VIVEK DHAWAN, III B.E., DEPT. OF ELECTRICAL . COMMUNICATION ENGG. Apr 1980

INDIAN INSTITUTE OF SCIENCE BANGALORE-12.

þ

- 7

行行方言人

•

()¹

et if Shi A LOW NOISE Ga-As FET AMPLIFIER AT 1.4 GHz

Low Noise Ga-As FET amplifier of 1.4 GHZ

Contents

- 1. Introduction, perspective.
- 2. Ga-As FET basics
 - 2.1 Device physics and circuit model.
 - 2.2 Geometric and material parameters for microwave performance, dc.parameters: measurements and prediction of noise figure.

2.3 Noise theory

 Amplifier design with potentially unstable active elements.

3.1 Bipolar transistor amplifier design.

3.2 Results

3.3 FET low noise amplifier design

3.4 Results

3.5 Conclusions, comments on further development.

Appendix A. S-Parameter design equations

B. Measurement of gain, return loss and noise figure.

6. Noise representation in 2-ports.

I. Introduction and Perspective:

This report describes the design and construction of both bipolar and Ga-As fet amplifiers around 1.4 GHz, with the aim of gaining acquaintance with high frequency devices and low noise design techniques. The end use of the amplifiers is in the first I.F. stage of a millimeter wave radio astronomical receiver currently under construction at RRI

FIG 1.1 MM WAVE RECEIVER SYSTEM, 70-140 GHz

1.1 Amplifier Requirements:

Sources in radio astronomy can be either continuous in frequency (thermal, synchrotron mechanisms) or discrete. Some lines of interest are given:

molecule	freq. (GHz)	molecule	freq. (GH =
Methyl Alcohol CH20H	84.52	Carbon monoxide	110.2, 115.3
Carbonyl Sulphide Ocs	85·12 97·30	Cyanide Ion CN	130.3
Hydrogen Cyanide HCN	88.63	Silicon monoxide Si O	/30·3
	These a	re seen mainly in	emission.

For a line source at frequency $f_0 = 100 \text{ GHz}$, (3 mm λ) moving at velocity v, typically 100 km/sec, the doppler bandwidth $\Delta f = \left(\frac{v}{c} \cdot f_{o}\right) = 100$ MHz. Signal energies are extremely low, eg: -140 dBm/ K in a 1 MHz band for a thermal emitter. Given an integration time t on a system of noise temperature T_s, the minimum detectable signal $T_{\min} \propto \frac{T_s}{T_T}$. Cryogenic masers, paramps or tunnel diode amplifiers are used to minimize T₈. A front end consisting of a low noise) mixer, followed by a cooled Ga-As fet amplifier * (diode at the I.F. is a potential replacement which offers simplicity (no pump source is needed), lower cost, and relativity large bandwidth. Te is then dependent on the IF noise and the mixer conversion loss. Problems with the FET include (1) high input Q, preventing a broadband characteristic (ii) poor stability and (iii) difficulty in obtaining simultaneous noise and power match.

1.2 Summary of report:

Principles of operation of the MESFET are presented in chapter 2, along with a technique (FUKUI, Ref 2 and 3) of determining the microwave noise figure from measured dc parameters. Using the scattering matrix approach summarized in Appendix A, the design of amplifiers is described in chapter 3. The *b*ipolar amplifier, a trial attempt, gave 11 dB gain with 3.7 dB noise figure at 1.4 GHz, while the FET amplifier had a gain of 17 dB and noise figure 1.3 dB (100 °K) at 1.35 GHz and room temperature (300 °K).

* Ref 4, 8,9.

2. Ga-As- MESFET basics:

2.1 Device physics and circuit model.

Figure 2.1 depicts the metal-semiconductor fet in

FIG 2.1 MESPET STRUCTURE

S = Source, D = drain, G = gate. Aluminium metallization on n-type Ga-As.

d = conduction channel depth

Operation:

Majority carriers (e-) flow from S to D in the n type channel. A negative Egg causes a depletion layer below the gate electrode. The gate-channel interface is a Schottky barrier with more reverse bias across it at the positive D end than at the S end, so the depletion is deeper at the drain, and d is less.

Drain current Ips $\propto n(x)$. V(x). d(x)

where n = carrier concentration

 \mathbf{V} = carrier drift velocity

x = Coordinate from S to D

For low V_{DS} , the channel electric field B is less than E_p (fig 2) and n(x) is just the equilibrium donor concentration, N_p .

Since d is smaller near the drain, V is higher at the drain than at the source end, to maintain continuity of the current I_{DS} . If V_{DS} is now increased, the reverse bias across the junction increases further at the drain end, so d decreases and the length of the highly depleted region expands. The channel electric field B is now higher than E_p in the region x_1 to x_3 (fig.5). Hence, according to the E-V plot in fig 2, the V should reach V_p at x and decrease in the region x, to x_2 , where it approaches saturation value V_3 where E is highest.(fig. 4). In this region, x_1 to x_2 , both V and d are decreasing so now n must increase to preserve I_{DS} , i.e., a heavy space change accumulation occurs in the x_1 x_2 region under the gate. The reverse process is taking place from x_2 to x_3 , and an electron depletion region results (fig 6).

For short gate length devices, $(L < 3\mu)$ the behaviour of electrons is complicated since E is more than E_p over an appreciable fraction of the length. The charge transport mechanism is a non-equilibrium one, with slow electrons from regions where $E < E_p$ suddenly increasing their velocities before relaxing towards saturation. Since a larger number of electrons are injected into the velocity saturated region with increasing V_{DS}, a finite drain source resistance results even after 'saturation'. Measured characteristics are displayed in fig 7.

A lumped element small signal model for the MESPET operating in the current saturation region is shown in fig 8, and the physical origin of the circuit is indicated in fig 9.

Cdg Rs Rd M D Kcdc C9SE Ids Rdsi Cds LUMPE D g Vi ELEMENT MODEL, VALID TO 12 GHZ ŚRs FIG8 S ORIGIN OF GRCUIT =Cdg ELEMENTS Rs Cdc (TYPICAL VALUES) MARds FIG 9 11Cds Cas+Cad Total gate-channel capacitance (.35 pF) Cdc dipole layer cap. (.5 pF) Cds substrate cap (.05 pF) Ri, Rds channel resistances (22, 4002) Contact and spreading resistances Rg, Rd, Rs (~ 5. r each) Unity current gain frequency $\simeq \frac{1}{2\pi} \frac{g_m}{c_{qs}}$ fr $(13 G H_z)$

2.2 Geometric and material parameters for microwave performance.

Parameter	Ga As	Silicon		
Low field mobility	Electrons : 8800 cm ² /V. holes : 400 sec	1350 cm ² /V.sec		
max.drift velocity (electrons)	2.2 x 10 ⁷ cm/sec	1 x 10 ⁷ cm/sec		
•		•		

Saturated	1	X	107	cm/sec	1	. x	107	cm/sec
drift velocity								

n type Ga As is thus the obvious choice for highest frequency performance.

Mesfets are planar devices with an epitoxial conducting layer less than a micron thick on a thicker semi-insulating GaAs substrate. Parasitic resistances and capacitances are decreased and trans conductance \mathcal{G}_m is increased by reducing gate length and hence the transit time.Gain bandwidth $f_T \propto \mathcal{L}^{-1}$. Currently L is under 1 micron and f_T above 10 GHz. d.C. parameters and measurements:

Empirical formulae have been derived (ref.2,3) for the prediction of the microwave noise performance from measured

prediction of the microwave noise performance from measured dc values of active and parasitic mesfet parameters. Measurements on the schottky gate allow determination of the banier voltage V_b and the parasitics Rg, Rd, Rs (fig 8 and 9). These, together with the pinch off voltage of the channel, V_p the Q_m and L are used to calculate expected noise figure.

(a) Schottky gate characteristics:

Conditions

Parameter determined

V_b, barrier voltage

- (i) low current exponential region, drain and source grounded
- (ii) high current density region Slope of I-V plot (fig ll) gate current limited only gives: by parasitic resistances (see fig 8)

Source, drain both grounded $R_{g} + (R_{d} \ddagger R_{s})$

Source grounded, drain $R_g + R_s$ open

Drain grounded, source open

(b) $I_D - V_{GS}$ plot, with V_{DS} fixed in linear region, (see fig 12).

Conditions

Parameter

 $R_g + R_d$

 V_{DS} = .1 volt Channel resistance varies linearly with V_{GS}

- (i) V channel pinch off voltage.
- (ii) R_d + R_s total channel parasitic resistance
- (i) (ii) found as described below.
- (i) An initial value of V_p is determined from fig 12 by extrapolating the linear part of the curve to 0 drain current
- (11) I_{DS} in fig 12 is used to calculate the total drain-source resistance, $R_{dS} = \frac{V_{DS}}{I_{DS}}$
- (111) Using the initial estimate of V_p , R_{ds} is plotted against

$$X = (1 - \sqrt{\frac{V_{b} - V_{g_{s}}}{V_{b} + V_{p}}})^{-1}.$$

If V_p as found in (i) is not exact, this plot will deviate from a straight line (see fig 13). The final value of V_p

is the one which gives a linear plot.

(iv) If the slope of the line in (iii) is R_0 , then $R_0 X$ represents the active channel component of the total drain-source resistance at that value of X (ie. at that value of V_{gs}). At X = 0 therefore, the active component is 0 and the Y-intercept is the remnant parasitic, Rd + R_s .

The above analysis yields the foll, results

Rd = 4.3 Rg = 4.2 Rg = 3.4 $V_p = -2.14 \text{ volts}$ $g_m = \frac{D I_D}{D V_{GS}}, \text{ measured} = 27 \text{ mm/s}$ $(g_m = \frac{g_m'}{1+g_m' R_s})$ $g_m' = \text{actual transconductance}$ = 30 mm/s

Using the empirical relation for mimimum noise figure,

 $P_0 = 1 + K \cdot L \cdot f \sqrt{g'_m(R_g + R_g)}$

where f = frequency of operation, GHz.

K = fitting constant = .3

L = effective gate length, = physical gate metalligation length for planar devices.

g' in mhos

Results

Fo (1.4 GHz) = 0.80 dB , Fo (1.9 GHz) = 1.05 dB data sheet gives Fo (1.9) = 0.9 dB

2.3 Fet noise theory:

Dominant sources of FET noise include the following: 1. Thermal noise: Charge carriers in each volume element of the channel are in thermal equilibrium with the lattice at T > 0 K and generate a noise voltage which modulates the depletion layer width, and appears as an amplified noise at the drain. Parasitic resistances also generate thermal noise. 2. Hot electron noise: In short gate length devices, especially in Ga As, the current transport mechanism is complex. Transit time is shortened by the velocity peaking effect (see page 4) and e do not have time to relax to thermal equilibrium with the lattice. The electrons however, are at equilibrium among themselves, at a higher noise temperature. 3. Intervalley scattering noise: In ga as, electrons in the low energy conduction band have high mobility. As the electric field in the channel increases beyond B_p, e transfer to higher energy satellite conduction bands where this effective mass is much larger (fig 2). Random transfer of charge carriers between 2 conduction states leads to current fluctuations which further increase the noise temperature. 4. High field diffusion noise: Conduction is non-ohmic in the region of the channel where electrons have acquired saturation velcoity and changes in the electric field do not affect the drift velocity. Noise current in this region has a mean square value dependent on the high field diffusion coefficient of the semiconductor, and is linearly preportional to the drain current.

Between $\propto 20$ mHz and 3 GHz, there are, in addition less well understood sources which contribute to the overall noise temperature.

Simplified noise model

of intrinsic mesfet:

1. l_{nd} = channel noise in drain-source region in band Δf $\overline{l_{nd}^2}$ = (4kTo Δfg_m) P , P depends on device geometry and bias. For o drain voltage,

 \overline{i}^2 nd = (4kTGds. \triangle f) is the thermal noise in the drain conductances Gds.

2. Noise voltage in channel varies the depletion layer width and hence the depletion charge. This induces a charge fluctuation at the gate described by i ng

$$i^2$$
 ng = 4kTo Δf . $w^2 Cga^2$. R.
Sn

R depends on geometry and bias, Cgs is the gate source capacitor causing the coupling of the noise sources in the drain to the gate. \hat{i}_{ng} and \hat{i}_{nd} are caused by same noise voltages in the channel. They are therefore correlated and the correlation eveff = jc = $(\overline{i_{ng}^* \cdot i_{nd}})/(\overline{i_{ng}^2 \cdot i_{nd}^2})$ is purely imaginary due to the capacitive coupling. Low temperature performance: Fet's being majority carrier devices, can operate at much lower temperature than bipolars. For S_i , e are frozen out of the conduction baned at 125 K. In Ga as the donor levels are just 3-6 mV below the conduction band and no freeze out occurs. Output thermal noise $\propto T_A/gm$ where T_A is the ambient temperature. At reduced temperature g_m increases m_i , since carrier mobility increases due to reduced scattering. Noise due to parasitic resistances also cools with temperature.

3. Aphlifier design with potentially unstable active elements:

Both bipolar and fet transistors can be potentially unstable over part of their usable frequency range. To get familiar with high frequency design techniques using scattering parameters, and to understand the problems in working with unstable devices, the design of a bipolar transister amplifier was undertaken before attempting to build the fet amplifier.

3.1 Bipolar Transistor amplifier design:

requirements : Centre frequency : 1400 MHz

3dB bandwidth : 200 MHz

gain : maximum consistent with minimum

noise figure.

Transistor used : HP - 35821 E (see data sheet plOA) Measurement of the transistor scattering parameters not being accurately possible with available equipment at 1.4 GHz the manufacturer's data sheet has to be relied upon. However parameters shees are given for a bias corresponding to V_{CE} and I_c for

gain, not those for minimum noise. The nessign is carried out with available parameters and final adjustments

• 5

made on the bias circuit to achieve lowest noise.

Scattering	parameters at	1.0	GHz	₽ .52 ∠ 180° 4.1 ∠ 68°	•06 ∠ 63° •53 ∠ - 35°
•		1.4	GHz	= [.5 ∠ 165° 3.2 ∠ 65°	.08 2 60° .52 2 43°
		2.0	GHz	= [.52 < 152 2.3 < 70°	.10 ∠ 60°] .52 ∠ -55°]

from the scattering parameters, the following quantities are calculated (for definition and formulas, see appendix A) a. K, stability factor $K > 1 \implies$ absolute stability

 $K < 1 \implies$ potential instability, depen-

dent on load and source.

1 GHz : K = .92, G_{max} undefined since conjugately matching 1.4 E K = .90 input and output causes instability. 2.0 : K = 1.07 G_{max} 11.9 dB, conjugate match possible.

b. Stability circles, boundaries between stable and unstable Smith Chartterminations on Switch charg for both input and output. (C_i , C_o centres, $firf_o$ radii) 1.4 GHz : $C_o = 1.9 \ / 42^\circ$ $C_i = 1.96 \ / 166^\circ$ o = .95 i = .981.0 GHz $C_o = 1.85 \ / 39^\circ$ $C_i = 1.98 \ / 17$

= .90 <u>1</u> = 1.02

2.0 GHz since K > 1 stability thrcles lie entirely outside the smith chart, is no passive impedance causes instability.

c. Constant gain circles, loci of load impedances giving constant gain, are calculated at 1.4 GHz.

a, b, c are all plotted on the smith chart No.l. A load impedance lying well in the stable region is chosen giving about 14 dB gain and a matching network found to

transform the 50 1 load to present this chosen impedance at the transistor output.

Because conjugate matching has been avoided, the impedance \overline{Z}_{end} at the matching network output is not 50 Ω and so gives rise to an output VSWR. Choice of a load closer to the unstable boundary (ie closer to the conjugately matched but unstable condition) gives higher gain, lower VSWR but is relatively less stable and more sensitive to variations in S parameters. A compromise is made with acceptable VSWR. (calculated value : SWR = 3, R.L. = 6dB). The transistor at these frequencies is non-unilateral, so the choice of load affects the input impedance. With the load chosen, the \overline{Z}_{in} is calculated and a matching network synthesized to transform the 50 Ω source to \overline{Z}_{in}^{*}

In the neighbourhood of 1.4 GHz, the transistor gain is falling at 6 dB/octave and reaches 0 dB at a gain bandwidth $f_T = 6$ GHz. To improve gain flatness over a breadband, the matching networks should mismatch the transistor and decrease the gain at low frequeicies while leaving it intact at higher frequencies, i.e., the matching elements bhould be high pass to compensate for the transistor low pass characteristic

The circuit diagram and layout are shown in CIRCUIT-1. Dual copperciad Terlon-glass fibre dielectric is used for the circuit board, with $\varepsilon_r = 2.5$. The bias circuit is on the reverse of the same card and must be properly bypassed, and grounding carefully done to prevent high frequency resonant lengths and consequent oscillation. All elements except the input/output microstrip lines are lumped.

Capacitors : fixed values : ceramic chip capacitors

variables : screw tunable, polyester dielectric Inductances : Short lengths or few turns of tinned copper wire, .6mm dia. At these frequencies, inductance goes as the length of the wire, 10 nH/cm, rather than the number of turns. (Wires are coiled to save space) Lengths of about ^λ/4(≈ 5cm) act as parallel resonant chokes for biassing.

Circuit fabricated on double-Cu clad. low loss tetlon-glass fibre dielectric $(E_{r} = 2.5)$

INPUT/OUTPUT : SMA connectors feeding 5052 (4.5 mm Width) microstrip line.

5.6 pF, 1.0 pF Johansen Variable capacitors C_{1} , $C_{2} = 1000$ pF R.F. bypass {American Technical Ceramics 47 pF d.c. block { chip capacitors L_{1} , L_{2} $\lambda/4$ length at 1.4 ghz, pass only dc 1.8 nH } { tinned Cu wire, 0.6 mm dia. 7.6 nH $\pm 10 \text{ nH/cm}$; 2mm $\pm 8 \text{ mm}$ length. Bigs : VCE = 12 Volts, $I_{c} = 8 \text{ mA}$

Some amount of tuning is needed to achieve the desired centre frequency, matching and bandwidth, which can be simultaneously displayed on a swept frequency analyzer. The noise figure is measured and the input matching and bias conditions optimized for lowest noise. The hoise figure is then determined and invariant to output match, which is retuned to give best stable gain. Depending on the relative priorities, design may be carried out for (i) optimum noise figure. (ii) maximum gain at a spot frequency. (iii) best gain flatness over a wide band. (iv) maximum linear output power.

3.2 Results:

Centre frèquen	ey : 1.4 GHz
Gain :	11 dB
noise figure :	3.7 dB
output match (Return loss) : 8 dB
input match	: 30 dB at 1.4 GHz

3dB gain bandwidth : 200 MHz.

Increasing the output power causes the gain to fall at the onset of non-linearity. This is measured by the 1-dB gain compression power output = -5dBm.

3.3. FET low noise amplifier:

As already outlined, low noise amplifier design usually involves (i) selection of the bias point and the input matching network for mimimum noise, (ii) matching of output for maximum gain or broad bandwidth. With Ga-As fets, especially at lower frequencies (below 4 GHz) this procedure encounters the following drawbacks: (i) The device is potentially unstable both in and out of band, and remains capable of activity upto very high frequencies (eg maximum frequency of oscillation $f_{max} = 50$ GHz) There is thus the possibility of unwanted oscillation if impedances are not carefully chosen.

(ii) The source impedance for optimum noise differs considerably from that for conjugate input match, leading to high VSWR for the low noise amplifier.

(iii) The high-Q reactive input makes the achievement of broadband operation difficult.

Effectf of a feedback inductance in the source lead:

If \mathcal{R}_{DS} and \mathbf{y}_{L}^{-1} are large compared to $\mathbf{w}^{\perp}\mathbf{s}$, the expression for input impedance is

$$Z_{in} \simeq R_{i} + \frac{1}{jwCgs} + jwL_{s} + \frac{1}{L_{s}}g_{m}/cgs\left(1 + \frac{1}{y_{L}R_{DS}}\right) + \frac{1}{w^{2}L_{s}^{2}}R_{DS}\left(1 + \frac{1}{y_{L}R_{DS}}\right)$$

The last two terms increase the real part of the Z in (Rin) and if $\omega \perp_{s}$ is small, its contribution to the imaginary part (X in) is small. Rin can be pushed towards the source impedance for minimum noise, ($R_{opt} + j$. X opt) by suitable choice of L_s . Increasing Rin also results in an improved bandwidth.

Noise measure M_{\min} is defined as the noise figure of an infinite chain of identical amplifiers, $M_{\min} = \frac{T_{\min}}{T_0(1-G^{-1})}$ Adding lossless feedback elements to any network may decrease T_{\min} and G, but leaves M_{\min} unaltered. For the FET (ref 5,6) the effect is to reduce X_{opt} by w.L_s (ie L_s appears effectively in series with the gate).

Thus the addition of a source inductance leads to lower VSWR, broader bandwidth and (as seen later) greater stability. The design procedure uses the S-parameter concepts of sec. 3.1 and goes as follows:

(i) From the performance data of the transistor, the bias point for minimum noise is selected. As expected, the drain voltage $V_{\rm DS}$ is low, corresponding to little noise from the velocity saturated electrons under the gate, and $I_{\rm DS}$ is about 15 %, of $I_{\rm DSS}$, the zero gate voltage drain current. (see section on FET noise). Common source S-parameters under these conditions are used in subsequent calculations.

The bare fet has a stability factor K = .25, highly unstable, and input reflection coeff. $\int \sin x = .94 \ \angle -60^\circ$, highly reactive.

(ii) The effect of L_s is included as follows: Recognizing that the composite structure may be split into two 2-ports in series, their individual Z parameters may be summed to give the overall Z parameters, which are then converted back to equivalent S-parameters.

FET with external inductance.

 $S_{FET} \rightarrow Z_{FET}$ conversion $+ Z_{L} = Z_{overall}$

7 -> S Conversion

FIG 3.4 INCLUSION OF SOURCE INDUCTANCE

The modified parameters are found for several trial inductances over a range of frequencies. The final value of L_s is chosen as 4 nH, and sample parameters are shown at 1.4 GHz

[s]	original,	1.4	GHz	¥	97 2.06	∠ -19° ∠ 152°	.02 -93	< 72° < -8°
[s] 41	modified,	1.4	GHz		.86	∠ -12°° ∠ 122°	.02 •93	∠ 96°] ∠ -3°]

When K is calculated for the modified set, K = 1.1 and $G_{max} = 17$ dB, showing the stabilizing effect of the source inductance. The modified source impedance (as already indicated) is found:

 $Z_{NF} = Z_{NF} - j\omega L_s$

The 50 \mathcal{A} source is transformed by a matching network to present this Z'_{NF} to the transistor input, and the corresponding output impedande determined from equations (A4). The output is then conjugately matched to 50 \mathcal{A} and the resultant input impedance found from equations (A 4) is: fix the source, match the resultant output to load and find the new input impedance. (The transistor is non unilateral, hence the back and forth procedure).

This exercise yields a $\prod_{i=1}^{4} (.83 \angle 24^{\circ})$ closer to the modified $\int_{NF}^{}$ (.65 \angle 22°) than was obtained without the source inductance, giving a better input match. The expected gain at 1.4 GHz is about 17 dB, as seen from the location of I'L on the constant gain circles of the Smith chart. Stability circles are plotted for both input and output, Using the modified parameters at increasing frequencies. The high pass load and source impedances, Γ s and Γ L, migrate with frequency along the loci shown, and remain in the stable region upto about 5 GHz. However, beyond this frequency, the transistor's changing characteristics cause the impedances to be no longer suitable to it and instability results. The source inductance is now found to aid in the de-stabilization at high frequency by feeding back more output to the input, since its impedance increases with frequency. Analysis of high frequency oscillation is difficult since distributed effects cause capacitors to behave as inductors and coiled wire inductors to be more capacitive than inductive. Two pessible solutions (neither of which was found necessary) are: (1) inserting a metal partition isolating input and output sides of the amplifier. (ii) a microwave absorber such as carbon impregnated foam placed at the input and output introduces a loss at higher frequencies leaving the low frequency characteristics intact i.e. the amplifier cavity is no longer an effective resonant cavity at high frequency.

3.4 Results:

The constructed amplifier was found to have the following characteristics:

gain: 17 dB at 1360 MHz

3 dB bandwidth : 120 MHz

input return loss: 10 dB

The stability was found to depend upon the bias condition, specifically $V_{\rm DS}$ larger than about 3.5 volts caused oscillation to set in. However, minimum noise conditions were at $V_{\rm GS} = -1.7V$ and $V_{\rm DS} = 2 \ t_0 2.5$ volts, at which point there was no stability problem. Noise figure measurement yielded a noise temperature of around 100°K (1.29 dB N F.) at 1400 MHz and 90°K at 1350 MHz, both at 300°K ambient.

The circuit diagram and frequency response plots in the minimum noise condition are shown in the acompanying diagrams.

CONCLUSIONS and comments on further development.

The amplifier constructed could find possible use as a communications receiver front end, without cooling or further refinement. To meet the more stringent requirements of a radio telescope front end improvements however, improved performance is desired. Some of these, and the problems involved are listed:

- (1) Cooling to liquid mitrogen temperature (77*K) or below reduces thermal scattering in the channel, Device gain and noise parameters change, requiring a reoptimisation of bias and matching networks in the cooled condition. Stressing of bonds due to contraction may make the circuit unreliable or unworkable.
- (ii) It may be possible to increase the bandwidth to a comfortable amount by
 - (a) computer synthesis of higher order matching networks,
 - (b) optimizing feedback via noiseless elements (reactive in order to preserve the noise figure).
- (iii) With variable impedance matching elements, the noise behaviour of the device can be explored over a range of source conditions, leading to a full characterization in terms of the 4 noise parameters of appendix (.
 - (iv) Together with power splitters and combiners, a 2 transistor bblanced circuit instead of a single ended amplifier can give low SWR while maintaining optimum noise match and doubling output power.

HANDLING AND PRACTICAL DETAILS

While it is not as sensitive to mishandling as the base chip, the packaged fet must still be handled cautiously:

- Ungrounded personnel should not touch the leads, since transients easily damage the gate.
- Soldering iron must be properly grounded and any source of transients eliminated.
- 3. A FET should never be inserted into a pre-biased circuit.

Even in the soldered-in circuit, switch-on should be done gradually: First the gete is set to -2 V, then drain voltage is applied slowly and finally gate is readjusted to get desired drain current.

- 4. Use of a digital multimeter to check resistances of the device should be avoided since the voltage supply within the meter may destroy the gate.
- 5. Soldering time should not exceed 20 secs. at 260° C.

Indium alloy solder, with melting point 180° C was used for soldering the transistor and all ceramic chip capacitors. This contains 2% silver, which is necessary to keep the silver in the chip capacitor bounding pads from leaching out while soldering.

= 21

6. The 50 Λ microstrip lines for input output were formed by applying 4.5 mm masking tape to the PCB and etching. All bounding islands etc., on the board are kept to minimum area to avoid the introduction of unpredictable distributed elements into the circuit. (Capacitance to ground plane is 0.1 Pf/cm²).

IOK +5V 5V CIRCUIT 2 \$200 TOKZ C, 23n H 9.4= 50 1 OUT 50-2 IN 34nH-C1, C2 = 1000 PF chips. capacitors 1.2, 47 PF : Variables. All other details as in CIRCUIT 1 Bias: VDS = 2.5 Volts $T_{DS} = 8 m A$ - 1.7 Volts $V_{\rm GS} =$

CIRCUIT BOARD LAYOUT - 2 · Ø TOP G IN-F ${\cal D}$ OUT 1.2 47 0 Ø Ó 0 MF-W IOK 200 BOTTOM IN OUT 0 S - Source ; G - gate ; D - drain $L_{1} = 9.4 \text{ nH}$; $L_{2} = 23 \text{ nH}$ 1.2 PF, .47 PF Variables - It: 5 Volts, supply reversal and limiting VGD

MICROWAVE TRANSISTOR SERIES

Low-Noise X-Band GaAs MESFET

FEATURES

- VERY HIGH f_{MAX} 55 GHz
- HIGH MAXIMUM AVAILABLE GAIN 17 dB at 4 GHz 12 dB at 8 GHz 10 dB at 12 GHz
- LOW NOISE FIGURE

 1.4 dB at 4 GHz
 2.5 dB at 8 GHz
 3.5 dB at 12 GHz
- HIGH ASSOCIATED GAIN 13.5 dB at 4 GHz 10.5 dB at 8 GHz 7.0 dB at 12 GHz
- PROVEN RELIABILITY AND STABILITY
- 1.0 MICRON GATE
- SPACE QUALIFIED

PERFORMANCE SPECIFICATIONS (Ta=25°C)

DESCRIPTION

The NE244 is a gallium arsenide (GaAs) n-channel field effect transistor (FET) employing a 1.0µ long Schottkybarrier gate. The device is available as a chip (NE24400) and in two rugged hermetically sealed metal-ceramic stripline packages. The chip offers exceptionally low noise figures and high associated gains, making it ideal for microwave integrated circuits operating up to 12 GHz. The chip's gate and channel are glassivated with a thin layer of SiO2 for mechanical protection only. The NE24483 is a low cost packaged device for industrial, military, and space applications. The NE24406 is in a low-loss, hi-rel package designed for space applications. NEC uses the highest grade materials and the latest design and production techniques to manufacture the best devices available. Reliability is assured by quality control and test procedures patterned after MIL-S-19500 and MIL-STD-750. Long term performance stability is assured by NEC proprietary wafer selection and processing. The exceptionally high gain, associated with a very low noise figure, has made the NE244 the industry's standard. The NE244 offers the engineer the best in performance, reliability and quality.

NE PART NUMBER EIAJ ¹ REGISTERED NUMBER PACKAGE CODE			NE24400 Chip			NE24406 2SK85 06			NE24483 83		
SYMBOLS	OLS PARAMETERS AND CONDITIONS UNITS				MAX	MIN	ТҮР	MAX	MIN	түр	MAX
fmax	Maximum Frequency of Oscillation at V_{DS} =3V, I_{DS} =30mA	GHz		55			55			55	
MAG	Maximum Available Power Gain ² at V_{DS} =3V, I_{DS} =30mA (Typ. I_{DS} =50% I_{DSS}) f = 4 GHz f = 8 GHz f = 12 GHz	dB dB dB		17 12 10			17 11 9			17 11 9	
NF _{MIN}	Minimum Noise Figure ³ at $V_{DS}=3V$, $I_{DS}=10mA$ (Typ. $I_{DS}=15\%$ I_{DSS}) f = 4 GHz f = 8 GHz. f = 12 GHz	dB dB dB		1.4 2.5 3.5	3.5 ⁴		1.5 2.7 3.9	3.5		1.5 2.7 3.9	3.5
GNF	Associated Gain at NF at V_{DS} =3V, I_{DS} =10mA (Typ. I_{DS} =15% I_{DSS}) f = 4 GHz f = 8 GHz f = 12 GHz	dB dB dB	8.5 ⁴	13.5 10.5 7.0		8.5	13.0 10.0 6.5		8.5	13.0 10.0 6.5	
Ρουτ	Output Power at 1 dB Compression Point at V_{DS} =3V, I_{DS} =30mA (Typ. I_{DS} =50% I_{DSS}) f = 4 GHz f = 8 GHz	mW mW		10.0 7.1			10.0 7.1			10.0 7.1	-

SEE NOTES ON BACK PAGE

Nippon Electric Co. Ltd.

ELECTRICAL CHARACTERISTICS (Ta=25°C)

NE PART NUMBER EIAJ ¹ REGISTERED NUMBER				NE244	00	NE24406 2SK85			NE24483		
	PACKAGE CODE			Chip			06		83		
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX
IDSS	Drain Current at V _{DS} =3V, V _{GS} =0	mA	30	60	100	30	60	100	30	60	100
Vp	Pinch-off Voltage at V _{DS} =3V, I _{DS} =0.1mA	V	-1.5	-4.0		-1.5	-4.0		-1.5	-4.0	
9 _m	Transconductance at V _{DS} =3V, I _{DS} =10mA	Ωm	15	20	100	15	20	100	15	20	100
I _{GS}	Gate to Source Leakage Current at V_{GS} =-5V	μА		0.1	1.0		0.1	1.0	i	0.1	1.0
R _{th}	Thermal Resistance (C-A)	°C/W			170 ⁵			260	1		400
PT	Total Power Dissipation	mW			500			500			300

SEE NOTES ON BACK PAGE

All DC tests performed per MIL-STD-750

ABSOLUTE MAXIMUM RATINGS(T_a=25C)

PARAMETER	SYMBOL	RATINGS	UNITS
Drain to Source Voltage	V _{DS}	5.0	V
Gate to Source Voltage	V _{GS}	-10.0	V
Drain Current	I _{DS}	100	mA
Channel Temperature	, T _{ch}	175	°C
Storage Temperature	T _{stg}	-65 ~ +175	°C

RELIABILITY SCREENING (HES-32325-02, MIL-STD-750)

GRADE D (Industrial) 200-1200 Failures in 10° Device Hours (FIT)	GRADE C (Military) 50-300 Failures in 10 ⁹ Device Hours (FIT)
100% DC Wafer Probe	100% DC Wafer Probe
Pre-Cap Inspection	100% Pre-Cap Inspection
(Sample basis)	100% Vacuum Bake
100% Gross Leak Test	(150°C - 1 hr)
100% Mechanical Shock Test	100% Gross Leak Test
100% Group A Tests	100% High Temperature
	Storage (125°C - 24 hrs)
	100% Environmental Tests
	(Heat Cycle, Shock,
	Vibration, Centrifuge)
	100% Power Burn-in at
	P _c max (T _{ch} =125°C,
(Tests may vary depending	T _a =100°C - 168 hrs)
upon package style.)	100% Group A Tests

DEVICE CHARACTERISTICS

NE244, LOW NOISE X-BAND GaAs FET

PHYSICAL DIMENSIONS

PERFORMANCE CHARACTERISTICS (Cont'd)

TYPICAL GAIN VS. DRAIN CURRENT RATIO FOR THE NE24406 AND NE24483 AT 8.0 GHz

TYPICAL NOISE FIGURE AND ASSOCIATED GAIN VS. DRAIN CURRENT RATIO FOR THE NE24406 AND NE24483 AT 4.0 GHz

TYPICAL NOISE FIGURE AND ASSOCIATED GAIN VS. DRAIN CURRENT RATIO FOR THE NE24406 AND NE24483 AT 1.9 GHz

TYPICAL NOISE FIGURE AND ASSOCIATED GAIN VS. DRAIN CURRENT RATIO FOR THE NE24406 AND NE24483 AT 8.0 GHz

NE24483, LOW NOISE X-BAND GaAs FET

NE24483 COMMON SOURCE SCATTERING PARAMETERS

 $\begin{array}{c} Coordinates \ in \ Ohms \\ Frequency \ in \ GHz \\ (V_{DS}^{=3V}, I_{DS}^{=30mA}, Z_{OUT}^{=50\Omega}) \end{array}$

S-MAGN AND ANGLES

VDS=3V, IDS=10mA -					······································		······································	
FREQUENCY (MHz)	s	11	S2	1	St	12	S	22
2000 3000 4000 5000 7000 8000 9000 10000 11000 12000	.950 .872 .891 .888 .805 .757 .747 .693 .644 .533 .470	-39 -58 -93 -108 -121 -131 -139 -143 -158 171	1.795 1.684 1.628 1.547 1.404 1.200 1.048 0.977 0.963 1.041 1.195	143 128 110 95 78 66 57 48 49 38 19	.024 .032 .039 .041 .050 .043 .039 .026 .027 .038 .045	63 56 45 21 23 20 -10 62 60 52	.812 .768 .796 .831 .805 .776 .808 .792 .831 .837 .811	-23 -34 -49 -59 -69 -80 -88 -91 -91 -92 -100
V _{DS} =3V, I _{DS} =30mA						1		
2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000	.947 .866 .888 .870 .797 .748 .734 .662 .608 .482 .438	-41 -61 -82 -98 -114 -126 -137 -145 -150 -169 158	2.028 1.892 1.824 1.711 1.552 1.316 1.154 1.055 1.055 1.054 1.121 1.286	142 128 110 94 78 65 56 48 47 37 18	.015 .018 .021 .028 .024 .021 .020 .014 .046 .063 .078	66 64 69 52 52 62 73 96 125 113 100	.799 .760 .791 .832 .808 .776 .805 .806 .840 .859 .858	-23 -33 -46 -57 -66 -78 -86 -89 -89 -89 -89 -97

APPENDIX A

S-PARAMETERS DESIGN EQUATIONS

<u>FIG.A1</u>: 2-Port Embedded in a line of impedance Z_{o}

Total Voltage and Current Related to Travelling waves:

¥,	*	Ē	*	É,	
۷2		Ē ₁₂		E	2
1		(E ₁₁	• Ē	")	/Zo
12	**	(E12	- Ē	22)	/ ₹。

Power Related to Travelling

wavest

$$\mathbf{x}_{1} = \mathbf{E}_{11} / \sqrt{2},$$

$$\mathbf{x}_{2} = \mathbf{E}_{12} / \sqrt{2},$$

$$\mathbf{x}_{1} = \mathbf{E}_{11} / \sqrt{2},$$

$$\mathbf{x}_{2} = \mathbf{E}_{12} / \sqrt{2},$$

 $\begin{bmatrix} a^{2} & \text{represente incident power,} \\ b^{2} & \text{represents reflected power,} \\ \begin{bmatrix} b_{1} \\ b_{2} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \end{bmatrix} = Eqn.A1.$

2. Measurements:

 $\begin{array}{c|c} S_{11} &= \frac{b_1}{a_1} \\ \hline a_2 &= 0 & \text{is ratio of reflected to incident <u>Voltage</u> with output matched to 2 \\ \hline S_{12} &= \frac{b_1}{a_2} \\ \hline a_1 &= 0 &= \text{ reverse transmission with input matched.} \\ \hline S_{21} &= \frac{b_2}{a_1} \\ \hline a_2 &= 0 \\ \hline s \\ \hline$

- 2 -

The measurement is easily performed on an instrument (such as the H-P vector voltmeter) which measures both amplitude and phase of a signal withrespect to a reference.

3. Signal flow grapher The 2-port in equation A1 is represented in

Fig.A2a - 2-port

fig.2b-Generator

Fig.2c-2-port with Generator and load.

For the Generator: Power delivered into Z from a generator of impedance Z is V_{3}^{2} $(Z_{3}+Z_{3})^{1}$ $Z \equiv b_{3}^{2}$

Flow chart (2b) indicates $a = b_s + b \Gamma_s$; where $\Gamma_s = (Z_s - Z_c) / (Z_s + Z_s)$ is the voltage reflection coefficient of the source.

4. Mason's Rule:

L (1) = First order Loop = Product of paths encountered starting from a rode and returning to it. L (2) = Second order Loop = Produce of any two non-touching

first order loops. L (3) - Third order Loop - Product of any three non-touching

L (1)'s.

T = ratio of a dependent (Eg. b_2) to an independent (Eg. b_3) variable.

$$T = \frac{P_{1}}{\Delta} \left[1 - \xi L_{1}(1) + \xi L_{1}(2) - \xi L_{1}(3) \dots \right] + \frac{P_{2}}{\Delta} \left[1 - \xi L_{2}(1) + \dots \right] - Eqn. A2. + \frac{P_{1}}{\Delta} \left[1 - \xi L_{1}(1) \dots \right] - \frac{1}{2} -$$

Where P. - Path'i'from dependent to independent variable.

$$\leq L_{i} (j) = \text{Sum of jth order loops not touching. P_{i}
$$\Delta = \begin{bmatrix} 1 - L(1) + L(2) - \cdots \end{bmatrix}$$

$$\leq L_{i} = \text{Sum of all jth order loops.}$$

$$b_{s} = \int_{s} \frac{1}{\Gamma_{s}} \int_{$$$$

Fig. 14 Methed Generator.

Pave Power evailable from source = Power delivered under matched $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \begin{vmatrix} a_1 \end{vmatrix}^2 = \frac{\begin{vmatrix} b_2 \end{vmatrix}^2}{1 - \begin{vmatrix} a_2 \end{vmatrix}} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \begin{vmatrix} a_1 \end{vmatrix}^2 = \frac{\begin{vmatrix} b_2 \end{vmatrix}^2}{1 - \begin{vmatrix} a_2 \end{vmatrix}} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \begin{vmatrix} a_1 \end{vmatrix}^2 = \frac{\begin{vmatrix} b_2 \end{vmatrix}^2}{1 - \begin{vmatrix} a_2 \end{vmatrix}} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \begin{vmatrix} a_1 \end{vmatrix}^2 = \frac{\begin{vmatrix} b_2 \end{vmatrix}^2}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \begin{vmatrix} a_1 \end{vmatrix}^2 = \frac{\begin{vmatrix} b_2 \end{vmatrix}^2}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \begin{vmatrix} a_1 \end{vmatrix}^2 = \frac{\begin{vmatrix} b_2 \end{vmatrix}^2}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \begin{vmatrix} a_1 \end{vmatrix}^2 = \frac{\begin{vmatrix} b_2 \end{vmatrix}^2}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2} since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2 since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2 since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2 since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2 since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2 since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2 since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2 since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2 since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2 since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2 since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2 since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2 since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2 since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2 since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2 since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2 since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2 since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 - \frac{1}{1 - \begin{vmatrix} a_2 \end{vmatrix}^2 since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 since$ $= \begin{vmatrix} b_1 \end{vmatrix}^2 sinc$

Power delivered to load = $Pdel = |a_2|^2 - |b_2|^2$ G_T = Transducer power gain = $Pdel/Paws = \frac{b_2^2 (1 - |\Gamma_L|^2)}{|b_s|^2 / (1 - |\Gamma_S|^2)}$ Heson's rule applied to Fig. 2c now gives:

$$\frac{s_{2}}{s_{2}} = \frac{s_{21}}{1 - s_{11}\Gamma_{2}^{2} + s_{22}\Gamma_{2}^{2} - s_{21}s_{12}\Gamma_{2}^{2}\Gamma_{1}^{2} + s_{11}s_{22}\Gamma_{5}^{2}\Gamma_{1}^{2}}$$
hence $s_{T} = \frac{|s_{21}|^{2}(1 - |\Gamma_{3}|^{2})}{(1 - |\Gamma_{3}|^{2})} + (1 - |\Gamma_{1}^{2})^{2}$
 $(1 - |\Gamma_{3}|^{2}) = (1 - s_{22}\Gamma_{1}^{2}) - s_{21}s_{12}\Gamma_{3}^{2}\Gamma_{1}^{2} = Eqn.A3.$

Stability: A network baving positive real (p.r.) Z_{in} and Z_{out} for all p.r. sources and loads, is absolutely stable. Otherwise it is conditionally stable. (Both definitions are for a specific frequency.). The Smith chart interior represents p.r. impedances, with $|\Gamma_s|$ and $|\Gamma_L| \leq 1$. Thus absolute stability implies $|\Gamma_i N|$, $|\Gamma_{out}| \leq 1$ 1 for sources and loads in the chart imperior.

From Fig. A2c and Eqn. A2,

$$\int_{a_1}^{a_1} = S_{11} + \frac{S_{21} \frac{S_{12} \Gamma_L}{1 - S_{22} \Gamma_L}}{1 - S_{22} \Gamma_L}$$
(a)
$$\int_{a_1}^{a_2} = \frac{\delta_2}{\delta_2} + \frac{S_{21} S_{12} \frac{\Gamma_L}{\delta_1}}{1 - S_{11} \Gamma_a}$$

The boundary $|\Gamma_{in}| = 1$ has $|\Gamma_{in}| > 1$ on one side, < 1 on the other ; i.e. it partitions the <u>output</u> impedance plane into stable and unstable regions (i.e. values of Γ_{L} in the unstable region cause $|\Gamma_{in} > |$). Putting $|S_{il} + \frac{S_{2l} S_{l2} \Gamma_{L}}{1 - S_{22} \Gamma_{L}}| = 1$ in Eqn. A4a gives a circle of centre $C_{0} = S_{22} - dS_{11}^{0} + \frac{S_{22} S_{22} \Gamma_{L}}{|S_{22}|^{2} - d^{2}}$

where $d = (S_{11} S_{22} - S_{21} S_{12})$; Subscript 's' for subput. i for input Eqn. A4b gives expressions with \prod replaced by \prod s and S_{22} by S_{11} . For the input stability circle, C_1 and f_1 .

To find which side of the boundary is stable say, for the input plane; put $\int_{S} = 0$, which corresponds to the Smith chart centre, and causes $\int_{OUT} = S_{22}$ (Eqn. A4b). The region in which the centre lies is then stable if $S_{22} < 1$ and unstable if $S_{22} > 1$.

Stability Factor K:
Where
$$d = (S_{11} | S_{22} - S_{21} | S_{12})^2$$

Where $d = (S_{11} | S_{22} - S_{21} | S_{12})$

- (1) for a unilateral device, K = 🗢
- (ii) for an absolutely stable device, K > 1, and the stability circle lies entirely outside the p.r. part of the Smith chart. Conjugate matching for maximum transducer gain is possible.
- (iii) K < 1 means that there are p.r. impedances which can cause the device to oscillate. (Conjugate matching is undefined as the input impedance depends critically on the output load and vice versa). A stabilizing mismatch is necessary.

Graphically, stability is summarised in the following disgrams: Stability Circle in Output Plane

In each case, stable p.r. impedance regions are shaded. Similar conditions hold in the input plane with S_{22} replacing S_{11} .

Constant gain circles are loci of impedances resulting in constant transducer gain, from equation A3.

 $C_g = Contre of gain circle$

$$\begin{array}{rcl} radius & f_{g} = \left[1 - 2K \left| S_{21} S_{12} \right| 5 + \left| S_{12} S_{21} \right| 5^{2} \right]^{1/2} (1 + 0G)^{-1} \\ \text{Where} & 5 = \frac{desired sein}{S_{21}} & s = (-S_{12} S_{21} + S_{11} S_{22}) \\ & 5 = \left| S_{22} \right|^{2} - |d|^{2} \\ & 5 = S_{22} - dS_{11} \end{array}$$

2 - alement reactive matching:

In general for each configuration, there are 2 sets of reactances, but for one some special cases only distinct set exists

$$\mathbf{x}_{1} = \frac{\mathbf{x}_{1} \cdot \mathbf{R}_{0}}{\mathbf{R}_{0} - \mathbf{R}_{1}} \pm \left[\frac{\left(\frac{\mathbf{R}_{0} \cdot \mathbf{x}_{1}}{\mathbf{R}_{0} - \mathbf{R}_{1}} \right)^{2} - \mathbf{R}_{0} \cdot \frac{\left(\mathbf{x}_{1}^{2} + \mathbf{R}_{1}^{2} \right)}{\left(\mathbf{R}_{0} - \mathbf{R}_{1} \right)} \right]^{\frac{1}{2}}$$

 $\frac{X_2 = R_s \left(\frac{X_1 + X_L}{R_L} - \left(X_1 + X_s \right); \text{ for the first configuration.} \right)$

Reversing subscripts s and L gives the 2 sets of reactances for the second configuration.

These reactances are identical to those found by graphical means: (Eg. on the Smith Chart).

APPENDIX D

Ressuzementes

1. Gain and Return loss (echo)

Referring to Fig. B1 (overlesf)

Betector R is the reference channel, JdB- coupled to the forward main line; A is J dB - coupled to the input reflected wave, B is directly taken at the device output. The detector outputs are fed to Y-emis do log amplifiers and displayed as A/R, B/R in dB against frequency.

2. Noise:

Referring to Fig. B2, the top part of the diagram upto X, is used for automatic measurement by Noise, figure mater. The NF meter provides on output switched at 1 KHz between a gas tube noise source at equivalent temperature $T_{\rm H}$ and a reminter at standard temperature $T_{\rm g}$ corresponding outputs at X are \propto $\{T_{\rm H} + T_{\rm g}\}$ and $\{T_{\rm g} + T_{\rm B}\}$ where $T_{\rm g}$ = device equivalent noise temperature These are fed back to the meter, compared, and the N-F read of a calibrated scale. For more accurate manual measurements, $T_{\rm H}$ is injected from a calibrated noise diade, the output from X is further amplified, equare law detected to yield a voltage propartial to power, and measured on a 4 digit DVH. The variable attenuation keeps the power in the equare law region of the detector.

Noise diode has 5.76 dB excess noise, is. $T_{H} = 3.77 (300^{\circ}K) = 1131^{\circ}K$.

	Volt	lage	(w/)			Equivalent	device	Temp.	
	Source (sff	Source I	011	•		To	NF	(d8).
fzeq.	155 1	bV	475 m	¥			102.5	.	.29
	150	*	468 *		1		98.5	1.	.24
1400 MH2	. 180.	7	5:15				101.2	\$,	.27
	118.	B	366				99.5	1	.25

• 6 •

			din di secondo di se Secondo di secondo di se		2 1 1	ve je s	100
e de la composition a composition de la c		•	e a le e	· · · · ·			i Maria
	Voltage	(wY)		Equivalent	device	Temp.	
	iou see aff	Source on		TD	HIF.	(<i>d</i> B)	
	174 m¥	548		87.6	1.1		
*** 4.	174 m¥ 139 *	548 435		87.6 91.2	1.1		
⁷ 204. 1 380 Mile	174 eV 139 * 108 *	5418 435 314		87.6 91.2 89.3	1.1 1.1 1.1	1 3	

-

APPENDIX - C

Noise Representation in 2-Porter

Using the Ayquist relation for me quantities,

 $r_n^2 = 4 R_n k T_n M f$; where R_n is an equivalentmoi moise resistance at standard temperature $T_n^{\Delta} f$ is the band of interest.

and $\overline{l}_n^2 = 46_n k T_0 \Delta T$; $B_n = eq.$ noise conductance.

When the equivalent network is fed with a random noise current source $I_{0}(W)$ with internal impedance Y_{0} at temperature T_{0} , then noise output at A A⁺ is found as follows:

total short circuit output current = $I_s + I_n + Y_s E_s$, assuming the internal 2-port noise and the external I_s are uncorrected, equaring the fourter magnitudes, taking averages and using Paraeval's theorem;

total mean square fluctuation: $\frac{1}{3}^{2} + \frac{1}{n} + \frac{1}{3} = \frac{2}{n}$

where bar denotes time average. $|Y_{s}|^{2} \cdot \tilde{e}_{n}^{2}$ $= |\tilde{i}_{s}^{2}| + |\tilde{i}_{n}^{2}| + \frac{2\tilde{e}_{n}^{2}}{1} + \frac{2\tilde{e}_{n$

Noise figure = F = <u>Total output noise</u> Contribution due to Y alone.

$$\mathbf{E} = \frac{|\mathbf{i}_{g}^{2}| + |\mathbf{i}_{n} + \mathbf{Y}_{g}|^{2}}{\left|\mathbf{i}_{g}^{2}\right|} = 1 + \frac{|\mathbf{i}_{n} + \mathbf{Y}_{g}|^{2}}{\left|\mathbf{i}_{g}^{2}\right|} = \mathbf{E}_{qn} \cdot \mathbf{1}.$$

Eqn. (1) can be simplified if in is split into a component perfectly correlated with e_n and an uncorrelated component, i_u . Then $(i_n - i_u) \cdot i_u^* = 0$ at all frequencies. and $e_n \cdot i_u^* = 0$.

The correlated component, $\begin{pmatrix} i & i \\ u \end{pmatrix}$ may be expressed as $Y_r \cdot e_n$ where $Y_r = (G_r + jB_r)$ has the dimensions of admittance, $e_n i_n^*$ then is = $\mathbf{e}_n \left(\mathbf{i}_n - \mathbf{i}_u \right)^* = \mathbf{Y}_n^* \left| \mathbf{e}_n^2 \right|$ Putting $\left| \frac{e^{-2}}{n} \right| = 4R_{n}kT_{0}\Delta f$; $\left| \frac{1}{2} \right| = 4 G_{u}kT_{0}\Delta f$, $F = 1 + \frac{1}{4kT_{G}\Delta F} \left[\frac{1}{s_{u}}^{2} + \left| Y_{s} + Y_{s} \right|^{2} + \frac{1}{s_{u}}^{2} + \frac{1}{s_{u}$ $= 1 + \frac{6}{6} + \frac{8}{6} \left(\frac{6}{8} + \frac{6}{2} \right)^{2} + \left(\frac{1}{8} + \frac{1}{8} \right)^{2} \right)$ F has a minimum F_0 at $G_0 = \frac{G_u + R_n G_n}{R_n}; B_0 = -B_r$

and

F for any arbitrary $Y_s = (G_s + jB_s)$ is then $F = F_s + \frac{R_s}{G_s} \left[(G_s - G_s)^2 \pm (B_s - B_s)^2 \right]$ in terms of

the 4 parameters R_{p} , F_{p} G_{q} and B_{q} OR

equivalently in terms of

2

(complex, so 2 parameters)

REFERENCES:

\$ •	Microwaye Field Effect Transistors - 1976, C.A. Liechti. MTT-24 JUN 1976
2.	Optimal Noise Figure of Microwave Ga-As MESFETS, H. FUKUI.
A.	IEEE Trans. on Electron Devices ED - 26 JUL 1979.
3.	Determination of basic device parameters a Ga-As MESFET,
	H. FUKUI.
	Bell System Tech. Journal, Vol. 58. No. 3; MAR. 1979.
4.	The 600 MHz Noise Performance of 5a-As FETS at Room Temp-
	rature and below.
	Barrell M. Burns,
	National Rudio Astronomy Observatory, Green Bank West
	Virginia; Electronics Div. Internal Report No. 197, DEC 1978.
5.	Feedback Effects on the Noise Performance of GaAs MESFETS.
7 a	G.D. Vendelin,
	1975 Intl. Microwave Symp. Dig. Tech. papers.
6.	Effects of Source lead inductance on noise figure of GaAs fETS.
	Anastaesiou and Struct,
	Proc. IEEE Vol. <u>62</u> Mar. 1974.
7.	L-band Ga-As FET Amplifier.
	L. Nevin and R. Wong, Hewlett Packard Inc.,
	Niczowave Journel, APR. 1979.
8.	L-Band Cryogenic Ga-As FET amplifior, D.R. Williams,
	S. Veinreb,
	Radio Astron. Lab., U. of Calif at Berkeley.
· 9.	Low Noise 5 GHz cooled GamAs FET amplifier, S. Weinreb,
	National Radio Astron. Observatory.
10.	Representation of Noise in Linear 2-ports,
	IRE Subcommittee 7.9 on Noise, Proceedings IRE, 1960.
. 11.	Np application note No. 95, No. 154, 1973.
	n en

12. Miczowave Tzansmiss**ió**n line Impedance data, Gunston.

ACKNOWLEDGEMENT

I wish to express my gratitude to Prof. N.V.G. Sarma, K. Smiles Mascarenhas, R.S. Arora and others in the me wave laboratory, Reman Research Institute for guidance and encouragement during this project. Working with them has been a pleasure.

I would also like to thank Dr. R. Chetterjee and Dr Dr. A. Kumar of the Department of Electrical Communication, Indian Institute of Science.

The essistance of Miss. Geetha Bhaktavateala, Miss. R. Bhanumathy and K. Hanumappa in preparaing this report is greatly appreciated.

Vivek Dhawan.