Wiley-SID Series in Display Technology

Series Editors:
Anthony C. Lowe and Ian Sage

Display Systems: Design and Applications
Lindsay W. MacDonald and Anthony C. Lowe (Eds.)
Electronic Display Measurement: Concepts, Techniques, and Instrumentation
Peter A. Keller
Reflective Liquid Crystal Displays
Shin-Tson Wu and Deng-Ke Yang
Colour Engineering: Achieving Device Independent Colour
Phil Green and Lindsay MacDonald (Eds.)
Display Interfaces: Fundamentals and Standards
Robert L. Myers
Digital Image Display: Algorithms and Implementation
Gheorghe Berbecel
Flexible Flat Panel Displays
Gregory Crawford (Ed.)
Polarization Engineering for LCD Projection
Michael G. Robinson, Jianmin Chen, and Gary D. Sharp
Fundamentals of Liquid Crystal Devices
Deng-Ke Yang and Shin-Tson Wu
Introduction to Microdisplays
David Armitage, Ian Underwood, and Shin-Tson Wu
Mobile Displays: Technology and Applications
Achintya K. Bhowmik, Zili Li, and Philip Bos (Eds.)
Photoalignment of Liquid Crystalline Materials: Physics and Applications
Vladimir G. Chigrinov, Vladimir M. Kozenkov and Hoi-Sing Kwok
Projection Displays, Second Edition
Matthew S. Brennesholtz and Edward H. Stupp
Introduction to Flat Panel Displays
Jiun-Haw Lee, David N. Liu and Shin-Tson Wu
LCD Backlights
Shunsuke Kobayashi, Shigeo Mikoshiba and Sungkyoo Lim (Eds.)
Ernst Lueeder
Transreflective Liquid Crystal Displays
Zhbing Ge and Shin-Tson Wu
Liquid Crystal Displays: Fundamental Physics and Technology
Robert H. Chen
3D Displays
Ernst Lueeder
OLED Display Fundamentals and Applications
Takatoshi Tsujimura
Illumination, Colour and Imaging: Evaluation and Optimization of Visual Displays
Tran Quoc Khanh and Peter Bodrogi
Interactive Displays: Natural Human-Interface Technologies
Achintya K. Bhowmik (Ed.)
Modeling and Optimization of LCD Optical Performance
Dmitry A. Yakovlev, Vladimir G. Chigrinov, Hoi-Sing Kwok
Addressing Techniques of Liquid Crystal Displays
Temkar N. Ruckmongathan
ADDRESSING TECHNIQUES
OF LIQUID CRYSTAL
DISPLAYS

Temkar N. Ruckmongathan
Raman Research Institute, Bangalore, India

WILEY
Contents

Series Editor’s Foreword xiii
Acknowledgements xv

1 Introduction 1

2 Liquid Crystal Displays 3
 2.1 Matrix Displays 3
 2.2 Display Fonts and Formats 5
 2.3 Liquid Crystals 8
 2.4 Physical Properties of Liquid Crystals 9
 2.5 Basics of Electro-optic Effects with Liquid Crystals 10
 2.6 Twisted Nematic Effect 11
 2.7 Super Twisted Nematic (STN)-LCD 13
 2.8 STN-LCD with a 270° Twist (STN-270) 13
 2.9 STN-LCD with a 180° Twist (STN-180) 14
 2.10 In-plane Switching 14
 2.11 Ferroelectric LCD (FLCD) 14
 2.12 Summary 15

3 Review of Addressing Techniques 17
 3.1 Addressing Techniques 17
 3.2 Matrix Addressing 18
 3.3 Nonlinear Characteristics 19
 3.4 Cross-Talk in a Matrix LCD 21
 3.5 Driving Matrix Displays 22
 3.6 Bi-phase Addressing 23
 3.7 Line-by-Line Addressing (LLA) 25
 3.8 Half-Select Technique 27
 3.9 Two-Third-Select Technique (TTST) 29
 3.10 Selection Ratio (SR) and the Maximum Selection Ratio 30
 3.11 Limitations of Matrix Addressing 37
 3.12 Principle of Restricted Pattern Addressing 38
 3.13 Pulse Coincidence Technique (PCT) 40
 3.14 Pseudo Random Technique (PRT) 42
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.15</td>
<td>Restricted Pattern Addressing Technique (RPAT)</td>
<td>43</td>
</tr>
<tr>
<td>3.16</td>
<td>Addressing Technique for Dial Type Displays</td>
<td>47</td>
</tr>
<tr>
<td>3.17</td>
<td>Frame Frequency</td>
<td>47</td>
</tr>
<tr>
<td>3.18</td>
<td>Large Area Display</td>
<td>48</td>
</tr>
<tr>
<td>3.19</td>
<td>Dielectric Relaxation</td>
<td>48</td>
</tr>
<tr>
<td>3.20</td>
<td>Supply Voltage of Drivers</td>
<td>49</td>
</tr>
<tr>
<td>3.21</td>
<td>Nonuniformity Due to Resistance Mismatches</td>
<td>49</td>
</tr>
<tr>
<td>3.22</td>
<td>Need for Multiline Addressing Techniques</td>
<td>51</td>
</tr>
<tr>
<td>4</td>
<td>Binary Addressing</td>
<td>53</td>
</tr>
<tr>
<td>4.1</td>
<td>Principle</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>Binary Addressing Technique (BAT)</td>
<td>55</td>
</tr>
<tr>
<td>4.3</td>
<td>Analysis of the BAT</td>
<td>58</td>
</tr>
<tr>
<td>4.4</td>
<td>Practical Aspects of the BAT</td>
<td>66</td>
</tr>
<tr>
<td>4.5</td>
<td>Drivers for Driving the LCD with the BAT</td>
<td>69</td>
</tr>
<tr>
<td>5</td>
<td>Orthogonal Functions and Matrix Addressing</td>
<td>71</td>
</tr>
<tr>
<td>5.1</td>
<td>Orthogonal Functions</td>
<td>71</td>
</tr>
<tr>
<td>5.2</td>
<td>Multiplexing</td>
<td>78</td>
</tr>
<tr>
<td>5.3</td>
<td>Matrix Addressing</td>
<td>80</td>
</tr>
<tr>
<td>5.4</td>
<td>Line-by-Line Addressing</td>
<td>81</td>
</tr>
<tr>
<td>5.5</td>
<td>Multiline Addressing</td>
<td>82</td>
</tr>
<tr>
<td>5.6</td>
<td>Discussion</td>
<td>85</td>
</tr>
<tr>
<td>6</td>
<td>Active Addressing</td>
<td>87</td>
</tr>
<tr>
<td>6.1</td>
<td>Principle</td>
<td>87</td>
</tr>
<tr>
<td>6.2</td>
<td>Active Addressing Technique (AAT)</td>
<td>87</td>
</tr>
<tr>
<td>6.3</td>
<td>Summary</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td>Hybrid Addressing</td>
<td>95</td>
</tr>
<tr>
<td>7.1</td>
<td>Principle</td>
<td>95</td>
</tr>
<tr>
<td>7.2</td>
<td>Hybrid Addressing Technique (HAT)</td>
<td>96</td>
</tr>
<tr>
<td>7.3</td>
<td>Analysis of the HAT</td>
<td>98</td>
</tr>
<tr>
<td>7.4</td>
<td>Drivers of the Hybrid Addressing Technique</td>
<td>103</td>
</tr>
<tr>
<td>7.5</td>
<td>Discussion</td>
<td>103</td>
</tr>
<tr>
<td>8</td>
<td>Improved Hybrid Addressing</td>
<td>105</td>
</tr>
<tr>
<td>8.1</td>
<td>Principle</td>
<td>105</td>
</tr>
<tr>
<td>8.2</td>
<td>Improved Hybrid Addressing Technique (IHAT)</td>
<td>106</td>
</tr>
<tr>
<td>8.3</td>
<td>Analysis of IHAT</td>
<td>108</td>
</tr>
<tr>
<td>8.4</td>
<td>Discussion</td>
<td>115</td>
</tr>
<tr>
<td>9</td>
<td>Improved Hybrid Addressing Special Case 3</td>
<td>119</td>
</tr>
<tr>
<td>9.1</td>
<td>Principle</td>
<td>119</td>
</tr>
<tr>
<td>9.2</td>
<td>Analysis</td>
<td>120</td>
</tr>
<tr>
<td>9.3</td>
<td>Summary</td>
<td>126</td>
</tr>
</tbody>
</table>
3.15 Restricted Pattern Addressing Technique (RPAT) 43
3.16 Addressing Technique for Dial Type Displays 47
3.17 Frame Frequency 47
3.18 Large Area Display 48
3.19 Dielectric Relaxation 48
3.20 Supply Voltage of Drivers 49
3.21 Nonuniformity Due to Resistance Mismatches 49
3.22 Need for Multiline Addressing Techniques 51

4 Binary Addressing 53
4.1 Principle 53
4.2 Binary Addressing Technique (BAT) 55
4.3 Analysis of the BAT 58
4.4 Practical Aspects of the BAT 66
4.5 Drivers for Driving the LCD with the BAT 69

5 Orthogonal Functions and Matrix Addressing 71
5.1 Orthogonal Functions 71
5.2 Multiplexing 78
5.3 Matrix Addressing 80
5.4 Line-by-Line Addressing 81
5.5 Multiline Addressing 82
5.6 Discussion 85

6 Active Addressing 87
6.1 Principle 87
6.2 Active Addressing Technique (AAT) 87
6.3 Summary 93

7 Hybrid Addressing 95
7.1 Principle 95
7.2 Hybrid Addressing Technique (HAT) 96
7.3 Analysis of the HAT 98
7.4 Drivers of the Hybrid Addressing Technique 103
7.5 Discussion 103

8 Improved Hybrid Addressing 105
8.1 Principle 105
8.2 Improved Hybrid Addressing Technique (IHAT) 106
8.3 Analysis of IHAT 108
8.4 Discussion 115

9 Improved Hybrid Addressing Special Case 3 119
9.1 Principle 119
9.2 Analysis 120
9.3 Summary 126

10 Improved Hybrid Addressing Special Case 4 127
10.1 Principle 127
10.2 Analysis 127
10.3 Summary 136

11 Sequency Addressing 137
11.1 Principle 137
11.2 Technique 137
11.3 Discussion 141

12 Restricted Pattern Addressing 145
12.1 Principle 145
12.2 Technique 145
12.3 Analysis 149
12.4 Summary 152

13 Review of Methods to Display Greyscales 153
13.1 Greyscales in Liquid Crystal Displays 153
13.2 Basics of Greyscale 153
13.3 Frame Modulation 155
13.4 Pulse Width Modulation 157
13.5 Row Pulse Height Modulation 157
13.6 Data Pulse Height Modulation 159
13.7 Summary 161

14 Amplitude Modulation 163
14.1 Principle 163
14.2 Amplitude Modulation – Split Time Interval 164
14.3 Amplitude Modulation in Multiline Addressing 170
14.4 Pulse Height Modulation 172
14.5 Discussion 173

15 Successive Approximation 175
15.1 Principle 175
15.2 Technique 177
15.3 Analysis 179
15.4 Discussion 181

16 Cross-Pair Method 183
16.1 Principle 183
16.2 Technique 186
16.3 Analysis 187
16.4 Cross Pairing with Four Pairs of Data Voltages 190
16.5 Discussion 196
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Wavelet-Based Addressing</td>
<td>197</td>
</tr>
<tr>
<td>17.1</td>
<td>Principle</td>
<td>197</td>
</tr>
<tr>
<td>17.2</td>
<td>Line-by-line Addressing with Wavelets</td>
<td>201</td>
</tr>
<tr>
<td>17.3</td>
<td>Analysis</td>
<td>207</td>
</tr>
<tr>
<td>17.4</td>
<td>Principle of Multiline Addressing with Wavelets</td>
<td>210</td>
</tr>
<tr>
<td>17.5</td>
<td>Technique</td>
<td>215</td>
</tr>
<tr>
<td>18</td>
<td>Bit Slice Addressing</td>
<td>223</td>
</tr>
<tr>
<td>18.1</td>
<td>Principle</td>
<td>224</td>
</tr>
<tr>
<td>18.2</td>
<td>Bit Slice Addressing Technique</td>
<td>229</td>
</tr>
<tr>
<td>18.3</td>
<td>Bit Slice Addressing with a Light Source</td>
<td>231</td>
</tr>
<tr>
<td>18.4</td>
<td>Bit Slice Addressing with Multiple Light Sources</td>
<td>232</td>
</tr>
<tr>
<td>18.5</td>
<td>Merits of Bit Slice Addressing</td>
<td>236</td>
</tr>
<tr>
<td>18.6</td>
<td>Demerits of Bit Slice Addressing</td>
<td>238</td>
</tr>
<tr>
<td>18.7</td>
<td>Discussion</td>
<td>239</td>
</tr>
<tr>
<td>19</td>
<td>Multibit Slice Addressing</td>
<td>241</td>
</tr>
<tr>
<td>19.1</td>
<td>Principle</td>
<td>241</td>
</tr>
<tr>
<td>19.2</td>
<td>Dual Bit Addressing of the LCD</td>
<td>242</td>
</tr>
<tr>
<td>19.3</td>
<td>Nibble Slice Addressing</td>
<td>246</td>
</tr>
<tr>
<td>19.4</td>
<td>Summary</td>
<td>248</td>
</tr>
<tr>
<td>20</td>
<td>Micro Pulse Width Modulation</td>
<td>249</td>
</tr>
<tr>
<td>20.1</td>
<td>Principle</td>
<td>249</td>
</tr>
<tr>
<td>20.2</td>
<td>Micro Pulse Width Modulation</td>
<td>250</td>
</tr>
<tr>
<td>20.3</td>
<td>Results</td>
<td>261</td>
</tr>
<tr>
<td>20.4</td>
<td>Summary</td>
<td>266</td>
</tr>
<tr>
<td>21</td>
<td>Comparison of Addressing Techniques</td>
<td>267</td>
</tr>
<tr>
<td>21.1</td>
<td>Line-by-Line Addressing</td>
<td>267</td>
</tr>
<tr>
<td>21.2</td>
<td>Multiline Addressing</td>
<td>268</td>
</tr>
<tr>
<td>21.3</td>
<td>Methods to Display Greyscales</td>
<td>271</td>
</tr>
<tr>
<td>21.4</td>
<td>Summary</td>
<td>272</td>
</tr>
<tr>
<td>22</td>
<td>Low Power Dissipation</td>
<td>273</td>
</tr>
<tr>
<td>22.1</td>
<td>Background</td>
<td>273</td>
</tr>
<tr>
<td>22.2</td>
<td>Principle</td>
<td>274</td>
</tr>
<tr>
<td>22.3</td>
<td>Multistep Waveform for Low Power</td>
<td>275</td>
</tr>
<tr>
<td>22.4</td>
<td>Static Drive with a Multistep Waveform</td>
<td>278</td>
</tr>
<tr>
<td>22.5</td>
<td>Power Dissipation in a Multiplexed Matrix LCD</td>
<td>278</td>
</tr>
<tr>
<td>22.6</td>
<td>Waveforms to Reduce Power Dissipation</td>
<td>281</td>
</tr>
<tr>
<td>22.7</td>
<td>Low Power Dissipation in the Successive Approximation Method</td>
<td>283</td>
</tr>
<tr>
<td>22.8</td>
<td>Summary</td>
<td>290</td>
</tr>
<tr>
<td>23</td>
<td>Low Power Consumption of Backlight</td>
<td>291</td>
</tr>
<tr>
<td>23.1</td>
<td>Principle of Backlight Switching</td>
<td>291</td>
</tr>
<tr>
<td>23.2</td>
<td>Reduction of Power with White Backlight and Monochrome Images</td>
<td>292</td>
</tr>
</tbody>
</table>
Addressing Techniques of
LIQUID CRYSTAL DISPLAYS

TEMKAR N. RUCKMONGATHAN
Raman Research Institute, Bangalore, India

An image is generated by the simultaneous application of scanning and data waveforms
to row and column electrodes in flat panel displays. This book is a comprehensive guide
to addressing techniques that are based on the nonlinear response of pixels in LCDs.
Addressing techniques are introduced with a strong theoretical basis and supported
by detailed analysis and examples, as well as information given on drivers to enable the
practical implementation of the techniques discussed in the book.

Key features:
• Provides an introduction to liquid crystals and some electro-optic effects
 based on the properties of liquid crystals.
• Includes recent work on Bit Slice Addressing, Multibit Slice Addressing and
 Micro Pulse Width Modulation to drive displays with short response times.
• Compares the various addressing techniques on offer, enabling designers to
 make an informed choice of an addressing technique for a specific end use.
• Presents a range of addressing techniques that are based on line-by-line
 addressing, multiline addressing and methods to display greyscales.
• Features an in-depth analysis of hybrid addressing techniques and addressing
 techniques based on wavelets.
• Covers the latest research on backlight switching to reduce power
 consumption of an LCD without any compromise on image quality, as well as
 recent developments on the cross-pair method to display greyscales.

WILEY SID Series in Display Technology
Series Editors: Anthony C. Lowe, The Lambert Consultancy, Braishfield, UK
Ian Sage, Albelian Services, Malvern, UK

The Society for Information Display (SID) is an international society which has the aim of encouraging
the development of all aspects of the field of information display. Complementary to the aims of the
society, the Wiley–SID series is intended to explain the latest developments in information display
technology at a professional level. The broad scope of the series addresses all facets of information
displays from technical aspects through systems and prototypes to standards and ergonomics.

http://www.wiley.com/go/ruckmongathan_lcds