CONTENTS

1 Introduction
 1.1 Atomic nuclei and microwave cavities 1
 1.2 Wave localization and fluctuations 2
 1.3 Mesoscopic conductors: time- and length-scales 4
 1.3.1 Ballistic mesoscopic cavities 7
 1.3.2 Diffusive mesoscopic conductors 7
 1.3.3 Statistical approach to mesoscopic fluctuations 8
 1.4 Organization of the book 12

2 Introduction to the quantum mechanical time-independent scattering theory I: one-dimensional scattering 15
 2.1 Potential scattering in infinite one-dimensional space 16
 2.1.1 The Lippmann–Schwinger equation; the free Green function; the reflection and the transmission amplitudes 16
 2.1.2 The T matrix 23
 2.1.3 The full Green function 25
 2.1.4 The S matrix 30
 2.1.5 The transfer or M matrix 44
 2.1.6 Combining the S matrices for two scatterers in series 48
 2.1.7 Transformation of the scattering and the transfer matrices under a translation 51
 2.1.8 An exactly soluble example 53
 2.1.9 Scattering by a step potential 57
 2.1.10 Combination of reflection and transmission amplitudes for a one-dimensional disordered conductor: invariant imbedding equations 68
 2.2 Potential scattering in semi-infinite one-dimensional space: resonance theory 70
 2.2.1 A soluble model for the study of resonances 71
 2.2.2 Behavior of the phase shift 73
 2.2.3 Behavior of the wave function 78
 2.2.4 Analytical study of the internal amplitude of the wave function near resonance 84
 2.2.5 The analytic structure of S(k) in the complex-momentum plane 87
 2.2.6 Analytic structure of S(E) in the complex-energy plane 90
3 Introduction to the quantum mechanical time-independent scattering theory II: scattering inside waveguides and cavities

3.1 Quasi-one-dimensional scattering theory
3.1.1 The reflection and transmission amplitudes; the Lippmann–Schwinger coupled equations
3.1.2 The S matrix
3.1.3 The transfer matrix
3.1.4 Combining the S matrices for two scatterers in series
3.1.5 Transformation of the scattering and transfer matrices under a translation
3.1.6 Exactly soluble example for the two-channel problem
3.1.7 Extension of the S and M matrices to include open and closed channels

3.2 Scattering by a cavity with an arbitrary number of waveguides
3.2.1 Statement of the problem
3.2.2 The S matrix; the reflection and transmission amplitudes

3.3 The R-matrix theory of two-dimensional scattering

4 Linear response theory of quantum electronic transport
4.1 The system in equilibrium
4.2 Application of an external electromagnetic field
4.3 The external field in the scalar potential gauge
4.3.1 The charge density and the potential profile
4.3.2 The current density
4.4 The external field in the vector potential gauge
4.5 Evaluation of the conductance

5 The maximum-entropy approach: an information-theoretic viewpoint
5.1 Probability and information entropy: the role of the relevant physical parameters as constraints
5.1.1 Properties of the entropy
5.1.2 Continuous random variables
5.2 The role of symmetries in motivating a natural probability measure
5.3 Applications to equilibrium statistical mechanics
5.3.1 The classical microcanonical ensemble
5.3.2 The classical canonical ensemble
CONTENTS

5.3.3 The quantum mechanical canonical ensemble 239
5.4 The maximum-entropy criterion in the context of statistical inference 241

6 Electronic transport through open chaotic cavities 244
6.1 Statistical ensembles of S matrices: the invariant measure 245
6.2 The one-channel case 249
6.3 The multichannel case 251
6.4 Absence of prompt (direct) processes 253
6.4.1 Averages of products of S: weak localization and conductance fluctuations 253
6.4.2 The distribution of the conductance in the two-equal-lead case 258
6.5 Presence of prompt (direct) processes 262
6.5.1 The case $\beta = 2$ 262
6.5.2 The case $\beta = 1$ 264
6.6 Numerical calculations and comparison with theory 264
6.6.1 Absence of prompt (direct) processes 265
6.6.2 Presence of prompt (direct) processes 268
6.7 Dephasing effects: comparison with experimental data 270
6.7.1 The limit of large N_ϕ 272
6.7.2 Arbitrary N_ϕ 274
6.7.3 Physical experiments 276

7 Electronic transport through quasi-one-dimensional disordered systems 279
7.1 Ensemble of transfer matrices; the invariant measure; the combination law and the Smoluchowski equation 280
7.1.1 The invariant measure 284
7.1.2 The ensemble of transfer matrices 285
7.2 The Fokker–Planck equation for a disordered one-dimensional conductor 288
7.2.1 The maximum-entropy ansatz for the building block 288
7.2.2 Constructing the probability density for a system of finite length 290
7.3 The Fokker–Planck equation for a quasi-one-dimensional multichannel disordered conductor 297
7.3.1 The maximum-entropy ansatz for the building block 298
7.3.2 Constructing the probability density for a system of finite length 301
7.3.3 The diffusion equation for the orthogonal universality class, $\beta = 1$ 302
7.3.4 The diffusion equation for the unitary universality class, $\beta = 2$ 310
7.4 A unified form of the diffusion equation for the various universality classes describing quasi-one-dimensional disordered conductors: calculation of expectation values 317
7.4.1 The moments of the conductance 318
7.5 The correlations in the electronic transmission and reflection from disordered quasi-one-dimensional conductors 324

8 An introduction to localization theory 329
8.1 Strong localization 330
8.2 Mobility edge 334
8.3 Coherent back-scattering (CBS) 336
8.4 Scaling theory 339
8.5 Weak localization: quantum correction to the conductivity 341
8.5.1 The Hamiltonian and the Green function 342
8.5.2 Ensemble-averaged Green’s function in the self-consistent Born approximation 348
8.6 Electrical conductivity of a disordered metal and quantum corrections: weak localization 349
8.6.1 Classical (Drude) conductivity 353
8.6.2 Weak localization (WL) and quantum correction to the classical (Drude) conductivity: the maximally-crosseed diagrams 356
8.6.3 Scale dependence of the conductivity 359

A The theorem of Kane–Serota–Lee 361
B The conductivity tensor in RPA 366
C The conductance in terms of the transmission coefficient of the sample 375

D Evaluation of the invariant measure 379
D.1 The orthogonal case, $\beta = 1$ 381
D.2 The unitary case, $\beta = 2$ 384

References 387

Index 395
This book presents the statistical theory of complex wave scattering and quantum transport in physical systems which have chaotic classical dynamics, as in the case of microwave cavities and quantum dots, or which possess quenched randomness, as in the case of disordered conductors, with an emphasis on mesoscopic fluctuations. The universal character of the statistical behaviour of these phenomena is revealed in a natural way by adopting a novel maximum-entropy approach. Shannon's information entropy is maximised, subject to the symmetries and constraints which are physically relevant, within the powerful and non-perturbative theory of random matrices; this is a most distinctive feature of the book.

Aiming for a self-contained presentation, the quantum theory of scattering, set in the context of quasi-one-dimensional, multichannel systems, and related directly to scattering problems in mesoscopic physics, is introduced in chapters two and three. The linear-response theory of quantum electronic transport, adapted to the context of mesoscopic systems, is discussed in chapter four. These chapters, together with chapter five on the maximum-entropy approach and chapter eight on weak localization, have been written in a most pedagogical style, suitable for use on graduate courses. In chapters six and seven, the problem of electronic transport through classically chaotic cavities and quasi-one-dimensional disordered systems is discussed. Many exercises are included, most of which are worked through in detail, aiding graduate students, teachers, and research scholars interested in the subject of quantum transport through disordered and chaotic systems.

Pier A. Mello is Distinguished Professor of Physics at Instituto de Física, U. N. A. M. in Mexico and Narendra Kumar is Professor of Physics and Director of the Raman Research Institute in India.

Front cover image: Statistical scattering of waves by a random distribution of impurities in a quasi-one-dimensional mesoscopic system. Back cover graph: resulting fluctuations of the conductance.