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MESOSCOPIC PHYSICS AND NANOTECHNOLOGY -

This book presents the statistical theory of complex wave scattering and quantum
transport in physical systems which have chaotic classical dynamics, as in the case of
microwave cavities and quantum dots, or which possess quenched randomness, as in
the case of disordered conductors, with an emphasis on mesoscopic fluctuations. The
universal character of the statistical behaviour of these phenomena is revealed in a
natural way by adopting a novel maximum-entropy approach. Shannon’s information
entropy is maximised, subject to the symmetries and constraints which are physically
relevant, within the powerful and non-perturbative theory of random matrices; this is
a most distinctive feature of the book.

Aiming for a self-contained presentation, the quantum theory of scattering, set in the
context of quasi-one-dimensional, multichannel systems, and related directly to
scattering problems in mesoscopic physics, is introduced in chapters two and three.
The linear-response theory of quantum electronic transport, adapted to the context
of mesoscopic systems, is discussed in chapter four. These chapters, together g
with chapter five on the maximum-entropy: approach and chapter eight on weak
localization, have been written in a most pedagogical style, suitable for use on gradu-
ate courses. In chapters six and seven, the problem of electronic transport through
classically chaotic cavities and quasi-one-dimensional disordered systems is
discussed. Many exercises are included, most of which are worked through in detail,
aiding graduate students, teachers, and research scholars interested in the subject
of quantum transport through disordered and chaotic systems.

Pier A. Mello is Distinguished Professor of Physics at Instituto de Fisica, U. N. A. M.
in Mexico and Narendra Kumar is Professor of Physics and Director of the Raman
Research Institute in India.
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