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ABSTRACT
Using idealized one-dimensional Eulerian hydrodynamic simulations, we contrast the be-
haviour of isolated supernovae with the superbubbles driven by multiple, collocated super-
novae. Continuous energy injection via successive supernovae exploding within the hot/dilute
bubble maintains a strong termination shock. This strong shock keeps the superbubble over-
pressured and drives the outer shock well after it becomes radiative. Isolated supernovae, in con-
trast, with no further energy injection, become radiative quite early (�0.1 Myr, tens of pc), and
stall at scales �100 pc. We show that isolated supernovae lose almost all of their mechanical
energy by 1 Myr, but superbubbles can retain up to ∼40 per cent of the input energy in the
form of mechanical energy over the lifetime of the star cluster (a few tens of Myr). These
conclusions hold even in the presence of realistic magnetic fields and thermal conduction. We
also compare various methods for implementing supernova feedback in numerical simulations.
For various feedback prescriptions, we derive the spatial scale below which the energy needs
to be deposited in order for it to couple to the interstellar medium. We show that a steady
thermal wind within the superbubble appears only for a large number (�104) of supernovae.
For smaller clusters, we expect multiple internal shocks instead of a smooth, dense thermalized
wind.
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1 IN T RO D U C T I O N

Gravity and dark energy govern the structure in the Universe at the
largest scales but complex baryonic processes, such as cooling, heat-
ing, self-gravity and star formation, are important at galactic scales
(e.g. Springel et al. 2005). Numerical simulations have allowed us
to make tremendous progress in our understanding of galaxy for-
mation, from pure gravitational N-body simulations to the current
models that try to model the aforementioned complex processes.
Modelling the gravitationally interacting dark matter is straight-
forward in principle, and only limited by the available computing
power. However, the modelling of baryonic processes is rather in-
volved. In particular, there is no consensus on which baryonic pro-
cesses are important and how they should be implemented numeri-
cally. Given the dynamic range of scales, from large-scale structure
(tens of Mpc) to an individual star-forming cloud (∼pc), simulations
have to resort to unresolved ‘subgrid’ models for star formation and
feedback as a result of star formation (e.g. Navarro & White 1993;
Gerritsen 1997; Springel & Hernquist 2003; Guedes et al. 2011;
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Hopkins, Quataert & Murray 2012 and references therein). While
different star formation simulations seem to give similar star for-
mation histories and stellar mass distributions, provided molecular
clouds are resolved (e.g. Hopkins, Quataert & Murray 2011), the
simulations are quite sensitive to the various feedback prescriptions
(e.g. thermal feedback due to supernovae, momentum injection via
dust absorbing/scattering photons produced by massive stars and
supernovae), even with high resolution.

Stars form in clusters and superstar clusters (hundreds to 106

stars) of various sizes and in different environments, ranging from
low-density galactic outskirts to dense galactic centres (see Porte-
gies Zwart et al. 2010 for a review). These clusters are observed
to disrupt the dense molecular clouds in which they are born
(e.g. Leisawitz, Bash & Thaddeus 1989; Zhang, Fall & Whitmore
2001). This stellar feedback (resulting from strong radiation, stellar
winds and supernovae) disperses cold gas and suppresses further
star formation. Because of the stellar initial mass function (IMF)
and the main-sequence lifetimes, the energy input is roughly con-
stant per unit time over the lifetime of stars more massive than
8 M� (∼50 Myr; McCray & Kafatos 1987). Therefore, stellar feed-
back is sometimes modelled as a constant luminosity-driven blast
wave (Weaver et al. 1977; Mac Low, McCray & Norman 1989;

C© 2014 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

 at R
am

an R
esearch Institute on N

ovem
ber 5, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

mailto:prateek@physics.iisc.ernet.in
http://mnras.oxfordjournals.org/


3464 P. Sharma et al.

Gerritsen 1997). A superbubble (SB) expands faster than an isolated
supernova remnant (SNR) because of continuous energy injection,
and suffers smaller cooling losses because most supernovae (SNe)
explode in a low-density bubble.

The hot bubble breaks out through the gas disc if the outer shock
driven by overlapping SNe crosses the scaleheight with a sufficient
Mach number within the starburst lifetime (e.g. see section 2 of Roy
et al. 2013). After breakout, the hot, metal-rich stellar ejecta are
spread out into the galactic halo via the Rayleigh–Taylor instability.
The spread of metals over large scales is required to explain the
high metallicity observed in the intergalactic medium (IGM), far
away from the stellar disc (Tumlinson et al. 2011).

Standard models for feedback through multiple SNe assume that
a fraction �0.3 of the total explosion energy is retained in the hot
interstellar medium (ISM; e.g. Strickland & Heckman 2009). This
fraction is much larger than the estimates for a single SNR (∼0.1)
after the radiative phase at �0.1 Myr (e.g. Cox 1972; Chevalier
1974; Thornton et al. 1998, hereafter T98). Moreover, there are
further radiative and adiabatic losses, such that over the time-scale
of the order of tens of Myr, the available mechanical energy in
the bubble and shell is a negligible (�0.1) fraction of the initial
SN energy input. Recently, Nath & Shchekinov (2013) argued that
SBs created by multiple SNe in a star cluster are more effective as
a feedback mechanism, in comparison to incoherent SNe. Recent
simulations of interacting SNe by Vasiliev et al. (2014) show that
the fractional energy retained as thermal energy in the hot ISM can
be as large as ∼0.1–0.3 only if the explosions are spatially and
temporally correlated, such that the radiative losses are effectively
compensated by new explosions. SBs produced by compact star
clusters are expected to satisfy this condition. In this paper, we
assume that all SNe are coincident, a good approximation if the
SNR, when it becomes radiative, encompasses the whole cluster.
This means that SBs are a more effective feedback agent that is
responsible for magnificent galactic outflows.

In addition to elucidating differences between isolated SNe and
SBs, we compare various methods of injecting SN energy in numer-
ical simulations of the ISM. Different feedback processes, such as
radiation pressure, photoionization and cosmic rays, are important
in explaining outflows in galaxies of different masses and redshifts
(e.g. Hopkins et al. 2012 and references therein). In this paper, we
only focus on the most important feedback component, namely,
thermal feedback due to SNe. We find that the SN thermal energy
must be deposited over a sufficiently small volume for it to cre-
ate a hot bubble and to have an impact on the surroundings. For
a large energy deposition radius, the cooling time is shorter than
the thermalization time-scale and thermal feedback is artificially
suppressed. Most early implementations of SN feedback suffered
from this problem (see Gerritsen 1997 and references therein).

The formation of a low-density bubble is essential for thermal SN
feedback to work because the energy of subsequent SNe is deposited
in the low-density bubble and is not radiated instantaneously; cool-
ing is only restricted to the outer shock. While this fact has been
appreciated (e.g. Gnedin 1998; Joung & Mac Low 2006), we present
quantitative conditions for the formation of a strong shock and a
hot, dilute bubble for different thermal feedback prescriptions. The
main culprit responsible for the inefficacy of thermal feedback, in
both Eulerian (e.g. Tasker & Bryan 2006; Dubois & Teyssier 2008)
and Lagrangian (Springel & Hernquist 2003; Stinson et al. 2006)
simulations, is the lack of resolution. In reality, a SN affects its sur-
roundings starting at small (�1 pc) scales, by launching very fast
ejecta (∼104 km s−1) into the ISM (e.g. Chevalier 1977). Simula-
tions in which SN energy is not deposited at small enough scales

have to resort to artificial measures (turning off cooling for several
energy injection time-scales, depositing energy into an artificial
‘hot’ phase that does not cool, etc.) in order for feedback to have
any impact at all on the ISM (e.g. Gerritsen 1997; Springel & Hern-
quist 2003; Dubois & Teyssier 2008). These measures are necessary
for including the effects of SN heating in large-scale simulations.

The continuous injection of mass and energy by SNe deep within
the hot SB is expected to launch a steady wind (as first calculated by
Chevalier & Clegg 1985, hereafter CC85). CC85 obtained analytical
solutions for a superwind, assuming a constant thermal energy and
mass input rate with an injection radius. By modelling realistic SNe
as fast moving ejecta within SBs, we show that a steady CC85 wind
is obtained only if a large number of SNe (�104) explode within
the star cluster. For a smaller number of SNe, the kinetic energy of
an individual SN is not thermalized within a small injection radius
and there is an unsteady outflow. This should have implications for
works that simply assume a CC85 wind within the SB.

In this paper, we present analytical results that can be readily
used for the numerical implementation of thermal feedback using
various methods. These analytical criteria are verified and extended
using idealized numerical simulations. The fundamental difference
between isolated SNe and SBs (i.e. the former is ineffective on
galactic scales) is highlighted.

The paper is organized as follows. In Section 2, we describe vari-
ous ways of implementing thermal feedback due to SNe. In Section
3, we describe the numerical set-up used to study SNe and SBs.
In Section 4, we present different analytical criteria for feedback
to work with a range of feedback prescriptions. We also derive the
conditions for obtaining a thermalized CC85 wind within a SB. In
Section 5, we present one-dimensional numerical simulations of
different feedback methods with and without cooling, and we com-
pare the results with our analytical estimates. We also briefly discuss
the effects of magnetic fields and thermal conduction. In Section
6, we discuss the implications of our results for galaxy formation,
feedback simulations and galactic wind observations.

2 ISM AND SUPERNOVA FEEDBACK
PRESCRI PTI ONS

Although the ISM is multiphase and extremely complex, for sim-
plicity we consider a uniform, static model with a given density
(typically n = 1 cm−3) and temperature (104 K, corresponding to
the warm ISM). We do not consider stratification because the disc
scaleheight is typically a few 100 pc and the fizzling of SN feedback
is essentially a small-scale problem. Moreover, the scales of interest
(hundreds of pc; a few Myr) are much larger than the cluster size
and the local ISM/circumstellar inhomogeneities.

For simplicity, we also assume that all SNe explode at r = 0.
This is a good approximation because the size of a typical (su-
per)star cluster is smaller than the bubble size at the beginning of
the radiative phase.

The SN prescriptions that we consider in our analytical estimates
and numerical simulations cover the full range of methods used in
the literature, as follows.

(i) Kinetic explosion (KE) models. In these models, the SN en-
ergy (Eej, chosen to be 1 Bethe ≡ 1051 erg) is given to a specified
ejecta mass (Mej, chosen to be 1 M�) distributed uniformly with
an ejecta density ρej = 3Mej/(4πr3

ej) within an ejecta radius rej. The
ejecta velocity is homologous with vej(r) = v0(r/rej) within the
ejecta; the normalization is such that the kinetic energy of the ejecta
is Eej; that is, v0 = (10Eej/3Mej)1/2. The ejecta temperature is taken
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to be small (Tej = 104 K). After every (fixed) SN injection time tSN,
the innermost rej of the volume is overwritten by the ejecta den-
sity and velocity, thereby pumping SN energy into the ISM. After
the reverse shock propagates towards the bubble centre, once the
swept-up mass is comparable to the ejecta mass, the bubble den-
sity structure is fairly insensitive to the ejecta density distribution
(Truelove & McKee 1999). This model most closely resembles a
physical SNR in the early stages at small (�1 pc) scales when the
SN ‘piston’ at large speed rams into the ISM. This prescription is
not widely used in galaxy formation simulations (although there are
some exceptions, e.g. Tang & Wang 2005).

(ii) Thermal explosion (TE) models. In these models, the energy
is deposited within the ejecta radius in the form of thermal energy at
an interval of tSN. There are two variants of this model. In one class,
the mass and internal energy densities are overwritten within the
ejecta radius (rej) such that the uniformly distributed ejecta thermal
energy is Eej (1 Bethe) and the uniformly distributed ejecta mass
is Mej (1 M�). We call these models thermal explosion overwrite
(TEo) models, and they behave like KE models. In the second class
of models, we add (in contrast to overwrite) the ejecta mass (with
uniform density) to the pre-existing mass and the ejecta thermal
energy (distributed uniformly) to the pre-existing internal energy
within rej. We refer to these models as thermal explosion addition
(TEa) models. There are significant differences between the TEa
and TEo/KE models in the presence of cooling, because TEa ejecta
can become radiative if thermal energy is added to a dense ISM.
Most models in the literature are analogous to TEa models with
some variations (e.g. Katz 1992; Joung & Mac Low 2006; Creasey,
Theuns & Bower 2013); some works such as Stinson et al. (2006),
Thacker & Couchman (2000) and Agertz, Teyssier & Moore (2011)
unphysically turn off cooling for some time for SN feedback to have
an impact. Sometimes, all the SN energy is deposited in a single
grid cell (e.g. Tasker & Bryan 2006) or in a single particle (e.g. the
SN particle method in section 3.2.4 of Gerritsen 1997).

(iii) Luminosity-driven (LD) models. As discussed earlier, for
typical IMFs, the mechanical energy input due to OB stars per unit
time is roughly constant. This motivates a model in which internal
energy and mass within an injection radius (denoted by rej) increase
at a constant rate corresponding to internal energy Eej and mass
Mej for each SN. Some of the works that use this prescription are
CC85, Mac Low et al. (1989), Suchkov et al. (1994), Mac Low &
Ferrara (1999), Strickland & Stevens (2000), Cooper et al. (2008),
Roy et al. (2013), Recchi & Hensler (2013) and Palous̃ et al. (2013).

All our models are identified with the number of OB stars NOB

(which equals the number of SNe in the star cluster) or luminosity
Lej = Eej/tSN = NOBEej/tOB, where tOB is the lifetime of the OB
association (taken to be 30 Myr) and tSN = tOB/NOB is the time
interval between SNe. We note that the overwrite models do not
strictly conserve mass and energy. While the SN energy is much
larger than the overwritten thermal energy, we need to choose a small
enough ejecta radius such that the overwritten mass is subdominant
relative to the ejecta mass. The explosion models are substantially
slower compared to the smooth LD models because of very high
temperatures created because of sudden energy injection in the
former.

3 N U M E R I C A L S E T-U P

In this section, we describe the numerical set-up corresponding to
our one-dimensional simulations discussed in Section 5. Our nu-

merical simulations use the ISM set-up and the various feedback
prescriptions described in Section 2. The ISM density and tem-
perature are chosen to be 1 cm−3 and 104 K, respectively, unless
specified otherwise. The mean mass is μ = 0.62 per particle and μe

= 1.17 per electron. The initial density and temperature are uniform,
and the velocity is zero.

We use the grid-based ZEUS-MP code in spherical, one-dimensional
geometry (Hayes et al. 2006) to solve the standard Euler equations
with source terms mimicking SN energy/momentum/mass injection
for the chosen feedback model, and a sink term in the internal energy
equation representing radiative cooling. Our equations are similar
but not identical to equations (20)–(22) of Roy et al. (2013).1 We
note that the ZEUS code does not conserve energy to the machine
precision. However, we have confirmed that energy conservation
holds to better than 90 per cent in most of our runs. In fact, the
Sedov–Taylor blast wave in one-dimensional spherical coordinates
is one of the standard test problems presented by Hayes et al. (2006);
the numerical results match the analytical solutions very closely.
While most of our runs are hydro, in Section 5.4.5 we briefly discuss
runs with simple models of magnetic fields and thermal conduction;
various parameters for these runs are discussed there.

The radial velocity is set to zero at the inner radial boundary and
other fluid variables are copied in the ghost cells. Outflow boundary
conditions are applied at the outer radial boundary. Note that the
outer boundary is out of causal contact. Because the set-up produces
strong shocks, we use the standard ZEUS artificial viscosity to prevent
unphysical oscillations at shocks (Stone & Norman 1992). The CFL
number of 0.2 is found to be more robust compared to the standard
value of 0.5, and is used in all the simulations.

The cooling function that we use is the collisional-ionization-
equilibrium based solar metallicity table of Sutherland & Dopita
(1993), with the cooling function set to zero below 104 K. The
cooling step is implemented via operator splitting using the semi-
implicit method of Sharma, Parrish & Quataert (2010). Cooling is
subcycled and the number of subcycles is limited to be less than
100.

Most of our runs use a 1024 resolution grid extending from 1 pc
to 2 kpc. A logarithmically spaced grid is used to better resolve
smaller radii; there are equal numbers of grid points covering 1 pc
to

√
2000 pc and

√
2000 pc to 2 kpc. Some runs with stronger SN

feedback use a larger spatial extent (see NOB = 106 runs in Fig. 3),
and some uniform very high-resolution runs (16 384 grid points; see
Fig. 5) use a smaller extent (1–200 pc). All our simulations (except
the very high-resolution simulations that are run for 3 Myr) are run
for 30 Myr, which is the typical age of a young star cluster.

4 A NA LY T I C A L C R I T E R I A

In this section, we present the analytical criteria that need to be sat-
isfied so that the various feedback models discussed in Section 2 can
work. These analytical estimates help us to understand the results
of the numerical simulations discussed in Section 5. While radiative
cooling is the most discussed phenomenon in the context of fizzling
SN feedback, the feedback prescription should satisfy additional
constraints for the energy input to couple realistically with the ISM.
A recurring concept in what follows is that of thermalization (i.e. in

1 The difference from Roy et al. (2013) is that the mass and energy source
terms are not uniform in time. Moreover, different feedback heating pre-
scriptions use different source terms (e.g. KE models use a momentum
source term rather than a source term in the internal energy equation).
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order to be effective, the input energy should have time to couple to
the ISM before it is radiated or is overwritten). In Section 4.3, we
show that a steady superwind within a SB, as envisaged by CC85,
occurs only if the number of SNe is sufficiently large.

In the following sections, we derive upper limits on the ejecta
radius within which the feedback energy must be deposited for
it to be effective. We can easily convert this radius limit into a
critical mass resolution needed in smooth particle hydrodynamics
(SPH) simulations; that is, nnbrmcrit ≈ (4π/3)ρr3

crit, where ρ is the
ISM density, nnbr is the number of neighbours used in the SPH
smoothing kernel and mcrit is the maximum SPH gas particle mass
required for feedback to work.

4.1 Energy coupling without cooling

4.1.1 Ejecta radius constraint for overwrite models

In models where energy within the ejecta radius is overwritten
(KE, TEo) the ejecta radius should be smaller than a critical radius
(rej � rcrit) for the input energy to be coupled to the ISM. The critical
radius equals the Sedov–Taylor shock radius at tSN,2 the time lag
between SNe,

rcrit ≡
(

Eejt
2
SN

ρ

)1/5

≈ 50 pc n−1/5E
1/5
ej,51t

2/5
SN,0.3, (1)

where ρ(n) is the ISM (number) density (assuming μ = 0.62), Eej, 51

is the ejecta energy in units of 1051 erg and tSN, 0.3 is the time between
consecutive SNe in units of 0.3 Myr. If the ejecta radius is larger
than this value, then the ejecta energy is overwritten before it can
push the outer shock. Thus, in such a case, the input SN energy is
overwritten without greatly affecting the ISM.

4.1.2 Sonic constraint

For thermal SN feedback to launch a strong shock, the energy should
be deposited over a small enough volume, such that the post-shock
pressure is much larger than the ISM pressure. This is equivalent
to demanding that the outer shock velocity be much larger than
the sound speed in the ISM. The shock velocity (vOS ≡ drOS/dt,
where rOS is the outer shock radius), expressed in terms of the shock
radius in the Sedov–Taylor stage, is vOS ≈ 0.4E

1/2
ej ρ−1/2r

−3/2
OS for

an isolated SN and vOS ≈ 0.6L
1/3
ej ρ−1/3r

−2/3
OS for a LD SB (Weaver

et al. 1977). The condition for a strong shock for an isolated SN is
(vOS � aT, where aT is the ISM isothermal sound speed)

rej � 174 pc E
1/3
ej,51n

−1/3T
−1/3

4 (2)

and for a SB is (see equation 3 in Silich et al. 2009)

rej � 1.5 kpc L
1/2
ej,38n

−1/2T
−3/4

4 . (3)

Here, Lej,38 is the ejecta luminosity (Lej = Eej/tSN for explosion
models) in units of 1038 erg s−1 (which corresponds to NOB = 100
over tOB = 30 Myr) and T4 is the ISM temperature in units of 104 K.

The sonic constraint (vOS � aT) is typically less restrictive than
the compactness requirements due to cooling in a dense ISM (see the

2 We use the Sedov–Taylor expression for the bubble radius in equa-
tion (1) because the shock quickly transitions from a free-expanding to
a Sedov–Taylor state; the Sedov–Taylor radius (when the swept-up ISM
mass equals the ejecta mass) is rST ≡ (3Mej/4πρ)1/3 ≈ 2.5 pc M

1/3
ej,�n−1/3,

much smaller than the estimate in equation (1), where Mej,� is the ejecta
mass in solar units.

next section). Tang & Wang (2005), who considered SN feedback
in the hot ISM (∼107 K) of galaxy clusters and elliptical galaxies,
found that the shock can quickly (when the outer radius is only
≈20 pc; see equation 2) decelerate to attain the sound speed in the
hot ISM. After this, the outer shock propagates as a sound wave.
While the sound wave can spread the SN energy over a larger radius
(∝ t for a sound wave, unlike a strong blast wave in which rOS ∝ t2/5),
energy dissipation is not as efficient as in shocks.

4.2 Energy coupling with cooling

4.2.1 Luminosity-driven model

In LD models, SN feedback does not fizzle out (in fact, the shock can
get started) only if the cooling rate is smaller than the energy depo-
sition rate, that is, 3Lej/4πr3

ej � n2� [�(T) is the cooling function],
or

rej � 20 pc L
1/3
ej,38n

−2/3�
−1/3
−22 , (4)

where �−22 is the cooling function in units of 10−22 erg cm3 s−1.

4.2.2 Thermal explosion addition model

The above criterion (equation 4) for the LD models is quite different
from the criterion that we now derive for the widely used TE models
with energy and mass addition (TEa model in Section 2). Because
energy is added to the (possibly dense) pre-existing medium, cool-
ing in this model can be substantial. In contrast, because the ejecta
density is low, cooling losses are smaller in the overwriting models
(KE, TEo). For TEa models, to launch a shock, radiative losses over
the time-scale in which the shock from a point explosion reaches
the ejecta radius,

tej = E
−1/2
ej r

5/2
ej ρ1/2, (5)

should be smaller than the energy deposited (here, ρ is the density
of the medium in which energy is injected, not necessarily the ISM
density); i.e.

n2�tej � 3Eej/4πr3
ej. (6)

Inserting the expression for tej, we obtain

rej � 31 pc E
3/11
ej,51�

−2/11
−22 n−5/11. (7)

This condition is much more restrictive than the one obtained by
replacing tej in equation (6) by the CFL stability time-step. More-
over, this is the appropriate time-scale to use because the relevant
time-scale for the injected energy to couple to the ISM is the ther-
malization time (tej).

Creasey et al. (2011) and Dalla Vecchia & Schaye (2012) have
used similar arguments and have derived results not too different
from ours for the TEa models. A slight difference from our work
is that they consider energy deposition over a resolution element (a
necessity because of a larger range of scales in cosmological galaxy
simulations), but we allow for energy deposition over a resolved
region. Creasey et al. (2011) have expressed their resolution limit in
terms of the cooling rate per unit mass and Dalla Vecchia & Schaye
(2012) in terms of the post-shock temperature; we use the cooling
function (�) to express the critical radius within which the energy
needs to be deposited.
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4.2.3 Overwrite models

In models where the energy and mass densities are overwritten
within rej, the condition for overcoming cooling losses and launch-
ing a shock is

n2
ej�tej � 3Eej

4πr3
ej

,

where ejecta number density nej = ρej/μmp and ρej = 3Mej/4πr3
ej;

note that this expression is different from equation (6) in that the
ejecta density is used instead of the ISM density. The overwrite
models (KE, TEo) behave quite differently from the addition (TEa,
LD) models because a larger ejecta radius means a smaller density
ejecta to which energy is added. Replacing the ISM density by
the ejecta density in equation (5) gives tej = E

−1/2
ej r

5/2
ej ρ

1/2
ej , and the

condition for energy thermalization is

rej � 0.003 pc M
5/4
ej,��

1/2
−22E

−3/4
ej,51 . (8)

In order to avoid radiative losses, the ejecta radius should be larger
than above. This early cooling of the mass loaded SN ejecta, re-
sponsible for creating cold filaments in young SNe (e.g. Chevalier
& Blondin 1995), is physical (unlike the fizzling out of the energy
addition models) and should reduce the energy available to drive
the SN. All our simulations use an ejecta radius much greater than
this limit.

4.3 Conditions for CC85 wind

CC85 found analytical solutions for a LD wind with a fixed injection
radius. Luminosity injection is expected to drive both an outer shock
bounding the bubble and a wind that shocks within the hot bubble
at the termination shock (see fig. 1 in Weaver et al. 1977; see also
the LD run in Fig. 3). In this section, we show that for a small
number of SNe (see equation 11) the SN ejecta does not thermalize
within the termination shock. In that case, the density inside the
bubble is much lower than the CC85 wind because most SNe occur
in the dilute bubble created by earlier SNe and the thermalization
radius is comparable to the outer shock radius. This has important
implications for the cooling and luminosity of SN ejecta.

Following Weaver et al. (1977), the outer shock radius of a
LD bubble is given by rOS ≈ (Lejt3/ρ)1/5, the velocity by vOS ≈
0.6rOS/t ∝ t−2/5 and the post-shock pressure by pOS ≈ 0.75ρv2

OS ≈
0.27L

2/5
ej ρ3/5t−4/5. Assuming a steady superwind, the ram pres-

sure at the termination shock (rTS; the wind is assumed to be su-
personic at this radius) is ρTSv

2
TS = ṀejvTS/(4πr2

TS), where vTS =
(2Lej/Ṁej)1/2 is the wind velocity, ρTS is the density upstream of
the termination shock and Ṁej is the mass injection rate. The wind
termination shock (rTS) is located where the wind ram pressure
balances the bubble pressure, i.e.

ṀejvTS

4πr2
TS

≈ 0.75ρv2
OS.

Using vOS ≈ 0.6L
1/3
ej ρ−1/3r

−2/3
OS and Ṁej = 2Lej/v

2
TS gives

rTS

rOS
≈

(
vOS

vTS

)1/2

≈ 0.08E
−1/12
ej,51 M

1/4
ej,�n−1/6r

−1/3
OS,2 t

−1/6
SN,0.3, (9)

where rOS, 2 is the outer shock radius in units of 100 pc and tSN, 0.3

is the time between SNe normalized to 0.3 Myr (corresponding to
NOB = 100); we have used Lej = Eej/tSN and Ṁej = Mej/tSN. The
ratio rTS/rOS depends very weakly on time (∝ t−1/5); this comes
from the time dependence of rOS in equation (9). The reverse shock

for an isolated SN very quickly (at the beginning of the Sedov–
Taylor stage) collapses to a point but the termination shock for a
SB is present at all times. Thus, the non-radiative termination shock
can power a SB long after the outer shock becomes radiative, unlike
a SN that dies off shortly after the outer shock becomes radiative
(see Section 5.4.4 for our results from simulations).

The condition for the existence of a smooth CC85 wind is that the
ejecta thermalization radius should be smaller than the termination
shock radius. The superwind is mass loaded by previous SNe (the
bubble density in the absence of mass loading is quite small because
most of the mass is swept up in the outer shell). The swept-up mass
up to radius r in a CC85 wind is

Msw =
∫ r

0
4πr ′2ρw(r ′)dr ′ ≈ Ṁejr

vTS
= Mejr

tSNvTS
,

where ρw(r′) is the wind density profile; here, we have assumed
that the swept-up mass is dominated by the supersonic portion of
the wind. Now the thermalization radius (the radius within which
the deposited energy is thermalized and which should correspond
to CC85’s injection radius) of the ejecta is where the swept-up mass
roughly equals the ejecta mass, or

rth ≈ vTStSN ≈ 3 kpc E
1/2
ej,51M

−1/2
ej,� tSN,0.3. (10)

Because the thermalization radius is quite large, a thermalized CC85
solution will only occur for large clusters (with shorter tSN, the time
lag between SNe); for modest star clusters, the ejecta will only ther-
malize beyond the termination shock. Of course, the thermalization
radius cannot be smaller than the size of the star cluster launching
the energetic ejecta. Using equation (9) and rOS ≈ (Lejt3/ρ)1/5, the
termination shock radius can be expressed as

rTS ≈ 5 pc E
1/20
ej,51M

1/4
ej,�n−3/10t

−3/10
SN,0.3t

2/5
0.3 ,

where t0.3 is time in units of 0.3 Myr. A CC85 solution will appear
only if this termination shock radius is larger than the thermalization
radius (equation 10); that is, if

tSN,0.3 � 0.007E
−9/26
ej,51 t

4/13
0.3 n−3/13M

15/26
ej,� . (11)

This means that NOB � 3500 (recall that tSN = tOB/NOB, where
tOB = 30 Myr is the cluster lifetime and NOB is the number of SNe)
is required for a CC85 wind to appear by 30 Myr. Thus, a thermally
driven CC85 wind occurs only for a sufficiently large starburst, with
a large mass loading, and at late times.

5 SI MULATI ON R ESULTS

In this section, we present the results from our one-dimensional
numerical simulations. We vary the ISM density and SN injection
parameters to assess when the SN energy can significantly affect the
ISM, both with and without cooling. We also numerically verify the
various analytical constraints presented in Section 4. We discuss the
structure of a radiative SB and compare the energetics of isolated
SNe and SBs. While isolated SNe lose most of their mechanical
energy by a few Myr, SBs can retain up to ∼40 per cent of the input
energy long after the outer shock becomes radiative. Thus, SBs, and
not isolated SNe, are the viable energy sources for global, galactic-
scale feedback. In Section 5.4.5, we briefly discuss the impact of
magnetic fields and thermal conduction on SBs.

5.1 Realistic SN shock (KE models)

The SN shock is launched once a protoneutron star forms at the
centre of a massive evolved star (with size ∼1014 cm). In the
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Figure 1. Number density as a function of radius (scaled to the self-similar
scaling) for different parameters of realistic KE runs at 10 Myr. The outer
shock is closer in for models using a larger ejecta radius because energy is
overwritten before it can couple to the ISM.

ejecta-dominated state (when the swept-up ISM mass is less than
the ejecta mass), the cold ejecta is dominated by kinetic energy (e.g.
Truelove & McKee 1999). In our ‘realistic’ simulations (KE mod-
els; see Section 2) we choose that the ejecta have a constant density
and a velocity proportional to the radius (homologous expansion;
this is a similarity solution for the freely expanding ejecta) within
the ejecta. The SN shock develops a reverse shock after sweeping
up its own mass in the ISM; this slows down the ejecta and com-
municates the presence of the ISM to the supersonic ejecta. In this
section, we compare the evolution of adiabatic (cooling is turned
off) KE models with different parameters, highlighting the impor-
tance of having a small ejecta radius (rej) even in the absence of
cooling for overwrite (KE, TEo) models. We have verified that KE
and TEo models behave in a similar fashion.

Fig. 1 shows the density profile as a function of radius [normalized
to the self-similar scaling, rOS ≈ (Lejt3/ρ)1/5, where Lej = Eej/tSN =
EejNOB/tOB] for different realistic runs (the results are similar for
TEo models) with NOB = 100 and 105 at 10 Myr. The runs with a
large ejecta radius (100 pc) give a smaller outer shock radius because
most of the energy is overwritten without being thermalized (see
Section 4.1.1 for a discussion). The problem is worse for larger
NOB (shorter tSN), as expected from equation (1). The normalized
locations of the outer shock fall almost on top of each other for a
small ejecta radius (rej = 2 pc). As expected, the shock is weaker
and broader, and has a modest density jump for a smaller number
of SNe.

5.2 Comparison of adiabatic models

While the KE model is most realistic, we expect other models in
Section 2 to give a similar location for the outer shock after the
swept-up ISM mass equals the ejecta mass and the shock is in the
Sedov–Taylor regime. The structure within the bubble depends on
the SN prescription, as we show in Section 5.3.

Fig. 2 shows the location of the outer shock (measured by its
peak density) as a function of time for various models (KE, LD,
TEa) and SN parameters in the absence of cooling. The solid line

Figure 2. Outer shock radius as a function of time for various runs using
KE, LD and TEa models. The KE models give correct results only if the
ejecta radius (rej) is sufficiently small; otherwise, energy is overwritten
before being coupled to the ISM. There is no such problem for TEa and
LD models. At early times, the outer shock radius scales with the Sedov–
Taylor scaling (rOS ∝ t2/5) and later, after many SNe explode, it steepens
(rOS ∝ t3/5).

at the bottom shows the transition from a single blast wave (outer
shock radius, rOS ∝ t2/5) to a continuously driven bubble (rOS ∝ t3/5;
Weaver et al. 1977) for NOB = 100 runs. The runs with more SNe
show such a transition very early on. The dot-dashed line shows
the outer shock radius for the KE run using a large ejecta radius
violating the criterion in equation (1); the outer shock radius is
much smaller than expected because energy is overwritten before
it energizes the hot bubble (see Section 4.1.1). The LD and KE
models agree only if the ejecta radius satisfies equation (1) for KE
models (we have verified that this constraint also applies to the TEo
models). The TEa runs and LD runs fall on top of each other for
both choices of rej (2 and 100 pc). The outer shock radii for the runs
with rej = 100 pc increase only after a thermalization time (equation
(5); although, in this case, ρ is not the ISM density but the much
lower density of the bubble within which energy is added).

5.3 CC85 wind within the bubble

In this section, we show that a simple steady wind, as predicted
by CC85, exists within the bubble only if the number of SNe is
sufficiently large (see Section 4.3). Fig. 3 shows the density profile
as a function of the scaled radius for various models. The solid line
shows density for a LD model with NOB = 100 and rej = 2 pc;
various regions for the smooth CC85 wind within the bubble are
marked. The superwind has a structure identical to the CC85 wind;
the sonic point is just beyond the energy injection radius (2 pc).
The wind shocks at the termination shock (rTS) where the wind ram
pressure balances the bubble pressure. The ratio of the termination
shock and the outer shock (rOS) is ≈0.07, in good agreement with
equation (9). For comparison, Fig. 3 also shows the density profiles
for the KE and TEa models with the same parameters. While the
outer shock radius agree for these runs, the density profiles within
the bubble are quite different. The most blatant difference, for runs
with NOB = 100, is the absence of a CC85 wind in the KE and
TEa models. In accordance with the discussion in Section 4.3, SN
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Figure 3. Density profile as a function of normalized radius for LD, KE
and TEa models. The standard CC85 wind within the bubble appears for the
LD model, and for KE and TEa models with NOB = 106, but not for KE/TEa
models with NOB = 100; the smooth CC85 wind is identified by the density
profile varying ∝ r−2 between the ejecta radius and the termination shock
(various regions have been marked for the LD run). The CC85 wind density
using NOB = 106 is slightly smaller for the KE model compared to the TEa
model because density is overwritten (and hence mass is lost) in KE models.

shocks do not thermalize within the termination shock for a small
number of SNe (see equations 10 and 11); therefore, a smooth CC85
wind is not expected in any model with small NOB except for the
LD model.

Only for a large enough NOB and late enough times does a CC85
wind start to appear within the hot bubble. Fig. 3 includes the density
profiles for KE and TEa models using NOB = 106; the inner (outer)
radius of the computational domain for these runs is 0.5 pc (5 kpc),
and rej = 1 pc is chosen to satisfy the constraint in equation 1.
Clearly, in these cases, we see the appearance of the CC85 wind
solution within the termination shock because the injected energy
is thermalized. For the KE run with NOB = 106, we can still see the
internal shocks due to isolated SNe interacting with the superwind.
The density profile for the KE model using NOB = 105 is shown
by the dotted line in Fig. 1. In agreement with equation (9), the
ratio rTS/rOS increases with an increasing NOB. For NOB = 105,
thermalization is less complete compared to NOB = 106, but occurs
within the termination shock. In comparison, a clear termination
shock is absent for NOB = 100 because the thermalization radius is
larger than the termination shock radius (see equation 11).

5.4 Effects of radiative cooling

In this section, we study the effects of radiative cooling on SNe and
SBs. We focus on a few aspects: the fizzling out of thermal feedback
in some models in which energy is not injected over a sufficiently
small scale; the comparison of cooling losses and mechanical energy
retained by radiative SNRs and SBs; the influence of magnetic fields
and thermal conduction.

5.4.1 Unphysical cooling losses with thermal energy addition

As mentioned in Section 4.2, some models (TEa, LD) in which we
add SN thermal energy in a dense ISM, over a large radius, can
suffer unphysical catastrophic radiative cooling. In such cases, a

Figure 4. Density is shown as a function of radius for different runs at
3 Myr in order to show that energy addition totally fizzles out for a high
ISM density. While TEa and LD models do not show the formation of a hot,
dilute bubble for the ISM density of 20 cm−3, the KE model indeed shows
a bubble and a forward shock. Also shown is the density profile for the TEa
model with a lower density (5 cm−3) ISM; at later times, it shows a bubble
that pushes the shell outwards. The outer shock radius is larger for a lower
density ISM because rOS ∝ ρ−1/5.

hot bubble is not even created and SN feedback has no effect, what-
soever. Early SN feedback simulations suffered from this problem
because of low resolution.

Fig. 4 shows the density profiles at 3 Myr for three of our energy
injection models (KE, LD, TEa) with NOB = 100 and the ISM
density of 20 cm−3. The ejecta radius is chosen to be large such that
it violates conditions in equations (4) and (7). The figure shows a
comparison of the LD and TEa models that fizzle out and the KE
model, which shows a hot, dilute bubble. Thus, our results are in
agreement with the analytical considerations of Section 4.2. The
outer shock location for the KE model roughly agrees with the self-
similar scaling of Weaver et al. (1977) if the luminosity is reduced
by a factor of ≈0.35; this is comparable to the fraction of mechanical
energy retained by SBs after the outer shock becomes radiative (see
Section 5.4.4 and the right panel of Fig. 8).

For most runs in Fig. 4 we have chosen a rather high density (n =
20 cm−3) compared to the critical values in equations (4) and (7). For
lower densities (e.g. 5 cm−3 for the TEa model in Fig. 4), we find that
the energy does not couple at early times. Energy injection excites
large amplitude sound waves and associated density perturbations,
such that at late times the lowest density regions no longer violate
equations (4) and (7). After this, a hot bubble starts to grow because
of energy injection in a dilute medium (see the dotted line in Fig. 4),
and eventually the outer shock radius starts to agree with analytical
estimates.

5.4.2 SB evolution with cooling

In this and later sections, where we study the influence of radiative
cooling on SBs and SNRs, we use the realistic KE model for SN
energy injection with ejecta radius rej = 2 pc. However, we have
verified that other models discussed in Section 2 give similar results,
as long as the conditions in Section 4 are satisfied.
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Figure 5. Normalized (with respect to the ISM) density and temperature profiles zoomed in on the outer shock as a function of radius for the high-resolution
(16 384 grid points uniformly spaced from 1 to 200 pc) runs. The top panel shows the NOB = 105 run and the bottom panel shows a single SNR (NOB = 1)
run. Left panels correspond to a time when the outer shocks just become radiative and the right panels are for later times. Markers represent the grid centres.
For a single SNR, the temperature in the dense shell is lower than the temperature floor (ISM temperature) because of weakening of the shock and the resultant
adiabatic losses. Different regions (unshocked ISM, radiative relaxation layer, dense non-radiative shell and shocked SN ejecta) are marked in the top-right
panel.

Spherical adiabatic blast waves, both SNRs and SBs, have shells
with finite thickness. An estimate for the shell thickness is obtained
by assuming that all the swept-up ISM mass lies in a shell and that
the post-shock density is four times the ISM density for a strong
shock; this gives �r/rOS ≈ 1/12. Of course, the shock transition
layer is unresolved in simulations, and in reality is of the order of
the mean free path. The structure of an adiabatic blast waves is
fairly simple. The density jump at the shock is 4 for a strong shock,
and as the shock becomes weaker the density jump decreases and
the shell becomes broader. Eventually, the outer shock is so weak
that it no longer compresses gas irreversibly, but instead becomes a
sound wave with compressions and rarefactions (see fig. 2 in Tang
& Wang 2005).

Because the evolution of isolated SNRs with cooling has been
thoroughly studied in the past (e.g. T98), we only highlight the
differences between isolated SNRs and SBs. The fundamental dif-
ference between the two is that SNRs suffer catastrophic losses just
after they become radiative, because, unlike in SBs, there is no en-
ergy injection after this stage. In SBs, the cool (yet dilute), fast SN
ejecta periodically thermalize within the bubble and power it long
after the forward shock becomes radiative. This keeps the radiative
forward shock moving (like a pressure-driven snowplough), as long
as SNe explode within the hot bubble.

The structure of a radiative shell is quite complex. The shell
become radiative when the cooling time of the post-shock gas is
shorter than its expansion time (which is of the order of the age of
the blast wave). Moving inward from the upstream ISM, the outer
shock transition occurs over a mean free path, which is followed by
a thin radiative relaxation layer of the order of the cooling length

(see, for example, Shu 1992, pp. 226–229, and the top-right panel
of Fig. 5). The radiative relaxation layer is followed by a dense
shell, which is separated by a contact discontinuity from the dilute
hot bubble. In the steady state, radiative cooling is concentrated at
two unresolved boundary layers: the outer radiative relaxation layer
and the inner contact discontinuity. Here, the density is high and the
temperature is conducive to radiative cooling.

Fig. 5 shows zooms of the density and temperature structure of
the radiative shell for a SB (with NOB = 105; upper panels) and a
SNR (NOB = 1; lower panels) using high-resolution (with 16 384
grid points) runs. It clearly shows an outer radiative shock and an
inner contact discontinuity. Within the contact discontinuity of the
SB (NOB = 105) is the shocked SN ejecta; Fig. 3 shows the full
structure of a superwind within the SB. Just when the outer shock
becomes radiative, the coolest/densest part is compressed by high-
pressure regions sandwiching it (left panels of Fig. 5). After a sound
crossing time, the post-shock region is roughly isobaric and in the
pressure-driven snowplough phase (right panels of Fig. 5).

Unlike SBs, for isolated SNRs there is no energy injection at
later times; the pressure in the bubble falls precipitously after the
outer shock becomes radiative at ≈0.05 Myr. By ∼0.5 Myr, the
bubble pressure becomes comparable to the ISM pressure, the shell
density falls and it becomes momentum conserving with a velocity
comparable to the sound speed in the ISM. At even later times
(∼a few Myr) the hot bubble just oscillates as a weak acoustic
wave.

Fig. 6 shows the distribution of radiative losses in the shell and in
the bubble (a shell is defined as the outermost region where density
is above 1.01 times the ISM density; a bubble comprises all the grid
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Figure 6. Fractional radiative losses in the shell [(shell cooling rate)/(total
cooling rate)] and bubble [(bubble cooling rate)/(total cooling rate)] for
KE models (NOB = 105) with and without conduction (the run with thermal
conduction is discussed in Section 5.4.5). Most radiative energy losses occur
at the radiative relaxation layer ahead of the dense shell. At late times, as the
outer shock weakens, radiative losses in the bubble become more dominant.
The bubble is comparatively more radiative (in fact, bubble losses exceed
shell losses after 5 Myr) with conduction because of mass loading of the
bubble by evaporation from the dense shell. Results from the high-resolution
run and the LD model are similar. The minimum in fractional radiative losses
corresponds to the time when the outer shock becomes radiative.

points with a radius smaller than the inner shell radius) for a SB with
NOB = 105; results from runs with and without thermal conduction
are shown. Here, we only discuss the run without conduction; the
run with conduction is highlighted in Section 5.4.5. Unlike Fig. 5,
here we use our standard resolution runs (1024 grid points) because
we are running for a much longer time. Results from the higher-
resolution runs match our standard runs, highlighting the fact that
the volume-integrated cooling is the same even if the radiative relax-
ation layer and the contact discontinuity are unresolved. The time-
and volume-integrated losses (

∫∫
n2�4πr2dr dt) in the bubble and

shell are sampled appropriately and differentiated in time to obtain
their respective cooling rates. As already discussed, cooling is con-
centrated at the radiative relaxation layer, which is included in the
shell, and at the contact discontinuity, part of which is included in
the bubble. Consistent with our previous discussion, most radiative
losses are concentrated in the shell. Fractional radiative losses in the
bubble (concentrated at the contact discontinuity) are ∼10−4–0.3,
which increase with time as the outer shock becomes weaker.

5.4.3 Scales in radiative shocks

The structure of a radiative shock is well known (e.g. Shu 1992,
pp. 226–229). Applying mass and momentum conservation across
the radiative relaxation layer in the shock frame, and assuming
the same temperature upstream/downstream of it (see the top-right
panel of Fig. 5 for different regions of the outer shock) gives
ρ3/ρ1 = (u1/u3) = (u1/aT)2 (equation 16.36 in Shu 1992), where
ρ3 (ρ1) is the density downstream (upstream) of the radiative re-
laxation layer, u1 (u3) is the upstream (downstream) velocity in the
shock rest frame and aT is the isothermal sound speed of upstream

ISM (at T = 104 K, below which radiative cooling vanishes). Thus,
we expect a larger density jump across stronger shocks (u1 � aT).
This is evident from the shell density for the two cases (NOB = 105

and 1) in Fig. 5.
The thickness of the cold, dense shell can be estimated by equat-

ing the swept-up ISM mass with the mass in the constant density
shell; �r/rOS ≈ (aT/u1)2/3. This thickness is quite small, with
�r/rOS ≈ 0.003 for a 100 km s−1 shock. This estimate agrees with
our results in Fig. 5 and, as predicted, the shell is thicker for a
smaller NOB and becomes thicker with time as the shock becomes
weaker.

The thickness of the radiative relaxation layer can also be esti-
mated. The size of the radiative relaxation layer is Lcool (where Lcool

is the distance behind the outer shock after which the advection
time becomes longer than the cooling time), such that
∫ Lcool

0

dx

u
=

∫ tcool

0
dt = tcool, (12)

where u(x) is the velocity in the relaxation layer in the shock rest
frame. While this equation can only be solved after numerically
solving for the structure of the relaxation layer, we can make an
order of magnitude estimate. The integral on the left-hand side of
equation (12) can be estimated as Lcool/〈u〉, where 〈u〉 = aT/2 is the
geometric mean of the velocity at the front of the relaxation layer
(u1/4 for a strong shock) and just downstream of it (u3 = a2

T /u1).
Similarly, the cooling time tcool in equation (12) can be estimated
by using a geometric mean of densities across the relaxation layer.
That is, tcool ≈ 1.5kT/(〈n〉�), where 〈n〉 = 2(u1/aT)n1, and we can
use the peak of the cooling function for T and �. Putting this all
together gives

Lcool ∼ aT

(
aT

u1

)
kT0

n1�0
, (13)

which is ∼10−4 pc for fiducial numbers, far from being resolved
even in our highest-resolution runs. While the transition layers
(contact discontinuity and radiative relaxation layer) where all our
cooling is concentrated are unresolved, we find that the volume-
integrated quantities, such as radiative losses and kinetic/thermal
energy in shell/bubble, are converged even at our modest resolution
(1024 grid points; results are similar even for 256 grid points).

5.4.4 Energetics of radiative SBs and isolated SNRs

In this section, we focus on the energetics of the SB shell/bubble
and compare it with the results from isolated SNRs. We define the
shell to be the outermost region where the density is larger than
1.01 times the ISM density. All gas at radii smaller than the shell
inner radius is included in the bubble (this definition is convenient
but not very precise because it includes a small contribution from
the unshocked SN ejecta). Fig. 7 shows a comparison of kinetic
and thermal energies in the bubble and shell as a function of time
for a SB driven by 105 SNe. The bubble kinetic energy is not
included because it is much smaller. Also included is a comparison
of the same quantities for the same frequency of SNe that explode
independently. The results for multiple isolated SNe are obtained
by combining the single SN run at different times. We simply use
the data at an interval of tSN (the time between individual SNe) and
add them to obtain the total kinetic/thermal energy in the shell and
bubble at a given time. For instance, the thermal energy in bubbles
of all independent SNe at time 10tSN is obtained by summing up
the bubble thermal energy from a single SN (NOB = 1) run at t = 0,
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Figure 7. Comparison of kinetic and thermal energies in the shell and
thermal energy in the bubble as a function of time for SBs and an equal
number of isolated SNe. Results from an isolated SN run (NOB = 1) have
been combined cumulatively (see equation 14), assuming that SNe explode
independently in the ISM. Pre-radiative phase energetics are similar but
isolated SNRs are extremely deficient in mechanical energy (after 1 Myr)
compared to a SB with the same energy input. The arrow at the top-right
shows the bubble thermal energy at the end for an adiabatic SB run. Isolated
SN results are only shown up to 2 Myr because SNRs become weak sound
waves by then.

tSN, 2tSN, . . . , up to 10tSN. This is equivalent to a cumulative sum
over time for a single SN run,

Ecum(t) =
i<N∑
i=0

E(itSN) = 1

tSN

∫ t

0
E(t ′) dt ′, (14)

where E stands for, say, bubble thermal energy and N is the number
of SNe up to time t.

Weaver et al. (1977) have given analytical predictions for en-
ergy in different components of SBs: the total energy of the shell
is (6/11)Lejt (40 per cent of this is kinetic energy and 60 per cent
is thermal) and the thermal energy of the bubble is (5/11)Lejt (the
kinetic energy of the bubble is negligible). These analytical predic-
tions agree well with our numerical results in the early adiabatic
(non-radiative) SB phase in Fig. 7.

Fig. 7 shows that the SB shell loses most of its thermal energy
catastrophically at ≈0.25 Myr; the trough in shell thermal energy
can be estimated by assuming that all the swept-up mass up to then
cools to the stable temperature (104 K). The thermal energy of the
cold shell increases after that as it sweeps up mass from the ISM; this
is not a real increase in the thermal energy because the newly added
material, which was previously part of the ISM, simply becomes a
part of the dense shell at the same temperature. The bubble thermal
energy and the shell kinetic energy show only a slight decrease in
slope after the radiative phase because they are energized by the
non-radiative termination (internal) shock(s) driven by SN ejecta.
However, there are some losses because of cooling at the contact
discontinuity (see Figs 5 and 6).

The shell kinetic energy and the bubble thermal energy in radia-
tive SB simulations at 20 Myr are roughly half of the values obtained
in adiabatic simulations (which agree with analytical predictions).
Thus, the mechanical energy retained in the SB is ≈0.34Lejt. This

should be contrasted with the energy evolution in isolated SNRs.
The isolated SNR becomes radiative much earlier (≈0.05 Myr;
when the shell thermal energy shown by the dashed line flattens
suddenly in Fig. 7) because of a weaker shock compared to a SB.
Note that the energies for isolated SNe in Fig. 7 are cumulative
sums over the time of a single SN run (see equation 14). The bubble
thermal energy and shell kinetic energy also drop for an individual
SNR after it becomes radiative, albeit not catastrophically, unlike
the shell thermal energy (see fig. 3 in T98; this is the pressure-driven
snowplough stage) because of cooling at the contact discontinuity
and adiabatic losses, and because there is no new energy source
(unlike the termination/internal shocks in a SB). The total mechan-
ical energy in the bubble and shell of a single SNR at the beginning
of the momentum conserving phase (1 Myr; when bubble pres-
sure is comparable to the ISM pressure) is 1050 erg, which is only
10 per cent of the input energy (see fig. 3 in T98). This agrees with
the energy fraction available as mechanical energy of the SNR, as
quoted by T98. After a few Myr, the SNR should be considered a
non-energetic part of the ISM, because the thermal energy of the
swept-up ISM becomes larger than the SNR’s mechanical energy,
and the bubble becomes a weak acoustic wave.

In order to compare isolated SNRs and SBs over the cluster life-
time, we must extrapolate our cumulative SN energies to 30 Myr.
This is also the relevant time-scale for preventing large-scale galac-
tic inflows from efficiently forming stars (the free-fall time-scale at
∼10 kpc for galactic haloes is a few tens of Myr). For isolated SNRs,
the shell kinetic energy + bubble thermal energy is ∼7 per cent of
the input energy by 2 Myr, and only 0.7 per cent when extrapo-
lated to 30 Myr. We should not extrapolate the shell thermal energy
because its rise at late times in Fig. 7 is due to the sweeping up
of the ISM into the shell, without an increase in the temperature.
To conclude, isolated SN feedback is much weaker (by a factor of
∼50) compared to the feedback due to SBs over the cluster lifetime.

The left panel of Fig. 8 shows the total radiated energy over the
whole computational domain as a function of time for an isolated
SNR (NOB = 1; solid line) and for SBs (dashed lines). The re-
sults are qualitatively different for SBs (even for NOB = 10) and
isolated SNe. While an isolated SN radiates almost all of the in-
put energy (1051 erg) over a Myr time-scale, SBs radiate a smaller
fraction (0.6–0.8) of their energy even up to late times. The runs
with smaller NOB and larger density become radiative at an early
time because the shock is weaker, but SB runs are qualitatively
similar. Unlike in isolated SNe, a significant fraction of the input
energy in SBs is retained in the bubble thermal energy and the shell
kinetic energy (0.2–0.4; see Fig. 7). The key reason for the differ-
ence between isolated SNe and SBs is that in SBs the non-radiative
termination/internal shocks keep the bubble overpressured but iso-
lated SNe, which do not have further energy input after the initial
explosion, simply fizzle out soon after they become radiative.

The right panel of Fig. 8 shows the fraction of energy retained (1–
the fraction radiated) as a function of time for several runs. All SB
runs, including a higher-density run (nISM = 10 cm−3) and the run
with conduction (see Section 5.4.5), show the asymptotic fraction
of energy retained to be �0.25. In contrast, an isolated SN loses
90 per cent of the input energy by a few Myr (and almost all of it
by 10 Myr; see also Fig. 7). Radiative losses for an isolated SNR at
late times (�a few Myr) are more than the energy input (1051 erg);
these come at the expense of the thermal energy of the swept-up
ISM.

We can compare our results of coincident SNe with the case of
multiple SNe distributed over space in a random manner. The two
cases presented in Fig. 7 represent two extreme limits: spatially
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Figure 8. Radiative losses as a function of time for SBs and isolated SNe. The left panel shows the total radiated energy as a function of time for an isolated
SN run (solid line) and for SB runs (dashed lines) with NOB = 10, 1000 and 105; larger NOB leads to larger radiative losses because of a higher density and
temperature in the radiative relaxation layer (see Fig. 5). The right panel shows fractional cooling losses, 1 − (energy radiated)/(input energy), as a function
of time; the total energy input at some time equals the number of SNe put in by that time multiplied by 1051 erg (the spikes for NOB = 10 and 103 in the right
panel reflect the discreteness of SN energy input within SBs). All SB runs, including those with conduction and with higher density, show that only a factor
of 0.6–0.8 is radiated by 20 Myr (and a factor of 0.2–0.4 is retained as mechanical energy). In contrast, the isolated SN run (solid line) loses 80 per cent of its
energy by 3 Myr, after which it is no longer overpressured with respect to the ISM.

coincident SNe in a SB and totally independent SNe. For spatially
distributed SNe, we expect results somewhere in between these two
extremes. Vasiliev et al. (2014) have compared the total explosion
energy that remains as the thermal energy of hot gas in the case of
spatially distributed SN explosions. They have studied the effects of
coherent explosions, as defined by Roy et al. (2013), which implies
that SNe overlap before they become radiative. If the shell radius
of a SNR when it becomes radiative is Ra and the corresponding
time-scale is ta, then for a SN rate density of νSN, the coherency
condition is that (4π/3) R3

a ta νSN > 1. Vasiliev et al. (2014) have
compared the cases in which explosions occur coherently with those
in which they do not. They find that a fraction ∼0.3 of the explosion
energy is retained in the gas with temperature T ≥ 3 × 106 K if
the explosions occur coherently, and the fraction is 0.02–0.2 if the
explosions are incoherent. Our results here for SBs correspond to
the coherent case, because tSN is always shorter than the cooling
time of the gas in the bubble. Therefore, our result of a fraction
∼0.35 being retained as the mechanical energy of SBs is consistent
with Vasiliev et al. (2014).

5.4.5 Effects of magnetic fields and thermal conduction

Because the ISM is magnetized, we try to assess the qualitative ef-
fects of magnetic fields using an idealized high-resolution (16 384
grid points) MHD simulation. We assume an azimuthal (φ) compo-
nent of the magnetic field so that only magnetic pressure forces (and
no tension) are present. We choose a plasma β (ratio of gas pressure
and magnetic pressure) of unity in the ISM, and our SN ejecta are
also magnetized with the same value of β. Because the ejecta are
dominated by kinetic energy and the bubble is expanding, we do not
expect magnetic fields to affect the bubble and the ejecta structure.

However, the radiative shell is compressed because of cooling, and
as a result of flux-freezing, magnetic pressure is expected to build
up in the dense shell. This is indeed what we find in our simulations
with magnetic fields. The left panel of Fig. 9 shows the zoomed-in
density and temperature structure of the radiative outer shock with
and without magnetic fields. The key difference between the hydro
and MHD runs is that the dense shell in MHD has a lower density
and is much broader. This is because magnetic pressure prevents
the collapse of the dense shell.3 The dense shell (194 < r < 198 pc
in the left panel of Fig. 9) is magnetically dominated with plasma
β ∼ 0.01. The MHD run has two contact discontinuities; one at the
boundary of the hot bubble (r ≈ 191.5 pc) and another at r ≈ 194 pc
left (right) of which the plasma is dominated by thermal (magnetic)
pressure.

Another important physical effect, especially in the hot bubble, is
thermal conduction. We carry out a 1024 resolution hydro run with
thermal conduction to study its qualitative influence. However, it is
difficult to determine the ISM conductivity in a magnetized (pre-
sumably turbulent) plasma. Therefore, we use the Spitzer value with
a suppression factor of 0.2 (see equation 11 in Sharma et al. 2010).
Moreover, because the bubble can become very hot such that the
diffusion approximation breaks down, we limit the conductivity to
an estimate of the free streaming diffusivity (chosen to be 2.6 vtr,
where vt is the local isothermal sound speed and r is the radius).
Thermal conduction is operator split, and implemented fully implic-
itly through a tridiagonal solver using the code’s hydro time-step.

3 The photon mean free path for a dense shell can become smaller than the
shell thickness. When this occurs, the assumption of optically thin cooling
breaks down, and the shell can become thicker because of radiation pressure.
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Figure 9. Normalized density and temperature profiles to show the effects of magnetic fields and thermal conduction on SB evolution with cooling. The left
panel shows the profiles zoomed in on the outer shock for MHD (initial β = 1) and hydro runs with 16 384 grid points. The magnetic field is enhanced in
the shell and the shell is thicker. The right panel shows the profiles for radiative hydro runs with and without thermal conduction (1024 grid points); unlike
in the left panel, we show the whole computational domain and the dense shell is barely visible. Thermal conduction evaporates mass from the dense shell
and spreads it into the bubble, thereby making it denser and less hot compared to the hydro run. The temperature structure in the internal shocks (within the
superwind) is also smoothed out by thermal conduction.

Conduction is expected to evaporate matter from the dense shell
and to deposit it into a conductive layer in the bubble; in the steady
state, the rate of conductive transport of energy from the bubble to
the shell is balanced by the rate of heat advection from the shell to
the bubble (Weaver et al. 1977). The outer and termination shock lo-
cations are not affected much by conduction. However, the density
and temperature structure in the hot bubble are affected signifi-
cantly. Without conduction, the bubble is very hot (∼109 K), but
with conduction the temperature drops into the X-ray range (107–
108 K) and density is higher. This can enhance the X-ray emissivity
of SBs; a rough estimate of hard X-ray luminosity (

∫
4πr2n2�dr

over the hot bubble) at 10 Myr from the right panel of Fig. 9 is a
few 1038 erg s−1 (which is ∼0.003 the energy put in by SNe by that
time). Because galactic superwinds are copious X-ray emitters, we
expect thermal conduction to be a very important ingredient for ex-
plaining observations. Fig. 6 confirms that the fraction of radiative
losses from the bubble is much higher with conduction than without
conduction because of a higher density. However, the right panel of
Fig. 8 shows that the total fractional radiative losses with thermal
conduction are only slightly higher compared to the non-conductive
NOB = 105 SB run.

We emphasize that our treatment of magnetic fields and thermal
conduction is extremely simplified. Realistic calculations must be
done in three dimensions with tangled magnetic fields and with
anisotropic thermal conduction along fields lines. However, we ex-
pect the qualitative effects of realistic magnetic fields and thermal
conduction to have some semblance with our simplified treatment.

6 C O N C L U S I O N S A N D A S T RO P H Y S I C A L
I M P L I C AT I O N S

We have obtained several important results in this paper, both on
the numerical implementation of SN/SB feedback and on the differ-
ences between isolated SNe and SBs. SBs are a result of spatially
and temporally correlated SNe. Because most massive stars are

expected to be born in star clusters a few tens of pc in extent (e.g.
Larsen 1999), pre-SN stellar winds and the first SNe are expected to
carve out a low-density bubble, which by a fraction of Myr encloses
the whole star cluster (see Fig. 5). Therefore, subsequent SNe occur
in the low-density bubble and we are in the SB regime of coherent
SNe (see Roy et al. 2013; Vasiliev et al. 2014).

Magnificent galactic outflows, such as M82, are powered by mul-
tiple superstar clusters and the problem of understanding coalesc-
ing SBs is important. Star clusters more massive than 105 M� (and
hence with >1000 SNe) are rare (e.g. Portegies Zwart et al. 2010);
therefore, the SBs in M82 and in our NOB = 105 SB model should
be considered as giant bubbles driven by hundreds of overlapping
SBs due to individual star clusters. Indeed, hundreds of star clusters
have been observed in the central few 100 pc of M82 (O’Connell
et al. 1995). We note that vertical stratification is important for the
acceleration and assimilation of the metal-rich bubble into the halo.
In this paper, we consider the idealized smaller-scale problem of
the behaviour of isolated SNRs and multiple coincident SNe within
a SB in a uniform ISM. Some of our most important results are as
follows.

(i) Our most realistic KE models (and other models in which
SN energy is overwritten), in which the SN energy in kinetic form
is overwritten in a small volume, give correct results only if the
energy is deposited within a small length-scale (see Section 4.1.1);
otherwise, energy is overwritten without coupling to the ISM. This
is true even without considering any radiative losses.

(ii) With cooling, if feedback energy is deposited within a length-
scale rej larger than the critical values mentioned in Section 4.2, such
that the input energy is radiated before it is thermalized, a hot bubble
is not formed in the widely used LD and TEa models. Thus, the SN
fizzles out at early stages as a result of artificially large cooling
losses.

(iii) With insufficient resolution and large ISM densities, the bub-
ble fizzles out completely in the LD and TEa models (in which
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energy is added to the ISM; see Section 2) and cannot have any ef-
fect on the ISM (see Fig. 4). As also pointed out previously (e.g. by
Creasey et al. 2011; Dalla Vecchia & Schaye 2012), early galactic-
scale SN feedback simulations failed mainly because of this. How-
ever, for a realistic SN (as mimicked by our KE model), a bubble
is formed and subsequent SNe, occurring within the non-radiative
bubble, power the radiative outer shock. Another, probably more se-
rious, problem faced by numerical simulations is that the SN energy
is not typically put in coherently over a small volume in space and
within a short interval. Feedback due to SNe in young star clusters
is expected to be coherent and much more effective than a similar
number of isolated SNe (see Figs 7 and 8). For correlated SNe,
isolated SN bubbles overlap to form a SB that is powered by the
non-radiative termination/internal shocks, long after the outer shock
becomes radiative. In contrast, an isolated SN becomes powerless
just after (∼1 Myr) the outer shock becomes radiative.

(iv) A smooth CC85 wind within the SB is possible only if
the number of SNe (NOB) over the cluster lifetime is large (i.e.
NOB � 104). Only in these cases, individual SNe exploding inside
the SB are able to thermalize within the termination shock. This
result has implications for modelling the X-ray output, for exam-
ple, in individual bubbles blown by star clusters and in the inner
regions of galactic outflows, because the CC85 wind structure is
often assumed where it may not be valid.

(v) Most of the radiative losses come from the unresolved ra-
diative relaxation layer at the outer shock. The fractional radiative
losses from the interior region, concentrated at the contact dis-
continuity between the shocked ISM and the shocked ejecta, vary
between ∼0.001 and 0.3, with larger losses occurring at later times.
While these radiative layers are unresolved even in our highest-
resolution simulations, the volume-integrated radiative losses in
them converge even for a modest resolution.

(vi) Compared to isolated SNe, SBs can retain a larger fraction
of the initial energy of explosions as thermal/kinetic energy of the
gas. Isolated SNe are mixed with the ISM soon after they become
radiative; by a few Myr, they are incapable of affecting the ISM
at all. While most energy is radiated away (close to 100 per cent,
and not ∼90 per cent, as is often assumed) for isolated SNe over
10 Myr, a SB can retain a fraction ∼0.35 (for n = 1 cm−3) as the
bubble thermal energy + the shell kinetic energy. This fraction
is only weakly affected by a higher ISM density and by thermal
conduction (see the right panel of Fig. 8). Thus, SBs are expected
to significantly affect even a dense ISM. Substantial radiative losses
can partly explain the smaller observed bubble sizes compared to
what is expected by modelling the stellar populations (see Oey 2009,
for a summary).

(vii) The temperature profiles of SBs strongly depend on thermal
conduction, whose inclusion can decrease (increase) the tempera-
ture (density) and thereby enhance the X-ray luminosity. Thermal
conduction (and other sources of mass loading of the hot bubble,
such as turbulent mixing) plays an important role in explaining the
X-ray emission from galactic SBs because very little gas is expected
to be in the X-ray emitting regime (106–108 K) in its absence (see
the right panel of Fig. 9).

Our simple one-dimensional simulations show that isolated
SNRs, because of large radiative losses, are much weaker feedback
agents compared to SBs driven by coherently overlapping SNe.
However, detailed three-dimensional calculations, particularly with
a realistic distribution of stars in a cluster, and magnetic fields and
thermal conduction, are required in order to make quantitative com-
parisons with observations. This will be done in future.
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