[

τα

τ∗
+ 1

](
k

kα

)2
}

. (83)

As shown in Fig. 4, the growth rate γ > rises from zero at |k| = 0, to a maximum positive value,

Figure 4. Growth rate γ >/σ plotted as a function of |k/kα | for strong α fluctuations, when S = 0 . Note that the growth rate is always positive at low
wavenumbers, and negative for high enough wavenumbers.
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γm = σ

4

[
1 + τα

τ∗

]2

, at |k| = km = kα√
2

[
1 + τα

τ∗

]1/2

. (84)

Then γ > decreases monotonically, turning negative for |k| > kα

√
1 + τα/τ∗ . For much larger |k| the growth rate tends to the asymptotic form

γ > → − σ (k/kα)4 which is independent of the Moffatt drift. Note that this behaviour is quite opposite to the white-noise case where strong
α fluctuations always imply growing large-scale fields, but it nevertheless approaches smoothly the white-noise case for τα → 0 .

7.2 A shear dynamo

We consider the case of zero Moffatt drift, εM = 0, but general values of εK and εS. The growth rate is

�> � εK(β − 1) + |εS|
√

|β(β − 1)| , (85)

As earlier we will look at the properties of the dimensional growth rate as a function of the wavenumber.

Weak α fluctuations: this has 0 < ηα < ηT, so that ηK and εK are both positive. From (85) and (61) the dimensional growth rate is

γ> = σ

∣∣∣∣ k

kα

∣∣∣∣
√

1 −
∣∣∣∣ k

kα

∣∣∣∣2
⎡⎣ |S|

σ
−
∣∣∣∣ k

kα

∣∣∣∣
√

1 −
∣∣∣∣ k

kα

∣∣∣∣2
⎤⎦ , when |k| < kα ;

= σ

∣∣∣∣ k

kα

∣∣∣∣
√∣∣∣∣ k

kα

∣∣∣∣2 − 1

⎡⎣ |S|
σ

+
∣∣∣∣ k

kα

∣∣∣∣
√∣∣∣∣ k

kα

∣∣∣∣2 − 1

⎤⎦ , when |k| > kα . (86)

High wavenumbers, |k| > kα , always grow, with γ > being a positive and monotonically increasing function of |k| . This behaviour is opposite,
in a qualitative sense, to the white-noise case where weak fluctuations decay. When |k| � kα , the growth rate tends to the asymptotic form
γ > → σ (k/kα)4 . For low wavenumbers, |k| < kα , the growth rate is positive for all wavenumbers only when (|S|/σ ) is larger than the
maximum value of (|k|/kα)

√
1 − (|k|/kα)2 , which is equal to 1/2 . Therefore a sufficient condition for dynamo action at all wavenumbers is

that |S| > σ/2 . This is equivalent to requiring that the shearing rate and α-correlation time be large enough such that:

|S|τα >
1

2

ηK

ηα

> 0 . (87)

When the shearing rate is not large enough, |S| < σ/2 , then at low wavenumbers, the growth rate is negative in a range of wavenumbers
centred around |k| = (kα/

√
2) . Fig. 5 shows the growth rate as a function of wavenumber, for the two cases of weak and strong shear.

Figure 5. Growth rate γ >/σ plotted as a function of |k/kα | for weak α fluctuations, when VM3 = 0 . Panels (a) and (b) correspond to the case when |S|/σ = 0.1
and 5.0, respectively. Note that the growth rate is always positive for high wavenumbers.
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Stochastic alpha shear dynamo 3785

Figure 6. Growth rate γ >/σ plotted as a function of |k/kα | for strong α fluctuations, when VM3 = 0 . Note that the growth rate is always positive at low
wavenumbers and negative for high enough wavenumbers.

Strong α fluctuations: this has 0 < ηT < ηα , so that ηK and εK are both negative. From (85) and (61) the dimensional growth rate is

γ> = σ

∣∣∣∣ k

kα

∣∣∣∣
√

1 −
∣∣∣∣ k

kα

∣∣∣∣2
⎡⎣ |S|

σ
+
∣∣∣∣ k

kα

∣∣∣∣
√

1 −
∣∣∣∣ k

kα

∣∣∣∣2
⎤⎦ , when |k| < kα ;

= σ

∣∣∣∣ k

kα

∣∣∣∣
√∣∣∣∣ k

kα

∣∣∣∣2 − 1

⎡⎣ |S|
σ

−
∣∣∣∣ k

kα

∣∣∣∣
√∣∣∣∣ k

kα

∣∣∣∣2 − 1

⎤⎦ , when |k| > kα . (88)

Fig. 6 shows the growth rate as a function of the wavenumber. γ > rises from zero at |k| = 0 , to a maximum positive value,

γm1 = |S|
2

+ σ

4
, at |k| = km1 = kα√

2
, (89)

and then decreases to zero at |k| = kα . For high wavenumbers, γ > again rises again from zero to a second maximum positive value,

γm2 = S2

4σ
, at |k| = km2 = kα√

2

[
1 +

√
1 + S2

σ 2

]1/2

, (90)

and then decreases monotonically, turning negative for |k| > (kα/
√

2)[1 +
√

1 + 4S2/σ 2]1/2 . When |k| � k∗ , the growth rate tends to the
asymptotic form γ > → − σ (k/kα)4 . Note that this behaviour is quite opposite to the white-noise case where strong α fluctuations always
imply growing large-scale fields, but it nevertheless approaches smoothly the white-noise case for τα → 0 .

8 CONCLUSIONS

We have presented a model of large-scale dynamo action in a linear shear flow that has stochastic, zero-mean fluctuations of the α parameter.
This is based on a generalization of the KM model (Kraichnan 1976; Moffatt 1978), to include a background linear shear and a non-zero
α-correlation time. Our principal result is a linear integro-differential equation for the large-scale magnetic field, which is non-perturbative
in both the shear (S) and the α-correlation time (τα).

An immediate application is to the case of white-noise α fluctuations for which τα = 0 . The EMF turned out to be identical in form to
the KM model without shear; this is because white-noise carries no memory whereas shear needs time to act. With no further approximation,
the integro-differential equation was reduced to a PDE, where shear entered it only through the background flow. We have presented a full
solution of the initial value problem, and discussed the role of Kraichnan diffusivity (ηK), Moffatt drift (V M) and shear (S). Some salient
results are (a) V M contributes only to the phase and does not influence the growth of the field, which is qualitatively similar to the KM model
with an additional S-dependent term; (b) the growth of the field depends on both ηK and S ; (c) however, the necessary condition for dynamo
action is identical to the KM model (i.e. the α fluctuations must be strong, ηK < 0 ); then modes of all wavenumbers grow by shear-modified
negative diffusion with the highest wavenumbers growing fastest.

To explore memory effects on dynamo action it is necessary to let τα be non-zero. The integro-differential equation is difficult to analyse,
hence we restricted attention to a simpler yet physically meaningful case where it reduces to a PDE, i.e. for slowly varying ‘axisymmetric’
large-scale fields, small τα , and moderate values of (ηK, V M, S) – the precise conditions were stated in terms of three dimensionless small
parameters. Working perturbatively, we derived an expression for the EMF that is accurate to first order in τα , and obtained the PDE
governing the evolution of the large-scale magnetic field. We solved for exponential propagating modes with wavenumber k = ke3, and
derived a dispersion relation. From this we obtained a formula for the growth rate, γ > = f + |S|g , where f and g are explicitly given functions
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of (ηT , ηK , VM3 , τα , k). Therefore, if the parameters (ηT , ηK , VM3 , τα) are independent of shear, then γ > is linear in |S|. The expression for
γ > is somewhat complicated, so we simplified it to an interpolation formula that allowed us to explore dynamo action in some detail. Here
we recall some of the salient results.

(1) There can be dynamo action for even weak α fluctuations (i.e. positive Kraichnan diffusivity), when τα �= 0.
(2) Both Moffatt drift and Shear contribute to increasing the growth rate at any wavenumber.
(3) Moffatt drift dynamo: there can be dynamo action when both VM3 and τα are non-zero, but S = 0. This is differ-

ent from the KM model in which the Moffatt drift contributes only to the phase of the large-scale field and does not in-
fluence dynamo action. For the simplest case when ηK = 0, the growth rate γ> = (V 2

M3τα) k2 is negatively diffusive, with

negative-diffusion coefficient equal to (V 2
M3τα) ; this growth is driven by an extra term, iV 2

M3ταk(e3 ×H̃), in the EMF of
equation (55). For more general values of ηK, we recall two results: for weak α fluctuations, V 2

M3τα > ηK is a sufficient condition for
dynamo action for all k. For strong α fluctuations, the growth rate as a function of the wavenumber has a single positive maximum value, and
turns negative for large |k|.

(4) Shear dynamo: there can be dynamo action when both S and τα are non-zero, but VM3 = 0. For weak α fluctuations, |S|τα > ηK/(2ηα)
is a sufficient condition for dynamo action for all k. For strong α fluctuations, the growth rate as a function of the wavenumber has two
positive maxima, and turns negative for large |k|.

Cautionary note: in the two types of dynamos discussed above, it is likely that the growth of high |k| modes has been overestimated,
because the dissipative term was dropped in the FOSA equation (27) for the fluctuating field.

Our model is based on the dynamo equation (9) for the meso-scale magnetic field. It is a minimal extension of the KM dynamo equation
(2) and inherits certain simplifying assumptions, such as the isotropy and locality of the transport coefficients ηt and α. Relaxation of these
assumptions can, by itself, lead to dynamo action at the meso-scale level. Isotropy can be relaxed by making ηt and α tensorial [see e.g.
Brandenburg et al. (2008), Devlen, Brandenburg & Mitra (2013), Singh & Jingade (2013), Rheinhardt et al. (2014) for the extraction of
these transport coefficients from numerical simulations using the test-field method]. Relaxing locality in space implies a k-dependence of the
Fourier-transformed transport coefficients, which we denote here by η̃t and α̃; Devlen et al. (2013) have demonstrated dynamo action due to
η̃t turning negative at low k and overcoming molecular diffusivity. Relaxing locality in time (see e.g. Hubbard & Brandenburg 2009) makes
η̃t and α̃ dependent on ω, which then implies memory effects; Rheinhardt et al. (2014) demonstrate dynamo action due to delayed transport
with a tensorial α̃.

The other major assumption is the minimal role given to shear in our model; ηt has been assumed constant, and the α fluctuations have
a Galilean-invariant two-point correlation function of a factored form; the time correlation part is D(t), and the spatial correlation part is
A(R), where R = x − x′ + St ′(x1 − x ′

1)e2. No restriction is placed on the value of ηt, or on the forms of the functions D(t) and A(R): they
could be either dependent on shear or not; it is just that our model does not specify this. In a more general model shear is likely to play a
deeper role, by influencing the very nature of the underlying turbulence. Then we can no longer expect η̃t and α̃ to be so simply behaved;
they can be general tensorial functions of the many variables (k, ω, S). In this case, it is only natural to expect that the nature of dynamo
action (criteria, wavenumber behaviour of the growth rate, etc.) may be different from items 1–4 above. Hence, particular results are less
important than the formalism used to treat shear and α-correlation time non-perturbatively. Can this formalism be extended to obtain an
integro-differential equation for the large-scale magnetic field, corresponding to (39) and (38), in the more general case? Even when the answer
is in the affirmative, one is faced with the task of choosing functional forms and fluctuation statistics for tensorial, many-variable functions. It
is here that the test-field method may serve a very useful purpose, by extracting transport coefficients from numerical simulations. Once we
have plausible functional forms, there are still two more tasks at hand: (a) the study of the dynamo modes of the model and comparison with
numerical simulations; (b) addressing the very nature of the underlying turbulence in a shear flow that gives rise to the transport coefficients.
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