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Work fluctuations for a Brownian particle driven by a correlated external random force
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We have considered the underdamped motion of a Brownian particle in the presence of a correlated external
random force. The force is modeled by an Ornstein-Uhlenbeck process. We investigate the fluctuations of the
work done by the external force on the Brownian particle in a given time interval in the steady state. We calculate
the large deviation functions as well as the complete asymptotic form of the probability density function of the
performed work. We also discuss the symmetry properties of the large deviation functions for this system. Finally
we perform numerical simulations and they are in a very good agreement with the analytic results.
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I. INTRODUCTION

In recent times the fluctuation theorem (FT) has generated
a great deal of excitement in the field of nonequilibrium
statistical mechanics, as it allows thermodynamic concepts to
be applied to also small systems, as well as to systems that are
arbitrarily far from equilibrium. The FT expresses universal
properties of the probability density function (PDF) p(�) for
functional �[x(τ )], such as work, heat, power flux, or entropy
production, evaluated along the fluctuating trajectories x(τ )
taken from ensembles with well-specified initial distributions.
There have been a number of theoretical [2–28] and experi-
mental [29–39] studies to elucidate different aspects of FT. We
refer to the recent review [1] which contains an extensive list
of references both from the theoretical and the experimental
aspects.

The FT can be broadly classified into two groups, namely,
the transient FT (TFT) and the steady-state FT (SSFT). The
TFT pioneered by Evans and Searles [2] applies to relaxation
towards a steady state but at finite time. In this work, they
obtain the symmetries of the PDF of “entropy production”
at the transient. On the other hand the SSFT quantifies
the “entropy production” �τ , in a time duration τ , in the
nonequilibrium steady state as

p(�τ = ωτ )

p(�τ = −ωτ )
∼ eτω. (1)

This was first found by Evans et al. in simulations of two-
dimensional sheared fluids [3] and then proven by Gallavotti
and Cohen [4,5] using assumptions about chaotic dynamics.
Kurchan [6] and Lebowitz and Spohn [7] have established this
theorem for stochastic diffusive dynamics. In all these early
works, the total entropy production has been identified with
the entropy production in the medium. However, it was shown
in [8] that the SSFT holds even for finite times in the steady
state if one incorporates the entropy production of the system
in the total entropy production. Though the FT for total entropy
production has been found to be robust under rather general
conditions, it is not so universal for the observables such as
work, heat, power, etc. [9–12,14–17,20–26]. While the FT,
as given in Eq. (1), deals only with the symmetry properties
of the probability distributions, it does not offer a detailed
description of the full probability distributions. Therefore,
one is also interested in going beyond FT and characterizing
the stochastic properties of these observables in detail. The

reason that these observables are mostly accompanied by
non-Gaussian fluctuations rather than the Gaussian one makes
the computation of these distributions highly nontrivial and
only a few cases are available where one can do so [22–26].
The long-time behavior of the PDF is often expressed in
terms of the the so-called large deviation function (LDF) [41],
and in the recent years, many efforts have been devoted to
the computation of LDFs in nontrivial models [18,19]. In
this paper, we study such a model system, which can be
experimentally realizable, and the work fluctuations can be
investigated in great detail.

Another important feature of this paper is to study the
effects of stochastic driving in work statistics. There have been
several works to understand the effect of deterministic driving,
such as constant dragging, linear and nonlinear time depen-
dent forcing, sinusoidal oscillations, nonconserving driving,
anisotropic shear flow, applying an electric field or a magnetic
field, etc., on work statistics. Surprisingly, only a few attempts
have been made on the issue of “stochastic driving” [22,23,26].
Stochastic driving is an issue which raises interest both
conceptually and on practical purposes. The conceptual barrier
lies on the very nature of the stochastic driving: What kinds
of drivings are feasible? Is the stochasticity reversible or
irreversible by nature? How much entropy production is then
associated with the driving? Second, absolute deterministic
driving is a hypothetical concept in an experimental setup.
Any kind of deterministic driving will be always accompanied
by minute fluctuations and thus it is very important to take
them into account [40].

In this article, we consider an underdamped Brownian
particle driven by a correlated random external field. We study
the PDF of the work done by the external random field in
a given duration. The exact LDF associated with the PDF is
found to have a nontrivial form and a nontrivial dependence
on the driving parameter. The SSFT corresponding to the work
fluctuations is found to be held in a restrictive parameter space
of the model, confirming the fact that the FT for work and
heat is nongeneric although the SSFT total entropy production
remains unaffected.

The paper is organized as follows. In the following
section, we define the model. In Sec. III we compute the
moment-generating function (MGF) of work Wτ performed
in a given time τ in steady state, which has the form
〈e−λWτ 〉 ∼ g(λ)eτμ(λ). In Sec. IV, we invert the MGF to obtain
the asymptotic form (for large τ ) of the PDF of the work.
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We discuss the symmetry properties of the large deviation
functions and its connection with the FT in Sec. V. Finally we
conclude in Sec. VI. Some details of the calculation has been
relegated to the Appendix.

II. MODEL

Consider a Brownian particle of mass m, in the presence of
an external fluctuating time-dependent field, at a temperature
T . The velocity v(t) of the particle evolves according to the
underdamped Langevin equation, given by

m
dv

dt
+ γ v = f (t) + η1, (2)

where γ is the friction coefficient. The viscous relaxation
time scale for the particle is τγ = m/γ . The thermal noise
η1 is taken to be a Gaussian white noise with mean zero
and correlation〈η1(t)η1(s)〉 = 2Dδ(t − s), where diffusion
constant D = γ kBT and kB is the Boltzmann constant.
The external stochastic field f is modeled by an Ornstein-
Uhlenbeck process,

df

dt
= − f

τ0
+ η2, (3)

where η2 is another Gaussian white noise with mean zero and
correlation 〈η2(t)η2(s)〉 = 2Aδ(t − s). This system reaches a
steady state and in the steady state the external force has zero
mean and covariance 〈f (t)f (s)〉 = Aτ0 exp(−|t − s|/τ0).

The heat current flowing from the bath to the particle is the
force exerted by the bath times the velocity of the particle [42].
Therefore, in a given time τ , the total amount of heat flow (in
units of KBT ) is given by

Qτ = 1

kBT

∫ τ

0
(−γ v + η1)v(t)dt. (4)

On the other hand, the change in the internal energy of the
particle in this finite interval τ is given by

	U (τ ) = 1

kBT

[
1

2
mv2(τ ) − 1

2
mv2(0)

]
. (5)

Then the first law of the thermodynamics (conservation of
energy) gives 	U (τ ) = Wτ + Qτ , where Wτ is the work done
on the particle by the external force, which is given by

Wτ = 1

kBT

∫ τ

0
f (t)v(t)dt. (6)

This work is a stochastic quantity and our goal is to compute
its PDF P (Wτ ).

It will prove convenient to introduce the following two
dimensionless parameters:

θ = τ 2
0 A

D
and δ = τ0

τγ

. (7)

Effects of stochastic modulation on the work statistics will be
quantified in term of these two parameters.

III. MOMENT-GENERATING FUNCTION

We begin by writing Eqs. (2) and (3) in the matrix form

dU

dt
= −AU + Bη, (8)

where U = (v,f )T and η = (η1,η2)T are column vectors, and
A and B are 2×2 matrices given by

A =
(

1/τγ −1/m

0 1/τ0

)
, B =

(
1/m 0

0 1

)
. (9)

To compute the PDF of Wτ , we first consider its moment-
generating function, constrained to fixed initial and final
configurations U0 and U , respectively:

Z(λ,U,τ |U0) = 〈e−λWτ δ[U − U (τ )]〉U0 , (10)

where the averaging is over the histories of the thermal noises
starting from the initial condition U0 and λ is the conjugate
variable. It is easy to show that this restricted moment-
generating function satisfies the Fokker-Planck equation

∂Z

∂τ
= LλZ, (11)

with the initial condition Z(λ,U,0|U0) = δ(U − U0). The
Fokker-Planck operator is given by

Lλ = D

m2

∂2

∂v2
+ Dθ

τ 2
0

∂2

∂f 2
+ 1

τγ

∂

∂v
v + 1

τ0

∂

∂f
f

− f

m

∂

∂v
− λγ

D
f v. (12)

The solution of this equation can be formally expressed in
the eigenbases of the operator Lλ and the large-τ behavior is
dominated by the term containing the largest eigenvalue. Thus,
for large τ , one can write

Z(λ,U,τ |U0) = χ (U0,λ)
(U,λ)eτμ(λ) + · · · , (13)

where μ(λ) is the largest eigenvalue and 
(U,λ),χ (U,λ)
are the corresponding right and left eigenfunctions of the
Fokker-Planck operator Lλ. Then, Lλ
(U,λ) = μ(λ)
(U,λ)
and

∫
dUχ (U,λ)
(U,λ) = 1 from the orthonormal condition

of the eigenfunctions. Following the detailed calculation given
in the Appendix, we find that

μ(λ) = 1

2τγ

[1 − ν̄(λ)], (14a)

where

ν̄(λ) = 1

δ
[
√

1 + δ2 + 2δν(λ) − 1], (14b)

with

ν(λ) =
√

1 + 4θλ(1 − λ). (14c)

We note that μ(λ) obeys the so-called Gallavotti-Cohen
symmetry, μ(λ) = μ(1 − λ).

Computation of the largest eigenvalue and the eigen-
functions in this problem relies on the “finite-time Fourier
transform” method developed in [20,22,23] since the direct
diagonalization is a formidable task here. On the other hand,
scenarios dealing with systems having a bounded configuration
space (such as energy or particle exchanging lattice exclusion
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models, multilevel systems with finite energy states), one
deals with a finite-dimensional Markov evolution operator for
which several diagonalization methods (e.g., Ferrari method)
are available. A few such instances of computing the largest
eigenvalues for discrete finite state systems are discussed in
the literature [18,19,25,26].

That said, the moment-generating function can now be
obtained by averaging the restricted generating function
over the initial variables U0 with respect to the steady-
state distribution PSS(U0) and integrating out the the final
variables U ,

Z(λ,τ ) =
∫

dU

∫
dU0PSS(U0)Z(λ,U,τ |U0), (15)

where PSS(U0) = 
(U0,0). This yields

Z(λ,τ ) = 〈e−λWτ 〉 = g(λ)eτμ(λ) + · · · , (16)

where

g(λ) =
∫

dU

∫
dU0
(U0,0)χ (U0,λ)
(U,λ). (17)

The full forms of 
(U,λ) and χ (U0,λ) are given by Eq. (A31).
Using these we find the g(λ) as given by Eqs. (A35) and (A36)
in the Appendix.

IV. PROBABILITY DISTRIBUTION FUNCTION

The PDF P (Wτ ) is related to the moment-generating
function Z(λ,τ ) as

P (Wτ ) = 1

2πi

∫ +i∞

−i∞
Z(λ,τ )eλWτ dλ, (18)

where the integration is done in the complex λ plane. Inserting
the large-τ form of Z(λ,τ ) given by Eq. (16), we obtain

P (Wτ = wτ/τγ ) ≈ 1

2πi

∫ +i∞

−i∞
g(λ)e(τ/τγ ) fw(λ)dλ, (19)

where

fw(λ) = 1
2 [1 − ν̄(λ)] + λw. (20)

In the large-τ limit, we can use the saddle-point approximation,
in which one chooses the contour of integration along the
steepest descent path through the saddle point λ∗. The saddle
point can be obtained solving the equation

f ′
w(λ∗) = 0, (21)

or equivalently,

ν̄ ′(λ∗) = 2w. (22)

The above equation yields

θ (1 − 2λ∗) = wν(λ∗)
√

1 + δ2 + 2δν(λ∗). (23)

Since θ , δ, and ν(λ) are always positive, it is clear that
sgn(1 − 2λ∗) = sgn(w). The above equation can be simplified
to the cubic form

ν3(λ∗) + aν2(λ∗) − b = 0, (24)

where

a = θ + (1 + δ2)w2

2δw2
, (25a)

b = θ + θ2

2δw2
. (25b)

We observe that one of the roots of the cubic equation for
ν(λ∗) is real while the other two are complex. Equation (23)
suggests the root to be real, and it is given by

ν(λ∗) = −a

3
[1 − (1 + 2k + 3

√
3lk)−1/3

− (1 + 2k + 3
√

3lk)1/3], (26a)

where l = b/a3 and k = (27/4) l − 1. Note that l > 0. There-
fore, ν(λ∗) is evidently real for k > 0. On the other hand, when
k < 0, it can be simplified to the evidently real form

ν(λ∗) = − a

3
[1 − 2 cos (φ/3)], (26b)

where φ = tan−1[3
√

3l|k|/(1 + 2k)] ∈ [0,π ].
In the limit w → ±∞, from Eq. (25) we have, a →

(1 + δ2)/(2δ) and b → 0. Therefore, l → 0 and k → −1,
giving φ → π . This yields ν(λ∗) → 0. On the other hand,
for w → 0, we have a ∼ θ/(2δw2). Using this we find that
ν(λ∗) → √

1 + θ . It is also evident as Eq. (23) gives λ∗ = 1/2
for w = 0, and then, from Eq. (14c), we get ν(1/2) = √

1 + θ .
Now using Eq. (23), the saddle point λ∗(w) can be expressed

in terms of ν(λ∗). Therefore, the function fw(λ) at the saddle
point λ∗ can be expressed in terms of ν(λ∗), and is given by

hs(w) := fw(λ∗)

= 1

2

[
1

δ
+ 1 + w

]

− 1

2

[
1

δ
+ w2

θ
ν(λ∗)

]√
1 + δ2 + 2δν(λ∗). (27)

To find the region in which λ∗ lies, it is useful to express ν(λ)
in the form

ν(λ) =
√

4θ (λ+ − λ)(λ − λ−), (28)

where

λ± = 1
2 [1 ±

√
1 + θ−1]. (29)

Clearly, ν(λ) has two branch points on the real-λ line at λ±.
Moreover, it is real and positive in the (real) interval λ ∈
(λ−,λ+). Since λ+ − λ− = √

1 + θ−1, as λ → λ±, we have
ν(λ) → 2[θ (1 + θ )]1/4|λ − λ±|1/2. Therefore, from Eq. (23)
we get

w → ∓ [θ (1 + θ )]1/4

2
√

1 + δ2
|λ∗ − λ±|−1/2 as λ∗ → λ±. (30)

In other words, λ∗(w) merges to λ± as one takes the limit w →
∓∞. This also agrees with the observation that ν(λ∗) → 0 as
|w| → ∞. For any finite w the saddle point λ∗ ∈ (λ−,λ+). In
Fig. 1 we plot the saddle point λ∗ as a function of w using
Eq. (23).

Now, if g(λ) is analytic in the range λ ∈ (0,λ∗), we can
deform the contour along the path of the steepest descent
through the saddle point, and obtain P (Wτ ) using the usual
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FIG. 1. (Color online) The behavior of λ∗ is shown (solid line) as
a function of w, for a set of parameters θ = 4,δ = 2, which merges
to λ± (dashed lines) as w → ∓∞.

saddle-point method. However, more sophistication is needed
when g(λ) contains singularities. Therefore it is essential to
analyze g(λ) for possible singularities.

We first recall g(λ) from Eqs. (A35) and (A36),

g(λ) = [f1(λ,θ,δ)]−1/2[f2(λ,θ,δ)]−1/2. (31)

Following the Appendix, we also recall that f1(λ,θ,δ) does not
change its sign and always stays positive in the region [λ−,λ+].
This is not the case for f2(λ,θ,δ). While f2(λ,θ,δ) > 0 for
λ− � λ � 0, in some region in the (θ,δ) space, f2(λ+,θ,δ) <

0. Therefore, in that (θ,δ) region, f2(λ,θ,δ) must have a zero at
some intermediate λ = λ0 > 0, which gives rise to a branch-
point singularity in g(λ). Figure 2 shows parameter region
in which g(λ) possesses a singularity. The phase boundary
between the region in which g(λ) has a singularity and the
singularity-free region is given by the equation f2(λ+,θ,δ)=0.
In the limit δ → 0 we get θ → 1/3.

0 2 4 6 8 10

1

2

3

4

5

θ

δ

No Singularities

Singularities

FIG. 2. (Color online) This plot depicts the analytic properties
of g(λ). In the shaded region of the (θ,δ) plane, g(λ) possesses a
singularity, where f2(λ+,θ,δ) < 0. On the other hand, in the unshaded
region g(λ) does not have any singularities, where f2(λ+,θ,δ) > 0.
These two domains are separated by the boundary given by the
equation f2(λ+,θ,δ) = 0.
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FIG. 3. (Color online) The (red) dashed line plots the analytical
result of P (Wτ ) against the scaled variable w = Wτ/(τ/τγ ), while
the (blue) points are numerical simulation results.

A. Case of no singularities

In the singularity-free region (Fig. 2), the asymptotic PDF
of the work done is obtained using the standard saddle-point
method, which gives

P (Wτ = wτ/τγ ) ≈ g(λ∗)e
τ
τγ

hs (w)√
2π τ

τγ
f ′′

w(λ∗)
, (32)

where hs(w) is given by Eq. (27) and

f ′′
w(λ∗) = − ν̄ ′′(λ∗)

2

= 2

ν(λ∗)

θ + w2[1 + δ2 + 3δν(λ∗)]

[1 + δ2 + 2δν(λ∗)]1/2
, (33)

which is expressed in terms of w and ν(λ∗) given by
Eq. (26). Figure 3 shows a very good agreement be-
tween the analytic result given by Eq. (32) and numerical
simulations.

B. Case of a singularity

For a given value of δ and θ , the location of the branch
point λ0 is fixed between the origin and λ+. On the other
hand, the saddle point λ∗ increases monotonically along the
real-λ line from λ− to λ+ as w decreases from +∞ to −∞. For
sufficiently large w, the saddle-point lies in the interval (λ−,λ0)
and therefore the contour of integration can be deformed into
the steepest-descent path, which passes through the saddle
point, without touching λ0. However, as w decreases, the
saddle point hits the branch point at some specific value
w = w∗ given by

λ∗(w∗) = λ0. (34)

For w < w∗, the steepest-descent contour wraps around the
branch cut between λ0 and λ∗. We here present the results for
both regimes w < w∗ and w > w∗ respectively, applying the
method developed in [23].

1. w > w∗

For w > w∗, the contour is deformed through the
saddle point without touching the singularity and we

052116-4



WORK FLUCTUATIONS FOR A BROWNIAN PARTICLE . . . PHYSICAL REVIEW E 90, 052116 (2014)

obtain

P (Wτ = wτ/τγ )

≈ g(λ∗)e
τ
τγ

hs (w)√
2π τ

τγ
f ′′

w(λ∗)
R1

(√
τ

τγ

[h0(w) − hs(w)]

)
, (35)

where f ′′
w(λ∗) is given by Eq. (33) and the function R1(z) is

given by

R1(z) := z√
π

ez2/2K1/4(z2/2), (36)

with K1/4(z) being the modified Bessel function of the second
kind.

2. w < w∗

For w < w∗, the contribution comes from both the branch
point and the saddle point; i.e.,

P (Wτ ) ≈ PB(Wτ ) + PS(Wτ ), (37)

where the branch point contribution is

PB(Wτ = wτ/τγ )

≈ g̃(λ0)e
τ
τγ

h0(w)√
π τ

τγ
|f ′

w(λ0)|
R2

(√
τ

τγ

[h0(w) − hs(w)]

)
, (38)

where

h0(w) := fw(λ0) = 1

2
[1 − ν̄(λ0)] + λ0w, (39)

f ′
w(λ0) = − ν̄ ′(λ0)

2
+ w, (40)

g̃(λ0) = lim
λ→λ0

|
√

λ − λ0g(λ)|, (41)

and

R2(z) =
√

2z

π

∫ z

0

1√
u

e−2zu+u2
du. (42)

The contribution coming from the saddle point is given by

PS(Wτ = wτ/τγ )

≈ |g(λ∗)|e τ
τγ

hs (w)√
2π τ

τγ
|f ′′

w(λ∗)|
R4

(√
τ

τγ

[h0(w) − hs(w)]

)
, (43)

where the function R4(z) is given by

R4(z) =
√

π

2
zez2/2[I−1/4(z2/2) + I1/4(z2/2)]

− 4z

π
2F2(1/2,1; 3/4,5/4; z2), (44)

and I±1/4(z) are modified Bessel functions of the first kind
and 2F2(a1,a2; b1,b2; z) is the generalized hypergeometric
function. We again find a very good agreement between the
analytical results and numerical simulations; see Fig. 4.

In the following we analyze the δ = 0 case, which becomes
a special case of the problem of a single Brownian particle
connected with two heat baths at different temperatures studied
by Visco [16]. Here, we obtain the PDF.

5 0 5 10 15 20 25 3010 8
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w
τ
τ γ

7
1

τ τγ 20

FIG. 4. (Color online) The (red) dashed line plots the analytical
result for P (Wτ ), while the (blue) points are numerical simulation
results. The vertical dashed line marks the position of the singularity
w∗ = −0.801661... for the values of θ = 7,δ = 1.

C. δ = 0

We first note that g(λ) takes a simple form in the limit
δ → 0, given by

g(λ) =
√

2ν√
ν + 1 + 2λθ

√
2√

ν + 1 − 2λθ
. (45)

It is easy to show [22] that g(λ) is completely analytic for θ �
1/3, and the PDF is obtained using the saddle-point method as

P (Wτ = wτ/τγ ) ≈ g(λ∗)e
τ
τγ

hs (w)√
2π τ

τγ
f ′′

w(λ∗)
, (46)

where the second derivative of fw(λ) along the real-λ axis at
λ∗ is given by [22]

f ′′
w(λ∗) = 2(w2 + θ )3/2

√
θ (1 + θ )

(47)

and

hs(w) := fw(λ∗) = 1

2

[
1 + w −

√
w2 + θ

√
1 + 1

θ

]
. (48)

On the other hand, if θ > 1/3, it is easy to show that g(λ)
picks up a branch point singularity at λ = λ0 = 2/(1 + θ ),
which corresponds to [22]

w∗ = θ (θ − 3)

3θ − 1
. (49)

Then one needs to perform a contour integration avoiding the
branch cut as mentioned in the last section. For w > w∗, using
the same prescription [23], we find the PDF as

P (Wτ = wτ/τγ )

≈ g(λ∗)e
τ
τγ

hs (w)√
2π τ

τγ
f ′′

w(λ∗)
R1

(√
τ

τγ

[h0(w) − hs(w)]

)
, (50)

where

h0(w) := fw(λ0) = 1 − θ

1 + θ
+ 2w

1 + θ
. (51)
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For w < w∗, the contribution to the PDF comes both from the
saddle and the branch point,

P (Wτ ) ≈ PB(Wτ ) + PS(Wτ ), (52)

where the branch point contribution is

PB(Wτ = wτ/τγ )

≈ g̃(λ0)e
τ
τγ

h0(w)√
π τ

τγ
|f ′

w(λ0)|
R2

(√
τ

τγ

[h0(w) − hs(w)]

)
, (53)

where

g̃(λ0) = 3θ − 1

2θ
√

2(1 + θ )
, f ′

w(λ0) = w − w∗, (54)

and the function R2(z) is given by Eq. (42). The contribution
coming from the saddle point is given by

PS(Wτ = wτ/τγ )

≈ |g(λ∗)|e τ
τγ

hs (w)√
2π τ

τγ
|f ′′

w(λ∗)|
R4

(√
τ

τγ

[h0(w) − hs(w)]

)
, (55)

where the function R4(z) is given by Eq. (44). Figure 5
compares the analytical results with the numerical simulations.
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FIG. 5. (Color online) The (red) dashed lines plot analytical
results for P (Wτ ), while the (blue) points are numerical simulation
results, for the δ = 0 case. The vertical dashed line in (b) marks the
position of the singularity which is w∗ = 0.037... in this case.

V. LARGE DEVIATION FUNCTION
AND THE FLUCTUATION THEOREMS

The LDF, associated with the PDF, is defined as

h(w) = lim
(τ/τγ )→∞

1

(τ/τγ )
ln P (Wτ = wτ/τγ ). (56)

Due to the large deviation form of the PDF, P (Wτ = wτ/τγ ) ∼
e(τ/τγ ) h(w), the FT given by Eq. (1) is equivalent to the following
symmetry relation of the LDF:

h(w) − h(−w) = w. (57)

Now, in the parameter region where g(λ) is analytic (see
Fig. 2), the LDF is given by h(w) = hs(w). In this case, it
is clear from Eq. (27) that the above symmetry relation (57)
holds, as ν(λ∗) is an even function of w.

On the other hand, in the parameter region where g(λ) has
a singularity, the LDF is given by

h(w) =
{
hs(w) for w > w∗,
h0(w) for w < w∗. (58)

Therefore, it is evident that if w∗ < 0, the symmetry relation
(57) holds only in the specific range w∗ < w < −w∗. Other-
wise, it fails to satisfy. Nevertheless, even for w > w∗, one
still gets a linear relation h(w) − h(−w) = 2λ0w, in the range
w ∈ (−w∗,w∗).

The physical origin of the singularities can be understood by
examining the moment-generating function Z(λ) = 〈e−λ�〉 ∼
g(λ)eτμ(λ). The prefactor g(λ) is computed by integrating
out the relevant degrees of freedom at the final time and at
the initial time suitably averaging over the initial condition.
Whenever the PDF P (�) has an exponential tail, the integral∫ ∞
−∞ e−λ�P (�) d� diverges for some specific value of λ,

which manifests as a singularity in the complex λ plane. The
value of λ where the singularity arises indeed gives the decay
rate of P (�).

VI. SUMMARY

In this paper, we have discussed an underdamped Brownian
particle driven by an external correlated stochastic force,
modeled by an Ornstein-Uhlenbeck process. We have studied
the probability density function (PDF) of the work done Wτ on
the particle by the external random force, in a given time τ . The
behavior can be characterized in terms of two dimensionless
parameters, namely, (i) θ , which gives the relative strength
between the external random force and the thermal noise,
and (ii) δ, which characterizes the ratio between the viscous
relaxation time and the correlation time of the external force.
In the large-τ limit, we have obtained the moment-generating
function (MGF) in the form 〈e−λWτ 〉 ∼ g(λ)eτμ(λ). While μ(λ)
is analytic in the relevant region of λ (where the saddle point
lies), the prefactor g(λ) shows analytical as well as singular
behavior in different parts of the parameter space spanned
by (θ,δ). We have obtained the PDF in both analytic and
nonanalytic regions of (θ,δ) space, by carefully inverting the
MGF. The entire analytical results have been supported by
numerical simulations. In the limit δ → 0, our model becomes
a special case of a problem of a single Brownian particle
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coupled to two distinct reservoirs, first proposed by Derrida
and Brunet [43] and later studied by Visco [16].

We have also looked at the validity of the fluctuation
theorem (FT) for work, in terms of the symmetry properties of
the large deviation function. We have found that in the (θ,δ)
region where g(λ) is analytic, the FT is satisfied. On the other
hand, in the nonanalytic region, the symmetry of the large
deviation function breaks down. In particular, the PDF picks
up an exponential tail characterized by the singularity and this
leads to the violation of the steady-state fluctuation theorems.

Finally, we have provided a nontrivial example where the
exact LDF as well as the complete asymptotic form of the
PDF of the work done by a correlated stochastic force can be
computed.
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APPENDIX: DETAILED CALCULATION OF THE MGF

We recall Eqs. (8) and (9),

dU

dt
= −AU + Bη, (A1)

where U = (v,f )T and η = (η1,η2)T are column vectors and
A, B are 2 × 2 matrices given by

A =
(

1/τγ −1/m

0 1/τ0

)
, B =

(
1/m 0

0 1

)
. (A2)

The expression for Wτ can then be expressed in terms of these
matrices,

Wτ = γ

2D

∫ τ

0
dtUT A1U, (A3)

where A1 is a real symmetric matrix

A1 =
(

0 1
1 0

)
. (A4)

Using the integral representation of the delta function, we
rewrite the moment-generating function

Z(λ,U,τ |U0) =
∫

d2σ

(2π )2
eiσT U 〈e−λWτ −iσ T U (τ )〉U,U0 . (A5)

Now, we proceed by defining the finite-time Fourier transforms
and inverses as follows:

[Ũ (ωn),η̃(ωn)] = 1

τ

∫ τ

0
dt[U (t),η(t)] exp(−iωnt), (A6a)

[U (t),η(t)] =
∞∑

n=−∞
[Ũ (ωn),η̃(ωn)] exp(iωnt), (A6b)

with ωn = 2πn/τ .
In the frequency domain, the Gaussian noise configurations

denoted by {η(t) : 0 < t < τ } can be well described by the
infinite sequence {η̃(ωn) : n = −∞, . . . ,−1,0,+1, . . . ,∞} of

Gaussian random variables having the following correlations:

〈η̃(ω)η̃T (ω′)〉 = 2D

τ
δ(ω + ω′)diag

(
1,θ

/
τ 2

0

)
. (A7)

The Fourier transform of U (t) is then straightforward and
henceforth the expression for Wτ becomes

Ũ = GBη̃ − 1

τ
G	UWτ

= γ τ

2D

∞∑
n=−∞

Ũ T (ωn)A1Ũ
∗(ωn), (A8)

where G(ω) = (iωI + A)−1 and 	U = U (τ ) − U (0), with
I being the identity matrix. The elements of G are G11 =
τγ (iωτγ + 1)−1,G22 = τ0(iωτ0 + 1)−1,G12 = G11G22/m,

G21 = 0. Substituting Ũ from the above expression in Wτ and
grouping the negative indices into their positive counterparts,
we obtain

Wτ = γ τ

2D

[
η̃T

0

(
BGT

0 A1G0B
)
η̃0 − 2

τ
	UT

(
GT

0 A1G0B
)
η̃0

+ 1

τ 2
	UT

(
GT

0 A1G0
)
	U

]

+ γ τ

D

∞∑
n=1

[
η̃T (BGT A1G

∗B)η̃∗

− 1

τ
	UT (GT A1G

∗B)η̃∗ − 1

τ
η̃T (BGT A1G

∗)	U

+ 1

τ 2
	UT (GT A1G

∗)	U

]
, (A9)

where G0 = G(ω = 0) = A−1,η̃0 = η̃(0). The finite time
Fourier series can be written for U (τ ) as well:

U (τ ) = lim
ε→0

∞∑
n=−∞

Ũ (ωn)e−iωnε

= lim
ε→0

∞∑
n=−∞

(
GBη̃ − 1

τ
G	U

)
e−iωnε

= lim
ε→0

∞∑
n=−∞

(GBη̃)e−iωnε, (A10)

where we observe that τ−1 ∑
n G(ωn)e−iωnε = 0 for large

τ . This is because while converting the summation into an
integral we note that all the poles of G(ω) lie in the upper
half plane. In other words, the function G(ω) is analytic in the
lower half. Using this expression we obtain

σT U (τ ) = σT G0Bη̃0 +
∞∑

n=1

[e−iωnεη̃T (BGT σ )

+ eiωnε(σT G∗B)η̃∗]. (A11)

The average quantity then can be rewritten as

〈e−λWτ −iσ T U (τ )〉 =
∞∏

n=0

〈esn〉, (A12)
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where

sn = − λτ η̃T cnη̃
∗ + η̃T αn + αT

−nη̃
∗

− λ

τ

γ

D
	UT (GT A1G

∗)	U for n � 1 (A13)

and

s0 = −λτ

2
η̃T

0 c0η̃0 + αT
0 η̃0 − λ

2τ

γ

D
	UT

(
GT

0 A1G0
)
	U,

(A14)

in which we have used the following definitions:

cn = γ

D
BGT A1G

∗B, (A15)

αn = λ
γ

D
(BGT A1G

∗)	U − ie−iωnεBGT σ. (A16)

We can now calculate the average 〈esn〉 independently for
each n � 1 with respect to the Gaussian PDF P (η̃) =

π−2(det �)−1 exp(−η̃T �−1η̃∗) with �−1 = 2D
τ

diag(1,θ/τ 2
0 ),

which gives

〈esn〉 = exp
[
αT

−n�
−1
n αn − λ

τ

γ

D
	UT (GT A1G

∗)	U
]

det(��n)
,

(A17)
where �n = λτcn + �−1. Similarly, calculating the average
of n = 0 term with respect to the Gaussian PDF P (η̃0) =
(2π )−1(det �)−1/2 exp(− 1

2 η̃T
0 �−1η̃0), we get

〈es0〉 = exp
[

1
2αT

0 �−1
0 α0 − λ

2τ

γ

D
	UT

(
GT

0 A1G
∗
0

)
	U

]
√

det(��0)
.

(A18)
The restricted moment-generating function can now be
rewritten as

Z(λ,U,τ |U0) =
∫

d2σ

(2π )2
eiσT U

∞∏
n=0

〈esn〉, (A19)

where using the fact 〈esn〉 = 〈es−n〉, we can write

∞∏
n=0

〈esn〉 = exp

(
−1

2

∞∑
n=−∞

ln[det(��n)]

)
exp

(
1

2τ

∞∑
n=−∞

[
αT

−nτ�−1
n αn − λ

γ

D
	UT GT A1G

∗	U

])
. (A20)

The determinant in Eq. (A20) is found to be

det(��n) = 1 + 4θλ(1 − λ)

τ 2
0 τ 2

γ

|G11|2|G22|2. (A21)

Now in large-τ limit, we can replace the summations over n

into an integral over ω; i.e.,
∑

n → τ
∫

dω
2π

. The first part of
the summation is then

τμ(λ) = −τ

2

∫
dω

2π
ln{det[��(ω)]}, (A22)

where μ(λ) is given by Eq. (14a). Similarly, the second part of
the summation can be converted into an integral. Finally, after
doing some manipulations, we obtain

∞∏
n=0

〈esn〉 ≈ eτμ(λ) exp

[
−1

2
σT H1σ + i	UT H2σ

+ 1

2
	UT H3	U

]
, (A23)

in which we have defined the following matrices:

H1 =
∫ ∞

−∞

dω

2π
G∗B(τ�−1)BGT , (A24)

H2 = − lim
ε→0

λ

2π

γ

D

∫ ∞

−∞
dωeiwεG+A1GB(τ�−1)∗BG+,

(A25)

and

H3 = − λ

2π

γ

D

∫ ∞

−∞
dωGT A1G

∗

+ λ2

2π

γ 2

D2

∫ ∞

−∞
dωGT A1G

∗B(τ�−1)BGT A1G
∗. (A26)

We then evaluate the matrices by performing the integral by
the method of contours. For convenience, we write down the
elements of the matrices respectively:

H 11
1 = Dτγ

m2

1

1 + δν̄

(
δ + 1 + θ

ν

)
, (A27a)

H 12
1 = H 21

1 = Dθ

m

1 − 2λ

ν(1 + δν̄)
, (A27b)

H 22
1 = Dθ

τ0

1

1 + δν̄

(
1 + δ

ν

)
. (A27c)

The elements of the H2 matrix are

H 11
2 = 1

ν(1 + δν̄)

[
λθ + 1

2
(1 − ν) + 1

2
δν(1 − ν̄)

]
, (A28a)

H 12
2 = − λγ θ

ν(1 + δν̄)
, (A28b)

H 21
2 = − λδ

γ ν(1 + δν̄)
+ δ(1 − ν)

2γ ν(1 + δν̄)
, (A28c)

H 22
2 = δ(1 − νν̄)

2ν(1 + δν̄)
. (A28d)
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The elements of the H3 matrix are given by

H 11
3 = λ2θγ 2τγ

Dν(1 + δν̄)
, (A29a)

H 12
3 = H 21

3 = λγ τγ (ν̄ − ν)

2Dν(1 + δν̄)
× δ(1 + ν) + (1 + δν̄)(δ − δν̄ − 2)

[1 + δν̄ − δ − ν]
. (A29b)

H 22
3 = −λ(1 − λ)δτ0

Dν(1 + δν̄)
. (A29c)

We note that the matrices H1 and H3 are symmetric and
they satisfy the relation H3 = (I + H2)H−1

1 HT
2 . Inserting

Eq. (A23) into Eq. (A19) and performing the Gaussian integral
over σ , we obtain

Z(λ,U,τ |U0) ≈ eτμ(λ)

2π
√

det(H1(λ))
e− 1

2 UT L1(λ)Ue− 1
2 UT

0 L2(λ)U0 ,

(A30)

where L1(λ) = H−1
1 (I + HT

2 ) and L2(λ) = −H−1
1 HT

2 . We
immediately identify the right and left eigenfunctions respec-
tively as


(U,λ) = 1

2π
√

det(H1(λ))
exp

[
−1

2
UT L1(λ)U

]
, (A31a)

χ (U0,λ) = exp

[
−1

2
UT

0 L2(λ)U0

]
. (A31b)

It is then straightforward to verify Lλ
(U,λ) = μ(λ)
(U,λ)
and

∫
dUχ (U,λ)
(U,λ) = 1. The steady-state distribution is

given by

PSS(U ) = Z(λ = 0,U,τ → ∞|U0)

= 
(U,λ = 0)

= 1

2π
√

det(H1(0))
exp

[
−1

2
UT L1(0)U

]
, (A32)

where L1(0) and given by

L1(0) = 1

det H1(0)

D

1 + δ

(
θ
τ0

(1 + δ) − θ
m

− θ
m

τγ

m2 (1 + δ + θ )

)
.

(A33)

It is worth noting that the deviation of the system from
equilibrium can also be measured using Eq. (A32):

α = 〈v2〉ss

〈v2〉eq
− 1, (A34)

where 〈v2〉ss is the velocity variance in the steady state which
can be found from Eq. (A33) and 〈v2〉eq is that of in equilibrium
in the absence of the external driving. Hence, one finds
α = θ/(1 + δ).

Now, averaging the restricted generating function with
respect to the steady-state distribution PSS(U ), we get back
Eq. (16), where g(λ) is given by

g(λ) = [
det

(
I + HT

2

)]−1/2

× {
det

[
I − H1(0)H−1

1 (λ)HT
2 (λ)

]}−1/2
, (A35)

where the first and second terms are due to tracing out the
final and initial variables, respectively. Using the forms of the
matrices given by Eqs. (A27) and (A28), we obtain

f1(λ,θ,δ) := det
(
I + HT

2

)
= 1

4ν(1 + δν̄)2
[p(λ) + 2θλq(λ)], (A36a)

f2(λ,θ,δ) := det
[
I − H1(0)H−1

1 (λ)HT
2 (λ)

]
= 1

4(1 + δ)2

1

θ + (1 + δν̄)2
[r(λ) + 2θλs(λ)],

(A36b)

where

p(λ) = 2 + 2ν + δ(1 + ν̄)(1 + δ + 3ν + δνν̄), (A37a)

q(λ) = 2 + δ(ν̄ − 1) = 1 +
√

1 + δ2 + 2δν − δ, (A37b)

and

r(λ) = 2θ (1 + ν) + 2(1 + ν)(1 + δ)2 + [θ + (1 + δ)2]

× [δ(1 + ν̄)2 + δ(1 + ν̄)(1 + δν̄)(ν + ν̄)], (A38a)

s(λ) = −[2 + 2θ + 3θδ + δν̄ + θδν̄]

+ [δ + 2δ2(2 + ν̄) + δ3(1 + 3ν̄)]. (A38b)

Let us now analyze the functions f1(λ,θ,δ) and f2(λ,θ,δ)
in detail. We note that the prefactors outside the square
brackets of f1(λ,θ,δ) and f2(λ,θ,δ) are always positive.
Moreover, p(λ) and q(λ) are again clearly positive in the
region λ ∈ [λ−,λ+]. In particular, they take the minimum
values at λ±, given by p(λ±) = 2 + a1 and q(λ±) = 1 +
a2 = 2 − a3, where a1 = (1 + δ)(δ + √

1 + δ2 − 1) � 0, 1 �
a2 = √

1 + δ2−δ > 0, and 1 > a3 = (1 + δ) − √
1+δ2 � 0.

Therefore, f1(λ+,θ,δ) > 0 as λ+ > 0. On the other hand, at
λ = λ− we get

p(λ−) + 2θλ− q(λ−) = (2 + a1) + 2θλ−(2 − a3)

= a1 + (−2a3θλ−) + 2(1 + 2θλ−).

The first two summands in the last line of the above expression
are clearly positive (note that λ− < 0). Moreover, it can be
shown that

1 + 2θλ− = √
1 + θ [

√
1 + θ −

√
θ ] > 0. (A39)

This also implies that

1 + 2θλ > 0 for λ ∈ [λ−,λ+]. (A40)

Therefore, f1(λ−,θ,δ) > 0, which implies that f1(λ,θ,δ) stays
positive in the region λ ∈ [λ−,λ+].
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Similarly, we can analyze the second term f2(λ,θ,δ).
Clearly, r(λ) is always positive in the region λ ∈ [λ−,λ+]. On
the other hand, the first line in the expression of s(λ) given by
Eq. (A38b) is negative whereas the second line is positive; s(λ)
can take both positive and negative values in the (θ,δ,λ) space.
Writing Eq. (A38b) as s(λ) = −b1 + b2 with both b1 > 0 and
b2 > 0, we get

r(λ) + 2θλs(λ) = [r(λ) − b2] + (1 + 2θλ)b2 + (−2b1θλ).

By explicitly expanding r(λ), it can be seen that all the
terms appearing in b2 completely cancel with some of the

terms of r(λ). Therefore, r(λ) − b2 > 0 for λ ∈ [λ−,λ+].
Similarly, according to Eq. (A40), the second summand is
positive. Finally, the last summand is clearly positive for λ < 0.
Therefore, f2(λ,θ,δ) > 0 for λ− � λ � 0.

At λ = λ+, we find that r(λ+) + 2θλ+s(λ+) changes sign
in the parameter space of (θ,δ). The phase boundary that
separates the two regions where this function stays positive
and negative respectively is given by

f2(λ+,θ,δ) = 0, (A41)

which is shown in Fig. 2.
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