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Synopsis

A rich variety of discs are found orbiting massive bodies in the universe. These could be

accretion discs composed of gas around stellar mass compact objects fueling micro-quasar

activity; protoplanetary discs, mainly composed of dust and gas, are the progenitors

for planet formation; accretion discs composed of stars and gas around super-massive

black holes at the centers of galaxies fueling the active galactic nuclei activity; discs in

spiral galaxies; and many more. Structural and kinematic properties of these discs in

several astrophysical systems are correlated to the global properties; for example, over

a sample of thousands of galaxies, a correlation has been found between lopsidedness,

black hole growth, and the presence of young stellar populations in the centers of galaxies.

Galaxy formation and evolution of the central BH are some of the contexts in which such

correlations become important. Studying the dynamics of these discs helps to explain

their structural properties and is thus of paramount importance.

In most astrophysical discs (a notable exception being the stellar discs in spiral galax-

ies), the dynamics are usually dominated by the gravity of the central object, and is thus

nearly Keplerian. However, there is a small contribution to the total force experienced

by the disc due to the disc material. Discs mentioned above differ from each other due

to different underlying force that dominates the non-Keplerian dynamics of these discs.

Two important numbers which are useful in describing physical properties of any disc

structure in astrophysics are: (1) Mach number M , and (2) Toomre Q parameter. If

thermal pressure gradient and/or random motion dominate the non-Keplerian forces,

then M ≪ Q, and in the case when the self-gravity of the disc is more important then

Q≪ M .

Particles constituting the disc orbit under Keplerian potential due to central object,

plus the small contribution from the non-Keplerian potential due to disc self-gravity,
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or the thermal pressure gradient. For a Keplerian potential, the radial and azimuthal

frequencies are in 1 : 1 ratio w.r.t. each other and hence there is no precession in

the orbits. In case of nearly Keplerian potential (when non-Keplerian contributions are

small), the orbits precess at a rate proportional to the non-Keplerian forces. It is this

non-zero but small precession that allows the existence of modes whose frequencies are

proportional to the precession rate. These modes are referred to as slow modes (Tremaine

2001). Such modes are likely to be the only large-scale or long-wavelength modes. The

damping they suffer due to viscosity, collisions, Landau damping, or other dissipative

processes is also relatively less. Hence, these modes can dominate the overall appearance

of discs. In this thesis we intend to study slow modes for nearly Keplerian discs. Slow

modes in near-Keplerian discs can to be the reason for various non-axisymmetric features

observed in many systems:

1. Galactic discs: Of the few galaxies for which the observations of galactic nuclei

exist, two galaxies: NGC4486B (an elliptical galaxy) and M31 (spiral galaxy), show

an unusual double-peak distribution of stars at their centers. In order to explain

such distributions, Tremaine in 1995 proposed an eccentric disc model for M31;

this model was then further explored by many authors. In addition, lopsidedness

is observed in many galaxies on larger scales, and such asymmetries need to be

explained via robust modeling of galactic discs.

2. Debris disc: Many of the observed discs show non-axisymmetric structures, such

as lopsided distribution in brightness of scattered light, warp, and clumps in the

disc around β Pictoris; spiral structure in HD 141569A, etc. Most of these features

have been attributed to the presence of planets, and in some cases planets have

also been detected. However, Jalali & Tremaine (2012) proposed that most of these

structures can be formed also due to slow (m = 1 or 2) modes.

3. Accretion Discs around stellar mass binaries have also been found to be asymmetric.

One plausible reason for this asymmetry can bem = 1 slow modes in these systems.

Slow modes are studied in detail in this thesis. The main approaches that we have used,

and the major conclusions from this work are as follows:
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• Slow pressure modes in thin accretion disc

Earlier work on slow modes assumed that the self-gravity of the disc dominates

the pressure gradient in the discs. However, this assumption is not valid for thin

and hot accretion discs around stellar mass compact objects. We begin our study

of slow modes with the analysis of modes in thin accretion discs around stellar

mass compact objects. First, the WKB analysis is used to prove the existence of

these modes. Next, we formulate the eigenvalue equation for the slow modes, which

turns out to be in the Sturm-Liouville form; thus all the eigenvalues are real. Real

eigenvalues imply that the disc is stable to these perturbations. We also discuss

the possible excitation mechanisms for these modes; for instance, excitation due

to the stream of matter from the secondary star that feeds the accretion disc, or

through the action of viscous forces.

• Slow modes in self-gravitating, zero-pressure fluid disc

We next generalize the study of slow m = 1 modes for a single self-gravitating

disc of Tremaine (2001) to a system of two self-gravitating counter–rotating, zero-

pressure fluid discs, where the disc particles interact via softened-gravity. Counter–

rotating streams of matter are susceptible to various instabilities. In particular,

Touma (2002) found unstable modes in counter–rotating, nearly Keplerian systems.

These modes were calculated analytically for a two-ring system, and numerically

for discs modeled assuming a multiple–ring system. Motivated by this, the corre-

sponding problem for continuous discs was studied by Sridhar & Saini (2010), who

proposed a simple model, with dynamics that could be studied largely analytically

in the local WKB approximation. Their work, however, had certain limitations;

they could construct eigenmodes only for η = 0 & 1/2, where η is the mass fraction

in the retrograde disc. They could only calculate eigenvalues but not the eigenfunc-

tions. To overcome the above mentioned limitations, we formulate and analyze the

full eigenvalue problem to understand the systematic behaviour of such systems.

Our general conclusions are as follows

1. The system is stable for m = 1 perturbations in the case of no-counter rota-

tion.

2. For other values of mass fraction η, the eigenvalues are generally complex,
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and the discs are unstable. For η = 1/2, the eigenvalues are imaginary, giving

purely growing modes.

3. The pattern speed appears to be non-negative for all values of η, with the

growth (or damping) rate being larger for larger values of pattern speed.

4. Perturbed surface density profile is generally lopsided, with an overall rotation

of the patterns as they evolve in time, with the pattern speed given by the

real part of the eigenvalue.

• Local WKB analysis for Keplerian stellar disc

We next turn to stellar discs, whose dynamics is richer than softened gravity discs.

Jalali & Tremaine (2012) derived the dispersion relation for short wavelength slow

modes for a single disc with Schwarzschild distribution function. In contrast to the

softened gravity discs (which have slow modes only for m = 1), stellar discs per-

mit slow modes for m ≥ 1. The dispersion relation derived by Jalali & Tremaine

makes it evident that all m ≥ 1 slow modes are neutrally stable. We study slow

modes for the case of two counter–rotating discs, each described by Schwarzschild

distribution function, and derive the dispersion relation for slow m ≥ 1 modes in

the local WKB limit and study the nature of the instabilities.

One of the important applications of the dispersion relation derived in this chap-

ter is the stability analysis of the modes. For fluid discs, it is well known that

the stability of m = 0 modes guarantees the stability of higher m modes; and

the stability criterion for such discs is the well known Toomre stability criterion.

However, this is not the case for collisionless discs. Even if the discs are stable

for axisymmetric modes, they can still be unstable for non-axisymmetric modes.

The stability of axisymmetric modes is governed by the Toomre stability criterion

The non-axisymmetric perturbations were found to be unstable if the mass in the

retrograde component of the disc is non-zero.

We next solve the dispersion relation using the Bohr-Sommerfeld quantization con-

dition to obtain the eigen-spectrum for a given unperturbed surface density profile

and velocity dispersion. We could obtain only the eigenvalues for no counter–

rotation η = 0, where η is the mass fraction in the retrograde disc and equal
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counter–rotation (η = 1/2). All the eigenvalues obtained were real for no counter–

rotation, and purely growing/damping for equal counter–rotation. The eigenvalue

trends that we get favour detection of high ω and low m modes observationally.

We also make a detailed comparison between the eigenvalues for m = 1 modes

that we obtain with those obtained after solving the integral eigenvalue problem

for the softened gravity discs for no counter–rotation and equal counter–rotation.

The match between the eigenvalues are quite good, confirming the assertion that

softened gravity discs can be reasonable surrogates for collisionless disc for m = 1

modes.

• Non-local WKB theory for eigenmodes

One major limitation of the above method is that eigenfunctions cannot be ob-

tained as directly as in quantum mechanics because the dispersion relation is tran-

scendental in radial wavenumber k. We overcome this difficulty by dropping the

assumption of locality of the relationship between perturbed self-gravity and sur-

face density. Using the standard WKB analysis and epicyclic theory, together with

the logarithmic-spiral decomposition of surface density and gravitational poten-

tial, we formulate an integral equation for determining both WKB eigenvalues and

eigenfunctions. The application of integral equation derived is not only restricted

to Keplerian disc; it could be used to study eigenmodes in galactic discs where

the motion of stars is not dominated by the potential due to a central black hole

(however we have not pursued the potential application in this thesis).

We first verify that the integral equation derived reduces to the well known WKB

dispersion relation under the local approximation. We next specialize to slow modes

in Keplerian discs. The following are some of the general conclusions of this work

1. We find that the integral equation for slow modes reduces to a symmetric

eigenvalue problem, implying that the eigenvalues are all real, and hence the

disc is stable.

2. All the non-singular eigenmodes we obtain are prograde, which implies that

the density waves generated will have the same sense of rotation as the disc,

albeit with a speed which is O(ε) compared to the the rotation speed of the

disc.
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3. Eigenvalue ω decreases as we go from m = 1 to 2. In addition, for a given ω,

the number of nodes for m = 1 are larger than those for m = 2.

4. The fastest pattern speed is a decreasing function of the heat in the disc.

Asymmetric features in various types of discs could be due to the presence of slow m = 1

or 2 modes. In the case of debris discs, these asymmetric features could also be due to

the presence of planets. Features due to the presence of slow modes or due to planets can

be distinguished from each other if the observations are made for a long enough time.

The double peak nucleus observed in galaxies like M31 and NGC4486B differ from each

other: stellar distribution in NGC4486B is symmetric w.r.t. its photocenter in contrast

to a lopsided distribution seen in M31. It is more likely that the double peak nucleus

in NGC4486B is due to m = 2 mode, rather than m = 1 mode as is the case for M31.

NGC4486B being an elliptical galaxy, it is possible that the excitation probability for

m = 2 mode is higher.
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Chapter 1
Introduction

1.1 Astrophysical discs

Discs orbiting massive bodies are found in many astrophysical systems:

• Protoplanetry discs were proposed by Kant and Laplace in the eighteenth century,

as progenitors for planet formation. These are largely composed of dust and gas.

Many such discs have been imaged using HST since 1995. These are understood

to be an essential part of the star–formation process.

• Accretion Discs composed of gas around stellar mass compact objects in binary

systems. In a sufficiently close binary system, when the more massive ‘primary’

star reaches the end of its life as a compact object, the low mass ‘secondary’ which

is still on the main sequence, can at some stage fill its Roche lobe (the critical

equipotential surface). It will then spill mass towards the compact object, which

in turn forms a disc around the compact object, owing to the angular momentum

carried by the infalling mass. Example: X-ray binaries, classical novae, dwarf novae

etc.

• Active Galactic Nuclei (AGN): It is widely accepted that most galaxies contain a

super-massive Black Hole (BH) at their center. Some of them are AGNs, whose

standard model includes a Black Hole (BH) surrounded by an accretion disc com-

posed of stars and gas. Such a disc provides the energy source, and allows the BH

to grow. The Doppler shift in spectral line due to orbital motion of gas in the disc

1
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allows the measurement of mass of central BH. AGNs represent a temporary phase

in the evolution history of a galaxy.

• Spiral Galaxies are disc galaxies containing a central BH, and a disc composed

of gas and stars. Their dynamics is governed by self gravity of the disc as well

as the Keplerian potential due to the BH, unlike accretion discs whose dynam-

ics are largely dominated by the central BH. Examples: Milky way, Andromeda

galaxy(M31) etc.

• Other astrophysical discs includes Planetary rings, equatorial rings around Be stars

and progenitors discs in Gamma Ray Bursts.

In general the discs introduced above differ from each other because of different underly-

ing force terms which dominate the non-Keplerian dynamics of the discs. Two important

numbers which are useful in describing physical properties of any disc structure in as-

trophysics are:

• Mach Number M is a dimensionless quantity defined as the ratio of fluid velocity

v to the sound speed in the medium cs:

M =
v

cs
. (1.1)

Mach number varies with the composition of the surrounding medium and also

with local conditions, especially temperature and pressure. The Mach number can

be used to determine if a flow can be treated as incompressible. If M is small, and

the flow is quasi-steady and isothermal, compressibility effects will be small and a

simplified incompressible flow model is applicable.

• Toomre Q parameter for a gas disc is defined as

Q ≡ csκ

πGΣd

, (1.2)

where κ is the radial frequency of a non-circular orbit, and Σd is the surface density

of unperturbed disc. The disc is stable to axisymmetric perturbations if and only if

Q > 1, which was first derived by Toomre (1964). He also offered a simple physical

interpretation of this criterion: If we perturb a patch on a uniformly rotating disc,

patches of smaller radii are stable against inward gravitational pull by pressure
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forces acting outward, whereas larger patches are stable due to outward centrifugal

forces. Instabilities for intermediate size perturbations can be suppressed if the

perturbed disc follows the Toomre’s stability criterion.

Discs for which self-gravity of the disc is more important than thermal pressure gradient

and random motion, we have M ≫ Q (a continuous disc), or M ≫ 1 (a collisionless disc)

(Tremaine, 2001). However, for the case of accretion discs around stellar mass compact

objects, for example accretion discs around white dwarfs, one estimates M ∼ 50 and

Q ∼ 109 which means M ≪ Q (Frank et al., 2002). Therefore, for these discs the

non-Keplerian motion results due to thermal pressure gradient.

Particles of the disc orbit under Keplerian potential due to central object plus small

contribution from non-Keplerian potential due to disc self-gravity or the gradient of

thermal pressure. For a Keplerian potential, the radial and azimuthal frequencies are in

1 : 1 resonance w.r.t. each other and hence the orbits do not precess. In case of nearly

Keplerian potential (with a small non-Keplerian contribution), the orbits precess at the

rate proportional to the non-Keplerian component of the potential. It is this non-zero

but small precession rate which allows the existence of modes whose frequencies are

proportional to the precession rate itself. These modes are referred to as slow modes

(Tremaine, 2001). These modes are likely to be the only large-scale or long-wavelength

modes present in nearly Keplerian discs. They also suffer relatively less damping due

to viscosity, collisions, Landau damping or other dissipative processes. Hence these can

dominate the overall appearance of the disc. In this thesis we intend to study slow modes

for various astrophysical discs

Structural and kinematic properties of many astrophysical systems are correlated

to the global properties of the system. For example: over a sample of thousands of

galaxies, a correlation has been found between the lopsidedness, BH growth, and the

presence of young stellar populations in the center of a galaxy (Reichard et al., 2009).

There is a tight correlation between the central BH mass and velocity dispersion in

elliptical galaxies/spiral galaxy bulges (Gebhardt et al., 2000; Ferrarese & Merritt, 2000),

BH mass and stellar mass of the surrounding spheroid or bulge (Häring & Rix, 2004).

Luminous hot galaxies are found to have cuspy cores whose intensity profile can be

explained as a steep outer power law and a shallow inner profiles in contrast to faint hot

galaxies which shows steep single power law and lack cores. Core galaxies rotate slowly

and tend to be boxy whereas power-law galaxies are disky and rotate fast (Gebhardt
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Figure 1.1: Two images of M31; left panel is full image of the spiral M31 (Credit: T.

Rector and B. Wolpa (NOAO/AURO/NSF)) and the right one is image of central few

arcsec with scale and directions mentioned on the image (Lauer et al., 1998). Double

peak structure is clearly revealed in second image.

et al., 1996). Galaxy formation and evolution of central BH are some of the scenarios

in which such correlations become important. Studying dynamics of such systems helps

largely in explaining structural properties of discs. In the next section we shall give

some observational features of discs which could possibly result due to these modes in

near-Keplerian discs.

1.2 Non-axisymmetric features in discs:

• Discs in Galactic Nuclei: Observations of galactic nuclei are limited largely

by the resolutions of present telescopes. Out of a few galaxies for which such

observations are known, two galaxies: NGC4486B (in the Virgo cluster) and M31

(closest neighbour to our galaxy), show an unusual double peak distribution of

stars in their nuclei as can be seen in Figure 1.1 and 1.2.

Double nucleus observed in both the galaxies and their ambient galaxies have subtle

differences. Both M31 and NGC4486B are different morphologically; M31 is a spiral

galaxy whereas NGC4486B is an elliptical galaxy. Physical separation of peak in

NGC4486B is 5− 7 times larger than that of M31. Both the peaks in NGC4486B

are at similar distances from photocenter in contrast with M31 for which the fainter

peak is within 0.05
′′

of the photocenter. Central surface brightness and peaks are
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Figure 1.2: Image of NGC4486B (Credit: Karl Gebhardt (University of Michigan), Tod

Lauer (NOAO), and NASA). Dimensions of left panel is 2.7 arcsec in sky and right panel

is a blow-up of central 0.5 arcsec. Two brightness peaks comes out distinctively in the

images.

more closely matched in NGC4486B as compared to M31. Bulge and nucleus in

M31 are distinct components but surface brightness profile in NGC4486B shows

no evidence of a distinct nucleus.

Observation of double peak nucleus in two morphologically different galaxies urges

the need of a robust theoretical modeling for the nucleus in which this feature

comes out naturally. Most promising model to explain such stellar distributions is

an eccentric disc model proposed by Tremaine (1995), which is further explored in

Bacon et al. (2001); Salow & Statler (2001); Sambhus & Sridhar (2002); Peiris &

Tremaine (2003); Jalali & Tremaine (2012); Kazandjian & Touma (2013); Brown

& Magorrian (2013) for M31. Also lopsidedness is observed in many galaxies at

larger scales, and such asymmetries needs to be explained via robust modeling of

galactic discs.

• Debris discs: Planetesimal discs detected through the thermal infrared emission

or scattered star light by the dust component of the disc are called debris discs.

Many of these discs are observed to be showing non-axisymmetric structures. For

example: lopsided brightness distribution of scattered light, warp and clumps in

the disc around β Pictoris, which is the second brightest star in the constellation

Pictor (Heap et al., 2000; Telesco et al., 2000); spiral structure in HD 141569A

(Clampin et al., 2003); clumpy rings in Vega (Marsh et al., 2006) and many more.
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Most of these features are attributed to the presence of planets. In fact planets

are also detected in some cases. However, Jalali & Tremaine (2012) proposed that

most of these structures can also form due to slow m = 1 or 2 modes. Both

these hypotheses can be distinguished from each other if motion of these features

is followed for long time. For instance, features associated with slow modes will

rotate with the disc at slower angular speeds whereas the ones due to presence of

a planet will be rotating with the disc at same angular speed as that of the disc

itself.

• Other Discs: Accretion discs in stellar mass binaries are also found to be asym-

metric (for example see Mason et al. (2000)). One of the plausible reasons for such

asymmetries can be m = 1 slow modes.

1.3 Motivation and plan of the thesis

• Chapter 2: Various types of discs present in astrophysical systems differ from each

other in different ways, for instance; their composition, formation mechanism, etc.

Dynamically these discs can be distinguished based on which force term dominates

the non-Keplerian potential in the disc. The non-Keplerian potential is dominated

by pressure gradient or self-gravity depending on if M /Q is less than or greater

than unity respectively. Slow modes are studied in detail in Tremaine (2001) for a

gas disc. In this paper he assumes that the self-gravity of the disc dominates pres-

sure gradient (i.e, M /Q≫ 1). However his analysis is not valid for thin accretion

discs around stellar mass compact objects like white dwarfs and neutron stars, for

which the pressure gradient is more important (i.e., M /Q≪ 1). In Chapter 2 we

study large scale m = 1 slow modes in thin accretion discs, where Q≫ M ≫ 1.

• Chapter 3: We next study the cases where the disc self-gravity dominates. In

Chapter 3, we study slow m = 1 modes in counter-rotating discs, where the disc

particles interact via softened-gravity. Of particular interest to this work is the

model of Sambhus & Sridhar (2002), which included a few per cent of stars on

retrograde (i.e. counter–rotating) orbits in a prograde disc orbiting a central BH

to explain the lopsided stellar distribution in the nuclei of M31. Such retrograde

orbits could be a result of infall of debris into the center of the galaxies. They

proposed that these stars could have been accreted to the center of M31 in the form
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of a globular cluster that spiraled-in due to the dynamical friction. For the infalling

mass in galactic nuclei, the sense of rotation will be uncorrelated with respect to the

pre-existing material. Thus in the course of evolution of a galaxy, it is probable that

counter–rotating systems are generic. Recent simulations by Nixon et al. (2012)

show breaking of disc in the vicinity of rapidly rotating central massive object, and

hence generically forming counter–rotating discs. Such counter–rotating streams

of matter are also thought to be helpful in feeding massive BHs at center of many

galaxies.

Counter–rotating streams of matter in a self–gravitating disc are known to be un-

stable (Zang & Hohl, 1978; Araki, 1987; Sawamura, 1988; Merritt & Stiavelli, 1990;

Palmer & Papaloizou, 1990; Sellwood & Merritt, 1994; Lovelace et al., 1997). The

dynamics of galactic nuclei involve nearly Keplerian systems of stars or other colli-

sionless matter (Rauch & Tremaine, 1996; Sridhar & Touma, 1999; Sridhar et al.,

1999; Tremaine, 2001; Touma et al., 2009), and these are susceptible to various

instabilities (Touma, 2002; Tremaine, 2005; Polyachenko et al., 2008; Sridhar &

Saini, 2010). In particular Touma (2002) considered the linearized secular dynam-

ics of particles orbiting a point mass, where particle orbits may be thought of as

slowly deforming elliptical rings of small eccentricities. Pertinent to his work is

the work of Tremaine (2001), who used softened gravity to understand slow modes

of Keplerian discs. It is proposed by Tremaine (1995) that these eccentric modes

are responsible for the lopsidedness of the nucleus of M31. Touma (2002) con-

structed unstable modes in counter–rotating nearly Keplerian systems. Modes are

constructed analytically for a two-ring system and numerically for discs modeled

via multiple–ring system. He demonstrated that a Keplerian axisymmetric disc is

susceptible to a linear lopsided instability, even when only a small fraction of disc

mass is in retrograde motion. Although he was able to handle counter–rotating

hot Keplerian discs, he emphasized the need of considering a more accurate model

of the disc.

Motivated by this, the corresponding problem for continuous discs was studied by

Sridhar & Saini (2010), who proposed a simple model, with dynamics that could be

studied largely analytically in the Wentzel–Kramers–Brillouin (WKB) approxima-

tion (see § 1.5). Their model consisted of a two–component zero pressure fluid disc
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where the disc particles interact via softened gravity1 (explained in § 1.6), orbiting
a massive central black hole. They used a short–wavelength (WKB) approxima-

tion, derived an analytical expression for the dispersion relation, and showed that

the eigenfrequency ω is smaller than the Keplerian orbital frequency by a factor

proportional to ε =Md/M ≪ 1 (which is the ratio of the disc mass to mass of the

central object); in other words, the modes are slow. The WKB dispersion relation

was used to argue that equal mass counter–rotating discs with the same surface

density profiles (i.e. when there is no net rotation) could have unstable modes. It

was also argued that for an arbitrary mass ratio, the discs must be unrealistically

hot to avoid an instability. Further, they used Bohr–Sommerfeld quantization to

construct global modes within the WKB approximation. Some of the limitations

of Sridhar & Saini (2010) were:

⊛ Wavelengths of modes could be the same order as the scale length of the discs;

therefore the WKB approximation may only be marginally valid.

⊛ They could construct (WKB) global modes only for equal mass counter–rotating

discs.

⊛ Their analysis gives only the growth rate of the modes and the could not infer

the nature of wavefunctions due to the transcendental nature of the dispersion

relation.

⊛ Softened gravity discs can only supportm = 1 modes (wherem is the azimuthal

wavenumber).

⊛ Although softened gravity discs serve as a substitute for hot collisionless stellar

discs, it is still a debatable approximation as far as robust modeling of stellar

discs is concerned.

Therefore it is necessary to address the full eigenvalue problem to understand the

systematic behaviour of such systems. We formulate and numerically solve the

integral eigenvalue problem for slow m = 1 modes in a nearly Keplerian, softened

gravity, counter–rotating, zero pressure fluid discs in Chapter 3. With this we still

could not address the following issues:

1In rest of the thesis we refer these discs as softened gravity discs
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⊛ We restricted ourself to softened-gravity discs, which support only m = 1

modes.

⊛ We treated the random motions in the discs by simplistic approach of softened–

gravity potential in this chapter.

Both these approximations were a part of our analysis, and while having limitations,

we shall see in later chapters that it is in fact not a bad approximation, and gives

us a good picture of the physics of the problem that compares well with a more

accurate but more involved treatment of the problem. In this chapter we aim to:

√
Formulate and solve a coupled integral eigenvalue equation and use the WKB–

approximation to compare the nature of solutions qualitatively.
√

Construct global modes for an arbitrary mass fraction in counter–rotating discs.

√
Calculate both the eigenvalues and the eigenfunctions.

• Chapter 4—6: Although (as will be explained in Chapter 3) the above model

gives a reasonable realization of expected features in galactic nuclei of M31, it

seems necessary to formulate the problem for a more realistic disc to overcome

its limitations. Rather than softened-gravity disc, we next consider a collisionless

disc. Motivation behind considering collisionless discs are: (1) Softened gravity

disc considered in Ch. 3 only supports slow m = 1 modes. It was urgued by Jalali

& Tremaine (2012) using the WKB-analysis that collisionless discs support modes

with azimuthal wavenumber other than unity. However they focus largely on the

properties of m = 1 modes. Higher m modes form an important new class of slow

modes. For instance, m = 2 perturbations give rise to bar instabilities, which is

an intrinsic feature of several spiral galaxies. (2) Softened–gravity prescription for

potential, after all, gives an approximate behaviour of a realistic collisionless disc,

which needs to be tested against this more accurate formulation. To this end, we

formulate and study the above problem for collisionless discs, in which stellar orbits

follows epicycles— which we describe in § 1.7—in Chapters 4—6:

– In Ch. 4 we derive and analyze the WKB–dispersion relation for a collisionless

self gravitating system of counter–rotating discs.

– In Ch. 5 we derive an integral equation for collisionless system for non-local

tightly-wound eigenmodes. We shall also give the local WKB-solution of the
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integral equation derived.

– In Ch. 6 we begin with reducing the integral equation derived in Ch. 5 to

an integral eigenvalue problem for slow modes. Then we solve the eigenvalue

equation numerically for a given unperturbed surface density profile and dis-

cuss the results obtained.

Analysis done in these chapters overcomes most of the limitations of earlier works,

and improves it by:

√
We use collisionless discs whose dynamics is governed by the potential of the

central object (BH or star) and self–gravity of the disc, which is a more

accurate description of galactic nuclei/debris discs.
√

We construct slow modes for all values of m.
√

We formulate and solve of both the WKB–dispersion relation and integral

equation.
√

We can obtain both eigenvalues and eigenfunctions.

Simulations involving linear perturbations in near Keplerian collisionless discs have

been performed by Jalali & Tremaine (2012) using finite element method. We shall

make a comparison with it in the relevant chapters.

• Chapter 7: Lastly, in Chapter 7, we offer some conclusions and discussions of the

results obtained in this thesis, along with some of the unanswered questions and

future directions.

Before we begin with the detailed study of problems that we aim to address in this

thesis, we would like to discuss some basic equations and techniques/concepts which will

be used in the due course of this thesis. We shall first describe basic equations used in

this thesis in § 1.4 and then in § 1.5 we explain WKB–approximation. We explain the

basis of a softened–gravity potential in § 1.6. An account of epicyclic orbits is given in

§ 1.7.

1.4 Basic equations

Ideally all systems can be regarded as a collection of particles, however small (like atoms

or molecules of air in a room) or large (as stars in a galaxy) be the size of a particle. For
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such systems we can define a Distribution Function (DF) f(x,v, t) in the phase-space,

which gives the particle number density in six-dimensional space (x,v) at time t. For

an electrically neutral medium, the time evolution of the DF is given by the Boltzmann

Equation. In this thesis, we are interested in studying accretion discs around stellar mass

compact objects (Chapter 2) and galactic/debris discs around a supermassive BH/stars

(Chapter 3–6). In general, Boltzmann equation is applicable to both the systems, how-

ever using this would lead to tedious mathematics, which can be avoided if we use fluid

equations which are valid for continuous medium (gas in our case).

Collisionless Boltzmann Equation:

It is a well established fact that collisions play an important role in attaining

thermodynamic equilibrium in any physical system. But in certain systems like

stellar component of galaxies, collisions are not important as can be seen from

the following estimates. In case of stars in a galaxy, two body relaxation time

t2body is the measure of time for collisional relaxation of star due to gravitational

perturbations from other stars, which can be estimated as:

t2body = n2body tcross,

where n2body ∼ 0.1N / lnN are the number of crossings required for stellar velocity

to change by order of itself, tcross is the stellar crossing time and N is the number

of stars in a galaxy (Binney & Tremaine, 2008). Galaxies typically have N ≃ 1011,

and are few crossing times old, implying that the relaxation time is several orders

of magnitude larger than the age of the universe. Although, for stellar systems

around massive BH in galactic nuclei, t2body can be longer than the age of the

universe, but resonant relaxation times (Binney & Tremaine, 2008) can be shorter

and relevant for the long-term evolution of the system. For times shorter than

these, the stellar system can be assumed to be collisionless. Thus the DF obeys

the collisionless Boltzmann equation (CBE):

df

dt
= 0, (1.3)

where d/dt is the Lagrangian or convective derivative.
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Hydrodynamics:

We give the basic equations which determines the dynamical behaviour of non-

viscous fluid (Ideal fluid):

Continuity equation: In a nutshell continuity equation is a mathematical represen-

tation of conservation of mass and can be stated as

∂ρ

∂t
+∇.(ρv) = 0, (1.4)

here ρ is mass density, and v is the velocity field.

Euler equation: is an equation for momentum conservation for non-viscous fluid;

∂v

∂t
+ (v.∇)v = −1

ρ
∇p+ F, (1.5)

where p is the fluid pressure, and F is the external force per unit mass. Pressure

is isotropic since we are only dealing with ideal fluids. The corresponding equation

for viscid fluids is known as Navier–stokes equation. We do not intend to discuss

it here, since we only deal with non–viscous fluids in this thesis.

These form a set of four equations, however we have five variables (ρ, three compo-

nents of velocity v, and p) and hence we need one more evolution equation to close

the loop, which is the energy conservation, giving how temperature evolves with

time. However, for a certain class of fluids such as Barotropic fluids the equation

of state takes the form

p = p(ρ). (1.6)

which gives the fifth equation and we need not consider the full energy conserva-

tion equation. These five equations with appropriate boundary conditions form a

complete set of equations for ideal fluids. We shall be using this in our analysis

in Chapter 2. Another example of such fluids under which energy conservation

renders unimportant are incompressible fluids.

In accretion discs around stellar mass compact objects accreting matter, like most

of the material in the universe, are in gaseous form. Thus the constituent particles

interact directly via collisions, and thermodynamic equilibrium can be attained

by means of collisional relaxation. Also, number densities and the length scales

associated with them are large enough. Hence continuum model described above
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applies very well to accretion discs around stellar mass compact objects (Frank

et al., 2002), which we discuss in Chapter 2.

Poisson equation:

For a self–gravitating system Poisson equation relates mass density of the system

to the gravitational potential of the mass distribution. If the force F on a particle

is due to the gravitational pull of the rest of the system with mass density ρ then

F can be written as −∇Φ, where Φ denotes the gravitational potential. Poisson

equation relates the gravitational potential with density through

∇2Φ = 4πGρ. (1.7)

The above equation can also be written in integral form called the Poisson integral

given by

Φ(x) = −G
∫

d3x′ ρ(x′)

|x′ − x| . (1.8)

For this section refer to: Choudhuri (1998); Binney & Tremaine (2008); Feynman et al.

(1964-66)

1.5 WKB–approximation

Wentzel-Kramers-Brillouim(WKB)/Short wavelength/tight-winding or Quasi–classical

(as it is commonly known in quantum mechanics) approximation is an indispensable

tool for studying the properties of differentially rotating discs. We take a slightly dif-

ferent route to explain WKB-approximation. We first discuss it for quantum systems

and then apply it to disc dynamics. Consider the one dimensional (x say) Schrodinger

equation for a single particle of mass m,

~
2

2m

d 2Ψ

dx2
+ (E − U(x))Ψ = 0. (1.9)

Here E is the energy eigenvalue and U(x) is the potential. Substitute in this equation

the wave function of the form Ψ = exp(iΛ(x)/~), where Λ(x) is in general a complex

quantity. Then expand Λ as a series Λ = Λ0 + (~/i)Λ1 + (~/i)2Λ2 + . . . , in powers of ~.

Keeping terms to lowest order in ~, we get Λ = Λ0 = ±
∫
p dx, where p =

√

2m(E − U)
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is the classical momentum. The approximation made here is legitimate if |~Λ′′/Λ′2| ≪ 1

which implies, ∣
∣
∣
∣

d

dx
(λ/2π)

∣
∣
∣
∣
≪ 1, (1.10)

where the de-Broglie wavelength λ = 2π~/p. In words this condition implies that wave-

length of the particle must vary only slightly over distances of the order itself which is

termed as the Quasi-classical approximation.

Let us now move from here to discuss tight-winding/short-wavelength/WKB approx-

imation for density waves in differentially rotating discs which will lead us to a similar

condition as Eq. (1.10) . If we perturb a gravitating disc, perturbations in all parts of

the disc are coupled because gravity is a long range force, and the wave pattern must

be determined numerically. In early 1960s, authors like Kalnajs, Lin and Toomre noted

that for tightly wound density waves the coupling is negligible and such systems can

be studied locally using analytical techniques. Reason for this can be understood using

the following argument. Imagine a differentially rotating disc for which angular velocity

depends explicitly on radius, R, and paint a stripe on it radially outward from center at

time t = 0. As disc rotates the stripe tends to wind up and form a spiral pattern. After

sufficiently long time, the pattern is quite tightly wound. At this stage this pattern can

also be viewed as a rapidly oscillating wave as a function of radius R. In such a case the

contribution from the perturbed surface density to its corresponding potential from far

away regions cancel and only the local disturbances contribute.

The angle between the tangent to the spiral arm and circle ‘R = constant’ is called

Pitch angle, and is given by

cot(i) =

∣
∣
∣
∣

kR

m

∣
∣
∣
∣
, (1.11)

where k is radial wavenumber and m is azimuthal wavenumber. Tight-winding approx-

imation would imply that pitch angle is small, i.e. cot(i) ≫ 1 or |kR| ≫ m. In other

words, wavelength, which is proportional to 1/k, is much smaller than the radius itself.

This condition is same as the one derived in Eq. (1.10) . The one-to-one correspon-

dence derived here supports the analogy drawn with the quasi-classical approximation

used in quantum mechanics, and using the analogy the well known Bohr-Sommerfeld

quantization condition is used to quantize the wavemodes.

To get an idea of how well the approximation holds in spiral galaxies, typical pitch

angle for a spiral galaxy is between 10◦ − 15◦, which for two-armed spiral gives |kR| ≃
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7− 11. Thus WKB approximation is valid for most of the galaxies but only marginally.

For axisymmetric waves (m = 0) pitch angle is always zero that is cot(i) ≫ 1 and

hence these are always tightly wound but wavelength may not be small. In such case

approximation is valid if |kR| ≫ 1. Thus, interchanging terms “tightly-wound” and

“short-wavelength” should be done with caution. Also, for large values of azimuthal

wavenumber, even though wavelength might not be small, but still |kR| ∼ m can be

much greater than unity. In such cases this approximation is not valid. Having said

that we point out that the results obtained using WKB approximation give reasonable

match with exact solutions (as we shall also see in our calculations later in this thesis),

therefore, it is reasonable to view it as a qualitative tool to understand the behaviour of

waves in discs.

References for this section: Binney & Tremaine (2008), Landau & Lifshitz (1994)

1.6 Softened–gravity

Simplest description for gravitational potential between two gravitating bodies is the

Newtonian potential, which goes as R−1, where R is the distance between two masses.

While modeling such systems numerically, in situations of close encounters, potentials

would blow up. To avoid such computational glitches from such close encounters (i.e.

R → 0), Miller (1971) introduced a modified prescription for gravitational potential

which goes as (R2 + b2)−1/2, where b is called the softening length. Convenient way to

think about such potential is to imagine it in 3-dimension. Consider a particle moving

in z = 0 plane, then in this approximation the force on a test particle is measured b

distance above the plane, that is in the plane z = b.

In the context of waves in discs, it is well known that the softening length mimics the

epicyclic radius (epicyclic orbits are explained in § 1.7). Thus softened gravity discs can

serve as an analog to collisionless stellar discs, and are much easier handle analytically

and numerically as compared to stellar disc (Binney & Tremaine, 2008). Softening length

should be chosen to be sufficiently small so that potential tends to R−1 for values of its

argument larger than the softening length, but large enough to avoid singularities. Some

limits on softening length appropriate for our calculation will be discussed later in Chap-

ter 3 where we shall use softened gravitational potential. This shortcut has been happily
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adopted by the galactic dynamics community, which uses it to smoothen its way out of

costly close encounters, on one hand, and to better represent the collisionless dynamics

of their systems, on the other hand. However, as is evident from Tremaine (2001); Jalali

& Tremaine (2012), softened gravity can be a surrogate for collisionless discs only for

m = 1 slow modes. Softened gravity discs do not support m > 1 slow modes, whereas

collisionless discs do. This is investigated in more detail in Ch. 4 – 6 of this thesis.

References for this section: Miller (1971); Binney & Tremaine (2008)

1.7 The Schwarzschild distribution function

Consider an axisymmetric potential with z-axis as the axis of symmetry. It can be shown

that for such a potential, particle at any radial location R in the disc oscillates around

a mean radius as it revolves around the center (Binney & Tremaine, 2008). For most

of the astrophysical discs this mean radius is the radius of circular orbit for a given

angular momentum. Such near circular orbits are called Epicyclic orbits. Restricting the

motion in the the disc plane (z = 0), the phase-space coordinates (R, φ, vR, vφ) under

the epicyclic approximation are given by

R = Rg +X cos(κgt + ψ),

φ = φ0 + Ωgt−
γ(R)

R
X sin(κgt+ ψ),

vR(R) = −κgX sin(κgt + ψ),

vφ(R) = vc(R)−
κ(R)

γ(R)
X cos(κgt+ ψ), (1.12)

where γ(R) = 2Ω(R)/κ(R); vc(R) = RΩ(R) is the circular velocity; Rg is the mean radius

of the orbit for a given angular momentum; X , ψ and φ0 are epicyclic amplitude, the

initial phase, and the initial azimuthal angle, respectively; κg = κ(Rg) and Ωg = Ω(Rg).

We can calculate the values of Rg, X , ψ and φ0 using the boundary/initial conditions

for the problem as we shall discuss later in this thesis.

DFs that are appropriate for cold discs for which the velocity dispersions are much

smaller than the circular velocity are very important in understanding galactic nuclei

or debris discs. Orbits in these discs are nearly-circular. As discussed above, epicyclic

approximation is adequate to describe such orbits.
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For motion of particles in a given potential, a function I(x(t),v(t)) is called an

integral of motion if and only if satisfies

d

dt
I(x(t),v(t)) = 0. (1.13)

According to Jeans Theorem, any function of phase space coordinates is a steady-state

solution of CBE if and only if it depends on the phase space coordinates through integrals

of motion. For an axisymmetric potential, the integrals of motion are the Hamiltonian

(or total energy) H and the z-component of angular momentum Lz . Hence the solution

of CBE can be written as a function of both these integrals of motion, that is f(H,Lz).

Using the theory of epicyclic orbit, of which a brief account is given above, the solution

of CBE for a razor thin disc with nearly circular orbits can be written as:

f(H(vR, ṽφ), Lz) ≡ f(vR, ṽφ, Lz) = S (Lz) exp

(

−
v2R + γ2ṽ2φ
2σ2

R(Lz)

)

, (1.14)

where Lz = Rvφ(R) is the angular momentum of the orbit. σR is the radial component

of the velocity dispersion, ṽφ(R) = vφ(R)− vc(R) is the difference between azimuthal &

circular velocity at radius R, vR(R) is radial velocity at the current location. This DF

is called the Schwarzschild distribution function. Note that for circular orbits, ṽφ = 0

and vR(R) = 0. Also f(vR, ṽφ, Lz) is the mass density DF in the phase-space, unlike the

probability density DF defined commonly.



Chapter 2
Slow Pressure Modes in Thin

Accretion Discs

2.1 Introduction

Most of the stars are formed in binary systems. If one of the star in the binary is more

massive than the other, the more massive star evolves more rapidly and reaches the end

state of its life as a compact object: white dwarf, neutron star, or black hole, depending

on its mass. However, the companion star may still be a main sequence star. At this stage

the binary separation may shrink to a point such that the gravitational pull of compact

object can remove the outer layer of the main sequence star which flows towards the

compact star. Such an outflow is called Roche lobe overflow. Since the inflowing matter

has angular momentum, it can not fall radially inward. Angular momentum is lost due to

viscous torques and the infalling material spirals in to form a disc, such discs are called

accretion disc. As the matter falls in, the gas releases energy and the disc becomes

luminous. These discs form important sources of energy in the universe.

Disc around a stellar mass compact object have angular semi-thickness ∼ 0.01−0.05

and hence can be considered as thin. For thin discs, Mach number M and Toomre

Q parameter are defined in § 1.1. We here evaluate these numbers for accretion discs

around various stellar mass compact objects. In Table 2.1 we give a comparison of some

of the parameters for compact objects like white dwarf, neutron star, and stellar mass

black hole. First column is the mass of the star M⋆ and second and third columns

give the radius of the star R⋆ and mass accretion rate Ṁ on the star, respectively.

18



CHAPTER 2. SLOW PRESSURE MODES IN THIN ACCRETION DISCS 19

M⋆ R⋆ Ṁ M Q

White dwarf 0.5M⊙ 109 cm 1016g s−1 50 109

Neutron star 1.4M⊙ 106 cm 1018g s−1 60 107

Black hole 10M⊙ 106 cm 1018g s−1 160 2× 107

Table 2.1: Table of some of the parameters for stellar mass compact objects and accretion

disc around them. First column gives the mass of star M⋆, second column is radius of

star R⋆ . Ṁ given in third column is the mass accretion rate. Fourth and fifth column

gives mach number M & Toomre Q parameter for the accretion disc around the compact

objects.

Next two columns are M and Q values for the respective accretion disc formed around

them. To calculate these we require mass of the disc Md. Mass in the accretion discs

is approximately equal to accretion rate times the diffusion time scale of the inflowing

matter. If vR is the radial velocity of the gas and L is the typical extend of the disc,

L/vR gives an estimate of the diffusion time scales. Typically, vR ∼ 0.3 × 105 cm s−1

and L ∼ 5 × 1010 cm for accretion discs around stellar mass compact objects. We use

these numbers to calculate Md. Also the sound speed cs, for thin accretion discs, is

∼ 106 cm s−1. All the numbers quoted here are typical estimates of these quantities

as given in Frank et al. (2002). Substituting these in Eq. (1.1) & Eq. (1.2), we get an

order of magnitude estimate of M and Q . On comparing fifth and sixth column, we

get Q≫ M ≫ 1 for disc around these stars. In other words the dominant contribution

to the non-Keplerian potential in the disc is due to pressure gradient. However, earlier

studies of slow modes focused mainly on the effect of the self-gravity of the disc, where

Q ≪ M (Kato, 1983; Sridhar et al., 1999; Lee & Goodman, 1999; Sridhar & Touma,

1999; Tremaine, 2001). The goal of this chapter is to study large-scale m = 1 slow modes

in thin accretion discs where Q ≫ M ≫ 1. Asymmetric features observed in accretion

discs (Mason et al., 2000), may possibly be due to these modes.

In § 2.2 we use the WKB approximation to establish that pressure gradient, in the

absence of self-gravity, can enable slow m = 1 modes in thin accretion discs. The linear

eigenvalue problem for slow pressure modes (or “p-modes”) is formulated in § 2.3 for a

flat barotropic disc, which is axisymmetric in its unperturbed state. When appropriate

boundary conditions are chosen, the eigenvalue equation reduces to a Sturm-Liouville

problem. Since the differential operator is self-adjoint, the eigenfrequencies are real:
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therefore all p-modes are stable, and the eigenfunctions form a complete set of orthogonal

functions. We also map the eigenvalue equation into a Schrodinger-like equation, which

is useful in the interpretation of our numerical results. In § 2.4 we present numerical

results for a variety of discs, namely (i) an approximation to the Shakura-Sunyaev thin

disc, (ii) the Kuzmin disc which is more centrally concentrated, (iii) power-law discs. Of

particular interest is the nature of the eigenfrequency: whether it is positive or negative.

This has bearing on the excitation of these modes, because they are stable and will not

grow spontaneously through a non-viscous instability. Comparison with earlier work,

summary and conclusions follow in § 2.5.

2.2 Slow pressure modes

We start by considering a flat thin disc of ideal fluid orbiting a central mass M . The

fluid is assumed to be barotropic and the disc is described by a surface density profile

Σ. Although viscous forces are responsible for the accretion flows, in our analysis we

ignore viscous forces, assuming that they adjust to maintain a quasi-stationary flow with

a small radial velocity, and have little effect on the perturbed flow. Thus, we start with

the continuity and Euler equations in cylindrical polar coordinates

∂Σ

∂t
+

1

R

∂

∂R
(RΣvR) +

1

R

∂

∂φ
(Σvφ) = 0 ,

∂vR
∂t

+ vR
∂vR
∂R

+
vφ
R

∂vR
∂φ

− vφ
2

R
= −GM

R2
− ∂

∂R
(Φ + h) ,

∂vφ
∂t

+ vR
∂vφ
∂R

+
vφ
R

∂vφ
∂φ

+
vRvφ
R

= − 1

R

∂

∂φ
(Φ + h) , (2.1)

where vR and vφ are the radial and azimuthal components of the fluid velocity, h is the

enthalpy per unit mass, and Φ is the gravitational potential due to the disc. In writing

the above equation we have taken our disc in z = 0 plane. For a barotropic fluid with an

equation of state given by p = DΣΓ (where D > 0 is a constant and Γ is the barotropic

index), the isentropic sound speed and enthalpy are given by

c2s = ΓDΣΓ−1 , (2.2)

h =
ΓD

Γ− 1
ΣΓ−1 =

c2s
Γ− 1

. (2.3)
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2.2.1 Precession rate in the unperturbed disc

We assume that the radial velocity of the unperturbed flow is much smaller than the

azimuthal velocity and set it identically equal to zero; this assumption is justified below

at the end of § 2.2.2. The unperturbed disc is assumed to be axisymmetric, therefore

all φ derivatives are set to zero. Gas flows along circular orbits, with centrifugal balance

maintained largely by the gravitational attraction of the central mass (with small but non

trivial contributions from gas pressure gradient and disc self-gravity). The azimuthal and

radial frequencies, Ω(R) > 0 and κ(R) > 0, respectively, associated with nearly circular

orbits are given by

Ω2(R) =
GM

R3
+

1

R

d

dR
(Φd + hd) ,

κ2(R) =
GM

R3
+

d 2

dR2
(Φd + hd) +

3

R

d

dR
(Φd + hd) , (2.4)

where the subscript ‘d ’ indicates unperturbed quantities. Note that the Mach number of

the unperturbed flow M (R) = RΩ(R)/cs(R) ≫ 1. The dominant contribution to both

Ω(R) and κ(R) is due to the central mass, with small corrections coming from the disc

self-gravity Φd, and enthalpy hd. Let us define ǫ ≪ 1 as the larger of (ΣdR
2/M) and

(hdR/GM). The apsides of a nearly circular orbit of a fluid element precess at a rate

given by,

˙̟ (R) = Ω(R)− κ(R)

= − 1

2Ω(R)

(
d 2

dR2
+

2

R

d

dR

)

(Φd + hd) +O(ǫ2) . (2.5)

Note that, in contrast to Tremaine (2001) we have retained the contribution from gradient

of gas pressure (i.e. enthalpy) here. In fact, in thin accretion discs around compact

stars, disc self-gravity is negligible and the contribution to ˙̟ is almost entirely from the

gradient of gas pressure. The goal of this section is to establish that these discs have

large-scale slow modes driven only by pressure gradient. In the WKB analysis of linear

modes given below we follow the presentation due to Tremaine (2001).
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2.2.2 The WKB approximation

We consider linear perturbations (of the velocity, surface density etc) of the form

A(R) exp

[

i

(∫ R

k(R)dR +mφ− ωt

)]

, (2.6)

where k(R) and m are the radial and azimuthal wavenumbers, respectively, and ω is

the angular frequency of the mode. In the tight-winding limit where |k(R)R| ≫ m,

a dispersion relation between ω and k(R) can be derived (Safronov, 1960; Binney &

Tremaine, 2008):

(ω −mΩ)2 = κ2 − 2πGΣd|k|+ c2sk
2 . (2.7)

As stated in § 1.1, the disc is stable to axisymmetric (m = 0) perturbations if and only

if

Q ≡ csκ

πGΣd

> 1 . (2.8)

This is readily satisfied in thin accretion discs around compact stars as shown in Ta-

ble 2.1 . Tremaine (2001) showed that the dispersion relation for m = 1 modes can be

written as

ω = ˙̟ +
πGΣd|k|

Ω
− c2sk

2

2Ω
+

1

Ω
O( ˙̟ 2, ω2) . (2.9)

In Tremaine (2001) it is argued that, when the pressure gradient is negligible compared

to disc self-gravity (i.e. cs ≈ 0), the WKB dispersion relation of Eq. (2.9) admits large-

scale (|k(R)R| ∼ 1) modes with frequencies ω ∼ ˙̟ ∼ (ΣdR
2/M)Ω. This implies that

Mach number M ≫ Q. However, as we have argued in the introduction, this inequality

is violated for thin accretion discs around compact stars where the opposite is true,

i.e. Q ≫ M ≫ 1. Hence we need to consider a situation that is complementary to

the analysis of Tremaine (2001). Disc self-gravity being negligible in accretion discs, the

precession rate is determined entirely by the gradient of gas pressure. Then equation (2.5)

can be written as

˙̟ = − 1

2Ω

[
d 2hd
dR2

+
2

R

dhd
dR

]

+O(1/M 4) ∼ Ω

M 2
, (2.10)

(see Kato (1983)) and we can approximate equation (2.9) as

ω = ˙̟ − c2sk
2

2Ω
+

1

Ω
O( ˙̟ 2, ω2) . (2.11)
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For a disc with a non zero inner radius, eigenmodes must satisfy the Bohr-Sommerfeld

quantization condition, given by

∮

k(R) dR =

(

n+
3

4

)

2π , n = 0, 1, 2, . . . (2.12)

Thus, there exists a prima facie case for modes with frequencies ω ∼ ˙̟ , with radial

wavenumbers,

k(R) ∼
∣
∣
∣
∣

Ω ˙̟

c2s

∣
∣
∣
∣

1/2

∼ 1

R
, (2.13)

comparable to the radial scale of the disc. However, this tentative conclusion is based on a

WKB analysis which may not be valid for modes with k(R)R ∼ 1. This is the motivation

for our studies of the eigenvalue problem for slow modes given below. Henceforth we

ignore disc self-gravity altogether and consider only the effect of gradient in gas pressure.

We now justify the assumption made at the beginning of § 2.2.1, that the radial veloc-
ity in the unperturbed disc is small, and may be ignored when studying slow modes. The

time scale of radial spreading of the disc is, tvis ∼ R2/ν ∼ M 2/(αΩ), where α ≪ 1 is the

Shakura–Sunyaev viscosity parameter. The frequency of a slow mode is ω ∼ ˙̟ ∼ ΩM−2.

Therefore ωtvis ∼ α−1 ≫ 1 implies that the radial spreading occurs over many slow mode

periods.

2.3 Formulation of the eigenvalue problem

2.3.1 Eigenvalue equation

The linearized Euler, continuity and enthalpy equations that govern the perturbed flow

are

∂u1
∂t

+ Ω(R)
∂u1
∂φ

− 2Ω(R)v1 = −∂h1
∂R

, (2.14)

∂v1
∂t

+ Ω(R)
∂v1
∂φ

− 2B(R)u1 = − 1

R

∂h1
∂φ

, (2.15)

∂Σ1

∂t
+ Ω(R)

∂Σ1

∂φ
+

Σd

R

∂v1
∂φ

+
1

R

∂

∂R
(RΣdu1) = 0, (2.16)

h1 = c2s
Σ1

Σd

, (2.17)
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where the subscript ‘d ’ stands for the unperturbed quantities and ‘1’ stands for the first

order perturbed quantities. u1 and v1 are the perturbed radial and azimuthal velocity

components and cs is the unperturbed sound speed. The Oort’s parameter B(R) is

related to the radial frequency through κ2(R) = −4Ω(R)B(R).

We consider non-axisymmetric perturbations with azimuthal wave number m = 1,

of the form T1 = Ta(R) exp [i(φ− ωt)], where T1 stands for any perturbed quantity.

Substituting this form in equations (2.14), (2.15), (2.16) and (2.17) yields

i(Ω− ω)ua − 2Ω(R)va +
dha
dR

= 0 , (2.18)

i(Ω− ω)va − 2B(R)ua +
iha
R

= 0 , (2.19)

i(Ω− ω)Σa +
iΣdva
R

+
1

R

d

dR
(RΣdua) = 0 , (2.20)

ha = c2s
Σa

Σd

. (2.21)

Solving equations (2.18) and (2.19) for the velocity amplitudes we obtain

ua = − i

∆

[

(Ω− ω)
dha
dR

+
2Ω

R
ha

]

, (2.22)

va =
1

∆

[

−2B
dha
dR

+
Ω− ω

R
ha

]

, (2.23)

where ∆ = κ2 − (Ω− ω)2. These equations, along with Eq. (2.21), when substituted in

(2.20) yields

[
d2

dR2
+

{
d

dR
ln

(
RΣd

∆

)}
d

dR
+

2Ω

R(Ω− ω)

{
d

dR
ln

(
ΣdΩ

∆

)}

− 1

R2

]

ha =
ha∆

c2s
, (2.24)

which is the eigenvalue problem for undriven modes, with eigenvalue ω and eigenfunction

ha. This equation is a special case of equation (13) of Goldreich & Tremaine (1979);

Tsang & Lai (2009), where m = 1, and the external and self gravity perturbations are

set equal to zero. It can be noted that this equation becomes singular at Ω = ω and

∆ = 0. The former corresponds to the Co–rotation Resonance (CR) and the latter

corresponds to the Lindblad Resonance (LR). Below we discuss the validity of Eq. (2.24)

at LR; a similar analysis holds for the singularity at co–rotation radius but we do not

discuss it in this chapter since, as is argued later, for the slow modes the co–rotation
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radius has to lie outside the disc.

The system of equations (2.18)—(2.21) describe an undriven, autonomous system. At

the LR the algebraic equations (2.18) and (2.19), become indeterminate if no conditions

are imposed on the enthalpy perturbations ha. It is easily seen that these equations

become consistent if

− i(Ω− ω)

2B
=

2iΩ

(Ω− ω)
=

dha/dR

iha/R
. (2.25)

The first equality follows from ∆ = 0. Rearranging the second equality yields

[
d

dR
(R2ha)−

ω

Ω

(

R2dha
dR

)]
∣
∣
∣
∣
∣
LR

= 0. (2.26)

This condition must be satisfied at the LR’s for all undriven modes. However, equation

(2.26) may not be satisfied if the disc is driven by external forcing and may lead to more

complicated dynamics around the LR and transport of angular momentum away from

the LR due to external torquing (Goldreich & Tremaine, 1979). In this work we confine

our investigations to modes of an undriven disc.

2.3.2 Slow mode approximation

We now make the ansatz that the perturbed flow supports frequencies that are small in

comparison to the circular frequency, i.e., |ω| ≪ Ω. Therefore, when ω 6= 0, the disc

must be finite, with outer radius such that the orbital frequency at the outer edge is

much greater than |ω|. Applying the slow mode approximation to equation (2.24) we

obtain
c2sR

3/2

ΣdΩ

d

dR

(
ΣdΩ

R3/2 ∆

d

dR
(R2ha)

)

= R2ha . (2.27)

Similar to equation (2.24), equation (2.27) too is singular at the LRs. However the

singularity at the co–rotation radius has gone away since this equation has been derived

under the slow mode condition, |ω| ≪ Ω. The condition ∆ = 0 implies that at some

radius, either ω = Ω − κ or ω = Ω + κ. The first one corresponds to the inner LR where

as the second corresponds to the outer LR. Since κ ≃ Ω + O(ǫ2), we see that the second

equality cannot be satisfied under the slow mode approximation. It is straightforward

to see that the radius where this would be satisfied would be larger than the co-rotation

radius due to the fact that the Keplerian circular frequency falls off monotonically with

radius. Therefore, there are no outer LR singularities for slow modes. However, the Inner
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Lindblad Radius (ILR), where ω = ˙̟ (R), could very well lie inside the disc. Due to the

fact that the disc surface density is completely arbitrary, there could in general be more

than one ILRs. To make the problem well posed under the slow mode approximation,

at the ILRs, the condition (2.26) reduces to

d

dR
(R2ha)

∣
∣
∣
∣
ILR

= 0 . (2.28)

We shall see later that the numerical solutions of equation (2.30) satisfy this condition

and the velocity amplitude at the ILR remains finite; thus the linear approximation

remains valid and nothing special happens at the ILR.

From equation (2.10), ˙̟ /Ω ≃ O(M−2). This allows us to approximate κ2 ≃ Ω2,

leading to B(R) ≃ −Ω(R)/4. Using these in equation (2.23) we obtain

va =
Ω

2∆

[
dha
dR

+
2ha
R

]

,

=
Ω

2∆

1

R2

d

dR

(
R2ha

)
. (2.29)

Differentiating equation (2.27) and using equation (2.29) we obtain,

d

dR

[(
c2sR

3/2

ΣdΩ

)
dΘ

dR

]

+
2R3/2

Σd
( ˙̟ − ω)Θ = 0 , (2.30)

where we have used the variable Θ = R1/2Σd va and ∆ ≃ 2Ω(ω − ˙̟ ), which is valid

under the slow mode approximation.

2.3.3 Slow modes as a Sturm-Liouville problem

Before we proceed to specific examples, we have to choose the boundary conditions that

we impose to solve equation (2.30) . We first cast the equation in a dimensionless form

by choosing a radius R⋆, at which we evaluate various quantities, Σ⋆, cs⋆, ˙̟ ⋆ and Ω⋆. We

introduce the parameter x = R/R⋆, and similarly for a quantity H , we use H ′ = H/H⋆,

leading to the Sturm-Liouville form of the eigenvalue equation

d

dx

(

P(x)
dΘ

dx

)

+ [Q(x) + λW(x)] Θ = 0 , (2.31)



CHAPTER 2. SLOW PRESSURE MODES IN THIN ACCRETION DISCS 27

where

P(x) =
c′s

2x3/2

Σ′
dΩ

′
, W(x) =

2x3/2

Σ′
d

,

Q(x) =
2x3/2 ˙̟ ′

Σ′
d

, Θ =x1/2v1aΣ
′
d, λ = −ωM⋆

2

Ω⋆
. (2.32)

In equation (2.31), λ is defined with a negative sign to make an explicit correspondence

with the Schrödinger’s equation, to be introduced in § 2.3.4. Henceforth in this chapter

we reserve the term “eigenvalue” for λ, and use either “frequency” or “eigenfrequency”

for ω.

We consider discs with an inner edge at Rinner , and an outer edge at Router , and

we choose R⋆ = Rinner . We now argue that the parameters of the disc and the central

mass for astrophysically interesting discs are such that the slow mode condition can be

easily satisfied everywhere inside the disc. In a Keplerian disc the slow mode condition

|ω| ≪ Ω is satisfied everywhere in the disc if it is satisfied at the disc outer radius, that

is, |ω| ≪ Ω(Router), this leads to

(
Router

R⋆

)3/2

≪ M⋆
2

|λ| , (2.33)

where we have used Ω(Router) = Ω⋆(R⋆/Router)
3/2. Typical expected values for M⋆, for

the case of accretion discs around stellar mass compact objects, are in the range 104–106

(Frank et al., 2002). Most examples we consider have surface densities that decline by

Router/R⋆ ≃ 30–50, therefore we see that for an eigenmode to be slow through out the

disc, |λ| has to be much smaller than ∼ 105–109. We shall see in the examples that this

condition is comfortably satisfied.

We integrate the eigen equation in the range 1 < x < xouter, assuming that the

perturbations obey the boundary conditions,

Θ(1) = Θ(xouter) = 0 . (2.34)

We note that these boundary conditions make the differential operator in equation (2.31)

self-adjoint: therefore the eigenvalues λ are real, and all slow p-modes are stable. The

complete set of eigenfunctions also form a complete basis; however, we note that not

all eigenvalues are slow, and thus we do not expect this set to describe the evolution of
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arbitrary perturbations, but only the ones that obey the slow mode condition, |ω| ≪ Ω.

2.3.4 Effective potential and WKB approximation

In the usual WKB approximation we substitute the trial solution

Θ(x) = A(x) exp

[
i

µ

∫ x

k̃dx

]

, (2.35)

in the following equation:

µ2 d

dx

(

P(x)
dΘ

dx

)

+ (Q(x) + λW(x)) Θ = 0 . (2.36)

Here µ is an ordering parameter which is finally set equal to unity. A(x) and k̃(x) are

the amplitude and the wavevector, respectively. Collecting terms of zeroth order in µ

leads to the dispersion relation

k̃2 =
Q(x) + λW(x)

P(x)
=

2Ω

c2s
( ˙̟ + λ) , (2.37)

which is identical to Eq. (2.11). However we find that this dispersion relation, together

with the Bohr-Sommerfeld quantization condition of Equation (2.12) predicts eigenval-

ues that compare poorly with those obtained from numerical integration of the Sturm-

Liouville equation. Hence we have reformulated equation (2.31), using new variables

ϑ(x) =
√

P(x) and Ψ =
√

P(x)Θ. Then equation (2.31) takes the Schrödinger-like form

Ψ′′ +K2(x)Ψ = 0 , (2.38)

where

K2(x) =
1

ϑ2(x)
[Q(x) + λW(x)− ϑ(x)ϑ′′(x)] , (2.39)

which on defining V(x) = (−Q(x) + ϑ(x)ϑ′′(x))/W(x) can be written as

K2(x) =
W(x)

ϑ2(x)
[λ− V(x)] . (2.40)

This dispersion relation differs from Eq. (2.11) and seems to better describe the numerical

solutions, giving a match with the numerically obtained eigenvalues up to a few percent,
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as can be seen in Table 2.2.

Note that K2(x) in Eq. (2.40) differs from the standard form for the Schrödinger

equation by the factor W(x)/ϑ2(x). However, it is very useful for discussions of the

turning points, where K2(x) = 0, separating classically accessible regions from the for-

bidden ones. The solution is oscillatory where K2 > 0, implying λ > V(x), and damped

otherwise. Since the disc is finite the eigen spectrum is always discrete and there are two

distinct types of spectra:

Type I: This occurs when there is at least one turning point within the disc. In the

case of a single turning point we can have oscillatory solution on either side of the

turning point, depending on the form of K2(x). If there are more than one turning

point then we could either have oscillatory behaviour confined between the turning

points or outside, such as the case of the Shakura-Sunyaev disc discussed in § 2.4.

Type II: This occurs when there are no turning points within the disc and the dis-

creteness of the spectra depends entirely on the size of the disc.

To obtain real eigenvalues we need to consider the possibility of satisfying K2 > 0 in

a bounded region, which could either be bounded by one or both of the disc boundaries

or by turning points. Thus a useful first step is to plot this potential for the problem

at hand. If the potential allows regions that can support bound states, we search for

solutions numerically, and to verify our results we use the WKB approximation.

Let us consider the case of the Shakura-Sunyaev disc shown in Fig 2.1. On the

negative side the potential blows up at the inner edge at x = 1, where the perturbations

are assumed to vanish. If λ < 0 is to be a valid eigenvalue, then it must satisfy the

quantization condition

∫ a

1

K(x) dx =

(

n+
3

4

)

π , n = 0, 1, 2, . . . (2.41)

where, x = a > 1 is a turning point which separates a classically accessible region (I)

on the left from a forbidden region (II) on the right. The case of positive eigenvalues,

λ > 0, is more interesting. If the eigenvalue is positive and smaller than the maximum

value of V(x), then there are two turning points (say, x = a, b with b > a) separating

three distinct regions. The classically forbidden region lies between x = a and x = b,

separating the two classically accessible regions (1, a) and (b, xouter). If λ is greater then



CHAPTER 2. SLOW PRESSURE MODES IN THIN ACCRETION DISCS 30

Figure 2.1: The effective potentials for our barotropic approximations to the Shakura-

Sunyaev disc. The solid line corresponds to V1(x) and the dashed line to V2(x), described

in § 2.4.1. The positive values of λ can provide both Type I and Type II eigenvalues as

described in the § 2.3.4. The negative values, although seemingly allowing eigenstates

lead to no such solution. Note that positive values of λ correspond to the negative

frequency modes.

the maximum of V(x), then whole disc is classically allowed. Below we present numerical

results on eigenvalues and eigenfunctions, and use WKB approximation to understand

them. It turns out that WKB approximation is very useful even for the case of small

quantum numbers.

2.4 Numerical results

As discussed in the last section, we consider a finite disc and we expect the spectra of

Eq (2.31) to be discrete. These modes would have observational consequences since they
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would rotate at a fixed pattern speed. The perturbations in the enthalpy would lead

to azimuthal variations in the temperature and density across the disc, which might be

observable depending on the amplitude of perturbations.

Since very little is known about the surface density profiles of the discs we carry out

calculations based on certain standard forms of the disc as test cases. We also consider

the generic power law profile. Some of the profiles considered below are formally infinite

in size, however as noted above, we need to keep the disc finite. This would imply that

the surface density would abruptly fall to zero at the outer disc radius. This is unphysical

and we expect that there would be a thin transition region that would deviate from the

density profile being considered near xouter. If the eigenvalues and eigenmodes are not

very sensitive to xouter, then this is not an issue and in our numerical investigation we

indeed find this to be true.

2.4.1 Shakura-Sunyaev discs

We first consider the standard model of an accretion disc proposed by Shakura and

Sunyaev and is associated by their names (Shakura & Sunyaev, 1973). This model is the

simplest solution of steady state equations for accretion discs with turbulent viscosity,

which is proportional to the product of the size of the largest turbulent cell and velocity of

the turbulence cell relative to the mean gas flow. Typical size of the largest turbulent cell

cannot exceed the disc scale height, H . Second, it is unlikely that the turbulent velocity

is supersonic, as in this case, the turbulent motions would probably be thermalized by

shocks. Hence viscosity, ν ≃ αcsH , where α . 1 is a dimensionless parameter. Though

in our analysis we assume viscous forces to adjust to balance small quasi–stationary

radial flow and neglect them but still use Shakura-Sunyaev (SS) disc model as one of

the test model because this is most widely used model for accretion discs around stellar

mass compact objects. SS disc is also called as standard disc.

The surface density and temperature of this disc are given by (see Frank et al. (2002)):

ΣSS = 5.2α−4/5Ṁ
7/10
16 m1

1/4R10
−3/4f 14/5 g cm−2 , (2.42)

TSS = 1.4× 104α−1/5Ṁ
3/10
16 m1

1/4R10
−3/4f 6/5 K , (2.43)
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where

f =

[

1−
(
R∗

R10

)1/2
]1/4

. (2.44)

Ṁ16 is the mass accretion rate in the units of 1016g s−1, m1 is the mass of disc in solar

mass units, R10 is radius in the units of 1010cm, R∗ is the radius of the central object in

the units of 1010cm , and α is the Shakura-Sunyaev viscosity parameter.

Although the SS disc is not based on a barotropic model, we find that a barotropic

disc with index Γ = 2 serves as a reasonable approximation. We have considered two

cases:

1. Choosing Σd = ΣSS of equation (2.42), and deriving the temperature profile for

Γ = 2, we find that the temperature and effective potential are

Td(x) = x−3/4f 14/5(x),

V1(x) =
344− 590

√
x+ 225x

800 x9/4 (1−
√

1/x)13/10
, (2.45)

2. Choosing Td = TSS of equation (2.43), and deriving the surface density profile for

Γ = 2, we find that the effective potential is

V2(x) =
12− 22

√
x+ 9x

32 x9/4 (1−
√

1/x)3/2
, (2.46)

where we have used the natural length scale given by the inner disc radius, which we have

adopted for conversion of our eigen equation into a dimensionless form. For comparison

between SS disc and barotropic assumption of standard disc with index Γ = 2 and to

see the validity of our assumption we plot in Fig 2.2 both Td(x) (defined in Eq. (2.45))

marked as Barotropic Disc, and TSS(x) marked as Standard Disc. Comparison of two

gives us a reasonable confidence in our assumption. Figure 2.1 shows, V1(x) and V2(x)

are also quite similar to each other. The effective potential blows up at the inner edge

of the disc and steadily climbs up above zero and then decreases asymptotically. In

the immediate vicinity of the inner edge a negative λ gives an oscillatory solution, and

to the right of it is a classical turning point. Beyond the turning point the solution

is exponentially decaying. This suggests that discrete, Type I, negative eigenvalues

might exist, however, both the numerical search and the WKB quantization condition
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Figure 2.2: Normalized Temperature profile for standard Disc, TSS, and barotropic as-

sumption of standard Disc, Td are displayed. Both TSS and Td are defined in § 2.4.1.

Plots are labeled appropriately. Nearly similar profiles justify appproximating standard

disc as barotropic disc with Γ = 2.

(2.41), fail to find such discrete eigenvalues. For 0 < λ . 0.01, we find discrete, Type I

eigenvalues for which the oscillatory behaviour is outside the region bounded by two

turning points. For λ & 0.01, we find discrete eigenvalues of Type II, where the separation

between neighbouring eigenvalues decreases with increasing values of the outer radius of

the disc.

2.4.2 The Kuzmin disc

In contrast to the SS discs, the Kuzmin disc has a centrally concentrated surface density,

and hence offers a distinct case to study slow modes. For comparison see Fig. 2.3 where

we have plotted surface density normalized to unity for both Kuzmin disc (with dotted

line) and Standard disc (ΣSS, with solid line). The surface density profile in this case is
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given by

Σd(R) =
aMd

2π (R2 + a2)3/2
, (2.47)

where Md is the mass in the disc and a is the core radius. The surface density extends

all the way to R = 0. If we take a as the size of the inner radius of the disc then we can

rescale our equation by choosing R⋆ = a, leading to;

P(x) =
x3

(1 + x2)(3Γ−6)/2
,

Q(x) =
3x3(x2(4− 3Γ) + 3)

(1 + x2)(3Γ−2)/2
,

W(x) = x3/2(1 + x2)3/2,

V(x) =
3(x4(5− 4Γ + 3Γ2) + x2(6− 8Γ) + 1)

8x1/2(1 + x2)(3Γ+1)/2
. (2.48)

• Γ value: Before we do any further analysis we need to look for a suitable value of

gamma. For slow modes to be valid, Ω should be much greater than the precession

frequency, ˙̟ , that is,
Ω

˙̟
≫ 1.

Since Ω for nearly Keplerian discs decreases as we go towards larger radii, and ˙̟

is equal to Q(x)/W(x), we see that for large value of x, Ω/ ˙̟ goes as x3Γ−4. This

is clearly much greater than 1 for large x if and only if Γ ≥ 4/3. Here onwards

we take gamma equals 4/3 .

In Fig. 2.4 we have plotted this potential for Γ = 4/3 . As may be seen, this case

qualitatively resembles Fig. 2.1, and the discussion in § 2.3.4 carries through. For negative
values of λ, we can infer from Fig. 2.4 that K2(x) < 0, so wave like solutions are

not possible. For positive values of λ in the range 0 < λ . 0.3, we can have Type I

eigenvalues, but this region of λ is further divided into two parts: for 0 < λ ≤ V(1), there

is only one turning point and oscillatory behaviour is possible for radius greater than

the turning point, and for V(1) < λ . 0.3 there are two turning points and oscillatory

behaviour is possible outside the region bounded by the two turning points. For λ & 0.3

the eigenvalues are of Type II. This behaviour is confirmed by numerical integration of

the eigenvalue equation. We can also admit values of Γ other than 4/3. However, the

effective potential in Eq. (2.48) retains the general shape of Fig. 2.4, and the conclusions

stated above remain valid.
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Figure 2.3: Comparison of surface density profile for Kuzmin disc and standard disc.

Dotted curve is for Kuzmin disc and solid line is for standard disc model.
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Figure 2.4: The effective potential for the Kuzmin disc is displayed here. Positive values

of λ lead to a discrete spectrum of both Type I and Type II eigenvalues. There are no

negative eigenvalues.
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2.4.3 Power law discs

Certain physical models (e.g. Narayan & Yi (1994)) naturally lead to scale invariant

discs that follow a power law profile. Although in these models there are no associated

length scales, we choose to truncate the disc at the inner disc radius thus leading to the

form

Σ0 = Σ⋆ x
β , (2.49)

where, Σ⋆ = Σ(R⋆) and β is the power law index. The potential is given by

V(x) = C(β,Γ)xν(β,Γ) , (2.50)

where

C(β,Γ) =
1

8
(3 + β (−4 + Γ(4 + βΓ))) , (2.51)

ν(β,Γ) = βΓ− β − 1/2 . (2.52)

There are four distinct possibilities:

1. C(β,Γ) < 0, ν(β,Γ) < 0: The region in β – Γ space satisfying these conditions is

plotted in Fig. 2.5 . The regions where these conditions are satisfied are those with

(1) β positive and Γ negative or (2) very small negative β and very large Γ. Both

these cases are unphysical. Note that there is a region with large, positive β, and

small, positive Γ, and these are also physically uninteresting.

2. C(β,Γ) < 0, ν(β,Γ) > 0: It can be verified that ν(β,Γ) > 0 ⇔ βΓ > β + 1/2,

for which C(β,Γ) is always positive and hence it is impossible to satisfy these

conditions.

3. C(β,Γ) > 0, ν(β,Γ) > 0: These two constraints give us a region in the β – Γ

space, displayed in Fig. 2.6, that admits physically reasonable values. We display

effective potential for β = Γ = 2 in Fig. 2.7. For V(xinner) < λ < V(xouter), we have

one turning point admitting Type I eigenvalues. In Fig. 2.8 we plot two examples

of eigenmodes for the same case. The eigenfunctions for small quantum numbers

are found to be centrally concentrated while they extend to larger radii for larger

quantum numbers. It should be noted that our solutions are regular at turning

point (approximately close to ILR), which is the point where the solution changes
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from an oscillatory behaviour to an exponentially decaying one. The first few

eigenvalues for this case are tabulated in Table 2.2, where we find an excellent match

with the WKB eigenvalues. In Table 2.2, we also display the numerical eigenvalues

corresponding to xouter = 50 and 200 in third and fourth column respectively. Close

match between the eigenvalues in third and forth column shows that eigenvalues

are not very sensitive to precise value of xouter. Outside this range of positive λ

(that is for λ > V(xouter)) there are no turning points and hence only Type II

eigenvalues are possible. Similar conclusions hold for other allowed values of β and

Γ.

4. C(β,Γ) > 0, ν(β,Γ) < 0: The region in β–Γ space satisfying these constraints is

plotted in Fig. 2.9. Effective potential for this case for β = −2,Γ = 2 is plotted

in Fig. 2.10. For 0 < λ < V(1), we have one turning point admitting Type I

eigenvalues. Here the classically accessible region is bounded by the turning point

on left and xouter on right. Numerical solution for β = −2 and Γ = 2 are plotted

in Fig. 2.11. Comparison with Fig. 2.8 shows that the solutions are more radially

extended, with well separated peaks. For λ > V(1) there is no turning point and

the eigenvalues are of Type II. Rest all values of allowed β and Γ show similar

trends.

2.5 Discussion and conclusions

We have presented a theory of slow m = 1 linear pressure modes (or “p-modes”) in thin

accretion discs around massive compact objects, such as white dwarfs and neutron star,

in this chapter. These modes are enabled by the small deviation from a purely Keplerian

flow, due to gradient in fluid pressure rather than disc self-gravity. For simplicity we

have taken the fluid to be barotropic. Our formulation largely follows that of Tremaine

(2001), although there is a key difference: using the WKB approximation, Tremaine

(2001) argued that fluid discs for which disc self-gravity dominates fluid pressure gradient

can support slow modes, if the Mach number M is much larger than the Toomre Q

parameter. This condition may be satisfied in relatively cool discs, but not for thin

accretion discs around white dwarfs or neutron stars. In these discs Q ≫ M ≫ 1, and

the analysis in Tremaine (2001) does not apply, because disc self-gravity is negligible

when compared with fluid pressure gradient in thin accretion discs. This implies that
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Figure 2.5: The allowed region (cross-hatched) in the β - Γ space to obtain Type I nega-

tive eigenvalues (corresponding to the positive frequency modes) for the power law discs

(case (1), discussed in § 2.4.3). Most of the region is either unphysical or uninteresting.
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Figure 2.6: The allowed region (cross-hatched) in the β - Γ space to obtain discrete

positive eigenvalues (corresponding to the negative frequency modes), corresponding to

Type I eigenvalues for case (3), for the power law discs.
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Figure 2.7: Effective potential for power law disc for β = Γ = 2. Region marked ‘ I ’ is

classically accessible whereas the one marked with ‘ II ’ is forbidden region.
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Figure 2.8: Two eigenfunctions (Type-I eigenvalue) obtained for the power law case (case

(3)) with β = Γ = 2. The higher quantum number leads to a more radially extended

eigenmode. Star marks the position of the turning point.
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n WKB λ Numerical λ50 Numerical λ200

0 13.42 13.86 13.86

1 30.15 30.73 30.73

2 52.31 53.06 53.06

3 79.99 80.92 80.91

4 113.22 114.32 114.31

5 151.99 153.29 153.26

6 196.31 197.83 197.75

7 246.18 247.96 247.80

8 301.60 303.72 303.40

9 362.57 365.16 364.54

10 429.09 432.31 431.24

Table 2.2: The eigenvalues for the power law model with β = Γ = 2 are tabulated here

for comparison between those obtained numerically and those obtained using the WKB

approximation. The values in columns λ50 and λ200 are the eigenvalues corresponding to

xouter = 50 and 200, respectively. The match between numerical and WKB eigenvalues is

within a few per cent, and remains good even for small quantum numbers. Eigenvalues

are not very sensitive to precise value of xouter.
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Figure 2.9: The allowed region (cross-hatched) in the β - Γ space for the positive Type I

eigenvalues (corresponding to negative frequency eigenmodes), for case (4) for the power

law discs.
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Figure 2.10: Effective potential for power law disc with β = −2,Γ = 2, with classically

allowed region marked as ‘ I ’ and forbidden region marked with ‘ II ’ .
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Figure 2.11: Two eigenfunctions (Type-I eigenvalue) obtained for the power law case

(case (4)) with β = −2, Γ = 2. Star marks the position of the turning point.
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the precession rate of the apsides ( ˙̟ ) of a fluid element in a nearly circular orbit is

determined by the fluid pressure gradient; to order of magnitude, ˙̟ ∼ (Ω/M 2).

A WKB analysis was used first to argue that thin accretion discs can support large-

scale (k(R)R ∼ 1), m = 1 p-modes with small angular frequencies, ω ∼ ˙̟ ∼ (Ω/M 2).

These long wavelength modes may dominate the appearance of the disc, and are not

expected to be damped by viscosity. We derived an eigen equation for slow linear modes

and showed that it is identical to a Sturm-Liouville problem. The differential operator

being self-adjoint implies that the eigenvalues are all real, so that all slow p-modes are

stable. This corresponds to the result in Tremaine (2001) that all slow modes of the

softened gravity disc. We solved the Sturm-Liouville problem numerically for a variety

of unperturbed discs, and summarize our results below.

1. The first result corresponds to two different kinds of barotropic approximations to

the Shakura-Sunyaev thin disc, which have modes with negative eigenfrequencies.

2. The second is the Kuzmin disc, which is more centrally concentrated. As earlier,

this too supports only negative eigenfrequencies.

3. Power-law discs can support modes with negative eigenfrequencies for reasonable

values of β and Γ. For certain combinations of these parameters power law discs

can support positive eigenfrequencies as well; however the range of parameters turn

out to be physically uninteresting.

If slow modes are stable, it is necessary to consider how they could be excited. Since

they have azimuthal wavenumber m = 1, we need look for excitation mechanisms which

possess the same symmetry, at least in the linear limit. One possibility is from the

stream of matter from the secondary star that feeds the accretion disc. When viewed in

the rest frame of the primary, the region where the stream meets the outer edge of the

disc rotates in a prograde sense with angular frequency equal to the orbital frequency

of the binary system. Since the orbital frequency of the binary can be much smaller

than the orbital frequency of the gas in the accretion disc, there is the possibility of the

resonant excitation of a slow mode if it has positive frequency. In the cases we have

considered, we find only negative frequencies belonging to a discrete spectrum, allowing

only for non–resonant driving.

There is, however, another alternative that does not rely on external sources of ex-

citation. Zhang & Lovelace (2005) have studied linear waves in thin accretion discs and
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applied their theory to slow m = 1 modes around black holes. They used the pseudo-

Newtonian gravitational potential of Paczyńsky & Wiita (1980) to model the general

relativistic effects due to a Schwarzschild black hole. In this case ˙̟ is due to the devi-

ation of the pseudo-Newtonian potential from a Kepler potential, so their slow modes

are not driven by pressure gradient, in contrast to all the cases we have considered;

hence more detailed comparison with our work is not possible. What is interesting is

that they find that their slow modes to have negative energy and angular momentum,

and suggest that slow modes may be excited spontaneously through the action of vis-

cous forces. This possibility should be examined in the context of the p-modes we have

studied. However, this would require reformulating the eigenvalue problem taking into

account viscous effects.



Chapter 3
Unstable m = 1 Modes of

Counter–Rotating Keplerian Discs

3.1 Introduction

We next turn to discs for which the self-gravity dominates the non-Keplerian potential

in the discs. As already pointed in Chapter 1, the nuclei of two nearby galaxies, M31 and

NGC4486B, show an unusual double peak in the stellar distribution. Tremaine (1995)

proposed an eccentric disc model for the stars orbiting a massive BH in the nucleus of

M31. After Tremaine’s work this model was explored by many authors (Bacon et al.,

2001; Salow & Statler, 2001; Sambhus & Sridhar, 2002; Peiris & Tremaine, 2003). One

of the most interesting question concerns the origin of the high eccentric orbits. A

possible origin of such high eccentricity orbits, as suggested by Touma (2002), is through

an instability of counter–rotating streams of stars. This could occur when a globular

cluster is tidally disrupted and added to the stellar system. Linear–lopsided unstable

modes are constructed in Touma (2002), analytically considering two coplanar rings, and

numerically via many–ring system, for nearly Keplerian axisymmetric systems. Eccentric

mode are known to be unstable to counter–rotating streams of matter in self–gravitating

discs (Zang & Hohl, 1978; Araki, 1987; Sawamura, 1988; Merritt & Stiavelli, 1990; Palmer

& Papaloizou, 1990; Sellwood & Merritt, 1994; Lovelace et al., 1997). Sridhar & Saini

(2010) studied these instabilities analytically in the WKB limit for softened gravity disc.

However, their analysis had certain limitations, for instance; (1) they could calculate

only the eigenvalues but not the eigenfunctions, (2) their analysis could only be used to

49
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calculate eigenvalues for equal counter-rotation.

In this chapter we formulate and numerically solve the eigenvalue problem for the lin-

ear slow, m = 1 modes in a two–component, softened gravity, counter–rotating disc. We

model our discs to be softened gravity zero pressure fluid discs following Sridhar & Saini

(2010). Due to the long–range nature of gravitational interactions, we have to deal with

a pair of coupled integral equations defining the eigenvalue problem. We draw some gen-

eral conclusions and then proceed to solve the equations numerically for eigenvalues and

eigenfunctions. In formulating the integral eigenvalue problem, we have largely followed

Tremaine (2001), but with differences in the way softening is treated; this is discussed

in detail later in this chapter. We construct global modes for arbitrary mass fraction

in retrograde component of disc and obtained both eigenspectra and wavefunctions by

solving coupled integral equations.

We start with unperturbed counter–rotating discs in Section 3.2, with an account of

perturbed discs and its potential theory in Section 3.3 . The § 3.4 contains details of

derivation and stability of WKB–dispersion relation for slow m = 1 modes. Then we go-

on to derive coupled integral equation for slow modes in Section 3.5, specialize to a case

of constant mass fraction in Section 3.6 and give some comments on the nature of the

solutions. In Section 3.7 we apply our model to Kuzmin disc and solve WKB–dispersion

relation by quantizing the wavefunctions using Bohr–Sommerfeld quantization condition

in Section 3.8. We explain the method used to solve integral equation in Section 3.9 and

discuss results of our numerical exploration of modes in Section 3.10 for different values

of mass fraction in retrograde disc. Concluding remarks for this chapter are offered in

Section 3.11. Two appendices related to this chapter are:

• Appendix A contains derivation of perturbed potential for softened gravity two

component disc (to be used in § 3.3).

• Appendix B gives relation between softened Laplace coefficients and usual (unsoft-

ened) Laplace coefficients defined in § 3.3.

3.2 Unperturbed two component disc

We consider linear non–axisymmetric perturbations in two counter–rotating discs or-

biting a central point mass M . The discs are assumed to be coplanar and consist of

cold collisionless particles which attract each other through softened gravity. However,
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the central mass and the disc particles interact via the usual (unsoftened) Newtonian

gravity. We assume that the total mass in the discs, Md, is small in comparison to the

central mass, M . Since ε ≡ Md/M ≪ 1, the dynamics is dominated by the Keplerian

attraction of the central mass, and the self–gravity of the discs is a small perturbation

which enables slow modes.

We use polar-coordinates r ≡ (R , φ) in the plane of the discs, with the origin at

the location of the central mass. Throughout this and next chapter the superscripts ‘+’

and ‘−’ refer to the prograde and retrograde components, respectively. The unperturbed

discs are assumed to be axisymmetric with surface densities, Σ±

d (R). The disc particles

orbit in circles with velocities, v±

d = ±RΩ(R)eφ, where Ω(R) > 0, is the angular speed

determined by the unperturbed gravitational potential,

Φ(R) = − GM

R
+ Φd(R) . (3.1)

The first term on the right side is the Keplerian potential due to the central mass, and

Φd(R) is the softened gravitational potential due to the combined self-gravities of both

the discs:

Φd(r) = −G

∫
Σ+

d (r
′) + Σ−

d (r
′)

√

|r − r′|2 + b2
d2r′ , (3.2)

where b is the Miller softening length. Note that the potential Φd(R) is O(ε) compared

to GM/R. Test particles for nearly circular prograde orbits have azimuthal and radial

frequencies, Ω and κ, given by

Ω2(R) =
GM

R3
+

1

R

dΦd

dR
, (3.3)

κ2(R) =
GM

R3
+

3

R

dΦd

dR
+

d 2Φd

dR2
. (3.4)

The line of apsides of a nearly circular eccentric particle orbit of angular frequency

±Ω(R), subjected only to gravity, precesses at a rate given by ± ˙̟ (R), where
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˙̟ (R) = Ω(R) − κ(R)

= − 1

2Ω(R)

(
2

R

d

dR
+

d 2

dR2

)

Φd(R) + O(ε2) . (3.5)

The cancellation of the O(1) term (GM/R3) which is common to both Ω2 and κ2 makes

˙̟ ∼ O(ε). This is the special feature of nearly Keplerian discs which is responsible for

the existence of (slow) modes whose eigenfrequencies are ∼ O(ε) when compared with

orbital frequencies.

3.3 Perturbed disc and potential theory

Let v±

a (r, t) = u±

a (r, t)eR+v
±

a (r, t)eφ and Σ±

a (r, t) be infinitesimal perturbations to the ve-

locity fields and surface densities of the ± discs, respectively. These satisfy the following

linearized Euler and continuity equations (defined in § 1.4):

∂v±

a

∂t
+ (v±

d · ∇)v±

a + (v±

a · ∇)v±

d = −∇Φa , (3.6)

∂Σ±

a

∂t
+ ∇ · (Σ±

dv
±

a + Σ±

av
±

d ) = 0, (3.7)

where Φa(r, t) is the perturbing potential. Fourier analyzing the perturbations in φ and

t, we seek solutions of the form Xa(r, t) =
∑

mX
m
a (R) exp[i(mφ− ωt)] . Then

um
±

a = − i

D±

m

[

(±mΩ− ω)
d

dR
± 2mΩ

R

]

Φm
a , (3.8)

vm
±

a =
1

D±

m

[

± κ2

2Ω

d

dR
+

m

R
(±mΩ− ω)

]

Φm
a , (3.9)

i(±mΩ−ω)Σm±

a +
1

R

d

dR
(RΣ±

du
m±

a ) +
im

R
Σ±

dv
m±

a = 0 , (3.10)

where
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D±

m = κ2 − (±mΩ− ω)2 . (3.11)

The above equations determine um
±

a , vm
±

a and Σm±

a in terms of the perturbing potential

Φm
a ; this would be the solution were Φm

a due to an external source. We are interested in

modes for which Φm
a arises from self gravity of the discs. In this case it depends on the

total perturbed surface density, Σm+

a (R) + Σm−

a (R) . Manipulating the Poisson integral

given in Eq. (3.2), we obtain

Φm
a (R) =

∫ ∞

0

R′dR′ Pm(R,R
′) [Σm+

a (R′) + Σm−

a (R′)] , (3.12)

where the kernel

Pm(R,R
′) = − πG

R>

B
(m)
1 (α, β) +

πGR

R′2
(δm,1 + δm,−1) . (3.13)

Derivation of Φm
a (R) is given in Appendix A. The second term on the right side of

Eq. (3.13) is the indirect term arising from the fact that our coordinate system is a

non–inertial frame because its origin is located on the central mass, which reacts to

the gravitational field of the perturbations in the disc and therefore accelerates. The

first term is the direct term coming from the perturbed self–gravity. In Eq. (3.13),

R< = min(R,R′) , R> = max(R,R′) , α = R</R> and β = b/R> . The functions,

B(m)
s (α, β) =

2

π

∫ π

0

dθ
cosmθ

(1− 2α cos θ + α2 + β2)s/2
, (3.14)

are “softened Laplace coefficients”, introduced in Touma (2002). They can be expressed

in terms of the usual (unsoftened) Laplace coefficients, Eq. (B.6), as shown in Ap-

pendix B. We note that the unperturbed disc potential Φd can be obtained from the

unperturbed disc density, Σ+

d (R) + Σ−

d (R) , by using Eq. (3.12) with m = 0 .

Our basic aim here is to solve the set of Eqs. (3.8)-(3.14) for slow modes, which can

be done by two methods:
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1. Following Sridhar & Saini (2010) we use the WKB approximation, which has its

limitations as discussed in the introduction.

2. We solve the coupled integral equation numerically.

3.4 WKB dispersion relation

Before going into formulation and analysis of coupled integral equation, we shall infer

how these modes would behave under local approximation. Dispersion relation derived in

this section was first calculated and analyzed by Sridhar & Saini (2010). They calculate

global modes for the case of equal counter rotation and found two separate branches in

the spectrum, corresponding to short and long–wavelengths for each value of b. How-

ever while comparing WKB–solutions found by them and solutions of integral equation

(derived in § 3.5) obtained by us, we get a poor correspondence. Upon revisiting WKB

calculation in Sridhar & Saini (2010), we discovered an error in their solution to disper-

sion relation. We shall discuss the formulation and offer some some general comments

regarding the nature of the modes in this section. We give the corrected solutions in

§ 3.8 and their match with our integral equation solution in § 3.10.

If radial wave number k is larger (|kR| ≫ m), then for tightly–wound density waves,

perturbed density is of the form, Σm±

a (R) =
∣
∣
∣Σm±

a (R)
∣
∣
∣ exp [i

∫ R
dR k(R)] . WKB solu-

tion of the Poisson equation for a single softened gravity disc is given in Problem (6.3) of

Binney & Tremaine (2008). For counter–rotating discs, total perturbed surface density

is Σm
a = Σm+

a + Σm−

a , which gives,

Φm
a = −2πG

exp (−|k|b)
|k| (Σm+

a + Σm−

a ). (3.15)

The factor exp(i
∫ R

dR k(R)) is shared by Φm
a with Σm±

a . Thus the term with d/dR in

right hand side of Eqs (3.8)–(3.10) is O(|kR|/m) larger than the others. Hence neglecting
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the latter we get:

um
±

a (R) =
(±mΩ− ω)

D±
m

kΦm
a , (3.16)

vm
±

a (R) = ±i κ2

2ΩD±
m

kΦm
a , (3.17)

Σm±

a (R) = − Σ±
d

D±
m

k2Φm
a . (3.18)

The responses are singular at radii where D±

m = 0 (commonly known as LRs; Binney &

Tremaine (2008)). Set of Eqs. (3.15)–(3.18) form a self–consistent linear response theory

under WKB approximation. Substituting for Σm±

a from Eq (3.18) and eliminating Φm
a

in Eq. 3.15 gives the WKB dispersion relation,

D+

mD
−

m = 2πG |k| exp (−|k|b ) [D−

mΣ
+

d + D+

mΣ
−

d ] , (3.19)

which is a quadratic equation in ω. Coefficients of various powers of ω are real, which

implies that if ω is a solution, so is its complex conjugate, ω∗. It should be noted that

no assumptions about the Keplerian nature of the disc is being made. Therefore the

dispersion relation of Eq. (3.19) is valid for a non Keplerian disc as well, with or without

the central mass. The dispersion relation is not restricted to slow perturbations yet.

When the counter–rotating component is absent (i.e. Σ−

d = 0), Eq (3.19) reduces to the

WKB dispersion relation, familiar from Problem (6.3) of Binney & Tremaine (2008).

m = 0 perturbations:

When m = 0, we have D+

0 = D−

0 = κ2 − ω2, and Eq (3.19) becomes,

ω2 = κ2 − 2πGΣd|k| exp (−|k|b ) , (3.20)

which is identical to the dispersion relation for a disc without counter–rotating com-

ponents. It is straightforward to prove (as Problem (6.5) of Binney & Tremaine

(2008) invites the reader to do) that the disc is stable to short–wavelength axisym-

metric perturbations if

b > b0 ≡ 2πGΣd

κ2e
. (3.21)
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3.4.1 m = 1, Slow mode ansatz

At this point it is convenient to define,

Σ+

d (R) = (1− η(R))Σd(R) , and Σ−

d (R) = η(R)Σd(R) , (3.22)

where 0 ≤ η(R) ≤ 1 is the local mass fraction in the counter–rotating component. When

m = 1, the near equality of Ω and κ enables slow modes for which |ω/Ω| = O(ε) ≪ 1.

Applying slow mode condition to simplify D±

m defined in Eq. 3.11 and using definition

of ˙̟ from Eqn. 3.5 we get,

D±

1 = ±2Ω (ω ∓ ˙̟ ) +O(ε2). (3.23)

Substituting these in Eq. 3.19 and rearranging terms provides dispersion relation for slow

m = 1 modes:

ω2 − S (1 − 2η)ω − ˙̟ ( ˙̟ + S) = 0 , (3.24)

where S is defined as

S(R, |k|) =
πGΣd(R)

Ω(R)
|k| exp (−|k|b ) . (3.25)

Solutions of the quadratic Eq. 3.24 is given by

ω =
S
2
(1 − 2η) ± 1

2

√

S 2 (1 − 2η)2 + 4 ˙̟ ( ˙̟ + S) . (3.26)

Note that Eqs. (3.24) and (3.26) are invariant under simultaneous transformation (η, ω) →
(1 − η,−ω), because this operation is equivalent to interchanging the meaning of “pro-

grade” and “retrograde”.

Stability and nature of the modes

We first discuss the stability criterion for WKB modes already noted by Sridhar &

Saini (2010). m = 1 modes are stable/unstable if ω is real/imaginary which is in turn

determined by the sign of discriminant of quadratic Eq. (3.24). Discriminant is given by,

D = S 2 (1 − 2η)2 + 4 ˙̟ ( ˙̟ + S) . (3.27)
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If ˙̟ > 0, then D > 0, hence ω is real. However, precession rate ˙̟ < 0 for most

continuous discs, which leaves D < 0, if S lies in the range of values, 0 < S− < S < S+,

where

S± =
2| ˙̟ |

(1− 2η)2

[

1 ± 2
√

η (1− η)
]

. (3.28)

It is straightforward to calculate that maxima of the function x exp(−x) is ‘1/e’, which
is attained at x = 1. Thus the maximum value of S at any R is

Smax(R) =
πGΣd

ebΩ
=

κ2 b0
2Ωb

≃ Ωb0
2b

, (3.29)

which is attained for |k| = 1/b . Here b0 is the minimum softening length, defined in

Eq. (3.21), that ensures local stability to axisymmetric perturbations. So for a given R,

D is positive for all k if S− > Smax. Therefore, the disc is stable to all short–wavelength

m = 1 slow perturbations if

b > b1 ≡ πGΣd

eΩ| ˙̟ |

[

(1− 2η)2

2 − 4
√

η (1− η)

]

≃ b0

(
Ω

2| ˙̟ |

) [

(1− 2η)2

2 − 4
√

η (1− η)

]

. (3.30)

Factor dependent on η is non-zero always, specifically it approaches unity for η = 1/2,

and is equal to 0.5 for η = 0. Since (Ω/| ˙̟ |) = O(1/ε) ≫ 1, the b value required for local

stability of non-axisymmetric perturbations, according to Eq. (3.30), equals b0 (which is

the minimum softening required for local axisymmetric stability) multiplied by a large

factor of O(1/ε), implying that even though the disc might be stable to axisymmetric

perturbations, the non-axisymmetric m = 1 mode can be unstable. Since softening

mimics “heat” (more precisely, the epicyclic radius) in collisionless discs, this criterion

suggests that a Keplerian disc would have to be very hot indeed to be able to avoid

a local instability to m = 1 perturbations. Hence one is led to consider overstable

perturbations which we discuss later in the chapter.

We here make few comments regarding the nature of modes for different values of η:

• No counter–rotation: For η = 0, discriminant D = (S + 2 ˙̟ )2 > 0, giving all

real roots, which is consistent with results of Tremaine (2001). He studied similar

eigenvalue problem for a single disc; we present the results for single disc as a

special case to our calculation and make a comparison with results of Tremaine
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(2001) in § 3.10.1.

• Equal counter–rotation: If the mass fraction is equal for both ± discs, that is

η = 1/2, then Eq. (3.26) implies that ω = ±
√

˙̟ ( ˙̟ + S). Roots are always real if

˙̟ is positive or | ˙̟ | > S, whereas purely imaginary otherwise.

• Other values of η: For values of η other than zero or half, ω is in general a complex

number with non–zero real and imaginary part if D < 0, and hence we have over–

stable modes.

Solutions of WKB–dispersion relation correcting for errors in Sridhar & Saini (2010) are

presented in § 3.8. Comparison with integral equation solutions are presented in § 3.10.2.
We take the opportunity to present a complete formulation of coupled integral equation

for slow m = 1 modes, before calculating numerically the WKB eigen spectrum.

3.5 Coupled integral equation: slow m = 1 modes

Without loss of generality we may choose m = 1. In the slow mode approximation

(Tremaine, 2001), we use the fact that Ω ≫ ω in Eqs. (3.8)–(3.11), and write

u1
±

a = ∓ i

D±

1

[

Ω
d

dR
+

2Ω

R

]

Φ1
a , (3.31)

v1
±

a = ± 1

D±

1

[
Ω

2

d

dR
+

Ω

R

]

Φ1
a , (3.32)

± i ΩΣ1±

a +
1

R

d

dR
(RΣ±

d u
1±

a ) +
i

R
Σ±

dv
1±

a = 0 , (3.33)

where

D±

1 = ± 2Ω(ω ∓ ˙̟ ). (3.34)
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Eqs. (3.31) and (3.32) imply the following relations between the perturbed velocity am-

plitudes:

u1
±

a = − 2iv1
±

a ,

D−

1 u
1−

a = −D+

1 u
1+

a ,

D−

1 v
1−

a = −D+

1 v
1+

a . (3.35)

We use Eqs. (3.35) in the continuity equation (3.33) to eliminate u1
±

a and write,

±ΩΣ1±

a =
2

R1/2

d

dR
(R1/2Σ±

dv
1±

a ) . (3.36)

Combining Eqs. (3.12), (3.32) and (3.34)—(3.36) we obtain

[ω ∓ ˙̟ (R)] v1
±

a (R) =

∫ ∞

0

dR′R′1/2

2R2Ω(R′)

{
∂

∂R

[
R2P1(R,R

′)
]
}

×

×
{

d

dR′

[

R′1/2Σ+

d (R
′)v1

+

a (R′) − R′1/2Σ−

d (R
′)v1

−

a (R′)
]}

.

(3.37)

We rewrite this by defining

z±(R) =

[
R2Σ±

d (R)

Ω(R)

]1/2

v1
±

a , (3.38)

using the fact that Ω(R) ∝ R−3/2 for a Keplerian flow, and integrating by parts to obtain,

[ω ∓ ˙̟ (R)] z±(R) = −
∫ ∞

0

dR′

R′
2F(R,R′)

[
Σ+

d (R
′)Σ±

d (R)

Ω(R′)Ω(R)

]1/2

z+(R′)

+

∫ ∞

0

dR′

R′
2F(R,R′)

[
Σ−

d (R
′)Σ±

d (R)

Ω(R′)Ω(R)

]1/2

z−(R′) , (3.39)

where

F(R,R′) =

(

1 +
1

2

∂

∂ lnR′

)(

1 +
1

2

∂

∂ lnR

)

P1(R,R
′) . (3.40)
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As before Σ−

d (R) = η(R)Σd(R) and Σ+

d (R) = (1 − η(R))Σd(R) , where η(R) is the local

mass fraction in the unperturbed retrograde component; by definition, 0 ≤ η(R) ≤ 1.

Then, Eq. (3.39) can be recast as

ωz+(R) = + ˙̟ z+(R) +

∫ ∞

0

dR′

R′
[(1− η(R′))(1− η(R))]1/2K(R,R′)z+(R′)

−
∫ ∞

0

dR′

R′
[η(R′)(1− η(R))]1/2K(R,R′)z−(R′) ,

ωz−(R) = − ˙̟ z−(R) +

∫ ∞

0

dR′

R′
[(1− η(R′))η(R)]1/2K(R,R′)z+(R′)

−
∫ ∞

0

dR′

R′
[η(R′)η(R)]1/2K(R,R′)z−(R′), (3.41)

where the kernel

K(R,R′) = − 2

[
Σd(R

′)Σd(R)

Ω(R′)Ω(R)

]1/2

F(R,R′)

= − 2

[
Σd(R

′)Σd(R)

Ω(R′)Ω(R)

]1/2 (

1 +
1

2

∂

∂ lnR′

)(

1 +
1

2

∂

∂ lnR

)

P1(R,R
′)

= 2πG

[
Σd(R

′)Σd(R)

Ω(R′)Ω(R)

]1/2 (

1 +
1

2

∂

∂ lnR′

)(

1 +
1

2

∂

∂ lnR

)
B

(1)
1 (α, β)

R>
.

(3.42)

The contribution from the indirect term in P1(R,R
′) goes as R′−2 which vanishes, because

(2 + ∂/∂ lnR′)R′−2 = 0 . Therefore the kernel K(R,R′) is a real symmetric function of

R and R′.

Using Eqs. (3.35) and (3.38), we can relate the eigenfunctions z+(R) and z−(R) to

each other:

√

η(R) [ω − ˙̟ (R)] z+(R) =
√

(1− η(R)) [ω + ˙̟ (R)] z−(R) . (3.43)

This relation can, in principle, be used to eliminate one of z+(R) or z−(R) from the
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coupled Eqs. (3.41), in which case the eigenvalue problem can be formulated in terms

of a single function (which can be either z+(R) or z−(R)). However, such a procedure

results in a further complication: the eigenvalue, ω, will then occur inside the R′ in-

tegral in the combination, (ω ± ˙̟ )/(ω ∓ ˙̟ ), and this makes further analysis difficult.

Eqs. (3.41) are symmetric under the (simultaneous) transformations, {‘+′ , η(R) , ω } →
{‘−′ , (1− η(R)) ,−ω }, which interchange the meaning of the terms prograde and retro-

grade. It seems difficult to obtain general results when Σ+

d (R) and Σ−

d (R) have different

functional forms. Below we consider the case when the mass fraction, η, is a constant,

i.e. when both Σ+

d (R) and Σ−

d (R) have the same radial profile. 1

3.6 The eigenvalue problem for constant η discs

When the counter–rotating discs have the same unperturbed surface density profiles, i.e.

Σ+

d (R) ∝ Σ−

d (R) , some general results can be obtained. This case corresponds to the

choice η = constant, so that Σ−

d (R) = ηΣd(R) and Σ+

d (R) = (1 − η)Σd(R) . Then the

eigenfunctions, z+(R) and z−(R), are related to each other by,

[ω − ˙̟ (R)]
√
η z+(R) = [ω + ˙̟ (R)]

√

(1− η) z−(R) . (3.44)

Let us define a new function, Z(R), which is a linear combination of z+(R) and z−(R) :

Z(R) =
√

1− η z+(R) − √
η z−(R) . (3.45)

Then equations (3.41) can be manipulated to derive a closed equation for Z(R) :

[
ω2 − ˙̟ 2

(1− 2η)ω + ˙̟

]

Z(R) =

∫ ∞

0

dR′

R′
K(R,R′)Z(R′) , (3.46)

We note that in this integral eigenvalue problem for the single unknown function Z(R) ,

the (as yet undetermined) eigenvalue ω occurs outside the integral. Once the problem

is solved and Z(R) has been determined, we can use Eq. (3.44) and (3.45) to recover

z±(R) :

1However problem for different functional forms for Σ±

d
(R) can be studied numerically with same

machinery as we develop to solve the eigenvalue problem for constant η here.



CHAPTER 3. COUNTER–ROTATING KEPLERIAN DISCS 62

z+(R) =
√

1− η
ω + ˙̟ (R)

(1− 2η)ω + ˙̟
Z(R) , z−(R) =

√
η

ω − ˙̟ (R)

(1− 2η)ω + ˙̟
Z(R) .

(3.47)

Some general conclusions can be drawn here:

1. In Eq. (3.46), kernel K(R,R′) is real symmetric. Therefore the eigenvalue ω are

either real or exist in complex conjugate pairs.

2. When η = 0, the counter–rotating component is absent, which is the case studied

by Tremaine (2001); then the left side of Eq. (3.46) becomes (ω − ˙̟ )Z . Since the

kernel K(R,R′) is real symmetric, the eigenvalues ω are real, so the slow modes

are stable and oscillatory in time. Then the eigenfunctions Z(R) may be taken to

be real. Therefore z+(R) = Z(R) is a real function, and z−(R) = 0 2.

3. When η = 1/2 , there is equal mass in the counter–rotating component, and the

surface densities of the ‘±’ discs are identical to each other. This case may also be

thought of as one in which there is no net rotation at any radius. Then Eq. (3.46)

becomes

˙̟ −1(R)
(
ω2 − ˙̟ 2(R)

)
Z(R) =

∫ ∞

0

dR′

R′
K(R,R′)Z(R′) , (3.48)

Since the kernel K(R,R′) is real symmetric, ω2 must be real. There are two cases

to consider, when the eigenvalues ω are either real (ω2 > 0) or purely imaginary

(ω2 < 0).

• When ω is real, the slow modes are stable and oscillatory in time. The eigen-

functions z±(R) can be taken to be real functions.

• When ω is imaginary, the eigenvalues come in pairs that are complex conjugates

of each other, corresponding to non–oscillatory growing/damped modes. Let us set

η = 1/2 and ω = iγI (where γI is real) in Eq. (3.47):

z+(R) =
iγI + ˙̟ (R)

21/2 ˙̟ (R)
Z(R) , z−(R) =

iγI − ˙̟ (R)

21/2 ˙̟ (R)
Z(R) (3.49)

2When η = 1, the eigenvalues, ω, are again real, with z−(R) = Z(R) a real function, and z+(R) = 0 .



CHAPTER 3. COUNTER–ROTATING KEPLERIAN DISCS 63

The function Z(R), which is a solution of Eq. (3.48), can be taken to be a real

function multiplied by an arbitrary complex constant. It is useful to note two

special cases: (i) when Z(R) is purely imaginary, then z+(R) and z−(R) are complex

conjugates of each other; (ii) when Z(R) is real, z+(R) is equal to minus one times

the complex conjugate of z−(R).

To make progress for other values of η, it seems necessary to address the eigenvalue

problem numerically; the rest of this chapter is devoted to this.

3.7 Application to Kuzmin disc

For numerical explorations of the eigenvalue problem, we consider the case when both the

unperturbed ± discs are Kuzmin discs, with similar surface density profiles: Σ−
d (R) =

ηΣd(R) and Σ+
d (R) = (1− η)Σd(R) , where

Σd(R) =
aMd

2π(R2 + a2)3/2
(3.50)

is the total surface density, Md is the total disc mass and a is the disc scale length.

Kuzmin discs, being centrally concentrated, are reasonable candidates for unperturbed

discs. Moreover, earlier investigations of slow modes (Tremaine, 2001; Sridhar & Saini,

2010) have explored modes in Kuzmin discs, so we find this choice useful for comparisons

with earlier work. The precession rate in the limit of zero softening length (i.e. b = 0) is

˙̟ 0(R) = − 3GMd a
2

2Ω(R)(R2 + a2)5/2
(3.51)

Radial dependence of the precession rate is displayed in Fig. 3.1, where we also give

for future reference, the radial dependence of the precession rate for softening length

b = 0.1 . Solid line is for b = 0 and dashed is for b = 0.1. Dots on the dashed curve

mark the location of ILR radius as explained in § 3.10.3. For other values of b, difference
between precession rate decreases with decreasing b.The difference is close to zero for

b . 10−2, which is typical lower limit of b used in our calculations, as will be discussed

in § 3.9 .

The characteristic values of orbital frequency and surface density are given by Ω⋆ =
√

GM/a3, and Σ∗
d = Md/a

2, respectively. All physical quantities can be cast in a

dimensionless form in terms of these physical scales. When the coupled Eqs. (3.41) are
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Figure 3.1: Precession rate for the Kuzmin disc: the solid line corresponds to the ex-

pression in Eq (3.51) for zero softening (i.e. b = 0), and the dashed line is for softening

length b = 0.1 . Dots mark the location of radius of ILR as explained in § 3.10.3
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cast in dimensionless form, the net effect is to rescale the eigenvalue ω to σ, where

σ =

(
Ω⋆a

GΣ⋆

)

ω . (3.52)

In the following section, all quantities are to be taken as dimensionless; however, with

some abuse of notation, we shall continue to use the same symbols for them. Before

solving coupled integral equation we would first solve WKB dispersion relation discussed

in § 3.4 for equal counter–rotation for Kuzmin disc.

3.8 WKB–solutions

For constant mass fraction in retrograde disc, dispersion relation derived in Eq (3.24)

reduces to
ω2 − ˙̟ 2

ω(1− 2η) + ˙̟
=
πGΣd|k|e−|k|b

Ω(R)
. (3.53)

Substituting for Σd and ˙̟ defined in Eqs. (3.50) & (3.51) and for η = 1/2 converting to

dimensionless form above equation reads as,

b|k| exp(−b|k|) = Γ2
g

b

(1 +R2)4

R3
+

3b

(1 +R2)
. (3.54)

Since we are interested in comparing with the unstable global modes studied in Sridhar

& Saini (2010), we have defined Γg (identical to Γ in Sridhar & Saini (2010)) above as

iΓg =

√

4

3
b σ . (3.55)

Here we present results with precession rate for zero softening (b = 0), same as what is

used by Sridhar & Saini (2010), which differs from one with non–zero softening. We also

performed calculations with softened precession rate. We find that although results do

change by few percent and match better the results obtained from the integral eigenvalue

problem, they are qualitatively similar. So we still continue with ˙̟ for b = 0 because

(1) it is more efficient in terms of computational time required (2) since we have an

exact formulation, being an approximation the WKB–results are offered here only for

qualitative comparison, therefore a few percent difference in magnitude of eigenvalues

calculated here does not change our conclusions.

Sridhar & Saini (2010) divided their spectrum into two distinct branches namely
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short–wavelength and long–wavelength branches for which the transition takes place

from long–wavelength to short–wavelength branch at |k|b = 1. Note that at |k|b = 1 left

hand side of Eq. (3.54) attains maxima. But upon solving coupled integral equation we

do not get any such branching. Upon a closer inspection we found that the distinction

between the long and short wavelength branch turned out to be spurious one, moreover

there was a sign error in a term in the code that was used to calculate the results in

that paper. Therefore we revisit evaluation of WKB–eigenspectrum and plot contours

of constant Γ2
g for dispersion relation Eq. (3.54) in phase–space, which are displayed in

Fig. 3.2. Lighter shades are for positive values of Γ2
g (candidates for imaginary eigenvalue)

whereas dark ones are for negative Γ2
g (candidates of real and oscillatory modes). We

characterize contours as follows:3

1. Type I: closed contours around k = 0.

2. Type II: the closed contours on both sides of k = 0. If the disc rotates in the

direction of increasing azimuthal angle, then k > 0 is for trailing waves whereas

k < 0 is for leading waves.

3. Type III: are the open contours (with dark shades) for both positive and negative

k towards the highest value of |k|.

Values of Γg for which contours are closed are characterized as eigenvalues if they sat-

isfy quantization condition, which we will discuss now. Modes are determined by solving

numerically Eq. (3.54) for k for a given value of Γg & R and then using Bohr- Som-

merfeld quantization condition to obtain the eigenvalue. LHS of Eq. (3.54) is bounded

above by unity, whereas the RHS is bounded below but unbounded above as it blows up

at R = 0 and R → ∞. Hence, if the minimum of RHS is less than maximum of LHS

then Equation (3.54) will admit real roots (k value for a given R and Γg value). Also

for small and large R, right hand side of Eq. (3.54) is singular, so real roots exist only

for a finite range of R, R1 < R < R2, where both R1 and R2 depends on Γg and |k|
in a complicated manner. These are points at which wave is reflected (turning points).

To visualize it let us follow one of the type II closed contours, start at one point and

move along the contour, position at which we would notice a change in direction from

forward motion to backward and vice versa are the turning points. We therefore impose

3Classification of eigen spectrum in this chapter is different from the one used in previous chapter.
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Bohr-Sommerfeld quantization condition;

∮

kdR = (2n+ 1) π ; n = 0, 1, 2, · · · , (3.56)

where n is the number of nodes of the wavefunction and integration is to be done along

closed contours for candidate Γg values.

Since we are interested in growing/damping modes we quantize type II contours.

Growth rate as a function of number of nodes for two values of the softening parameter

b = 0.1 & b = 0.05 4 calculated numerically is displayed in Fig. 3.3 . From contour

plots shown in Fig. 3.2, we see a trend that as Γg increases the area under each contour

decreases. We obtain a similar trend in spectrum in Fig. 3.3, that is as Γg decreases n

increases. The spectrum is seen to be close to a power law, is quite robust and persists

for other values of b as well. Our conclusions are similar to that of Sridhar & Saini

(2010), however there are two significant differences:

1. We do not get two different branches as them.

2. Slope of our spectrum does not match with any of their branches. Reason for this

might be different ways of identifying eigenvalues.

Both these differences make our present result better match with the spectrum obtained

from integral equation, as shown in § 3.10.2.

3.9 Numerical method used to solve integral equa-

tions

Our numerical method is broadly similar to Tremaine (2001). In order to calculate eigen-

values and eigenfunctions numerically, we approximate the integrals by a discrete sum

using the Gauss–Legendre N–point quadrature rule (Press et al., 1992). The presence

of the term dR/R in the integrals suggests a natural choice of variables as u = log(R)

and v = log(R′), where, as mentioned earlier, R stands for the dimensionless length R/a.

The use of a logarithmic scale is numerically more efficient because it induces spacing

4Sridhar & Saini (2010) have used softening 0.1 & 0.01. We use different values because we want

to compare spectra obtained by solving WKB-dispersion relation and by numerically solving coupled

integral equation for which b = 0.01 is the limiting value.
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Figure 3.2: Contour plots for constant Γ2
g in phase–space. Lighter shades are positive

Γ2
g (growing/decaying modes) whereas darker are for negative Γ2

g (real and oscillatory

modes).
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Figure 3.3: Plot of growth rate Γg vs number of nodes n calculated for equal mass fraction

in the retrograde disc η = 1/2 for softening length b = 0.1 & b = 0.05, obtained by solving

WKB dispersion relation coupled with Bohr-Sommerfeld quantization condition.
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in the coordinate space that increases with the radius. This handles naturally a certain

expected behaviour of the eigenfunctions: since the surface density in a Kuzmin disc

is a rapidly decreasing function of the radial distance, we expect the eigenfunctions to

also decrease rapidly with increasing radius. However, we have recast coupled integral

equations defined in Eq. (3.41) by defining a new variable Z(R), which is useful to infer

general nature of the solutions. But solving numerically Eq. (3.46) is difficult as its left

hand side does not allow us to write it in a simple matrix eigenvalue problem apart from

the cases of η = 0 and 1/2. This is not the case with integral equations written in terms

of z±(R). Hence, we solve Eq. (3.41) numerically for z±(R) andσ and then calculate

Z(R) using relation given by Eq. (3.45)

Discretization of the coupled Eqs. (3.41) follows the schema:

∫ ∞

0

dR′

R′
K(R,R′) z+(R′) −→

N∑

i=1

wi K(eu, evi) z+(evi) , (3.57)

where wi are suitably chosen unequal weights. Then the discretized equations can be

written as a matrix eigenvalue problem:

A ζ = σ ζ , (3.58)

where

A =






(1− η)wjKij + ˙̟ jδij −
√

η(1− η)wjKij

√

η(1− η)wjKij −ηwjKij − ˙̟ jδij




 and ζ =






z+

i

z−

i




 . (3.59)

The 2N × 2N matrix A has been represented above in a 2 × 2 block form, where each

of the 4 blocks is a N × N matrix, with row and column indices i and j. Note that δij

is the Kronecker delta symbol, and no summation is implied over the repeated j indices.

Thus we have an eigenvalue problem for eigenvalues σ, and eigenvectors given by the 2N

dimensional column vector ζ .

In our original problem kernal K is symmetric but use of unequal weights destroys the

natural symmetry of the kernel. We would like to restore the symmetry in the problem

as matrix eigenvalue problem is much easier to solve for symmetric matrices. And this

is readily restored through a simple transformation given in § 18.1 of Press et al. (1992)
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which is based on the fact that weights calculated using Gaussian quadrature rule are

positive. We write K̃ = KD, where D = diag(wj). Now

D1/2 K̃ ζ =
(
D1/2 KD1/2

)
D1/2 ζ,

=
(
D1/2 KD1/2

)
h, (3.60)

where h = D1/2 ζ and D1/2 = diag(
√
wj). It can be easily seen that matrix in bracket

in Eqn. (3.60) is symmetric. We use this as our input to calculate the eigenvalues and

eigenfunctions (which now is h) numerically rather than K̃, which is originally there

in matrix A. And then restore ζ by using the transformation ζ = D−1/2 h, where

D−1/2 = diag(1/
√
wj).

The grid for our numerical calculations covers the range −7 ≤ logR ≤ 5, which

is divided into N = 4000 points; larger values of N give similar results. Our method

always yields 2N eigenvalues and eigenvectors. Just like in Tremaine (2001), many of

these correspond to singular (van Kampen) modes; these are discussed later in § 3.10.3.

We note some differences with Tremaine (2001) concerning details of the numerical

method and assumptions. The major difference is in the treatment of softening: In

Tremaine (2001), a dimensionless softening parameter β = b/R was introduced, and

the eigenvalue problem for slow modes was solved by holding the parameter β constant,

This renders the physical softening length b effectively dependent on radius, making it

larger at larger radii, thereby not corresponding to any simple force law between two

disc particles located at different radii. We have preferred to keep b constant, so that

the force law between two disc particles is through the usual Miller prescription. Other

minor differences in treatment are: (i) In Tremaine (2001), the disc interior to an inner

cut-off radius was assumed to be frozen. In contrast we use a straightforward inner cut-

off radius of 10−5 , as mentioned above; (ii) Tremaine (2001) uses a uniform grid in logR,

with four–point quadrature in the intervals between consecutive grid points; we also use

a uniform grid in logR but instead employ a single N–point quadrature for integration.

If we were to deal with unsoftened gravity (i.e. the case when b = 0 ), the diagonal

elements of the kernel would be singular. Hence, when the softening parameter b is

much smaller than the grid size, accuracy is seriously compromised by the round-off

errors. Typically, the usable lower limit for b is ∼ 10−2 5.

5In Tremaine (2001), lower limit on dimensionless softening parameter, β ∼ 10−4 is used ⇒ β =
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3.10 Numerical results & comparison with earlier

works

We obtained the eigenvalues and eigenfunctions of equation (3.58) using the linear algebra

package LAPACK (Anderson et al., 1999). We now present the results of our calculations

for specific values of η. As noted earlier, interchanging the meaning of prograde and

retrograde orbits leave the results invariant under the transformation (η, ω) → (1 −
η ,−ω); therefore, we present results below only for 0 ≤ η ≤ 1/2 .

3.10.1 No counter-rotation: η = 0

We are dealing with a single disc whose particles rotate in the prograde sense. The eigen-

value problem for this case was studied first by Tremaine (2001), who also showed that

the eigenvalues are real; in other words, the disc supports stable slow modes. We con-

sider this case first to benchmark our numerical method as well as assess the differences

in results that may arise due to the manner in which softening is treated as compared to

Tremaine (2001). To facilitate comparison we use the same nomenclature as Tremaine

(2001). Briefly, modes corresponding to positive and negative eigenvalues are referred to

as “p–modes” and “g-modes”, respectively; we also introduce a parameter λ = (1+ c)−1,

where c is a constant that mimics additional precession due to an external source of the

form ˙̟ e(R) = c ˙̟ d(R); we define eccentricity eK through

eK = 2

(
GM

R

)−1/2

v1a , (3.61)

and use the normalization,

∫
dR

R
e2K(R) = 1 . (3.62)

Our results corresponding to g–modes, for λ = 0.1 and b = 10−2, are presented in

Fig. 3.4, where we plot modes with three or fewer nodes and give their eigenvalues.

These figures are to be compared with Fig. 3 of Tremaine (2001). We see that the

eigenfunctions are of similar form, but that the eigenvalues differ substantially. The

reason for this discrepancy is a typographical error in Fig. 3 of Tremaine (2001). The

b/R ∼ 10−4 ⇒ b ∼ 10−2 for R ∼ 100, (typical value of maximum radius used), which is same as ours.
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Figure 3.4: Slow g–modes in a single, prograde (η = 0) Kuzmin disc with λ = 0.1 and

b = 10−2. The panels are labeled by the scaled eigenvalue σ.

eigenvalues quoted there correspond to λ = 0.05 (not λ = 0.1 as stated), as can be

verified by referring to Fig. 4 of Tremaine (2001). This was pointed out to us by Dr.

Evgeny Polyachenko. Once this is taken into account, the eigenvalues quoted in our

Fig. 3.4 are in good agreement with those corresponding to λ = 0.1 of Fig. 4 of Tremaine

(2001). However, we would like to note that this agreement between our eigenvalues

worsens somewhat for the higher eigenmodes: for instance, when λ = 0.05, we calculate

an eigenvalue of −0.1219 for a eigenmode with 8 nodes, whereas we would infer a value

of −0.0229 from Tremaine (2001). Results for p–modes for λ = 1 (no external source)

and various values of softening parameter b, are displayed in Fig. 3.5; these are to be

compared with Fig. 6 of Tremaine (2001), which matches reasonably.
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Figure 3.5: Slow p–modes in single, prograde (η = 0) Kuzmin disc with no external

source (i.e λ = 1). The panels are labeled for the scaled eigenvalue σ, and the softening

parameter b (which has been scaled with respect to a, the disc scale length).
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3.10.2 Equal counter-rotation (or no net rotation): η = 1/2

This case was studied by Sridhar & Saini (2010), but due to reasons discussed earlier in

§ 3.8, we redo the evaluation of eigenspectrum using “WKB” dispersion relation given

by Eq. (3.54) . From this expression it is concluded: if ˙̟ happens to be positive then ω

is real (and the disc is stable), but ˙̟ is negative for most continuous discs which implies

that ω can be either real or purely imaginary. We have calculated the conditions in

§ 3.4 for which eigenvalues are real (stable oscillatory modes), or purely imaginary (non–

oscillatory growing/damped modes). Here we focus on the growing (unstable) modes;

we use the growth rate of perturbations as defined in Eq. (3.55), in order to facilitate

comparisons with solutions obtained by solving WKB–dispersion relation. In Fig. 3.6

we plot Γg versus the number of nodes of Z(R), for b equal to 0.1 and 0.05. Solid line

corresponds to numerical solution of integral equation whereas dashed ones to WKB

eigenvalues (same as in Fig. 3.3). As Fig. 3.6 shows, there is good agreement between

both, including the horizontal shift in the spectrum when the value of b is changed.

In Fig. 3.7 we plot a few of these eigenfunctions as a function of R for values of b

equal to 0.1 and 0.05. Note that, from the discussion in § 3.6, Z(R) can always be chosen

to be a real function of R. The smallest number of nodes correspond to the largest value

of the growth rate. The eigenfunctions with the fewest nodes have significant amplitudes

in a small range of radii around R ∼ 1, and this range increases with the number of

nodes (and correspondingly, with decreasing the growth rate).

One direct application of relation between ± perturbations derived in Eq. (3.35) is

that we can calculate phase difference between z±(R), which we do below for growing

modes. As already pointed out, after Eq. (3.49) (which is derived from Eq. (3.35)), z±(R)

are either complex conjugates or minus one times complex conjugate of each other. And

hence, if ψ is the phase of z+(R) for a given value of R then phase difference between z+

& z− is 2ψ, where

ψ = arctan

(
˙̟

γ

)

(3.63)

is calculated using Eq. (3.49). Since we calculate z±(R) numerically, the phase difference

between them is also calculated numerically, and compared with the analytical form

above. Phase difference calculated by both these methods is displayed in Fig. 3.8 for

b = 0.1, Γg = 0.0355 and 0.0283. Solid line corresponds to numerically calculated phase

difference and dashed to the one obtained using Eq. (3.63). There is close match between
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them, which provides a check to the accuracy of our numerical method.

Fig. 3.9 is a gray–scale plot of the positive part of surface density perturbations in

the ± discs, Σ±
a (R, φ, t) at time t = 0. This basically displays the density enhancement

regions. In Fig. 3.10 we display positive part of total surface density perturbations,

Σ+
a (R, φ, t = 0)+Σ−

a (R, φ, t = 0). Note the relative phase shift between the ± perturba-

tions and lopsidedness in the brightness distribution. Since the modes are purely growing

modes, pattern rotates rigidly with the disc, with amplitude growing exponentially. For

other values of b shown in Fig. 3.7 we get similar patterns. As one more test for the

robustness of our numerical method, all the results for this case (η = 1.2) are evaluated

by solving for z±(R) (Eq. (3.41)) which gives Z(R) using relation given in Eq. (3.45) and

we already have Z(R) by solving Eq. (3.46) separately. As expected we get one-to-one

match.

3.10.3 Other values of η

We present results for values of η other than 0 and 1/2. These are particularly interesting,

not only because they could not be explored by WKB, but because the eigenvalues can be

truly complex, corresponding to growing and damped modes which precess with steady

pattern speeds. We write the eigenvalues as σ = σR+iσI , sum of real and imaginary parts.

In Fig 3.11, we display the eigenvalues in the complex σ–plane, for softening parameter

b = 0.1 and η equal to 0.1, 0.25 and 0.4.6 The horizontal lines correspond to the real and

continuous part of the spectrum, whereas the “wedge”–like distribution corresponds to

the complex and discrete part of the spectrum. Panels on the left, labeled ‘a’, provide

an overview, whereas the panels on the right, labeled ‘b’, provide a close–up view of the

distribution of eigenvalues near the origin of the complex σ–plane; this distribution is

similar to Fig. 3 of Touma (2002). We are able to provide much more detail, essentially

because we are dealing with continuous discs rather than a finite number of rings.

The continuous spectrum corresponds to singular (van Kampen) modes which are

concentrated at the ILR, which occur at radii where the pattern speed equals the pre-

cession rate as can be seen from the following discussion. Radius at which D±
1 = 0 is

ILR radius, which implies ±Ω(σ ∓ ˙̟ ) = 0 (dimensionless form of D±
1 is used here). For

prograde disc this means ILR occurs at σ = ˙̟ and for retrograde disc σ = − ˙̟ gives

6Because of symmetry of problem, values of η > 1/2 correspond to value of (1− η) discussed in this

section, like patterns for η = 0.6 correspond to 1− η = 0.4.
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Figure 3.6: Growth rate versus number of nodes for η = 0.5. Pannels are marked for

value of softening used. The solid lines are from the numerical solution of the eigenvalue

problem, Eq (3.58) . The dashed lines are from a WKB calculation.
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Figure 3.7: Eigenfunctions Z(R) are plotted as a function of the radial coordinate R, for

η = 0.5 . The panels are labeled by the values of the growth rate Γg and softening length

b.
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Figure 3.8: Phase difference between z+ and z− for η = 1/2 for growing/damping modes

as a function of radial coordinate R. Curves are labeled for |Γg| values. Phase differ-

ence calculated from numerically obtained eigenfunctions is given by solid lines whereas

dashed ones are the expected phase difference calculated using Eq (3.63) .
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Figure 3.9: Gray–scale plots of positive part surface density perturbations, Σ±
a (R, φ, t)

at time t = 0 for the parameter values, η = 0.5 , b = 0.1 and Γg = 0.0230. White/black

correspond to the maximum positive/zero values of the perturbations.

the location of ILR. In Fig. 3.1 we have marked the location for | ˙̟ | = |σ| with dots,

for |σ| = 0.1001. Same figure also tells us that nature of the radial dependence of the

precession rate is such that the condition |σ| = | ˙̟ | has (generically) none or two solu-

tions. The precession rate is negative for the “+” disc and positive for the “ - ” disc. So

for σ < 0, perturbations are singular only in the “+” disc, at the radius corresponding

to σ = ˙̟ < 0 and perturbations in “ - ” disc are smooth. Similarly, for σ > 0, the

singularity occurs only in “ - ” disc, at the radius corresponding to σ = − ˙̟ > 0 and

eigenfunction are smooth and oscillatory for “+” disc. Fig. 3.12 shows a typical case for

η = 0.25, b = 0.1 and |σ| = 0.1001. It can be seen that for any value of σ, either negative

or positive, there are two radial locations (in the “+” disc or “ - ” disc, respectively)

where the singular perturbations are concentrated because of reason discussed above.

Note that Co–Rotation (CR) and outer LR are not relevant for slow modes because: at

CR and outer LR, Ω is equal to and less than ω, respectively, but for slow modes Ω > ω.

As η increases from 0, the eigenvalues belonging to the discrete part of the spec-

trum go from real to complex, a bifurcation that has been traced in Touma (2002) to

a phenomenon identified by M. J. Krein due to the resonant crossing of stable modes.

The complex eigenvalues come in complex conjugate pairs, so there are two branches

to the distribution, distributed in the shape of a symmetrical “wedge’̇’ in the complex
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Figure 3.10: Gray–scale plots of positive component of surface density perturbations,

Σ+
a (R, φ, t)+Σ−

a (R, φ, t) at time t = 0 for the parameter values as of Fig 3.9 . White/black

correspond to the maximum positive/zero values of the perturbations.
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plane. As η increases, the branches progressively separate and, for η = 1/2, they must

lie along the positive and negative imaginary axes. It is intriguing that each of these two

branches consists of more than one arm. In the close–up views provided by the ‘b’ panels

of Fig. 3.11, it appears as if each of the branch has two arms; however, more detailed

investigations are required to determine if there are more arms. The arms of each of the

branch are most widely separated when η = 0.25, which is the value of η exactly midway

in its range 0 ≤ η ≤ 0.5 . The separations decrease as η approaches either 0 or 1/2; this

is natural because, for η = 0 both branches must lie on the real axis and, for η = 1/2

both branches must lie on the imaginary axis.

The eigenfunctions are in general complex, and have a rich structure as functions

of their eigenvalues. Since our interest is in the unstable modes, we now display in

Fig 3.13 plots of the ZR = ℜ[Z(R)] defined in Eq. (3.45), corresponding to the “most

unstable” modes for softening parameter b = 0.1 and η equal to 0.1, 0.25 and 0.4. In

other words, for some chosen value of σR, we display the real part of the eigenfunction

corresponding to the largest value of σI . For a fixed value of η, the number of nodes

of the eigenfunctions decreases with increasing pattern speed and growth rate. Fig 3.14

is a gray–scale plot of the positive part of surface density perturbations in the ± discs,

Σ±

a (R, φ, t = 0), for the parameter values η = 0.25, b = 0.1 and σ = 0.1574 + i 0.2365.

Density contrast is clearly lopsided. We also display snapshots of evolution of positive

part of total surface density perturbation, Σ+

a (R, φ, t) + Σ−

a (R, φ, t), in Fig 3.15, where

panels are labeled for ϕp = σR t, for same set of parameters as in Fig 3.14. White and

black represent maximum positive and zero amplitudes respectively. Some of noticeable

points in Fig 3.15 are: (i) Each snapshot shows certain amount of lopsidedness in the

amplitude; (ii) Apart from an overall increase in the magnitude as the system evolves

(exponential increase in magnitude because of factor of exp(σI t)), the pattern also rotates

at an angular speed given by σR.

It is also of interest to ask how eigenfunctions from two different arms of the same

branch behave. To do this, we picked two eigenfunctions with nearly the same value of

σR, but with values of σI corresponding to two different arms of one branch; Fig. 3.16

shows two such pairs of eigenfunctions for η = 0.25 . We have looked at pairs of such

eigenfunctions for other values of η, but do not display them, here we note what seems

to be a general trend: (i) the two members of a pair are more similar to each other when

the values of their σR are closer to each other; (ii) the member of a pair with the smaller

value of σI is more displaced toward larger radii.



CHAPTER 3. COUNTER–ROTATING KEPLERIAN DISCS 83

3.11 Conclusions

We study linear, slow m = 1 modes in softened gravity, counter–rotating Keplerian discs.

The eigenvalue problem is formulated as (i) WKB–dispersion relation which is also solved

by Sridhar & Saini (2010), but due to an error in their calculations we have reworked

it here, (ii) a pair of coupled integral equations for the ± modes. We then specialize

to the case when the two discs have similar surface density profiles but different ± disc

masses. It is of great interest to study the properties of the modes as a function of

η, which is the fraction of the total disc mass in the retrograde population. Recasting

the coupled equations as a single equation in a new modal variable, we are able to

demonstrate some general properties: for instance, when η = 1/2, the eigenvalues must

be purely imaginary or, equivalently, the modes are purely unstable. In other words,

when the ± discs have identical surface density profiles then there are growing m = 1

modes with zero pattern speed, a conclusion which is consistent with Araki (1987);

Palmer & Papaloizou (1990); Sellwood & Merritt (1994); Lovelace et al. (1997); Touma

(2002); Tremaine (2005). To study modes for general values of η, the eigenvalue problem

needs to be solved numerically and also WKB has its limitation that modes can only be

calculated for no– or equal–counter rotation. Our method for solving integral equation is

broadly based on Tremaine (2001), but there are some differences whose details have been

discussed earlier. The main point of departure is in the way that softening is treated.

In Tremaine (2001), a dimensionless softening parameter β = b/R was introduced, and

the eigenvalue problem was solved by holding the parameter β constant. This procedure

renders the physical softening length b effectively dependent on radius (making it larger

at larger radii), thereby not corresponding to any simple force law between two disc

particles located at different radii. We have preferred to keep b constant, so that the

force law between two disc particles is through the usual Miller’s prescription.

We calculate eigenvalues and eigenfunctions numerically for discs with surface density

profiles of Kuzmin form. Kuzmin discs, being centrally concentrated, are reasonable can-

didates for unperturbed discs. Moreover, earlier investigations of slow modes (Tremaine,

2001; Sridhar & Saini, 2010) have explored modes in Kuzmin discs, so this choice is

particularly useful for comparisons with earlier work. As noted earlier our equations are

invariant under simultaneous transformation (‘+′, η, ω) → (‘−′, 1− η,−ω) and hence we

choose values of η such that 0 ≤ η ≤ 1/2. We first calculate global modes by quantizing

the WKB–dispersion relation for the case of equal counter rotation and find a single
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Figure 3.11: Distribution of eigenvalues in the complex σ plane, for η = 0.1, 0.25 and 0.4 .

Panels labeled ‘a’ give an overview, whereas the panels labeled ‘b’ provide a close–up

view near the origin.
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Figure 3.12: Singular modes on the ± discs corresponding to the continuous spectrum

for η = 0.25 and b = 0.1 . The modes are concentrated at the inner Lindblad resonances,

which occur at σ = ˙̟ < 0 for the “+” disc, and σ = − ˙̟ > 0 for the “−” disc.
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Figure 3.13: Real parts of the “most unstable” eigenfunctions Z(R), plotted as a function

of the radial coordinate, (R) for b = 0.1 and η = 0.1, 0.25 and 0.4 . Panels are labeled

by the real and imaginary parts of the eigenvalues.



CHAPTER 3. COUNTER–ROTATING KEPLERIAN DISCS 87

Figure 3.14: Gray–scale plots of positive part surface density perturbations, Σ±
a (R, φ, t)

at time t = 0 for the parameter values; η = 0.25 , b = 0.1 and σ = 0.1574 + i0.2365.

White/black correspond to the maximum positive/zero values of the perturbations.

almost a power–law kind of spectrum in contrast with two branches found by Sridhar &

Saini (2010), owing to an error in their numerical explorations of modes. Solving the in-

tegral equation and comparing our results with those of Tremaine (2001) for η = 0 (when

the slow modes are stable), we find that the g–mode eigenfunctions are of similar form,

but the eigenvalues differ substantially. The reason for this discrepancy can be traced to

a typographical error in Tremaine (2001) as pointed to us by Dr. Evgeny Polyachenko;

when this is taken into account there is good agreement for eigenmodes with a small

number of nodes. For higher eigenmodes there is less agreement, which is probably due

to different ways in which softening has been treated. We next compare our solutions to

integral equation for η = 1/2 with the WKB results calculated earlier for the same case.

As Fig. 3.6 shows, there is good agreement between WKB–spectrum and the growth

rates calculated via solving coupled integral equation, including the horizontal shift in

the spectrum when the value of b is changed.

We have also investigated eigenmodes for values of η other than 0 and 1/2. These

cases are particularly interesting, not only because they were not explored by WKB–

analysis, but because the eigenvalues can be truly complex, corresponding to growing

(and damped) modes with non zero pattern speeds. We have presented results for η =

0.1, 0.25 and 0.4 in the previous sections. Based on these, we interpolate and offer
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Figure 3.15: Gray–scale plots of positive part of total surface density perturbations,

Σ+
a (R, φ, t) + Σ−

a (R, φ, t), for same parameter values as in Fig 3.14. White/black corre-

spond to the maximum positive/zero values of the perturbations. Panels are labeled for

values of ϕp = σR t.
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Figure 3.16: Real parts of two pairs of eigenfunctions Z(R) (from two arms of a branch),

plotted as a function of the radial coordinate R, for b = 0.1 and η = 0.25. Panels are

labeled by the real and imaginary parts of the eigenvalues.
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the following conclusions about the properties of the eigenmodes and their physical

implications, for all values of η (which is the mass fraction in the retrograde population):

1. There are both continuous and discrete parts of the spectrum of eigenvalues. The

former is real whereas the latter occupies a “wedge”–like distribution in the complex

plane.

2. The eigenfunctions belonging to the continuous part of the spectrum are singular

(van Kampen) modes, which are concentrated at the inner Lindblad resonances.

The statements below are all concerned with the discrete part of the spectrum.

3. For a general value of η (between 0 and 1/2), the two branches of the wedge are

symmetrically placed about the real axis, because the eigenvalues come in complex

conjugate pairs.

4. The pattern speed appears to be non negative for all values of η, with the growth

(or damping) rate being larger for larger values of the pattern speed.

5. For a fixed value of η, the number of nodes of the eigenfunctions decreases with

increasing pattern speed and growth (or damping) rate.

6. Perturbed surface density profile is generally lopsided with an over all rotation of

the pattern, as they evolve in time t with pattern speed given by real part of the

eigenvalue.

7. For a value of pattern speed in a chosen narrow interval, the growth (or damping)

rate increases as η increases from 0 to 1/2.

8. Each of the two branches in the complex (eigenvalue) plane has at least two arms.

When η = 0, the eigenvalues are all real, so both branches lie on the real axis, with

zero spacing between the arms. As η increases, the branches lift out of the real

axis, and the arms separate. It appears as if the maximum separation between the

arms happens when η = 1/4. As η increases further, branches continue to rise with

greater slope, while the arm separation begins decreasing. Finally, when η = 1/2,

the arm separation decreases to zero as the branches lie on the imaginary axis.

Observations of lopsided brightness distributions around massive black holes are

somewhat more likely to favour the detection of modes with fewer nodes than modes
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with a large number of nodes, because the former suffer less cancellation due to finite

angular resolution. From items (4) and (5) above, we note that the modes with a small

number of nodes also happen to be those with larger values of the pattern speed and

growth rate, both qualities that enable detection to a greater degree. We note that the

softened gravity discs can be surrogates for collisionless stellar discs only for m = 1 slow

modes. To study m > 1 slow modes, it is necessary to formulate the eigenvalue prob-

lem for truly collisionless stellar discs. Such an analysis is expected to have interesting

physical implications as we would see in consecutive chapters. Our results here serve as

a benchmark for further investigations of modes in these more realistic models.



Chapter 4
Counter–Rotating Keplerian Stellar

Discs: Local WKB Analysis

4.1 Introduction

In this chapter we turn to stellar discs, whose dynamics is richer than softened gravity

discs. Jalali & Tremaine (2012) derived the dispersion relation for short wavelength slow

modes in a single disc with Schwarzschild DF. In contrast to softened gravity discs, which

have slow modes only for m = 1, stellar discs permit slow modes for m ≥ 1. Dispersion

relation derived by Jalali & Tremaine (2012) makes it evident that all m ≥ 1 slow modes

are neutrally stable. In this chapter we generalize their work to the case of two counter–

rotating discs each described by Schwarzschild DF. We derive the dispersion relation for

slow m ≥ 1 waves in the local WKB limit and study the nature of the instabilities.

Section 2 is an account of two–component unperturbed disc; unperturbed orbits,

unperturbed mass distribution function given by Schwarzschild distribution function,

Poissons integral, and Precession rate of orbits. In Section 3, we derive WKB dispersion

relation for the system described in Section 2. Stability of modes is discussed in Section 4

for both axisymmetric and non-axisymmetric perturbations. In Section 5 we discuss in

detail numerical calculation of the eigenmodes for various values of azimuthal wave-

number m and mass fraction in the retrograde component of disc. Some concluding

remarks and discussions on the results obtained in this chapter are presented in Section 6.

92
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4.2 Unperturbed two-component disc

Dynamics of disc around a massive compact object, like discs of stars orbiting the sup-

permassive BH found in the center of most galaxies, debris discs etc, are governed by

the gravitational potential of the central mass and the self gravity of the disc. In such

situations normally the ratio of disc mass Md to central mass M (i.e. ε ≡ Md/M) is

much less than unity. Orbits of disc particles are nearly Keplerian, since we neglect

relativistic effects the discussion is applicable several Schwarzschild radius away from

the central BH. Henceforth we proceed by approximating our discs to be razor-thin, i.e.

we restrict ourselves to z = 0 plane and work in two spatial dimensions (r ≡ (R, φ),

cylindrical polar coordinates are used here) rather than three. We shall refer prograde

and retrograde components of the discs by ‘+’ and ‘−’ respectively.

The potential Φ0(R) for the unperturbed disc is given by,

Φ0(R) = −GM
R

+ Φd(R) , (4.1)

which is a sum of the Keplerian potential due to central mass and gravitational potential

due to self gravity of both ‘±’ discs:

Φd(r) = −G
∫

Σ+

d (r
′) + Σ−

d (r
′)

|r − r′| d2r′ . (4.2)

Since disc masses are O(ε) smaller compared to central mass, so is Φd compared to Kep-

lerian potential. Nearly circular orbits have radial frequency κ and azimuthal frequency

Ω given by;

Ω2(R) =
GM

R3
+

1

R

dΦd

dR
, (4.3)

κ2(R) =
GM

R3
+

3

R

dΦd

dR
+

d 2Φd

dR2
. (4.4)

Such nearly circular orbit with azimuthal frequency ±Ω(R) precess at a rate given by

± ˙̟ :

˙̟ (R) = Ω(R)− κ(R)

= − 1

2Ω(R)

(
2

R

d

dR
+

d 2

dR2

)

Φd(R) +O(ε2) . (4.5)
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Note that ˙̟ ∼ O(ε), which allows the existence of slow modes in nearly Keplerian discs

for which complex eigenfrequencies are O(ε) compared to the orbital frequency.

Orbits of the unperturbed disc particles are assumed to be following Epicycles (nearly

circular orbits). Phase space coordinates (R, φ, vR, vφ) under epicyclic approximation, as

given in Eq. (1.12), are;

R = Rg +X cos(κgt+ ψ) ,

φ = φ0 + Ωgt−
γ(R)

R
X sin(κgt+ ψ) ,

vR(R) = −κgX sin(κgt+ ψ) ,

vφ(R) = vc(R)−
κ(R)

γ(R)
X cos(κgt+ ψ) . (4.6)

where γ(R) = 2Ω(R)/κ(R); vc(R) = RΩ(R) is the circular velocity; and Rg is

the radius of circular orbit for a given angular momentum; X , ψ, and φ0 are epicyclic

amplitude, the initial phase and initial azimuthal angle, respectively; κg = κ(Rg) and

Ωg = Ω(Rg). We can calculate the values of Rg, X , ψ and φ0 using the boundary/initial

conditions for the problem which we shall discuss later.

Two body collisional time for discs such as stellar discs or debris discs are much

larger, sometimes even several orders of magnitude larger than the age of the disc itself.

However there are relaxation processes like resonant relaxation, time scales relevant for

which can be shorter and important for long term evolution of the disc. For times shorter

than these we can assume such systems to be collisionless and Collisionless Boltzmann

Equation (CBE) is appropriate to describe their evolution. For discs where orbit of a

disc particle is described in the epicyclic approximation, the solution of CBE is given by

the Schwarzschild DF f0(vR, ṽφ, Lz) as given in Eq. (1.14),

f0(vR, ṽφ, Lz) = S (Lz) exp

(

−
v2R + γ2ṽ2φ
2σ2

R(Lz)

)

, (4.7)

where Lz is the z-component of the angular momentum. ṽφ(R) = vφ(R) − vc(R) is the

difference between azimuthal & circular velocity, vR(R) is radial velocity, and σR is the

R component of velocity dispersion. Note that for circular orbits ṽφ = 0 and vR(R) = 0.

The integral of f0(vR, ṽφ, Lz) over the velocity space gives the mass surface density Σd(R)

of the unperturbed disc at a particular location in the disc. Integrating f0 under the
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condition σR ≪ vc gives

S (Lz) =
γ(Lz/vc)Σd(Lz/vc)

2πσ2
R(Lz/vc)

. (4.8)

Hence

f0(R, vR, ṽφ) =
γΣd(R)

2πσ2
R

exp

(

−
v2R + γ2ṽ2φ

2σ2
R

)

. (4.9)

The prograde and the retrograde discs are assumed to follow Schwarzschild distribu-

tion function. Hence DFs for mass density in phase-space for razor-thin unperturbed ‘±’

discs are given by,

f±

0 (R, v
±

R, ṽ
±

φ ) =
γΣ±

d (R)

2πσ±2

R

exp

(

−
v±

2

R + γ2ṽ±
2

φ

2σ±2

R

)

. (4.10)

We have already discussed all the terms in the expression earlier, here they are distin-

guished for ± discs appropriately. Integrating f+

0 (f−

0 ) over v
+

R and ṽ+

φ (v−

R and ṽ−

φ ) from

−∞ to +∞ gives unperturbed mass surface density Σ+

d (R) (Σ
−

d (R)).

4.3 Perturbed disc: WKB dispersion relation

Accounting for the fact that gravity is a long range force, in general the perturbations

in all parts of the disc are coupled. However, for tightly wound density waves or WKB

approximation, i.e., the waves whose radial wave length is much less than the radius

(|kR| ≫ |m|), the long range interactions are negligible and the system can be studied

locally (Lin & Shu, 1964; Toomre, 1964). In this section we shall calculate the dispersion

relation for the counter–rotating streams of matter to study some of the global properties

of the eigenmodes in the discs. We linearize CBE for the perturbed distribution func-

tion, use WKB solution of Poissons equation, and the equation of motion for epicyclic

approximation for an unperturbed disc, given by equation (4.6), to get the dispersion

relation. Before formulating WKB dispersion relation for counter–rotating discs, we first

describe main steps involved in the calculation of WKB dispersion relation for a single

disc.
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4.3.1 Single disc: No counter–rotation

We give here a brief summary of results from Binney & Tremaine (2008); Jalali &

Tremaine (2012). Unperturbed axisymmetric disc potential is perturbed adding a non-

axisymmetric part to it, which in turn produces perturbation in the DF,

Φ(R, φ, t) = Φ0(R) + Φ1(R, φ, t) ,

f(R, φ, vR, ṽφ, t) = f0(R, vR, ṽφ) + f1(R, φ, vR, ṽφ, t) . (4.11)

The perturbations are assumed to be infinitesimally small as compared to the unper-

turbed quantities. Substituting the above equations in CBE and keeping only linear

order terms in the perturbed quantities, we get:

f1(R, φ, vR, vφ, t) = −
∫ t

−∞

dt′
(
∂f0
∂v

· ∇Φ1

)

r
′ ,v′ ,t′

, (4.12)

where the integration is done along the unperturbed orbits which follow epicycles. The

phase-space coordinates (r′ ,v′) are determined by equations of motion for epicyclic ap-

proximation given in Eq. (4.6) and the boundary conditions are: for time t′ = t phase-

space coordinates (r′,v′) = (r,v). Combining Eq. (4.6), the boundary conditions, and

keeping only linear order terms in epicyclic amplitude X , we get

R′ = R +
γṽφ
κ

(1− cos(τ)) +
vR
κ

sin(τ) ,

φ′ = φ+
Ωτ

κ
+
γγ′

2κ
ṽφτ +

γ

Rκ
[γṽφ sin(τ)− vR (1− cos(τ))] , (4.13)

and

v′R = vR cos(τ) + γṽφ sin(τ) ,

γṽ′φ = γṽφ cos(τ)− vR sin(τ) . (4.14)

We have defined τ = κg(t
′ − t) in writing the above, and γ′ is the derivative of γ w.r.t.

R.

The mean radial perturbed velocity up to first order in perturbations is given by

v̄R1 =

∫
dvR dṽφ f1 vR

Σd

. (4.15)
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We write the perturbed potential as

Φ1(R, φ, t) = F (R) exp

[

i

(∫ R

k(R) dR +mφ − ωt

)]

, (4.16)

which essentially divides the radial variation of Φ1 into a slowly varying function F (R)

and a fast varying oscillatory function exp
[

i
(∫ R

k(R) dR
)]

. Only leading order terms

in |kR| (that is, WKB or tight winding approximation is applied) and linear order terms

in small quantities like X (epicyclic amplitude) and ε (disc mass to central mass ratio)

are retained. After carrying out the algebra, expression for v̄R1 reduces to

v̄R1 = − k(ω −mΩ)

Dm
Φ1F(s, χ) , (4.17)

where Dm = κ2 − (ω −mΩ)2, s = (ω −mΩ)/κ, χ = (kσR/κ)
2; and F(s, χ) is defined

as:

F(s, χ) =
2

χ
(1− s2) e−χ

∞∑

n=1

In(χ)

1− s2/n2
, (4.18)

In(χ) is the modified Bessel’s function of order n. Next, Jeans equation (Binney &

Tremaine, 2008) is linearized and combined with the solution of Poissons equation under

the tight winding approximation, along with equation (4.17), to get WKB dispersion

relation:

(ω −mΩ)2 = κ2 − 2πG|k|ΣdF(s, χ) . (4.19)

Note that dispersion relation (4.19) is the same as derived in § 6.2, Eq. (6.61) & (6.63)

of Binney & Tremaine (2008). For m = 1, 2, . . . there are slow modes with ω ∼ O(ε) as

shown by Jalali & Tremaine (2012). In this case s2 ∼ m2, hence the dominating term in

the summation in equation (4.18) corresponds to n = m. Using this and keeping only

first order terms in ε we get dispersion relation for slow modes for a single disc, as given

in appendix of Jalali & Tremaine (2012):

ω = m ˙̟ +
mπGΣd|k|

κ
Fm(χ) , (4.20)

where

Fm(χ) =
2

χ
e−χ Im(χ) . (4.21)

For cold disc σR → 0. In this case m = 1 slow modes behave differently from slow modes
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with m > 1. Using σR → 0

Fm =
e−χ

m!

(χ

2

)m−1

. (4.22)

For m = 1, substituting this in Eq. (4.20) we get,

ω = ˙̟ +
πG|k|Σd

Ω
, (4.23)

which implies that non-singular eigenvalues for m = 1 exists even for cold discs. For

m > 1, Eq. (4.20) & (4.22) implies ω = m ˙̟ . These are singular Van-Kampen modes

similar to those discussed § 3.10.3. Note that this also explains why slow modes do not

exist for m > 1 for zero pressure fluid discs.

4.3.2 Counter–rotating discs:

With the discussions in the previous subsection, background for the formulation of WKB

dispersion for counter–rotating discs is complete. We derive the WKB dispersion for

counter–rotating discs and make some general comments on the nature of modes sup-

ported by the counter–rotating discs in rest of this section. We shall keep all the notations

same, but defined separately for ‘+’ and ‘−’ discs with ‘±’ superscripts, respectively. Fol-

lowing the algebra done for a single component disc we can write mean radial velocity,

Jeans equation and solution to Poissons equation for both prograde and retrograde discs

as follows:

vm
±

a (R) =
(±mΩ− ω)

D±

m

kΦm
a F(s±, χ±),

Σm±

a (±mΩ− ω) = −kΣ±

dv
m±

a ,

Φm
a = −2πG

|k| Σm
a ,

Σm
a = Σm+

a + Σm−

a , (4.24)

where

D±

m = κ2 − (ω ∓mΩ)2, s± =
ω ∓mΩ

±κ , and χ± =
k2σ±

2

R

κ2
(4.25)

There are 6 equations and 7 unknowns: the 5 perturbed quantities, the eigenvalue

ω, and the radial wavenumber k. These can easily be rearranged to get one equation in
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terms of the Ω, Σ±

d , σ
±

R, κ, ω, and k, which is the WKB dispersion relation for counter–

rotating discs:

2πG|k|
(F+

D+

m

Σ+

d +
F−

D−

m

Σ−

d

)

= 1, (4.26)

here F± = F(s±, χ±). For no counter–rotation Σ−

d = 0 and equation (4.26) reduces to

the well known WKB dispersion relation derived in equation (4.19).

We now specialize to slow modes with ω ∼ O(ε) for m ≥ 1. In this case s2 → m2,

and the dominant term in the summation in expression for F± corresponds to n = m.

Applying this and keeping terms up to linear order in small quantity ε we get

F±

D±

m

=
±mF±

m

2Ω(ω ∓m ˙̟ )
,

F±
m =

2

χ±
e−χ±

Im(χ
±) . (4.27)

Using this in equation (4.26) and defining η(R) = Σ−

d (R)/Σd(R) to be the mass fractions

in retrograde disc at a particular radius, this implies the mass fraction in the prograde

disc is ‘1− η(R)’, we get:

ω2 +Bmω + Cm = 0 , (4.28)

where

Bm =
−πmG|k|Σd

Ω
[(1− η)F+

m − ηF−

m] ,

Cm = −m2 ˙̟ 2 − πm2G|k|Σd ˙̟

Ω
[(1− η)F+

m + ηF−

m] . (4.29)

Solving the quadratic equation for ω we obtain the dispersion relation:

ω = −Bm

2
±
√

B2
m − 4Cm

2
. (4.30)

The eigenvalue ω is real or imaginary depending on if the discriminant ‘B2
m − 4Cm’ is

positive or negative respectively. Note that in the limit σ±

R → 0, as is the case of single

disc, non-singular eigenvalues exists only for m = 1 and for m > 1, we only have singular

van-Kampen modes given by ω = ±m ˙̟ . We next discuss the stability of these modes.
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4.4 Stability of WKB modes:

Stability analysis of the modes is one of the most important application of the dispersion

relation derived in the previous section. A system is stable if eigenvalues are real and

the modes are oscillatory, whereas a system is unstable or overstable and the modes are

growing/damping if ω is complex. The coefficients Bm and Cm in equation (4.28) are

all real. Therefore, either ω2 is real or ω exists as complex conjugate pair. Although

the velocity dispersion for ‘±’ discs, σ+

R and σ−

R need not be equal but for simplicity,

hereafter, we assume that σ+

R = σ−

R = σR.

In this case form = 0, the dispersion relation (4.26) reduces to the well-known relation

due to Toomre (1964). Therefore the counter–rotating discs are stable to axisymmetric

perturbations if it satisfies the Tommre’s stability criterion, i.e. Q > 1. We next study

the stability of slow non-axisymmetric perturbations. The dispersion relation of Eq. 4.30

for m ≥ 1 slow modes can be rewritten in more explicit form as:

ω2 −m2 ˙̟ 2

ω[(1− η)F+

m − ηF−

m] +m ˙̟ [(1− η)F+

m + ηF−

m]
=

mπG|k|Σd

Ω
. (4.31)

For a single disc (η = 0), above equation reduces to equation (4.20), dispersion relation

for stable m ≥ 1 modes.

But for non-zero mass fraction in retrograde and prograde discs this is not the case.

The eigenvalues can be in general complex numbers Using σ±

R = σR, equation (4.31)

reduces to,
ω2 −m2 ˙̟ 2

ω(1− 2η) +m ˙̟
=
mπGΣd|k|Fm

Ω
, (4.32)

where we have defined F+

m = F−

m = Fm, which is true when the velocity dispersion for

both ‘±’ discs are equal. The above equation is quadratic in ω and its discriminant D

is;

D = m2
[
ν2(1− 2η)2F2

m + 4 ˙̟ νFm + 4 ˙̟ 2
]
, (4.33)

where ν = πG|k|Σd/Ω. Modes are stable if D > 0 and unstable if D < 0. For the case of

single disc (η = 0), the discriminant D = m2 (νFm + 2 ˙̟ )2 ≥ 0, which implies the modes

are all stable, as we know already from Jalali & Tremaine (2012). Note that, for two

counter–rotating discs with arbitrary η, D > 0 when ˙̟ > 0. This agrees with the result

of Sridhar & Saini (2010) – see discussion in Sect. 3.4.1 of this thesis. However ˙̟ < 0

for the mass precession in realistic discs. Here we briefly note some general conclusions
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for ˙̟ < 0 discs:

1. For equal counter–rotation η = 1/2, equation (4.32) gives ω2 = m2 ( ˙̟ 2 + ν ˙̟ Fm)

as a real quantity. Modes are stable and oscillatory if | ˙̟ | > νFm, and purely

growing/damping otherwise. Thus the stability condition is:

σR
vc

>
∣
∣
∣
σR0

R ˙̟

∣
∣
∣ , (4.34)

here vc is the circular velocity and we have defined σR0 = πGΣd/Ω. In writing the

above we have used the fact that 2e−χIm(χ)/
√
χ < 1 for all values of χ and m.

2. Defining S = νFm, solution for the relation D = 0 is given by

S± = 2| ˙̟ |
[

1 ± 2
√

η(1− η)

(1− 2η)2

]

. (4.35)

Note that S is always positive. It is straightforward to determine that for 0 <

S− < S < S+, we have D < 0. Hence the system is stable if S− > Smax, where Smax

is the maximum value of S in the disc which is calculated below. For Keplerian

discs S can be written as:

S =
πGΣdκ

ΩσR

2√
χ
e−χIm(χ)

<
ΩσR0

σR
≡ Smax . (4.36)

Using all this, the condition S− > Smax simplifies to

σR
vc

>
∣
∣
∣
σR0

R ˙̟

∣
∣
∣

[

(1− 2η)2

2− 4
√

η(1− η)

]

, (4.37)

Terms on the RHS are of O(1) whereas for the unperturbed distribution function

assumed in the present formulation, that is Schwarzschild distribution function, it

is assumed that σR/vc ≪ 1. So discs are largely unstable. Note that in deriving

Eq. (4.37) we have not used any constraint on the value of η and it is applicable

for all the values of η 6= 0. For example, when η → 1/2, the term in [ . . . ] goes to

unity and the condition (4.37) reduces to the one derived for η = 1/2 above.
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Since we now know the general nature of eigenmodes, it will be good to construct these

local WKB modes with some concrete model for discs surface density and velocity dis-

persion. In rest of the chapter, we shall consider specific models for Σd and σR, to solve

dispersion relation coupled with an appropriate quantization condition numerically for

ω, and to study characteristics of the eigenmodes quantitatively for a given value of η.

4.5 Numerical calculation of the eigenvalues

Stability of the eigenmodes depend on whether the disc satisfies the stability criterion

discussed in the previous section. We have already seen that for no counter–rotation

(η = 0), eigenmodes are oscillatory and for equal counter–rotation (η = 1/2) they are

either oscillatory or purely growing/damping. Below we calculate eigenvalues numerically

for η = 0 & η = 1/2.

We assume the surface density of the unperturbed disc to be of the Kuzmin form:

Σd(R) =
aMd

2π(R2 + a2)3/2
, (4.38)

where a is the central concentration parameter. The precession rate ˙̟ for the Kuzmin

disc is given by

˙̟ (R) = − 3GMda
2

2Ω(R)(R2 + a2)5/2
. (4.39)

The Keplerian frequency Ω(R) =
√

GM/R3. Both the ± discs are assumed to have

identical surface density profiles, that is η is a constant. We consider two models for σR:

• Model I: The only assumption that goes into the derivation of Schwarzschild

distribution function is that σR ≪ vc. As a first case we take σR(R) = Avc(R) =

ARΩ(R) ≃ ARκ(R), with A≪ 1, clearly it satisfies the above mentioned criterion.

• Model II: Epicyclic amplitude for nearly Keplerian orbits is ∼= σR/κ. Considering

it to be a constant, we assume σR = bκ(R) ≃ bΩ(R). For b≪ R, we have σR ≪ vc,

consistent with the assumption used for Schwarzschild DF

Normalizing the radius R as R/a, we can recast equation (4.32) into a dimensionless

form

Ω

mπ|k|Σd

(
ω2 −m2 ˙̟ 2

ω(1− 2η) +m ˙̟

)

= Fm , (4.40)
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where we rescale the eigenvalue ω and precession rate ˙̟ with a3Ω(a)/GMd to make it

a dimensionless quantity. Ω and Σd are recasted into dimensionless form by rescaling

them with
√

GM/a3 and Md/a
2 respectively. Modes are determined by solving equa-

tion (4.40) for k numerically for a given value of ω & R, and then using Bohr-Sommerfeld

quantization condition to obtain the eigenvalues. For m 6= 0, RHS of the above equation

is bounded and has a maxima less than unity, whereas the LHS is bounded below but

unbounded above as it blows up at R = 0 and R → ∞. Hence, if the minimum of LHS is

less than maximum of RHS then the equation will admit real roots (giving k value for a

given R and ω). Also, for small and large R, LHS of (4.40) is singular. So real roots exist

only for a finite range of R, R1 < R < R2 where both R1 and R2 are the classical turning

points. Following Jalali & Tremaine (2012) we determine the eigenvalues through the

Bohr-Sommerfeld quantization condition;

∮

kdR = (2n− 1)π ;n = 1, 2, ..... (4.41)

n being the quantum number or the number of nodes. In Fig 4.1 we plot contours of

constant ω2 in phase-space for η = 1/2 and m = 1. These contours are of three types.

We characterize them as Type I, II and III exactly the same way as defined in § 3.8, as

given below for reference

1. Type I, closed loops around k = 0.

2. Type II, the closed contours on both sides of k = 0.

3. Type III, are the open contours (with dark shades) for both k positive and negative

towards the highest value of |k|.

Values of ω for which contours are closed are characterized as eigenvalues if they

satisfy the quantization condition (4.41). Above characterization of the contours also

holds for other values of m and η = 0 as well (though their shapes might differ a bit but

then our distinction does not depend on the shapes). Next, we solve dispersion relation

coupled with quantization condition numerically. Before specializing to specific values of

η and m, we mention a mathematical trick that we have used to calculate the reduction

factor Fm(χ): since the modified Bessel function Im(χ) increases exponentially for large

values of its argument 1, this makes it difficult to numerically calculate it. Instead, we

1Asymptotic form of Im(x) = ex/
√
2πx for large x
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Figure 4.1: Contours of constant ω2, for m = 1 and η = 1/2 in phase space.

evaluate e−χIm(χ), which decreases monotonically as 1/
√
χ. Note that this combination

exists in the functional form of Fm(χ) . Next, for a specific value of η, we solve for

m ∈ (1, 2) (in rest of the text by m 6= 0 we shall mean m ∈ (1, 2)).

1. η = 0: For this case equation (4.40) reduces to;

ω = m ˙̟ +
mπΣd|k|Fm

Ω
.

Clearly eigenvalues are all real and the modes are all oscillatory, as noted by Jalali

& Tremaine (2012). For both the models of σR discussed earlier, Type I & III

contours for η = 0 and m 6= 0 are for ω < 0 whereas ω is positive for type II

contours. We give some comments regarding the nature of eigenfrequencies for

cold discs (or low velocity dispersion in other words) here. For low σR such that

χ≪ 1, the factor

Fm =
1

m!

(χ

2

)m−1

. (4.42)

We have used asymptotic from of Im(χ) = χ2/m!2m in writing the above expression.
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Note that for m = 1, Fm = 1 and therefore the eigenvalue ω does not depend on

the heat in the system so long as χ ≪ 1. But in case of m ≥ 2, eigenvalues vary

with σR. For the values of A and b used in this chapter χ ≪ 1 for only Type I

contours, and hence this conclusion holds only for them.

Area under the curve for Type I closed contours is quite small in this case for both

models of σR for m = 1 and we get eigenvalue for n = 1 only. Spectrum for m = 2

is shown in Fig. 4.2 with σR given by model I for A = 0.1, 0.05 & 0.01. Spectrum

shifts towards the right as the value of A is decreased. Contours of ω = −0.5 for

the same model parameters as in Fig. 4.2 for all values A are plotted in Figure 4.3.

The innermost contour, has the lowest area is for A = 0.1, next one is for A = 0.05

and the largest area is for A = 0.01. Larger the area, larger is the n value, as can

be seen from equation (4.41), and hence the shift towards right for lower values of

A in Fig 4.2.

Spectrum for positive eigenvalues for m 6= 0 and model I of σR is given in Fig. 4.4.

Left panel in Fig. 4.4 displays the spectrum for m = 1 & 2 and A = 0.1. Right

panel displays the spectrum for m = 1 and A = 0.1 & 0.05. Spectrum shifts

towards right with decreasing value of A. Figure 4.5 gives similar plots for model

II of velocity dispersion. The trends with varying b & m remain same. All these

trends are as expected from the contour plots of constant ω in phase-space.

2. η = 1/2: For this case Eq. (4.40) becomes

ω2 −m2 ˙̟ 2

m ˙̟
=
mπΣd|k|Fm

Ω
. (4.43)

ω2 is always real but can be positive or negative, which implies that ω is either

purely real (oscillatory modes) or purely imaginary (growing/damping modes),

respectively. Referring back to Fig. 4.1, contours around k = 0 (Type I) are for

positive values of ω2 and hence real eigenvalues. Type II contours are for ω2 < 0

(growing/damping modes). Type III contours are for ω2 > 0 but are not closed.

We quantize the closed contours to get the respective eigenvalues. Fig. 4.6 shows

the growth rate (
√
−ω2) for Type II contours vs number of nodes with σR given

by model II. Left panel is for b = 0.1 and right panel is for b = 0.05. Curves for

both m = 1&2 are plotted. Spectrum is quite independent of m. Fig. 4.7 gives

the comparison of spectrum for m = 1 for both values of b as in Fig. 4.6. Shift in
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Figure 4.2: ω vs number of nodes for η = 0 for Type I contours. We discuss the types of

contours in § 4.5. σR = ARκ(R), model I. A and m values are mentioned in the plot.
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Figure 4.3: Closed (Type I) contours of ω = −0.5 for η = 0, m = 2 and model I

for different values of A. Innermost contour is for A = 0.1 then for 0.05 and 0.01,

respectively.
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Figure 4.4: ω vs number of nodes for η = 0 for type II contours. Model I for Velocity

dispersion is used. Figure is labeled for values of A and m. Left panel is eigenspectra

plot for a fixed value of A and m 6= 0. Right panel shows the variation with different

values of A, for a given value of m.

Figure 4.5: ω vs number of nodes for η = 0 with σR = bκ(R), model II. Plots are labeled

for the values of b and m. Left and right panel show the variation in the eigenspectra for

a fixed value of b & different m’s and fixed value value of m & varying b, respectively.
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the eigenvalue curve towards right as we go from b = 0.1 to b = 0.05 is seen and

is consistent with the expected trend from the contour plots. All these conclusions

are consistent with Sridhar & Saini (2010) and Gulati et al. (2012).

Similar plots for model I for σR are given in Figs. 4.8 and 4.9. Left panel in Fig. 4.8

is the spectrum for m = 1&2 with A = 0.1, and right panel gives the plots with

A = 0.05. Spectrum is almost independent of m for A = 0.05 whereas for A = 0.1

there is a shift towards left as we go fromm = 1 to 2. Reason for the differences can

not be attributed to the area enclosed by respective contours as nothing definite

can be claimed regarding it from visual inspection of the contours.

Area enclosed in the closed contours for Type I (real eigenvalues) contours is so

small in most of the cases that we do not get eigenvalues for nodes greater then

1 or 2. We plot spectrum for this case in Fig. 4.10 using model II for velocity

dispersion, for b = 0.05& 0.01 and m = 2&3. Left panel of the figure is a plot

for m = 2 for both the values of b. Abrupt cutoff in both the plots is because the

contours are not closed for values of ω lesser than ‘0.1 for b = 0.05’ and ‘0.01 for

b = 0.01’ . Shift towards the right for lower value of b is consistent with the trends

in earlier cases. Right panel is the eigenvalue plot for b = 0.01 and m = 2&3.

Note that for same value of ω, number of nodes for m = 2 are smaller then m = 3

whereas the trend was opposite for all the earlier cases displayed. Reason for this

can be understood by plotting the contours in phase-space as earlier. We have

plotted such contours in Fig. 4.11 for same parameters as of Fig. 4.10 for ω = 0.3.

Blue curve is for m = 2 and the pink one is for m = 3. Area under the curve for

m = 2 is less than the one for m = 3 and hence we expect that for same value

of ω, m = 2 will have smaller n value than m = 3, which is what is observed in

Fig. 4.10. The trend is opposite for all the earlier cases.

4.5.1 Comparison with softened-gravity disc

We have already discussed earlier in the previous chapter and this chapter, that softened-

gravity provides close analog of a more complex stellar disc for m = 1 modes, and can be

easily handled numerically. Softened gravity is thought of as a surrogate to stellar disc

where softening length mimics heat or velocity dispersion. Here we take the opportunity
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Figure 4.6: Growth rate (
√
−ω2) vs number of nodes for η = 1/2 and model II for σR.

Appropriate labeling on the panels is done for the values of b and m.

Figure 4.7: This plot shows the comparison between the eigenspectra for varying b and

fixed m. Graphs are labeled for the values of b and m.
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Figure 4.8: Growth rate vs number of nodes for η = 1/2, model I for σR. Values of A

and m are mentioned as labels in the plot.

Figure 4.9: Comparison plot for growth rate vs number of nodes for η = 1/2, for different

values of A for m = 1.
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Figure 4.10: Spectrum for oscillatory modes for the case of equal counter–rotation using

model II for velocity dispersion. Both the panels are labeled for b and m values.
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Figure 4.11: Closed contours for type I (real) eigenvalues for η = 1/2, σR used is model

II, b = 0.01 and ω = 0.3. Blue curve is for m = 2 & pink one is for m = 3.
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Model I (for A = 0.1) Model II (for b = 0.1)

Local WKB solution Integral equation Local WKB solution Integral equation

for collisionless solution from for collisionless solution from

disc Tremaine (2001) disc Gulati et al. (2012)

0.601 0.67 0.511 0.418

0.554 0.62 0.43 0.377

0.494 0.57 0.368 0.343

0.445 0.52 0.319 0.313

0.404 0.48 0.281 0.288

Table 4.1: Table for comparison of eigenvalues for η = 0 & m = 1 obtained from WKB-

dispersion relation using both model I & II for σR(column 1 & 3) for n = 1 − − − 5.

Column 2 gives the five highest eigenfrequencies obtained by solving the integral equation

obtained and studied in Tremaine (2001). We read the numbers from the plots in Fig.-5

of Tremaine (2001). Column 4 are the integral equation solutions obtained (highest five

frequencies) in the last chapter.

to compare both these approaches. Account of previous study of slowmodes for softened-

gravity disc in literature relevant to the present problem is in Tremaine (2001) and the

previous chapter of this thesis. Both the studies treat softening in a different manner. In

the first, softening length b = βR is radius dependent where β is a constant, and in the

other, softening length b is radius independent and is a constant. Consequences of both

these are discussed in details in the last chapter. Softening length is thought to mimic

epicyclic radius of star’s orbit in nearly Keplerian disc, which is ∼ σR/κ. Hence, model I

used in this chapter corresponds to the softening used in Tremaine (2001), with β = A,

and the model II correspond to softening used in the previous chapter. Comparisons with

WKB solutions for both η = 0 and 1/2, with their respective solutions of softened-gravity

integral eigenvalue problem relevant for model I and II are as follows:

1. η = 0 : Comparison between the eigenvalues for η = 0 and m = 1 is presented in

Table 4.1. First two columns are for model I for σR & A = 0.1 and next two are

for model II for velocity dispersion and b = 0.1. First and third columns give the

eigenvalues calculated from the local WKB dispersion relation in this chapter for

n = 1−−−5 for both model I and II, respectively. First column is to be compared
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Figure 4.12: Comparison plot for growth rate vs number of nodes for η = 1/2, m = 1 &

b = 0.1 between the spectrum calculated using the WKB dispersion relation for stellar

disc and integral-equation solution for softened-gravity disc calculated in last chapter.

with the second column, which gives the highest five eigenfrequencies obtained

from the integral-equation for softened-gravity disc given in Fig. 5 in Tremaine

(2001). Corresponding eigenfrequencies for model II, obtained by solving integral-

equation in the last chapter are given in the fourth column which is to be compared

with the third column. Match between the local WKB solutions for stellar disc

and eigenfrequencies from complete eigenvalue problem for softened-gravity disc is

quite good (within few percent).

2. η = 1/2 : Integral-equation solution for this case was studied in previous chapter.

Figure 4.12 is a plot for growth rate versus number of nodes using, m = 1 & b = 0.1,

for both local WKB solutions (dashed line) and integral equation solution (solid

line). Spectrum matches pretty well.

4.6 Conclusions

In this chapter we have studied WKB-modes for general m for collisionless nearly Kep-

lerian discs. We began by explaining the two-component unperturbed disc, which is a

superposition of two co-planer discs rotating in opposite direction. Unperturbed orbits

follow epicycles and its DF is given by Schwarzschild DF. Stability of both axisymmetric
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and non-axisymmetric modes is studied assuming that the velocity dispersion in both

‘±’ discs is equal. Unlike zero pressure fluid discs, the stability of m = 0 modes does not

imply the stability of m 6= 0 modes and hence the stability analysis is carried out sepa-

rately. We have made some general comments regarding the nature of the modes for a

given mass fraction η in the retrograde disc and solve the dispersion relation through the

Bohr-Sommerfeld quantization condition numerically for η = 0 and 1/2. We also made

comparisons with the softened-gravity disc. Following conclusions about the properties

of the modes and their implications have been made:

• Stability criterion for axisymmetric perturbations is simply the Toomre’s stability

criterion, that is Q ≡ σRκ/3.36GΣd > 1.

• For η = 0, all the non-axisymmetric modes are stable. But when η 6= 0, non-

axisymmetric perturbations are stable if they satisfy the condition given in Eq. (4.37).

For epicyclic orbits this constraint is quite difficult to meet and hence modes are

largely unstable.

• General trends in the eigenspectra for η = 0 are: (1) Number of nodes increases

as ω decreases, (2) ω value decreases with increasing m, and (3) ω increases with

decreasing velocity dispersion.

• For equal counter–rotation, the modes are either real or purely growing/damping.

Growth rate for growing modes is in general independent of the m value and the

growth rate is higher for lower velocity dispersion. Spectra of real eigenvalues obey

the same pattern with the velocity dispersion but the trend reverses for the m

variation. The trends of eigenvalues with different parameters can be explained

using the contour plots in phase-space.

• A comparison of the WKB eigenvalues is made with the softened gravity disc

considered in Tremaine (2001) and Ch. 3 of the present thesis. Match between the

eigenvalues is quite reasonable despite the limitations of softened-gravity discs.

We have determined the eigenvalues for η = 0 & 1/2 . However we could not determine

the eigenfunctions due to transcendental nature of the dispersion relation in k. In the

next chapter we generalize WKB to include the non-local dependence of the self gravi-

tational potential on the surface density. This allows us to explore both eigenvalues and

eigenfunctions for arbitrary η.



Chapter 5
Non-Local WKB Theory for

Eigenmodes of Axisymmetric Stellar

Discs in the Epicyclic

Approximation

5.1 Introduction

In the last two chapters we have formulated and studied the evolution of nearly Keplerian

self-gravitating discs assuming;

1. The disc to be a zero pressure fluid disc, where disc particles interact via softened-

gravity (Ch. 3).

2. The disc material was assumed to be collisionless, and we studied the properties

of the disc locally using WKB approximation (Ch 4).

Although several properties of such systems could be studied in these chapters, there

were following limitations (1) Softened-gravity disc mimics a collisionless disc, however

we could study only m = 1 lopsided modes. They do not support modes for m > 1. The

other m modes are also important, for instance, m = 2 mode supports bar formation.

(2) While the local WKB analysis gives a rough idea of collisionless discs, it is difficult

to say much about the eigenfunctions. The objective of this and the next chapter is to

address these limitations.

116
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To overcome the first limitation above, we consider a truly collisionless disc instead of

considering a softened-gravity disc as done in Chapter 3. The WKB-dispersion relation is

derived and analyzed for collisionless discs in the previous chapter, based on the following

assumptions:

1. Radial wavenumber k times the radiusR is much larger than the azimuthal wavenum-

ber m, i.e. |kR| ≫ m.

2. The epicyclic approximation in which the velocity dispersion σR is much less than

the circular speed vc. Also it is assumed that

σR
vc

∼ m

|kR| ≪ 1 .

3. The dominant contribution to the perturbed potential at a given point due to the

perturbed surface density is local.

4. The Bohr-Sommerfeld quantization condition was used to determine eigenvalues.

One drawback of the above method is that eigenfunctions cannot be obtained as

directly as in quantum mechanics because the dispersion relation is transcendental in

k. We overcome this difficulty by dropping the assumption in item 3 above, of the

locality of the relationship between perturbed self-gravity and surface density. Here we

use standard WKB approximation without the assumption of local relationship between

the perturbed potential & the perturbed surface density and epicyclic theory, together

with the logarithmic-spiral decomposition of surface density and gravitational potential

(Kalnajs, 1971). This results in an integral equation determining WKB eigenvalues and

eigenfunctions.

In Section 5.2, we discuss the unperturbed disc. The integral equation is derived in

Section 5.3. We solve the integral equation derived in § 5.3, to obtain the local WKB-

dispersion relation in Section 5.4.

5.2 Unperturbed disc

Unperturbed disc is identical to the prograde disc in the previous chapter. Expressions for

various quantities like near circular orbits of particles in the discs, distribution function

for the unperturbed disc are given below for further reference in this chapter. The
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unperturbed stellar orbits are considered to be nearly circular, such orbits are called

epicycles and are as given in Eq. (4.13) & (4.14):

R′ = R +
γṽφ
κ

(1− cos(τ)) +
vR
κ

sin(τ) ,

φ′ = φ+
Ωτ

κ
+
γγ′

2κ
ṽφτ +

γ

Rκ
[γṽφ sin(τ)− vR (1− cos(τ))] , (5.1)

and

v′R = vR cos(τ) + γṽφ sin(τ) ,

γṽ′φ = γṽφ cos(τ)− vR sin(τ) . (5.2)

where for time t′ = t, phase-space coordinates (r′ ,v′) = (r,v). Also ṽφ(R) = vφ(R) −
vc(R); vc(R) = RΩ(R); γ(R) = 2Ω(R)/κ(R); τ = κg(t

′ − t); κg = κ(Rg); and γ
′ is

the derivative of γ w.r.t. R.

Disc is considered to be a collisionless systems. CBE is appropriate for studying the

dynamical evolution of such systems. For the unperturbed axisymmetric stellar disc the

solution of CBE under epicyclic approximation is given by the Schwarzschild DF, as used

in the previous chapter:

f0(R, vR, ṽφ) =
γΣd(R)

2πσ2
R

exp

(

− v2R + γ2ṽ2φ
2σ2

R

)

, (5.3)

where Σd(R) is the unperturbed surface density profile.

5.3 Derivation of an integral equation for perturba-

tions

A small–amplitude perturbation, f1
1, is added to the distribution function f0, i.e,

f(R, φ, vR, ṽφ, t) = f0(R, vR, ṽφ) + f1(R, φ, vR, ṽφ, t) . (5.4)

1All the perturbed quantities are denoted by subscript ‘1’
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Perturbations in the surface density are related to the perturbed DF as

Σ1(R, φ, t) =

∫

f1(R, φ, vR, ṽφ, t)d
2v , (5.5)

where d2v = dvRdṽφ. The corresponding perturbation in potential Φ1(R, φ, t) is related

to perturbed surface density by the Poisson integral:

Φ1(R, φ, t) = Φdt
1 (R, φ, t) + Φidt

1 (R, φ, t) , (5.6)

where

Φdt
1 (R, φ, t) = −G

∫ ∞

0

∫ 2π

0

Σ1(R
′, φ′, t)R′dR′dφ′

√

R2 +R′2 − 2RR′ cos(φ− φ′)
, (5.7)

and

Φidt
1 (R, φ, t) =GR

∫ ∞

0

∫ 2π

0

Σ1(R
′, φ′, t) cos(φ− φ′)dR′dφ′

R′
,

= πGR(δm,1 + δm,−1) exp[i(mφ − ωt)]

∫ ∞

0

Σa(R
′)

R′
dR′ . (5.8)

To write the second equation from the first in above equation we have decomposed

Σ1(R
′, φ′, t) = Σa(R

′) exp[i(mφ′ − ωt)] and solved the integral over φ′. The term Φdt
1 is

called the direct term and is due to the gravitational interaction between the disc mass

particles, and the term Φidt
1 is the indirect term. The indirect term arises because the

origin of the coordinate system considered here is located at the central mass position,

which makes it a non–inertial frame. Note that the indirect term is present only if there

is a central star around which the stellar disc rotate. In case of no central star the

indirect term is identically equal to zero.

Linearized CBE is given by

df1
dt

= − [f0,Φ1] , (5.9)

where the time derivative on the left hand side is taken along the unperturbed orbit, and

the bracket [∗, ∗] on the right hand side is the Poisson Bracket. The solution of linearized

CBE is given by

f1(R, φ, vR, ṽφ, t) = −
∫ t

−∞

dt′ [f0,Φ1]x′ ,v′ ,t′ , (5.10)
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where (x′ ,v′) = (R′, φ′, v′R, ṽ
′
φ) are given by Eqs. (5.1) and (5.2).

We seek solutions of the perturbed quantities for which φ and t dependence of the per-

turbed quantities goes as exp[i(mφ−ωt)] such that the perturbations vanish at t→ −∞.

This requires ω to have a non–zero positive imaginary part, however small it may be.

Expansion of Poisson Bracket gives

[f0,Φ1] = − ∂f0
∂v

.∇Φ1 . (5.11)

Using above and Eqs. (5.6) & (5.10) in Eqn. (5.5) we get

Σa(R) = Σdt
a (R) + Σidt

a (R) , (5.12)

where

Σdt
a = exp[−i(mφ − ωt)]

∫ ∞

−∞

∫ ∞

−∞

dvRdṽφ

∫ t

−∞

dt′
[
∂f0
∂v

.∇Φdt
1

]

x′ ,v′ ,t′
, (5.13)

and

Σidt
a = exp[−i(mφ − ωt)]

∫ ∞

−∞

∫ ∞

−∞

dvRdṽφ

∫ t

−∞

dt′
[
∂f0
∂v

.∇Φidt
1

]

x′ ,v′ ,t′
. (5.14)

Rest of this section is dedicated to solving the above set of equations, by substituting

for Φdt
1 and Φidt

1 , to get the final integral–equation for Σa.

5.3.1 Self consistency

We use the log-spiral expansion of surface density and potential (Kalnajs, 1971; Binney

& Tremaine, 2008) to write Φdt
1 in Eq. 5.13 in terms of Σdt

a :

Φdt
1 (R, φ, t) = − G

R1/2

∫ ∞

−∞

dα

2π
N(α,m)Am(α)e

i(αq+mφ−ωt) , (5.15)
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where q = lnR, and

Am(α) =

∫ ∞

−∞

dq′R′3/2Σa(R
′)e−iαq′ , (5.16)

N(α,m) = π

Γ

(
m

2
+

1

4
+

iα

2

)

Γ

(
m

2
+

1

4
− iα

2

)

Γ

(
m

2
+

3

4
+

iα

2

)

Γ

(
m

2
+

3

4
− iα

2

) . (5.17)

Note that N(α,m) is a real and even function of both m and α. Using this solution for

Φdt
1 (R, φ, t) and that of f0(R, vR, ṽφ) given in Eq. (5.3) we get,

∂f0
∂v

.∇Φdt
1

∣
∣
∣
∣
x′ ,v′ ,t′

=
Gf0

R3/2σ2
R

exp[i(mφ′ − ωt′)]

∫ ∞

−∞

dα

2π
×

×
[(

iα− 1

2

)

v′R + imγ2ṽ′φ

]

N(α,m)Am(α)e
iαq′ . (5.18)

Substituting the above in the expression for Σdt
a given by Eq. (5.13) we get

Σdt
a (R) =

G

R3/2σ2
R

exp[−i(mφ − ωt)]

∫ ∞

−∞

dα

2π
N(α,m)Am(α)×

×
∫ ∞

−∞

∫ ∞

−∞

dvR dṽφ f0

∫ t

−∞

dt′ exp[i(αq′ +mφ′ − ωt′)]×

×
[

v′R

(

iα− 1

2

)

+ imγ2ṽ′φ

]

. (5.19)

In writing the above equation we have made the standard WKB approximations (see

Appendix-K of Binney & Tremaine (2008)). These are

1. We have retained only up to first order terms in small parameter |R′ − R|, which
can have a maximum value of 2X ; X being the small epicyclic amplitude.

2. Also to a good approximation we can write |R′ − R| ≪ R, and hence any slowly

varying function of R′, like σR(R
′), γ(R′), Σd(R

′), can be replaced by their values

at R and taken out of the integral.

3. Using equation (4.6), (v2R + γ2ṽ2φ)/(2σ
2
R) = κ2X2/2γ2σ2. Since X is a constant for

a given unperturbed orbit. The DF f0 is independent of the trajectory followed by

the unperturbed orbits, and hence can be taken out of integral over t′.
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For the next step we use

4. We have q′ = ln(R′) = ln(R + δR), where δR ≪ R. Hence we can write q′ =

q+(δR/R) and δR needs to be expressed in terms of vR, ṽφ and τ using Eq. (4.13).

5. We define s = (ω −mΩ)/κ, u = vR/σR and v = γṽφ/σR.

6. Henceforth we assume that |α| ≫ m and we shall keep only leading order terms

in α at each step. For large α, the leading order radial oscillations of phase are

balanced by the (unperturbed) drift of φ at the rate Ω, while the epicyclic drift and

oscillations of φ may be neglected. Also, in the linear term, i.e. the term outside

the exponent, only iαv′R term contributes.

Inserting these and the values of v′R, ṽ
′
φ and φ′ from equations (4.13)–(4.14) in above

the integral we find

Σdt
a (R) =

GΣd

2πR3/2κσR

∫ ∞

−∞

dα

2π
N(α,m)Am(α) e

iαq

∫ 0

−∞

dτ exp [−isτ ]A , (5.20)

where, s′ is the derivative of s w.r.t. the radius R. We have defined τ = κg(t
′ − t), and

A =

∫ ∞

−∞

∫ ∞

−∞

du dv (au+ bv) exp

[

−u
2 + v2

2
+ i(cu+ dv)

]

; (5.21)

a =iα cos τ , b = iα sin τ , c =
σR
Rκ

α sin τ , and d =
σR
Rκ

α(1− cos τ) . (5.22)

Since vR and ṽφ are linear in small parameter ‘X ’ and we are working only up to linear

order in small parameters, we have replaced κg with κ(R) in Eq. (5.20). Integrals in A

can be solved to get

A = 2πi (ac+ bd) exp

[

−c
2 + d2

2

]

, (5.23)

by using the standard integrals

∫ ∞

−∞

dx e−x2/2 eiµx =
√
2πe−µ2/2 and

∫ ∞

−∞

dxx e−x2/2 eiµx = i
√
2π µ e−µ2/2 . (5.24)
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We evaluate c2 + d2 and ac+ bd using Eq. (5.22);

c2 + d2 = 2χ (1− cos τ) , and ac+ bd =
iσRα

2

Rκ
sin τ ,

where χ = σ2
Rα

2/R2κ2. Substituting these in Eq. (5.23) gives

A = −2πσR
Rκ

α2 sin τ exp [−χ(1 − cos(τ))] . (5.25)

Combining Eqs. (5.20) and (5.25), expression for Σdt
a (R) reduces to

Σdt
a (R) =− GΣd

R5/2κ2

∫ ∞

−∞

dα

2π
N(α,m)Am(α)α

2 eiαqI1(s, χ) , (5.26)

where

I1(s, χ) =

∫ 0

−∞

dτ sin τ exp [−isτ − χ (1− cos τ)] , (5.27)

The next step is to evaluate I1. First, using the transformation τ → −τ we get,

I1 =−
∫ ∞

0

dτ sin τ exp [isτ − χ (1− cos τ)] ,

We then divide the τ integral, which is from 0 to ∞, into a summation series of integrals

from τ = 0 to 2π, 2π to 4π and so on. And for each integral using the transformation

τ → τ + 2nπ we get

I1 =−
∞∑

n=0

e2πins
∫ 2π

0

dτ sin τ exp [isτ − χ (1− cos τ)] .

Note that the τ integral is independent of n. And the summation series over n on

the RHS of above expression is a geometric series of the form
∑∞

n=0 p
n, where |p| =

| exp(2πis)| = | exp(−2πIm(s))| < 1, because Im(s) = Im(ω) > 0 for the perturbations

to vanish at t→ −∞, as assumed earlier. This Implies that the series is convergent and

the sum equals 1/(1− p). Hence we have

I1 =− 1

1− e2πis

∫ 2π

0

dτ sin τ exp [isτ − χ (1− cos τ)] .
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Using the transformation τ → τ + π, above integral reduces to

I1 =
eπis

1− e2πis

∫ π

−π

dτ sin τ exp [isτ − χ (1 + cos τ)] . (5.28)

Note that sin τ e−χ(1+cos τ) is an odd function of τ and eix − e−ix = 2i sinx, which when

applied to I1 we get

I1 =
−1

sin πs

∫ π

0

dτ sin τ sin(sτ) exp [−χ (1 + cos τ)] .

Integrating by parts and using the identities ez cos θ =
∑∞

n=−∞ In(z) cos(nθ) and In(−z) =
(−1)nIn(z), where In(z) is the modified Bessel function of order n, where n is an integer,

above integral reduces to

I1 =
−1

χ

[

1− se−χ

sin(πs)

∞∑

n=−∞

(−1)nIn(χ)

∫ π

0

dτ cos(sτ) cos(nτ)

]

.

A little algebra gives
∫ π

0
dτ cos(sτ) cos(nτ) = s(−1)n+1 sin(πs)/(n2 − s2). Using this

and the identities ez cos θ =
∑∞

n=−∞ In(z) cos(nθ) for θ = 0 & I−n(z) = In(z) in the above

expression gives

I1 = − 2e−χ

χ

∞∑

n=1

(
n2

n2 − s2

)

In(χ) . (5.29)

Substituting for I1 from Eq. (5.29) in Eq. (5.26) and simplifying gives

Σdt
a (R) =

2GΣd

R5/2κ2

∞∑

n=1

(
n2

n2 − s2

)∫ ∞

−∞

dα

2π
N(α,m)Am(α) e

iαq Bn(α, χ) . (5.30)

Here Bn(α, χ) is defined as

Bn(α, χ) =
α2

χ
e−χ In(χ) . (5.31)

Note that

1. Bn(α, χ) is an even function of α. This property will be useful while calculating

the integral over α, as we shall see later.
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2. To leading order in α, Bn is proportional to α2.

Having expressed Σdt
a in the desired form Eqn. (5.30) we now turn to the calculation of

Σidt
a . Below we prove that, to leading order Σidt

a = 0. Φidt
1 (R, φ, t), as given in Eq. (5.8),

can be rewritten as

Φidt
1 (R, φ, t) =R exp[i(mφ − ωt)]Jm ,

where, Jm = πG(δm,1 + δm,−1)

∫ ∞

0

dR′

R′
Σa(R

′) , (5.32)

is a constant. Using this we can write

∂f0
∂v

.∇Φidt
1

∣
∣
∣
∣
x′ ,v′ ,t′

= − f0
σ2
R

exp[i(mφ′ − ωt′)]
(
v′R + imγ2ṽ′φ

)
Jm . (5.33)

Combining Eqs. (5.13) and (5.33) and defining s, τ , u and v as done before Σidt
a becomes

Σidt
a =− JmΣd

2πκσR

∫ 0

−∞

dτe−isτA ′ , (5.34)

where

A ′ =

∫ ∞

−∞

∫ ∞

−∞

du dv (a′u+ b′v) exp

[

−u
2 + v2

2

]

, (5.35)

a′ =cos τ − imγ sin τ ,

b′ =sin τ + imγ cos τ . (5.36)

In writing the above integral we have neglected the oscillations in φ and the epicyclic

drift term. Neglecting these terms involves same level of approximation as in calculating

Σdt
a . The integral in A ′ is exactly equal to zero since the integrand is an odd functions

of u and v, which implies that

Σidt
a = 0 . (5.37)
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5.3.2 Integral equation

As given in Eq. (5.12), Σa is the sum of both Σdt
a and Σidt

a . Combining Eqs. (5.12), (5.16),

(5.30), and (5.37) we get

Σa(R) =
GΣd

R5/2κ2

∫ ∞

−∞

dq′ Gm(s, χ, q − q′)R′3/2Σa(R
′) , (5.38)

where

Gm(s, χ, q) = 2
∞∑

n=1

(
n2

n2 − s2

)∫ ∞

−∞

dα

2π
N(α,m)Bn(α, χ) e

iαq . (5.39)

We have already discussed that both the functions N(α,m) and Bn(α, χ) are even

functions of α. Since ‘sin’ and ‘cos’ are odd and even functions respectively, only ‘cos’

term in the integral over α survives. Combining these, the integral equation reduces to,

S(R) =
∫ ∞

−∞

dq′
[C(R)C(R′)

κ(R)
Gm(s, χ, q − q′)

]

S(R′) , (5.40)

where

Gm(s, χ, q) = 4
∞∑

n=1

(
n2

n2 − s2

)∫ ∞

0

dα

2π
N(α,m)Bn(α, χ) cos(αq) . (5.41)

and we have defined

S(R) = R3/2Σa(R)

C(R) and C(R) =
√

GΣd(R)

Rκ(R)
. (5.42)

Equation (5.40), together with the functions defined in Eq. (5.41) & (5.42) is the inte-

gral eigenvalue problem for tightly-wound linear modes of an axisymmetric disc in the

epicyclic approximation. It is not restricted in application to Keplerian discs; it could

be used to explore modes of a galactic disc, although we have not pursued the potential

application in this thesis.
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5.4 The local limit

Here we verify that a local approximation–valid when |α| is not just much larger than m,

but is truly large–to the integral problem reduces it to the well-known WKB dispersion

relation of (Toomre, 1964).

We first solve the integrals over ‘q ′’ (in particular solve the q′ integral in Am, equa-

tion (5.16)) and ‘α’ in Σa (equation (5.39)) using the stationary phase approximation.

This is a well known technique of asymptotic analysis that is useful in approximating

oscillatory integrals. Underlying idea behind the approximation is that for an oscillatory

integral with rapidly changing phase, most of the contribution to the integral cancels

due to destructive superposition of oscillatory functions. Thus, the phase can be approx-

imated by its Taylor expansion around the stationary phase point, that is the point at

which phase change is zero. In addition, the non-oscillatory part of the integrand is sim-

ply replaced by its value at the stationary point. It simplifies the integrals considerably.

This mathematical technique when applied to evaluate integrals gives an asymptotic

solution to the integrals. For more details, refer to Lighthill (2001).

We begin by writing Σa(R) as

Σa(R) = h(R) exp

[

i

∫ R

k(R′′)dR′′

]

.

This essentially divides Σa(R) into a slowly varying function h(R) of R and a fast varying

oscillatory function of R. Substituting this in equation (5.16) we get,

Am(α) =

∫ ∞

−∞

dq′R′3/2 h(R′) exp(iψ) , (5.43)

where ψ =
∫ R

k(R′′)dR′′ − αq′, is the phase of the oscillatory part of the integral over

q ′. A point R = R∗ (or equivalently q = q∗) is called a stationary point if at q = q∗,

dψ/dq = 0, which when substituted for ψ gives the condition, R∗k(R∗) = α. Since

the phase is nearly constant at the stationary point (which in turn gives the leading

contribution to the integral), we shall replace ψ(R) with its Taylor expansion around R∗,

ψ(R) = ψ(R∗) + (q − q∗)
2̺ ,

where, ̺ = R2
∗(dk/dR|R∗

+ α/R2
∗)/2. We retain terms up to second order in the Taylor
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expansion. Other parts of the integrand are replaced by their value at R∗ and can be

taken out of the integral. All this put together in the expression of Am given in Eq. (5.43)

gives,

Am(α) =R
3/2
∗ Σa(R∗) exp[−iαq∗]

∫ ∞

−∞

dq′ exp
[
i(q′ − q∗)

2̺
]
,

=R3/2
∗ Σa(R∗) exp[−iαq∗]

[√
π

|̺| exp
[

i sgn(̺)
π

4

]]

. (5.44)

The second equality in the above equation uses the Gaussian integrals,

∫ ∞

−∞

dx exp
[
±iλx2

]
=

√
π

|λ| exp
[

±i sgn(λ)
π

4

]

, (5.45)

and sgn(λ) is the sign of λ. We next use this value of Am(α) in the expression of Σdt
a

given in equation (5.30) and the fact that Σa = Σdt
a (because the indirect term equals

zero for the present formulation), to get

Σa(R) =
2GΣd

R5/2κ2

∞∑

n=1

(
n2

n2 − s2

)∫ ∞

−∞

dα

2π
N(α,m)R3/2

∗ h(R∗) e
−χ×

×
[

Bn

√
π

|̺| exp
(

i sgn(̺)
π

4

)]

exp[iϕ] , (5.46)

where the phase ϕ =
∫ R∗ k(R′′)dR′′−α(q∗−q). At the stationary phase point dϕ/dα = 0,

which on substitution of ϕ, gives the stationary phase point as q = q∗ or R = R∗. Hence

integral over α in above equation, on applying the stationary phase approximation,

simplifies to

Σa(R) =
GΣd

πR5/2κ2

∞∑

n=1

(
n2

n2 − s2

)

N(kR,m)R3/2Σa(R)Bn(α, χ)×

×
√

π

|̺| exp
(

i sgn(̺)
π

4

)∫ ∞

−∞

dα e−iα2ς ,

=
2GΣd

2Rκ2

∞∑

n=1

(
n2

n2 − s2

)

N(kR,m) Σa(R)Bn(α, χ)×

×
√

1

|̺ς| exp
[

i
(

sgn(̺)
π

4
− sgn(ς)

π

4

)]

. (5.47)

Here ς is defined as (1/2R∗)(dR∗/dα) and equation (5.45) is used to write the second
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equality. A few points to be noted regarding ̺ and ς are:

1. ̺ ς = 1
4
, and

2. sgn(̺) = sgn(ς) .

Both can be derived using the relation α = R∗k(R∗), which was derived earlier. As we

know, the basic constraint to be imposed for the present study is |kR| ≫ m. Also note

that kR = α at the stationary phase point. This gives an equivalent condition for WKB

as |α| ≫ m. The asymptotic form of N(α,m) for α≫ m is

N(α,m) ∼ 2π

(α2 +m2)1/2
∼ 2π

|α| . (5.48)

All these used together reduces equation (5.47) to

Σa(R) =
2πGΣd|k|

κ2

∞∑

n=1

(
n2

n2 − s2

)
2

χ
e−χIn(χ)Σa(R) , (5.49)

which implies

κ2 − (ω −mΩ)2 = 2πGΣd|k|F(s, χ) , (5.50)

where

F(s, χ) =
2

χ
(1− s2) e−χ

∞∑

n=1

In(χ)

1− s2/n2
. (5.51)

Hence we have verified that the local limit of the integral eigenvalue problem (5.40)

reduces to the well-known WKB dispersion relation (Toomre, 1964; Binney & Tremaine,

2008). In the next chapter we visit the integral eigenvalue problem in the limit of slow

modes for a Keplerian disc.



Chapter 6
Eigenmodes of a Keplerian Stellar

disc in the Tight-Winding

Approximation

6.1 Introduction

In the previous chapter we derived an integral equation (5.40) to (5.42) for the eigenmodes

of general axisymmetric stellar discs in the epicyclic and tight-winding approximation.

In this chapter we solve the integral equation numerically and determine the slow m = 1

& m = 2 eigenvalues and eigenfunctions for a Keplerian stellar disc with a Schwarzschild

distribution function. Basic questions that we try to address in this chapter are:

1. Are the modes generated stable or unstable?

2. What is the effect of varying velocity dispersion on the spectra?

3. How does the eigen-frequency spectra vary with m?

4. What do wavefunctions look like?

5. How do eigenfrequencies and eigenfunctions vary with the unperturbed surface

density profile?

We take the slow mode limit of the integral equation derived in previous chapter

(§ 5.3) and write an eigenvalue problem for the same in Section 6.2. In Section 6.3 we

130
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describe the numerical method adopted to solve the eigenvalue problem. Section 6.4

gives an account of solutions obtained for two unperturbed surface density profiles: (1)

JT annular disc, (2) Kuzmin disc. Basic properties of the disc profiles will be explained

in Section 6.4. We conclude this chapter in Section 6.5.

6.2 The integral equation in the slow mode limit

We begin with the general integral equation derived in previous chapter–Eqs. (5.40) –

(5.42)–reproduced below for reference:

S(R) =
∫ ∞

−∞

dq′
[C(R)C(R′)

κ(R)
Gm(s, χ, q − q′)

]

S(R′) , (6.1)

where

Gm(s, χ, q) = 4

∞∑

n=1

(
n2

n2 − s2

)∫ ∞

0

dα

2π
N(α,m)Bn(α, χ) cos(αq) . (6.2)

and we have defined

S(R) = R3/2Σa(R)

C(R) , C(R) =
√

GΣd(R)

Rκ(R)
, (6.3)

s(R) =
ω −mΩ(R)

κ(R)
, and χ(R) =

(
σR(R)α

Rκ(R)

)2

. (6.4)

Bn(α, χ) =
α2

χ
e−χ In(χ) , (6.5)

N(α,m) = π

Γ

(
m

2
+

1

4
+

iα

2

)

Γ

(
m

2
+

1

4
− iα

2

)

Γ

(
m

2
+

3

4
+

iα

2

)

Γ

(
m

2
+

3

4
− iα

2

) , (6.6)

here Σd,Ω, κ, and σR are the unperturbed surface density, azimuthal frequency, radial

frequency and radial velocity dispersion, respectively. For a nearly Keplerian disc,

Ω(R) ≃ κ(R) + O(ε). This property of the orbits enables the existence of slow mode
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with |ω| ≪ |Ω|. This gives s ≃ −m, γ ≃ 2 to leading order and

m2 − s2 =
2m(ω −m ˙̟ )

κ
. (6.7)

Hence, in the summation over n from 1 to ∞ in Eq. (5.41), n = m term dominates due

to the presence of the factor 1/(n2 − s2).

Velocity Dispersion Profile: We take σR(R) = σRκ(R), where σ is a dimension-

less constant less than unity. Using such a profile means that the radial profile of σR is

same as Rκ(R) ≃ RΩ(R) = vc(R). Merits of using this profile are that: (1) It satisfies

the epicyclic approximation with σ < 1, which is one of the basic assumptions used in

building this theory. (2) As mentioned in the previous chapter, Jalali & Tremaine (2012)

have studied a similar problem. Authors have given this as the radial profile of σR. Apart

from being a reasonable model for velocity dispersion, as shown by them, this also helps

us in making direct comparison of our results with theirs.

Since we have assumed σ to be constant, χ is also a constant, leading to considerable

simplification. Using all these in Eqs. (6.1)–(6.6) we get

ω S(R) =m ˙̟ (R)S(R) +
∫ ∞

−∞

dq′ Hm(σ, q, q
′)S(R′) , (6.8)

where the kernel

Hm(σ, q, q
′) = 2m C(R)C(R′)

∫ ∞

0

dα

2π
N(α,m)Bm(α, χ) cos(α(q − q′)) . (6.9)

This is the integral eigenvalue problem for slow modes in a nearly Keplerian collisionless

disc. Note that the kernel of the integral equation is symmetric in R and R′ (or q and q′).

Hence the integral operator on the RHS can be regarded as a linear Hermitian operator.

Properties of Hermitian operators imply that the eigenvalues ω are all real, thus all slow

modes are stable. Also, the eigenfunctions S(R) can be assumed to be real.

We define a characteristic disc scale length ‘a’ such that R/a is the dimensionless

radius, Md/a
2 is the characteristic surface density and Ω∗ =

√

GM/a3 is the character-

istic value of orbital frequency. Using these all the physical quantities are casted into

a dimensionless form. The overall effect is that the eigenfrequencies ω are scaled by a

factor Ω∗a3/GMd. We shall keep using the same notations for quantities like R, Σd, ω,

Ω and C(R) etc as used earlier, though these will represent dimensionless quantities in
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the rest of the chapter.

6.3 Numerical method

In this section we address the following issues:

1. How to evaluate each component of the integral equation?

2. Discretizing and converting the integral-equation to a matrix equation.

3. How the matrix entries are evaluated and the matrix is inverted?

Let us begin by addressing these issues one by one. First task at hand is to evaluate Hm

defined in Eq. (6.9). Calculation of Hm basically involves the calculation of the integral

over α, and evaluating functions like N(α,m) and Bm(α, χ). The functional form of

Bm(α, χ) contains the combination e−χIm(χ) and we shall calculate this numerically,

instead of Im itself, because Im increases exponentially for large value of its argument,

as explained earlier in § 4.5.

Next we explain the steps used to evaluate N(α,m). As defined in Eq. (6.6):

N(α,m) = π
Γ(z)Γ(z∗)

Γ(z + 1
2
)Γ(z∗ + 1

2
)
, (6.10)

where

z =
m

2
+

1

4
+ i

α

2
. (6.11)

Using the identities Γ(z∗) = Γ(z)∗ and zz∗ = |z|2, expression for N(α,m) becomes

N(α,m) =π

∣
∣
∣
∣

Γ(z)

Γ(z + 1
2
)

∣
∣
∣
∣

2

. (6.12)

We then use the following identity to calculate |Γ(x+ iy)|:

|Γ(x+ iy)| = |Γ(x)|
∞∏

n=0

[
(x+ n)2 + y2

(x+ n)2

]−1/2

. (6.13)

We take ‘log’ of both sides which converts the product series into a summation series.

Convergence of summation series over n is achieved iteratively till the accuracy of 10−8 is

attained, and then we exponentiate to get back Γ(x+iy). Also |Γ(x+iy)| is a decreasing
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function of y and we need to evaluate |Γ(x + iy)/Γ(x + iy + 1/2)| as a function of y.

Hence when the minimum of machine precision is reached, N(α,m) indeterminant due

to numerical underflow of the numerator and the denominator. This can be avoided by

using its asymptotic form of this function given in Eq. (5.48).

Let us define Km such that

Hm(σ, q, q
′) = 2m C(R)C(R′)Km(σ, q − q′) , (6.14)

where

Km(σ, q) =

∫ ∞

0

dα

2π
N(α,m)Bm(α, χ) cos(αq) . (6.15)

Next we evaluate Km as a function of q for a given σ. To evaluate the integral over ‘α’

we use a grid in log(α) obtained using Gaussian quadrature rule. Though the integrand

becomes quite small for large values of α, but due to the presence of oscillatory function,

‘cos’, the tail of the integrand becomes important. In principle the integral is to be taken

upto infinity, which ensures complete cancellation due to oscillatory functions. Since we

evaluate the integral numerically, with finite grid in α, we get small spurious contributions

from the tail. To avoid these spurious contributions due to numerical integration we take

α range to be quite high with very fine griding. For typical values of maximum value of

α, αmax = e25−27, and number of grid points in log(α) scale Nα = 107, Km converges till

sixth or seventh decimal place. We tabulate the values of Km vs q for given values of σ

and m, we shall discuss next how do we choose the values for q.

For both ‘ q ’ and ‘ q′ ’, the range covered in our numerical calculation is [−6 , 6],

divided in nq = 4000 points each. We choose the lower range of q to avoid numerical

singularities for q → −∞. Also, the upper range is chosen as the surface density decreases

substantially beyond q = 6. Since each of ‘ q ’ and ‘ q′ ’ range from −6 to 6, and these

values enter Km in a combination q−q′ which will vary from −12 to 12 with the presently

chosen range, we calculate Km from−14 to 14 with grid size of 105. The range is extended

from [−12, 12] to [−14, 14] just to make sure that tail effects are minimized. As we have

discussed earlier there is noise in the tail of the integrand over α due to the presence of

oscillatory functions. Hence we do a box smoothening for Km to reduce the noise further,

which works fine precisely due to presence of these oscillatory functions. In Fig. 6.1 we

display a plot of Km as a function of q. Left panel is the plot of smoothened Km and

the right panel is zoom-in of y-axis from −1.5 × 10−4 to 1.5 × 10−4 . Green curve is
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Figure 6.1: Plot of Km vs q for m = 1, σ = σR/Rκ(R) = 0.1. Left panel is the plot

of smoothened Km and the right panel displays the zoom of y-axis for a window of

−1.5× 10−4 to 1.5× 10−4. Green one is the original curve whereas red one is after doing

a box-smoothening.

the unsmoothened curve whereas the red one is the smoothened curve. Clear effect of

smoothening in reducing the noise can be seen. Once we have tabulated Km as a function

of q for a given m and σ as discussed above, we divide −6 ≤ q (and q′) ≤ 6 in a grid of

nq points and interpolate to calculate actual matrix entries.

Further, the discretization of the integral over q′ in Eq. (6.8) follows the scheme as

explained in § 3.9, Eq. (3.57). Using this, discretized integral-equation can be written

as:

AS =ωS, (6.16)

where A is a nq × nq matrix defined as

A =
[

wqjHm(σ, qi, qj) +m ˙̟ iδij

]

. (6.17)

Row and column indices are i and j, respectively. Note that no summation is implied

over repeated indices. We divide q (and q′) on a grid of nq points using the Gaussian

quadrature rule, where wqj are the weights. Since the weights are unequal, discretization

does not allow the symmetry property of the kernel Hm to be carried forward in to A.
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We shall use the method discussed and used in § 3.9 to restore the symmetry.

We have now reduced our problem to a nq dimensional matrix eigenvalue problem

with ω as eigenvalue and the column vector S being the eigenvector. We next use the

linear algebra package LAPACK (Anderson et al., 1999) to invert the matrix to calculate

eigenvalues and eigenvectors. Most of the eigenvalues (out of the nq values) we get are

singular van Kampen modes, which are part of the continuum spectrum, along with the

discrete spectrum of eigenvalues.

6.4 Numerical results

In this section we shall discuss the numerical results obtained after solving the matrix

eigenvalue equation. We first discuss some general properties of Km as a function of σ.

Its general profile, that is the shape of Km vs q plot, remains same as that in Fig. 6.1.

But the peak values, width of the sinusoidal, and the errors on the each entry vary with

σ. In Table 6.1, we have given various parameters of Km vs q plot for different values of

σ and m = 1 . We note the following general trends:

• Both positive and negative peak, p1 (column 3) and p2 (column 4), respectively,

vary as 1/σ2. This can be seen from the expression of Km (more precisely Bm),

which is proportional to α2/χ2 = 1/σ2.

• Width of the sinusoid varies as σ.

• Although the absolute error, △ (column 2), differ for each σ, with △ increasing

with decreasing σ, the relative error remains similar for almost all of them (column

5 and 6).

These trends persist for other m values. For the calculation of the eigenvalues we need

an unperturbed surface density (Σd) profile as an input. We shall use two profiles for it:

• JT annular disc: This is an annular disc model around the central massive object

obtained by subtracting two Toomre (1963) discs. We shall call this profile as JT

annular disc because it is used by Jalali & Tremaine (2012) earlier. The radial

profile (dimensionless form) is given by

ΣJT
d (R) =

3

4π

[
1

(1 +R2)3/2
− 1

(1 +R2)5/2

]

=
3R2

4π(1 + R2)5/2
, (6.18)
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And the corresponding precession rate for nearly circular orbits is

˙̟ JT(R) =
3(1− 4R2)

4Ω(R)(1 +R2)7/2
. (6.19)

Note that Ω(R) used here is the dimensionless azimuthal frequency. ˙̟ JT(R) > 0

for 0 < R < 1/2, zero at R = 1/2 and negative thereafter. Positive and negative

maxima are 0.05861 and −0.2078, respectively. Both ΣJT
d (R) and ˙̟ JT(R) are

plotted in the left pannel of Fig. 6.2.

• Kuzmin disc: We have used the Kuzmin disc model in this thesis earlier, but

for the sake of completeness we give expressions for the surface density and the

precession frequency for a Kuzmin disc

ΣKz
d (R) =

1

2π(1 +R2)3/2
, (6.20)

˙̟ Kz(R) =
−3

2Ω(R)(1 +R2)5/2
. (6.21)

Both the quantities are in dimensionless units. Note that ˙̟ Kz ≤ 0 for all values of

R. We plot both ΣKz
d (R) and ˙̟ Kz(R) in the right pannel of Fig. 6.2.

Both these profiles differ from each other physically, and hence can give us a good idea

regarding the effects of change in surface density on the eigenmodes. Surface density

for Kuzmin disc is centrally concentrated whereas for JT annular disc is concentrated

around R = 1. Precession frequency is negative throughout the radius range for Kuzmin

disc, and for JT annular disc it starts from zero, attains a positive maxima, becomes

negative, reaches a minima and then goes to zero. We give and compare the results from

both these profiles next.

6.4.1 JT annular Disc

Here we present the numerical results for JT annular disc profile. We choose m = 1 &

2, and σ = 0.1, 0.2, 0.3 & 0.4. The plot of non-singular eigenvalues for JT annular disc

is given in Fig. 6.3. The X-axis is the dimensionless pattern speed, Ωp = ω/mω0, where

ω0 = 0.05861 is positive maxima value of precession frequency. Note that all frequencies

are measured in units of ‘ε
√

GM/a3’ , the natural slow mode frequency. The Y-axis is
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Figure 6.2: Surface density and precession frequency profiles for JT annular disc and

Kuzmin disc are displayed. Panels on the left correspond to JT annular disc and those

on the right give the profiles for Kuzmin disc. Top panels display the surface density,

Σd, and the bottom one’s are plots for the precession rate ˙̟ .
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σ △ p1 p2 |△/p1| |△/p2|

0.01 ∼ 10−4 5000 ∼ −650 ∼ 2× 10−8 ∼ 2× 10−7

at q = 0 at |q| = 0.027

0.1 ∼ 5× 10−7 ∼ 50 ∼ −6.7 ∼ 10−8 10−8

at q = 0 at |q| = 0.27

0.2 ∼ 2× 10−7 ∼ 12 ∼= −1.8 ∼ 2× 10−8 ∼ 10−7

at q = 0 at |q| = 0.53

0.3 ∼ 10−7 ∼ 5.25 ∼= −0.82 ∼ 2× 10−8 ∼ 10−7

at q = 0 at |q| = 0.768

Table 6.1: This table is a comparison table for the calculation of matrix entries for

different σ values and m = 1. First column is for σ values. Second one is for absolute

value of maximum error (noise) in the smoothened Km values. Next one gives the positive

peak values, p1 of Km and their respective q values where the curves peak, whereas forth

column gives the negative peak values, p2 and their respective q values. Fifth and sixth

column give the relative error for p1 and p2, respectively.
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Figure 6.3: Non-singular eigenfrequencies for JT annular disc profile for m = 1 & 2 and

σ = 0.1, 0.2, 0.3 and 0.4. Eigenvalues are all real and prograde. X-axis is Ωp = ω/mω0,

where ω0 is the positive maxima of precession rate and Y-axis is the σ value. Plots are

labeled for their respective m values.
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σ, which is a dimensionless measure of the heat in the disc. We note the following trends

from Fig. 6.3 for m = 1 and m = 2 modes:

1. The modes are all stable with prograde pattern speeds Ωp > 1.

2. For given (σ,m), the pattern speed belongs to a discrete spectrum. Let Ωmax(σ,m)

be the largest eigenvalue of this spectrum. Then

(a) At fixed m, Ωmax is a decreasing function of σ.

(b) At fixed σ, Ωmax(σ, 1) > Ωmax(σ, 2).

Plot for m = 1 is to be compared with Fig. 4 of Jalali & Tremaine (2012). Mean

eccentricity used by the authors is linearly proportional to σ used in the present work.

Apart from the last property of the eigenspectra mentioned above (about which nothing

has been said by the authors), our conclusions are consistent with their results. Eigen-

values match within a few percent which Jalali & Tremaine get by solving collisionless

Boltzmann equation, and even better with the eigenvalues obtained after solving the

local WKB dispersion relation. All the eigenvalues with Ωp ≤ 1 that we get are singular

for all the values of σ.

The variation of Ωp with m follows the same trend as we get from solving the local

WKB-dispersion relation in Chapter 4. Note that we have not used JT annular disc in

calculating the eigenvalues in Ch. 4 hence we can not compare the numbers but still the

general properties of the spectra can be compared.

Figure 6.4 and 6.6 show the radial profile of Σa(R) for m = 1 and 2, respectively.

Functions are normalized such that
∫
dqΣ2

a(R) = 1. We plot the eigenfunctions for the

first two eigenvalues for all the values of σ. Panels are labeled for the values σ and Ωp.

Number of nodes increase as the Ωp value decreases. In Fig. 6.5 and 6.7 we plot the

image of oscillatory patterns of the positive part of Σa(R) cos(mφ) for m = 1 and 2,

respectively, which is essentially the positive component of the real part of Σ1(R, φ, t) at

t = 0. Plots for the highest values of Ωp are displayed and their respective σ values are

given in the panels. Surface density is normalized to unity in all the panels. Contours

range from 0 to 1, and the corresponding colors are shown in a wedge on the right side.

Wavepackets are more radially compact for lower values of σ.
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Figure 6.4: Plot of perturbed surface density, Σa(R) as a function of R for m = 1 and

JT annular disc profile. Eigenfunctions for first two eigenvalues for each value of σ are

displayed. Panels are labeled for the values of σ and Ωp. Functions are normalized such

that
∫
dqΣ2

a(R) = 1.



CHAPTER 6. EIGENMODES OF KEPLERIAN STELLAR DISC 143

Figure 6.5: Patterns of oscillatory waves for JT annular disc. We have displayed the

positive component of Real part of Σ1(R, φ, t) at t = 0, for m = 1. Plots are for highest

value of Ωp for each value of σ and the panels are labeled for its respective σ values. The

surface density is normalized to unity in all panels and the color scheme for contours

from 0 to 1 is plotted in a wedge on right side of the image.
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Figure 6.6: Σa(R) vs R plot for m = 2 for two eigenmodes with least number of nodes,

using ΣJT
d as the unperturbed disc. Panels are labeled for their respective σ and Ωp

values.
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Figure 6.7: Image of positive component of Real part of Σ1(R, φ, t) at t = 0 for the same

set of parameters as in figure 6.6. Plots of the largest Ωp for each σ value are displayed.
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6.4.2 Kuzmin disc

In this subsection we present the results for Kuzmin disc profile. Figure 6.8 gives the

plot of non-singular eigenvalues for the Kuzmin disc. We have plotted for m = 1 & 2

and σ = 0.1, 0.2, 0.3 and 0.4. Horizontal axis is Ωp = ω/mω0, where ω0 is the maxima

of | ˙̟ | rather than positive maxima (as used for the JT disc) because for Kuzmin disc

˙̟ (R) ≤ 0. We note the following trends in the eigenspectrum for m = 1 and m = 2:

1. Eigenmodes are stable with prograde pattern speeds Ωp > 0, in contrast to JT disc

where Ωp > 1.

2. For a given value of m, Ωmax is a decreasing function of σ and Ωmax(σ, 1) >

Ωmax(σ, 2). Variation of Ωmax with σ and m is similar to the JT disc.

In the Chapter 4 of the present thesis we calculated the eigenvalues by solving the local

WKB-dispersion relation for the Kuzmin disc model. The present velocity dispersion is

same as model I used there. In Fig. 6.9 we compare the solution of local WKB dispersion

relation and the eigenmodes calculated in this section for σ = 0.1 (and A = 0.1 as used

in Ch. 4). Top panel gives the integral equation solution and the lower panel gives

eigenvalues obtained from local WKB dispersion relation. The eigenvalues differ from

each other by about 20%, but qualitative trends are the same; for example, as we increase

the value ofm, the Ωp value decreases, and Ωp values increases with decreasing σ. Second

one can be seen by comparing the plots for other σ values.

Figure 6.10, 6.11 and 6.12 are the plots of the perturbed surface density of the Kuzmin

disc profile. In Fig. 6.10 we the plot Σa(R) as a function R for m = 1. Plots are labeled

for their σ and Ωp values. Σa(R) is normalized such that
∫
dqΣ2

a(R) = 1. Figure 6.11

give images of density enhancement region, real part of Σ1(R, φ, t), at t = 0 for the

highest eigenvalue for each σ value used in Fig. 6.10. Color scheme and normalization

used is same as that used in Fig. 6.5. Radial profile of square normalized wave functions

Σa(R) for m = 2 are given in Fig. 6.12. Apart from the exact forms of Σa for all cases,

overall properties of the eigenfunctions are same as that we get using JT annular disc; (1)

Number of nodes increase with decreasing Ωp value, (2) Wavefunctions are more radially

compact for lower values of σ.

Next we compare the eigenvalues we get by solving the integral equation for the

Kuzmin disc in this section with the solution of local WKB dispersion relation that are

studied in Chapter 4 and the integral-equation solution for softened-gravity disc studied
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Solution for Integral equation Integral equation

local WKB dispersion solution for solution for

relation softened gravity disc collisionless disc

0.601 0.67 0.767

0.554 0.62 0.657

0.494 0.57 0.569

0.445 0.52 0.496

0.404 0.48 0.436

Table 6.2: Table of comparison between the solution of local WKB dispersion relation

for Kuzmin disc (obtained in Ch. 4), Integral equation solution for softened-gravity

disc (Tremaine, 2001) and Integral equation solution studied in the present chapter for

Kuzmin disc. Values are for σ = 0.1.

in Tremaine (2001). Note that although we have studied softened gravity disc in great

detail in Ch 3 of this thesis, as discussed in Ch 3 and 4, softening considered in Ch. 3 of

this thesis and Tremaine (2001) are different both qualitatively and quantitatively. The

model for velocity dispersion used in this chapter directly corresponds to the one used by

Tremaine (2001). In Table 6.2 we give the first five non-degenerate eigenvalues for all the

three studies for σ = 0.1 and m = 1 (A = 0.1 in case of solution of local WKB dispersion

relation as used in Ch. 4 and softening length β = 0.1 as used by Tremaine (2001)). First

column is the local WKB-solution, second and third columns are for integral equation

solution for softened-gravity disc and the collisionless discs, respectively. The eigenvalues

match within ∼ 10% and the match is within few percent for higher number of nodes.

6.5 Conclusions

In Ch. 5 and 6 we have studied eigenmodes for an axisymmetric stellar disc. We began

with linearized CBE and formulated an integral eigenvalue problem under the tight

winding approximation. We go one step beyond the usual WKB dispersion relation in

the sense that the relation between the perturbed potential and surface density in not

local anymore. This non-local formalism allows us to determine eigenfunctions, without

the difficulties faced by the local WKB dispersion relation.

In Ch. 5 we derived the integral eigenvalue equation. Next in Ch. 6 we solved the
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Figure 6.8: Plot of eigenvalues for Kuzmin disc profile. Horizontal axis is the pattern

speed Ωp = ω/mω0, where ω0 is the maximum of | ˙̟ | and the vertical axis is the σ value.

Panels are labeled for their respective m values.
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Figure 6.9: Comparison between the eigenvalues obtained by solving the local WKB

dispersion relation and the eigenvalues calculated using the integral-equation for Kuzmin

disc, with σ = 0.1. Horizontal and vertical axis are eigenvalue, Ωp and m, respectively.
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Figure 6.10: Σa(R) vs R plot for m = 1, with ΣKz
d as the unperturbed density. Panels

are labeled for the relevant σ and Ωp values. Normalization for Σa(R) is same as used

for JT annular disc.

Figure 6.11: Image of positive part of the real component of Σ1(R, φ, t) at t = 0, for

highest eigenvalue for each σ value for the plots displayed in Fig. 6.10.
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Figure 6.12: Square normalized eigenfunction Σa(R) vs R plot for m = 2 for Kuzmin

disc profile. Relevant labeling for σ and ω value is given in the plot.

full integral equation for slow modes, numerically. Numerical solution for two different

unperturbed surface density profiles are calculated namely: (1) JT annular disc, (2)

Kuzmin disc. Radial profile of velocity dispersion is assumed to be σR(R) = σRκ(R),

where σ < 1 is a constant. This is a reasonable model for velocity dispersion as is shown

by Jalali & Tremaine (2012). We began Ch. 6 by asking a few questions, which we tried

to answer during the course of the analysis. A brief account of answers to those queries

are as follows:

1. Are the modes generated stable or unstable?

The kernel of slow mode integral-eigenvalue problem is symmetric and hence all

the eigenvalues are real. Moreover all the non-singular eigenvalues that we get are

prograde, Ωp > 0.

2. What is the effect of varying velocity dispersion on the spectra?

Major trends seen with varying the σ value are: (a) Largest eigenfrequency is a

decreasing function of σ. (b) Also, the number of non-singular eigenvalues increases

as σ decreases.

3. How does the eigen-frequency spectra vary with m?
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Ωmax(σ,m) value decreases as we go from m = 1 to 2. In addition, for a given Ωp

value, number of nodes for m = 1 are larger than that for m = 2. In other words

eigenfunctions are more radially compact for m = 1.

4. What do wavefunctions look like?

Wavefunctions for various cases are displayed in § 6.4.1 and 6.4.2. General be-

haviour of the eigenfuntions is such that: (1) The wavelength of oscillations de-

creases with decreasing pattern speed, (2) Also the number of nodes increase with

decreasing Ωp values, (3) Wavepackets are more radially compact for lower values

of σ.

5. How do eigenfrequencies and eigenfunctions vary with the unperturbed surface

density profile?

Largely the behaviour of the eigenfrequencies and the eigenfunctions is independent

of the unperturbed surface density chosen for the two cases that we study. But

there are quantitative differences like values of pattern speeds. In case of Kuzmin

discs, all Ωp > 0 are non-singular though there is a continuum of eigenvalues close

to Ωp = 0 whereas in case of JT annular discs the eigenvalues with Ωp ≤ 1 are all

singular modes.

All the conclusions offered here are largely consistent with the work presented in earlier

chapter in this thesis and also by various authors like Tremaine (2001); Jalali & Tremaine

(2012). Since the slow modes are stable, the excitation mechanism for such modes

becomes important. Close encounter due to an object passing by can act as a perturber

(external). Jalali & Tremaine (2012) have considered such a phenomenon in detail and

conclude that external perturber largely acts as a good source for excitation of slow

modes.

Slow modes exists with arbitrary azimuthal wavenumber m but the modes with lower

m values are large scale and hence are most prominent in the observations. Also lower

m modes are easy to excite, for example by an external perturber (Jalali & Tremaine,

2012). As noted by Jalali & Tremaine (2012), galactic discs surrounding a suppermassive

BH and debris disc around stars are similar in the sense that dynamics of both the discs
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are influenced by the central object (star/suppermassive BH) and the self-gravity of

the disc. Hence the analysis done in present chapter is also applicable to debris disc.

Jalali & Tremaine (2012) also proposed that most of the non-axisymmetric features in

the debris disc, galactic nuclei as discussed in § 1.2 may be due to slow modes. There

are other hypothesis like a presence of massive planet in debris discs, which can also

cause these asymmetries in the discs. These can be distinguished from slow modes if the

structures are observed for long enough time or with higher resolutions. Features due to

slow modes will rotate much slower as compared to the angular speed whereas structures

due to planets in the discs will rotate at a speed comparable to the angular speed.

As discussed in Ch. 1, double peak stellar distribution is observed in two galaxies:

M31 and NGC4486B. Distribution in both these galaxies differ from each other, for

instance, both the peaks in NGC4486B are symmetric w.r.t. the photocenter in contrast

to the peaks in M31. Double peak stellar distribution in NGC4486B is more likely to

be due to m = 2 modes rather than m = 1 eccentric modes for M31. Both these

galaxies being different morphologically can excite different m-modes predominantly.

These eccentric modes may also play an important role in feeding the central BH in

galaxies.

In future we would like to generalize this formalism to counter-rotating discs. This

might give us some idea regarding a possible explanation for some of the unanswered

questions left while studying the softened-gravity counter-rotating discs. We would also

like to extend the study of slow modes to thick discs which resemble more realistic

galactic discs.



Chapter 7
Summary and Outlook

Compact massive objects in the universe are often surrounded by matter in the form of

gas, planets or stars. Of interest to the studies in this thesis, these could be: planets and

debris discs around stars; gaseous accretion discs around stars, compact stellar remnants

and stellar mass black holes; clusters of stars around massive black holes in galactic

nuclei. Flattened, disc–like configurations are commonly observed in these, and we focus

attention on idealized two dimensional, flat, razor–thin discs. When the central object is

much more massive than the disc, the gravitational force of the central body is the main

contributor to disc dynamics, and we speak of a Keplerian disc. Orbits of fluid elements

or of stars can be thought of as slowly precessing Keplerian ellipses. The precession

can be due to pressure gradients in thin accretion discs, or due to the disc self–gravity

in stellar discs around massive black holes; in either case the precession time is much

longer than Kepler orbital times. Keplerian discs such as these support stable non–

axisymmetric slow modes. Two counter–rotating discs of stars around a central massive

black hole are prone to non–axisymmetric linear instabilities. These are the topics of

investigation in this theses, as explained in greater detail below:

• In Ch. 2 we studied slow m = 1 modes in thin accretion discs around a compact

central mass. A WKB analysis suggested that the modes have wavelengths com-

parable to the disc size. These modes, being large scale, can dominate the over-all

appearance of the disc. To study these modes better, we formulated the eigenvalue

equation for the slow modes, which turned out to be in the Sturm-Liouville form;

all the eigenvalues were thus found to be real. Real eigenvalues imply that the

disc is stable to these perturbations. In the case of accretion discs, we have very

154
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uncertain knowledge of the surface density profile for the disc. We calculated the

eigenvalues numerically for three test disc profiles: (1) The Shakura-Sunyaev disc,

(2) the Kuzmin disc, and (3) a power law disc. For most cases the eigenvalues were

negative. In the case of a power law disc, for certain combination of barotropic

index Γ, and power law index β, we get positive eigenvalues. But these parameters

regimes were unphysical. We also discussed the possible excitation mechanisms for

these modes; for instance, excitation due to the stream of matter from secondary

star that feeds the accretion disc, or through the action of viscous forces.

• Next we studied slow modes in counter-rotating, softened-gravity continuous discs.

Slow modes are enabled in such systems due to the self gravity of the disc, which

dominates the gas pressure in the disc. Counter-rotating streams of matters are

well known to be unstable under eccentric perturbations. The earlier studies of

these modes Tremaine (2001); Touma (2002); Tremaine (2005); Polyachenko et al.

(2008); Sridhar & Saini (2010) had limitations, which we discussed in detail at

relevant places in the thesis. These modes give rise to asymmetries in the disc

that have been observed in self-gravitating systems like debris discs, and discs in

galactic nuclei. In Ch. 3 we studied both the WKB-dispersion relation and the

integral eigenvalue problem for coplanar counter-rotating discs. We now note the

general conclusions obtained by us.

– The system is stable for m = 1 perturbations in the case of no-counter rota-

tion. This conclusion is consistent with the result of Tremaine (2001).

– For other values of mass fraction η, the eigenvalues are imaginary and the

discs are unstable. For η = 1/2, we get purely growing modes; whereas for

other values of η, the eigenvalues are, in general, complex.

– The pattern speed appears to be non-negative for all values of η, with the

growth (or damping) rate being larger for larger values of the pattern speed.

– Perturbed surface density profile is generally lopsided, with an over all rotation

of the pattern as they evolve in time, with the pattern speed given by real

part of the eigenvalue.

• Although softened gravity is known to serve as a surrogate to collisionless discs

for m = 1 modes, both the systems are physically different for other m-modes.

For softened gravity discs slow modes do not exist for m > 1, whereas collisionless
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discs support all m-modes. This conclusion is motivated by the discussions given

in the Appendix of Jalali & Tremaine (2012), which we also prove in § 4.3. Higher

m-modes also form an important class of density waves and hence important to

study. In Ch. 4 we studied slow modes in counter-rotating, nearly Keplerian,

collisionless discs. Analysis in Ch. 4 to 6 is applicable to self gravitating systems

like galactic nuclei and debris disc. The unperturbed orbits are assumed to follow

epicyclic orbits and the DF of the prograde and the retrograde disc is given by the

Schwarzschild DF. We first formulate the WKB dispersion relation for a given mass

fraction η in retrograde disc and then apply slow mode approximation to it. For

the no counter-rotation case, the above mentioned dispersion relation reduces to

the one discussed in Toomre (1964); Binney & Tremaine (2008); Jalali & Tremaine

(2012).

One of the important applications of the dispersion relation derived in this chapter

is the stability analysis of the modes. For fluid discs, the stability of m = 0 modes

guarantees the stability of higher m modes; and the stability criterion for such

discs is the well known Toomre’s stability criterion (Toomre, 1964; Tremaine, 2001;

Binney & Tremaine, 2008). However, this is not the case for collisionless discs. Even

if the discs are stable for axisymmetric modes, they can still be unstable for non-

axisymmetric modes. Axisymmetric perturbations were found to be stable in our

analysis, and the stability criterion turned out to be the Toomre’s stability criterion.

We studied the stability of non-axisymmetric modes separately for counter–rotating

discs in Ch. 4. The non-axisymmetric perturbations were found to be unstable if

the mass in the retrograde component of the disc is non-zero.

We next solved the dispersion relation using the Bohr-Sommerfeld quantization

condition to obtain the eigen–spectrum for a given unperturbed surface density

profile and velocity dispersion. We could obtain only the eigenvalues for no counter–

rotation and equal counter–rotation. All the eigenvalues obtained were real for no

counter–rotation; and purely growing/damping for equal counter–rotation. We

also make a detailed comparison between the eigenvalues for m = 1 modes that

we obtain with those obtained after solving the integral eigenvalue problem for

the softened gravity discs considered in Tremaine (2001) (for no counter–rotation)

and Ch. 3 of this thesis (for equal counter–rotation). The match between the

eigenvalues is quite good, confirming the assertion that softened gravity disc serves



CHAPTER 7. SUMMARY AND OUTLOOK 157

as surrogate to collisionless disc.

• One of the drawbacks of the usual WKB analysis of tightly–wound disc modes is

that it is not easy to determine the eigenfunctions. This is because the dispersion

relation is transcendental in the wavenumber. In Ch. 5 we overcome this problem

by relaxing the assumption of locality between the perturbed surface density and

the perturbed potential. We considered an unperturbed axisymmetric stellar disc

with a Schwarzschild DF, and derived an integral eigenvalue problem for tightly-

wound modes of arbitrary m. This integral equation is not restricted in application

to Keplerian discs: for instance, it could be used to explore modes of a galactic

disc, although we do not do so in this thesis. After deriving the integral equation,

we verify that, in the local approximation, the usual WKB-dispersion relation

(Toomre, 1964; Binney & Tremaine, 2008; Jalali & Tremaine, 2012) is recovered.

• In Ch. 6 we apply the slow mode approximation to the integral equation and show

that its kernel is symmetric, implying that the eigenvalues are all real and hence

the disc is stable. We consider two unperturbed disc profiles, the Jalali–Tremaine

annular discs, and the Kuzmin disc. We determine eigenvalues and eigenfunctions

for both m = 1 and m = 2 slow modes, and discuss their properties. Two general

statements we highlight here are: (i) All the non-singular eigenmodes have positive

pattern speeds; (ii) The fastest pattern speed is a decreasing function of the heat

in the disc.

In the future we would also like to extend the formulation of the integral equation for

collisionless discs to counter-rotating discs. In this thesis we have studied slow modes

for a gas disc and particle disc separately. But in most of the astrophysical discs both

gas and particle discs exist together and are coupled to each other. A natural question

to ask at this point is: What is the nature of slow modes if both gas and particle discs

are coupled together and are bound to each other gravitationally? Also, we have studied

slow modes in accretion discs where viscous forces are assumed to balance the radial

inflow of the matter and do not have any effect on the nature of slow modes. However,

as discussed in Ch. 2, there is a possibility that the slow modes in accretion discs could

be excited due to viscous forces, but this would require reformulation of the eigenvalue

problem including the effect of viscous forces.



Appendix A
Perturbed potential for softened

gravity discs

Consider a two component counter-rotating coplanar disc whose origin coincides with the

position of the central object as shown in Fig A.1. We want to calculate the perturbed

potential due to a two component perturbed disc at point ‘A’. As assumed in § 3.2, disc

particle interact gravitationally via softened gravity (discussed in § 1.6) whereas central

mass and disc particles interact via unsoftened Newtonian gravity. Perturbed potential

δΦa at point ‘A’ due to mass δmB at point ‘B’ contributed by both perturbed prograde

and retrograde discs is given by

δΦa =−GδmB

(

1
√

|R2 −R′2|2 + b2
− R .R′

R′3

)

, (A.1)

and δmB = R′ dR′ dφ′ (Σ+
a (R

′, φ′) + Σ−
a (R

′, φ′)) where Σ+
a and Σ−

a are perturbed surface

densities of ± discs. We have used the discussion in § 6.2 of Murray & Dermott (1999)

to write the above expression which is modified to include softened gravity. First term is

called direct term whereas the second term is the indirect term which would not appear

if origin coincides with the center of mass. Fourier analyzing the perturbation in φ-space

that is perturbed quantity Xa(R, φ) = Xm
a (R) exp(imφ) we get

δΦm
a =−GR′ dR′ dφ′ (Σm+

a (R′) + Σm−
a (R′)) exp(imφ′ − φ)×

×
(

1
√

|R2 −R′2|2 + b2
− R .R′

R′3

)

. (A.2)
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Figure A.1: Coplanar counter–rotating discs with its center at origin. The disc is marked

for point masses A & B and their respective position vectors.

Integrating Eq. A.2 over φ′ from 0 to 2π and R′ from 0 to ∞ gives Φm
a (R):

Φm
a (R) =−G

∫ ∞

0

∫ 2π

0

R′ dR′ dθ (Σm+
a (R′) + Σm−

a (R′)) exp(imθ)×

×
(

1
√

|R2 −R′2|2 + b2
− R .R′

R′3

)

,

=

∫ ∞

0

dR′R′Pm(R,R
′)(Σm+

a (R′) + Σm−
a (R′)) , (A.3)

where we have used θ = φ′ − φ which is the angle between R & R′ and kernel Pm is

defined as

Pm(R,R
′) =−G

∫ 2π

0

dθ
exp(imθ)

√

|R2 −R′2|2 + b2
︸ ︷︷ ︸

I

+G

∫ 2π

0

dθ
R .R′ exp(imθ)

R′3

︸ ︷︷ ︸

II

. (A.4)

Solving integral I gives us

I =
−2G

R>

∫ π

0

dθ
cosmθ

(1− 2α cos θ + α2 + β2)s/2
,
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here R< = min(R,R′) , R> = max(R,R′) , α = R</R> and β = b/R> . Evaluating II

we get

II =
πGR

R′2
(δm,1 + δm,−1),

δij is the Kronecker’s delta function. Combining all we get

Pm(R,R
′) = − πG

R>
B

(m)
1 (α, β) +

πGR

R′2
(δm,1 + δm,−1) . (A.5)

where

B(m)
s (α, β) =

2

π

∫ π

0

dθ
cosmθ

(1− 2α cos θ + α2 + β2)s/2
, (A.6)

are “softened Laplace coefficients”, which was first used by Touma (2002).



Appendix B
Expressing softened Laplace

coefficients in terms of (unsoftened)

Laplace coefficients

Softened Laplace coefficients were defined in Touma (2002) as,

Bm
s (α, β) =

2

π

∫ π

0

dθ
cosmθ

∆s/2
(B.1)

where

∆ = 1 + α2 + β2 − 2α cos θ (B.2)

We now write

∆ = γ2 + δ2 − 2γδ cos θ (B.3)

One solution for γ and δ is,

γ =

[
1 + α2 + β2

2
+

1

2

√

(1 + α2 + β2)2 − 4α2

]1/2

δ =
α

γ
(B.4)

Therefore
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Bm
s (α, β) = γ−s bms/2 (δ/γ) (B.5)

where

bms/2(α) =
2

π

∫ π

0

dθ
cosmθ

(1 + α2 − 2α cos θ)s/2
; α < 1 (B.6)

are the familiar (unsoftened) Laplace coefficients (Murray & Dermott, 1999). From

Eqn. (B.5), we must have (δ/γ) < 1. That this is indeed true can be proved us-

ing Eqns. (B.4): γ is a monotonically increasing function of β2, hence γ ≥ 1, and

(δ/γ) = (α/γ2) < 1 .
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