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Abstract
We construct a canonical quantization of the two dimensional theory of a
parametrized scalar field on noncompact spatial slices. The kinematics is
built upon generalized charge-network states which are labelled by smooth
embedding spacetimes, unlike the standard basis states carrying only discrete
labels. The resulting quantum geometry corresponds to a nondegenerate
vacuum metric, which allows a consistent realization of the asymptotic
conditions on the canonical fields. Although the quantum counterpart of the
classical symmetry group of conformal isometries consists only of continuous
global translations, Lorentz invariance can still be recovered in an effective
sense. The quantum spacetime as characterized by a gauge invariant state
is shown to be made up of discrete strips at the interior, and smooth at
asymptotia. The analysis here is expected to be particularly relevant for a
canonical quantization of asymptotically flat gravity using kinematical states
labelled by smooth geometries.
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1. Introduction

It is generally anticipated that in any theory of quantum gravity, the notion of a smooth
classical spacetime should give away to a discrete structure in the quantum regime. Such a
description should be characterized by a fundamental length scale, which is expected to be the
Planck length. In loop quantum gravity, which is one of the various approaches to a canonical
quantization of gravity, the kinematical set up provides a natural realization of such discrete
quantum geometries [1]. In this framework, the kinematical operators, namely the holonomies
and fluxes, are manifestly diffeomorphism covariant. Remarkably, the geometrical operators
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depending on the flux, e.g. area, which carry the information associated with the spatial metric,
exhibit discrete eigenspectra [2, 3]. The kinematical ground state in this representation is the
one which is annihilated by the flux operator, and hence corresponds to zero eigenvalue of
area. Thus, the vacuum geometry is associated with a degenerate spatial metric. It should be
emphasized that the spatial discreteness here is essentially a consequence of the choice of spin
networks as the basic kinematical states, which carry discrete group-labels.

However, within this quantization framework, it is difficult to conceive a way to recover
smooth geometries [4]. The degenerate ‘vacuum’ and the excitations on it lead to a structure
which is far from a continuum. In particular, this description is not adequate for developing a
quantization of asymptotically flat gravity, where the metric becomes flat as one approaches the
spatial infinity. One can still expect that suitable coherent states or coarse-graining procedures
can be constructed to capture the smoothness of the spatial geometry at asymptotia in an
effective sense. However, such a success has not been realized as yet.

There have been earlier attempts to recover the notion of smooth geometries, keeping
within the limits of standard LQG kinematics [5]. However, one can also explore a different
approach based on a deformation of the standard representation, where the degenerate vacuum
geometry is replaced by a smooth structure. Recently, a representation of this kind was
introduced by Koslowski [6] and further studied by Sahlmann [7]. The essential construction
here is based on spin-network states that carry a label corresponding to smooth spatial
geometries, in addition to the discrete group-labels. The action of the flux operator on these
is different than in the standard representation, and has an additional piece coming from the
continuous background geometry:

Ês, f � = Xs, f � + E̊s, f I�.

It was demonstrated that the formulation is diffeomorphism covariant [7–9], keeping with
the spirit of a background-independent quantization. To understand the implications of this
representation for simpler systems, a loop (polymer) quantization of parametrized scalar field
theory on a two dimensional Minkowskian cylinder (PFT) was constructed in [10]. Such an
analysis was motivated by the fact that PFT serves as a solvable toy model of quantum gravity
[11–15]. The resulting quantum theory exhibits features which are remarkably different than
the one based on a degenerate vacuum geometry as analysed by Laddha and Varadarajan
[14, 15]. Also, the eigenspectrum of the length operator was shown to be continuous, in
contrast to the standard representation with a degenerate vacuum.

Here, armed with the insights gained from the analysis of PFT on a cylindrical spacetime
in [10], we proceed to set up a canonical quantization of PFT on noncompact spatial slices.
This is done with a view to analyse the theory as a toy model for asymptotically flat gravity.

In the next section, we discuss the classical theory of asymptotically flat PFT in two
dimensions. The boundary conditions to be imposed at infinity are spelled out in detail. In
section 3, we construct the quantum theory along the lines of [10], where the kinematics is based
on charge-network states carrying a continuous label corresponding to smooth embeddings
in addition to the original discrete labels. We also discuss the Dirac observables, and in
particular, the conformal isometries. Section 4 elucidates the basic features of the resulting
quantum geometry. The final section contains a few relevant remarks.

2. Classical theory

2.1. Action

Relativistic field theories that are originally formulated on flat spacetime does not exhibit
manifest spacetime covariance. However, such theories can be reformulated by the procedure
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known as ‘parametrization’, as originally invoked by Dirac [11]. In this form, the inertial
spacetime coordinates become dynamical variables, and the general covariance becomes
manifest- a feature which is shared by gravity theory. It was this perspective which led
Kuchar to analyse the theory of a parametrized scalar field on a two dimensional Minkowskian
cylinder as a toy model for four dimensional gravity theory [12].

Free scalar field theory in 1 + 1 dimensional Minkowskian spacetime is described by the
following action:

S[φ(X )] =
∫

d2XηAB∂Aφ(X )∂Bφ(X ) (1)

where, φ(XA) are the (dynamical) scalar fields; XA, A = 0, 1, are the (non-dynamical) inertial
coordinates corresponding to the flat spacetime; ηAB ≡ [−1, 1] is the flat metric. A manifestly
covariant formulation of the same theory can be obtained by treating the inertial coordinates
XA(x) as additional dynamical fields besides φ(x). These fields are now parametrized by the
arbitrary coordinates xα . The corresponding action becomes:

SPFT[XA(x), φ(x)] =
∫

d2x g(X )
1
2 gαβ (X )∂αφ(x)∂βφ(x) (2)

where, g(X ) is the determinant of the metric gαβ (X ), given by:

gαβ (X ) = ηAB
∂XA(x)

∂xα

∂XB(x)

∂xβ
.

The action (2) is covariant under two dimensional spacetime diffeomorphisms. This is a
reflection of the fact that the dynamical content of the theory does not depend on the choice
of coordinates xα . Evidently, one can freeze the two functions’ worth of gauge freedom by
choosing XA as xα and recover (1) from (2). Thus, the two formulations have the same number
of physical degrees of freedom.

2.2. Hamiltonian formulation

Here we take the spatial coordinate x1 = x is to be noncompact, in order to construct an
analogue of the case of four dimensional gravity on noncompact Cauchy slices. We assume that
each t = const slice corresponds to an one dimensional spacelike surface XA(t, x), defining
an arbitrary foliation of the spacetime. In the Hamiltonian theory based on (2), the basic
canonical pairs in the embedding and matter sectors are (XA(x),�A(x)) and (φ(x), π(x)). It
is convenient to redefine these variables and work with two mutually exclusive sectors of left
and right moving fields:

X±(x) = T (x) ± X (x),�±(x) = 1
2 [�0(x) ± �1(x)]

Y ± = π(x) ± φ′(x).

The basic Poisson-brackets between these are listed below:

{X±(x),�±(y)} = δ(x, y), {X∓(x),�±(y)} = 0,

{Y ±(x),Y ±(y)} = ±[∂xδ(x, y) − ∂yδ(x, y)], {Y ∓(x),Y ±(y)} = 0.

The gauge freedom underlying the action (2) leads to a pair of first-class constraints:

H± = �±(x)X±′
(x) ± 1

4Y ±(x)2.

These obey the following algebra:{∫
dx N±(x)H±(x),

∫
dx M±(y)H±(y)

}
=

∫
dx [N±(x)M±′

(x) − M±(x)N±′
(x)]H±(x)

{∫
dx N∓(x)H∓(x),

∫
dx M±(y)H±(y)

}
= 0
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where, N± and M± are Lagrange multipliers. Their action can be interpreted as two independent
spatial diffeomorphisms in the left and right moving sectors [14, 15]. Thus, the action of finite
diffeomorphisms on the fields can be characterized by a pair (ξ+, ξ−):

(αξ±X±)(x) = X±(ξ±(x))

(αξ∓X±)(x) = X±(x)

(αξ±F±)(x) = F±(ξ±(x))

(αξ∓F±)(x) = F±(x).

2.3. Asymptotic behaviour of fields

Since the spatial slice is noncompact, one needs to impose suitable conditions on the fields at
the spatial infinity so that the symplectic form, canonical constraints and observables do not
lead to divergent expressions or to a violation of functional differentiability [16]. Demanding
that the spatial slice asymptotes to the flat slice, we obtain:

X±(x) = e±λR x + μ±
R + ν±

R

x
+ O

(
1

x2

)
as x → +∞,

X±(x) = e±λL x + μ±
L + ν±

L

x
+ O

(
1

x2

)
as x → −∞. (3)

Here λR,L, μ
±
R,L, ν

±
R,L are constants and the remainder has the property that limx→∞ xO

(
1
x2

) →
0. Note that this leads to the following fall-off of the spatial metric gxx = X+′

(x)X−′
(x):

gxx − ηxx = O

(
1

x2

)
.

The action of the cotangent vectors �±(x) on the tangent vectors δX±(x) is well defined
if

∫
�t

�±δX± is finite, where �t denotes the spatial slice. Here δX±(x) is defined as the
infinitesimal variation of the solutions X±(x):

δX±(x) = ± e±λR xδλR + δμ±
R + O

(
1

r

)
as x → +∞,

δX±(x) = ± e±λL xδλL + δμ±
L + O

(
1

r

)
as x → −∞.

Thus, we obtain:

�(x) ∼ 1

x3
as x → ±∞. (4)

The embedding parts of the smeared constraints are functionally differentiable and preserve
the above fall-offs of the fields if we make the following choice:

N±(x) = ± αRx + β±
R + O

(
1

x

)
as x → +∞,

N±(x) = ± αLx + β±
L + O

(
1

x

)
as x → −∞. (5)

Here, an important remark is in order. In (5), the first two terms in the expansion correspond
to asymptotic boosts and translations. Although the corresponding vector fields do not die
away at infinity, the smeared constraint functionals

∫
N±H± are still well defined. Thus,

these represent ‘proper’ gauge transformations [17]. This is very different from the case of
asymptotically flat gravity, where the translations, boosts and rotations at the spatial infinity
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do not leave the constraint functional well defined and functionally differentiable. In that case,
one needs to supplement the total Hamiltonian with an appropriate boundary term, and the
resulting functional is not a constraint anymore since it does not vanish on-shell. Thus, it cannot
be interpreted as the generator of gauge transformations [16]. For example, the asymptotic
translations in this case generate ‘proper’ time evolutions at spatial infinity, unlike the ones in
PFT which do not generate any physical evolution of the phase-space data.

Finally, using a similar analysis for the matter part of the smeared constraints, we obtain:

φ(x) ∼ 1

x
,

π(x) ∼ 1

x2
,

Y ±(x) ∼ 1

x2
as x → ±∞. (6)

The conditions (6) also ensure that the scalar field symplectic form is well defined.

2.4. Matter dependent Dirac observables

The space-integral of a scalar density of weight one, which can be written in terms of the
phase-space variables separately in the ‘+’ or ‘−’ sector, is a Dirac observable, and hence
commutes with the constraints. An example is [14, 15]:

O±
f =

∫
dx Y ±(x) f ±(X±)(x) (7)

where f ±(X±) are real functions of X±. O±
f is well defined if the following holds:

f ±(X±)(x) = c±
R + O

(
1

x

)
as x → +∞,

f ±(X±)(x) = c±
L + O

(
1

x

)
as x → −∞

where, c±
R,L are constants.

2.5. Conformal isometries

There is another class of observables, which, unlike the above, depend only on the embedding
sector. These are the generators of local Weyl rescalings of the metric gαβ :

O±
c =

∫
dx �±(x)U±(X±)(x)

where, U±(X±) is any function of X± such that

U±(X±)(x) = ± γRx + ζ±
R + O

(
1

x

)
as x → +∞,

U±(X±)(x) = ± γLx + ζ±
L + O

(
1

x

)
as x → +∞.

Here γ ±
R,L, ζ

±
R,L are constants.

The special cases U±(X±) = ζ± and U±(X±) = e±λX± for constant parameters ζ±, λ

are of particular interest. These generate global translations and boosts respectively, which
completely characterize the global Poincare group acting on X±.
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The group of conformal isometries also include asymptotic translations and boosts. These
correspond to the following conditions, respectively:

U±(X±) = c±
R as x → +∞, U±(X±) = c±

L as x → −∞;
U±(X±) = e±c′

R X± as x → +∞, U±(X±) = e±c′
L X± as x → −∞.

Note that these asymptotic conditions do not imply any restriction on the possible form of
U±(X±) at the interior.

The infinitesimal isometry generators satisfy the following algebra:{∫
dx �±(x)U±(X±)(x),

∫
dy �±(y)V ±(X±)(y)

}
=

∫
dx �±(x)(U±V ±′ − V ±U±′

)(x).

The finite action of these can be represented through a pair of functions φ±
c which act only on

the embedding sector:

αφ±
c

X±(x) = φ±
c (X±(x)), αφ∓

c
X±(x) = X±(x),

αφ±
c
Y ±(x) = Y ±(x), αφ∓

c
Y ±(x) = Y ±(x).

The functions φ±
c (X±) are invertible, connected to identity, and monotonically increasing:

dφ±
c

dX± > 0.

This ensures that if the original spatial metric gxx is nondegenerate, then so is the final one
obtained from the map φ±

c (X±).

3. Quantum theory

Based on the Hamiltonian theory, we now proceed to develop a canonical quantization of
PFT. We follow the kinematical construction as adopted in [10]. The kinematical states are the
charge-network states, defined separately in the embedding and matter sectors.

3.1. Embedding sector

The embedding charge network |s±
e , X̊±〉 := |γ ±

e ,
−→
k±, X̊±〉 is defined on a pair of graphs γ ±

e .
Each of these graphs are composed of non-overlapping (except at the vertices) edges. The
ith edge e±

i has an embedding charge k±
i = αn±, n± ∈ Z. The fixed real number α is a free

parameter in the theory and is an analogue of the Barbero–Immirzi parameter in LQG. The
embedding charge network is labelled by γ ±

e , a set of embedding charges
−→
k± = (k±

1 , . . . , k±
N± )

and smooth embedding charges X̊±(x). To emphasize, X̊±(x) has no analogue in the standard
polymer representation based on a degenerate vacuum metric, where states are labelled only
by discrete charges.

To capture the notion of the smooth asymptotic geometry through the kinematical states,
we assume that the discrete embedding charges attain constant values outside the compact
region x ∈ [−L±

e , L±
e ] which is spanned by a finite number of edges of the embedding

graph γ ±
e :

k±
i = k±

L for i < 1,

k±
i = k±

R for i > N±.

Notice that although the charge network extends out to infinity, the vertices do not, since they
always lie within a compact region.

The inner product between any two charge-nets is given by:

〈s′±
e , X̊ ′±|s±

e , X̊±〉 = δs′±
e ,s±

e
δX̊ ′±,X̊± .

6
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The basic operators are the embedding fields X̂±(x) and the holonomies ĥγ ±
e

= ei
∑N±

i=1 k±
i

∫
ei∈γe

�±

defined on the graph γ ±
e . The motivation for such a choice of basic operators stems from LQG,

where the kinematics is based on the holonomy and flux operators which are manifestly
diffeomorphism covariant. Their action on the charge-network states are as follows:

X̂±(x) |γ ±
e ,

−→
k±, X̊±〉 = (k±

x,s±
e

+ X̊±(x)) |γ ±
e ,

−→
k±, X̊±〉

ĥγ ′±
e

|γ ±
e ,

−→
k±, X̊±〉 = |γ ′±

e ◦ γ ±
e ,

−→
k′± + −→

k±, X̊±〉 (8)

where

k±
x,s±

e
= k±

m if x ∈ Interior(e±
m),

= 1
2 (k±

m + k±
m+1) if x ∈ e±

m ∩ e±
m+1,

= kL if x < −L±
e ,

= kR if x > L±
e .

Here we have defined γ ′±
e ◦ γ ±

e as a graph finer than both γ ′±
e and γ ±

e . The edges of γ ′±
e ◦ γ ±

e
are characterized by the following distribution of embedding charges:

(a) In regions (of γ ′±
e ◦ γ ±

e ) where the edges of γ ′±
e and γ ±

e do not overlap, the charges are
the same as the original ones.

(b) In regions where the edges overlap, the charge is the sum of the original charges.
Also, we identify any two sets of embedding data [k±

x,s±
e
, X̊±(x)] and [k±

x,s±
e
+ n±, X̊±(x)−

n±] to be the same, where n± are integers.

3.2. Matter sector

Motivated by the construction of operators in the embedding sector, we choose, instead of the
matter fields Y ±(x), the corresponding holonomies ĥγ ±

m
as the basic operators [14, 15]. These

are defined on the graphs γ ±
m as:

ĥγ ±
m

= ei
∑N±

i=1 l±i
∫

ei∈γm
Y ±

. (9)

Each edge e±
i carries a matter charge l±i . These charges are of the form l±i = βn±, where β is

a real constant of dimension h− 1
2 and n are integers. The charge-network states for the matter

sector |s±
m〉 := |γ ±

m ,
−→
l± 〉 are labelled by γ ±

m and the set
−→
l± = (l±1 , . . . , l±N ). As in the embedding

sector, we assume that the matter charges take discrete values only within a compact region
x ∈ [−L±

m, L±
m] which is covered by a finite number of non-overlapping edges of the matter

graph γ ±
m and are constant outside:

l±j = l±L for j < 1

l±j = l±R for j > M.

On these charge-network states, the matter-holonomy operators act as:

ĥγ ′±
m

|γ ±
m ,

−→
l± 〉 = e

i
2 θ (l±,l′± ) |γ ′±

m ◦ γ ±
m ,

−→
l′± + −→

l± 〉 . (10)

Here the graph γ ′±
m ◦γ ±

m is finer than both γ ′±
m and γ ±

m , and is defined exactly as in the embedding
sector. Note that the real number (phase) θ (l±, l′±), which arises due to the noncommutativity
of Y ±(x)’s, is bilinear in the matter charges l±, l′±. For example, in the simplest case where
the state |γ ±

m ,
−→
l± 〉 and the holonomy ĥγ ′±

m
in equation (10) are based on the same graph γ ±

m ,
this becomes:

θ (l±, l′±) =
N±−1∑

i=1

(l±i l′±i+1 − l′±i l±i+1).
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3.3. Nondegeneracy condition

The spatial metric gxx = X+′
(x)X−′

(x) is assumed to be nondegenerate in the classical theory,
implying ±X±′

(x) > 0. This leads to the following conditions in the quantum theory:

(a) ± (k±
m±+1 − k±

m± ) � 0 for 1 � m± � (N± − 1) and

(b) ± k±
1 � k±

L ,±k±
N � k±

R . (11)

This implies that the nondegeneracy of the spatial metric gxx at all points is preserved in the
quantum theory.

3.4. Unitary action of gauge transformations

The action of the finite gauge transformations (ξ+, ξ−) can be represented by a pair of unitary
operators (Ûξ+ , Ûξ− ):

Ûξ± |s±
e , X̊±〉 ⊗ |s±

m〉 = |ξ±(s±
e ), ξ±

∗ X̊±〉 ⊗ |ξ±(s±
m )〉 (12)

where ξ±(s±) is the image of s± under the action of Ûξ± and ξ±
∗ X̊± denotes the push-forward

of X̊±. The embedding charges k±
x,ξ±(s±

e )
in the new charge network are related to the original

ones as:

k±
x,ξ±(s±

e )
= k±

ξ±−1
(x),s±

e

. (13)

It is straightforward to see that the above action is a representation and induces the correct
transformation of the basic operators. The relevant details are very similar to the case of PFT
in a cylindrical spacetime as analysed in [10], and hence would be omitted here.

3.5. Matter dependent Dirac observables

Although the classical Dirac observables O±
f in (7) cannot be represented in terms of the basic

operators, their exponentials can be. They have an unitary action on the kinematical states:

̂ei
∫

f ±(X± (x))Y ± (x) |γ ±
e ,

−→
k±, X̊±〉 ⊗ |γ ±

m ,
−→
l± 〉

= ̂
e

i
∫

f ±(k±
x,s±e

+ X̊±(x))Y ±(x) |γ ±
e ,

−→
k±, X̊±〉 ⊗ |γ ±

m ,
−→
l± 〉

= ĥγ ±
m f

|γ ±
e ,

−→
k±, X̊±〉 ⊗ |γ ±

m ,
−→
l± 〉

= e
i
2 θ (l±, f ± ) |γ ±

e ,
−→
k±, X̊±〉 ⊗ |γ ±

m f
◦ γ ±

m ,
−→
l± + −→

f ±(k± + X̊±)〉
where, the graph γ ±

m f
oγ ±

m is finer than both γ ±
m f

and γ ±
m and we define the matter-holonomy

operator ĥγ ±
m f

as:

ĥγ ±
m f

= ̂ei
∫

f ±(k±
x,s + X̊±(x))Y ±(x). (14)

In order to have a well-defined action on the matter sector, the function f ±(X±) must be
piecewise constant at the interior. Outside this compact region, it should take constant values,
which can be independent for the ‘+’ and ‘−’ sectors as well as at the left and right infinity.
In general, the mapping f ± should satisfy the following condition:

f ±(αn± + X̊±) = βn′±

with n±, n′± ∈ Z.

8
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3.6. Conformal isometries

To represent the action of the conformal isometries φc := (φ+
c , φ−

c ), we can choose a pair of
unitary operators V̂φ±

c
which has the following action:

V̂φ±
c

|γ ±
e ,

−→
k , X̊±〉 ⊗ |γ ±

m ,
−→
l 〉 = |γ ±

e ,
−→̄
k , ˚̄X

±〉 ⊗ |γ ±
m ,

−→
l 〉 (15)

where, at any point x in the graph γe, the embedding charges
−→
(k̄

±
, ˚̄X

±
) in the new charge-net

|γ ±
e ,

−→̄
k , ˚̄X

±〉 are related to the original ones through the mapping φ±
c (X±) as:

k̄± + ˚̄X
± = φ±−1

c (k± + X̊±). (16)

From the above, it follows that

V̂φ±
c

X̂±(x)V̂ †
φ±

c
|γ ±

e ,
−→
k , X̊±〉 ⊗ |γ ±

m ,
−→
l 〉 = φ±

c (X̂ (x)) |γ ±
e ,

−→
k , X̊±〉 ⊗ |γ ±

m ,
−→
l 〉

which mimics the classical transformation law. Next, we analyse to what extent the classical
group of conformal isometries can be represented through the invertible and monotonic maps
φ±

c (X±) in the quantum theory.
Let us consider φc(X ) to be a nonlinear map given by φc(X ) = Xn, where n is any

integer. We denote the initial and final differences between the total embedding charges across
any vertex v by � = αn and �′ = αn′, where n, n′ ∈ Z and α is a fixed real number as
defined earlier. Also, just for convenience, we choose α = 1. Now, assuming that the discrete
embedding charges are k and k′ respectively across v, and using the continuity of X̊ at v, we
obtain:

�′ = lim
ε→0

[(k′ + X̊ (v + ε))n − (k + X̊ (v − ε))n]

= (k′n − kn)+c1(k
′n−1 − kn−1)X̊ (v) + c2(k

′n−2 − kn−2)X̊ (v)2 + · · · + cn−1(k
′ − k)X̊ (v)n−1

where, the cn-s are the binomial coefficients, which are integers. Now notice that only the
first term is an integer, whereas for any general X̊ (v) ∈ R, the rest are all real-valued, except
for the special case X̊ (v)p = mp

ci(k′n−p−kn−p)
, mp ∈ Z for all p = 1, . . . , n − 1. However, such

a particular solution is not stable under any arbitrarily small (real-valued) perturbation of the
smooth function X̊ , since that leads to a noninteger �′. Thus, although the jump across v

was integer-valued to begin with, under a general nonlinear mapping φc and for any general
X̊ , the jump would not be integer-valued anymore. This argument also applies to any linear
combination of functions of the form φc(X ) = Xn. Thus, equation (16) can be satisfied only
for linear maps φ±

c (X±). Global translations and boosts are the only examples of such maps.
We consider these separately below:

Translations. These can be implemented on the states in a straightforward manner. Their
action can be characterized by any two real numbers r±:

φ±
c (k±

x,se
+ X̊±(x)) = k±

x,se
+ X̊±(x) + r±.

Since r± are arbitrary, the group of translations is continuous.
Boosts. Under finite global boosts parametrized by a constant number λ, the states should
transform as:

V̂λ |γ ±
e ,

−→
k±, X̊±〉 = |γ ±

e , e±λ−→k±, e±λX̊±〉 .

As earlier, we consider the difference �± between the total embedding charge [kx±,s±
e
+ X̊±(x)]

across any vertex v. Since the continuous charge X̊± does not contribute to this difference, we
obtain �± = �k±|v = αn±, where n± are integers. Now, after applying the boost, the new
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value of the spacing becomes �± = αm±, where m± are new integers, different from n± in
general. Thus, we obtain:

e±λ = m±

n± .

Thus, the boost parameter e±λ have to be a rational number, which must be the same for
all vertices. Such a boost is state dependent, and cannot be applied to any arbitrary charge
network. For example, if the initial ket is such that at least one of the spacings �+ = αn+ at
some vertex v is labelled by the minimum integer 1, i.e. � = α, and the boost parameter eλ is
any rational number such that eλ < 1, the boosted state as obtained from the initial one does
not lie in the kinematic Hilbert space. Thus, global boosts, unless state-dependent, cannot be
implemented in the quantum theory1.

To conclude, only continuous global translations, which form a subgroup of the global
Poincare group, are realized in the quantum theory. However, such a violation of Lorentz
(boost) symmetry would be blurred as long as one is concerned with states whose k spacings
are much larger than the minimum integer, and stays so even after the application of boosts.
This implies that Lorentz invariance can still be maintained, but only in an effective sense.

3.7. Group averaging

Here, we will adopt a simpler notation by suppressing the ‘±’ indices. For any state
ψse,X̊,sm

= |se, X̊〉 ⊗ |sm〉 belonging to the kinematic Hilbert space Hkin, a group averaging
map can be used construct a physical Hilbert space [18]. Let us consider all the distinct gauge
images ψ

ξ

se,X̊,sm
= |se, X̊〉ξ ⊗|sm〉ξ obtained through the action of Ûξ on ψse,X̊,sm

. Then, a formal
solution of the constraints is given by the sum over all the distinct gauge images:

〈η[ψse,X̊,sm
]| = η[se,X̊,sm]

∑
ξ∈G[se,X̊,sm]

ξ 〈sm| ⊗ ξ 〈se, X̊ | (17)

where, the positive real coefficient η[se,X̊,sm] depends only on the gauge orbit of |se, X̊〉 ⊗ |sm〉.
The physical state 〈η[ψse,X̊,sm

]| lies in a larger space �∗ ⊃ Hkin. The corresponding inner
product between the physical states is defined as:

〈η[ψse,X̊,sm
]|η[ψs′

e,X̊
′,s′

m
]〉

phy
= 〈η[ψse,X̊,sm

]| [ψs′
e,X̊

′,s′
m
].

In order to reduce the ambiguity in the coefficients η[se,X̊,sm], one can use the commutativity
of the η map with any Dirac observable in the theory. However, the analysis is very similar to
the case of PFT on a compact spatial slice as studied in [10], and does not lead to a significant
reduction of the ambiguity. Since this exercise does not provide any illuminating detail in
our case, we choose to omit a discussion of that. As in the compact case, the physical space
is nonseparable, since the gauge invariant data corresponding to each physical basis state
contains the real numbers X̊ (v) at the vertices v (for a detailed discussion in this regard, see
[10]), which are uncountable labels.

4. Quantum geometry of spacetime

A physical state as obtained through the averaging can be interpreted as a quantum spacetime,
whose coordinates are X±. Let us assume that such a state is a sum of all distinct gauge images
of any charge-network state |γ ±

e ,
−→
k , X̊±〉 ⊗ |γ ±

m ,
−→
l 〉. For this state, the total embedding

1 It would be worth exploring the implications of possible state dependent isometries in the quantum theory. We do
not attempt such an analysis here.

10



Class. Quantum Grav. 31 (2014) 085005 S Sengupta

charge k±
n,tot = k±

n + X̊± for the nth edge spans the continuous range [k±
n + X̊±

min, k±
n + X̊±

max],
where X̊±

min and X̊±
max denote the minimum and maximum values of X̊± along the edge,

respectively. However, each such continuum is followed by a jump in the value of k±
n,tot.

Now, note that the continuous interval [k±
n + X̊±

min, k±
n + X̊±

max] represents a spacetime strip,
finite along the ‘±’ direction and infinite along the ‘∓’ direction. Thus, intersection of
any pair of intervals [k+

n + X̊+
min, k+

n + X̊+
max] and [k−

n + X̊−
min, k−

n + X̊−
max] corresponds to a

rectangular strip of flat spacetime. The resulting physical spacetime is composed of discrete
rectangular strips, followed by voids. The matter charges sit as discrete points on these strips.
However, such a discrete structure prevails only at the interior, which spans a compact region.
As one approaches asymptotia, one obtains a physical state characterized by a smoothly
varying embedding charge. Thus, the asymptotic quantum geometry resembles a classical
continuum.

5. Concluding remarks

We have constructed a canonical quantization of the theory of a parametrized scalar field
on noncompact spatial slices, with a view to analyse the quantization of asymptotically flat
gravity. The methods adopted here are based on loop (polymer) quantization techniques.
The most important ingredient in this construction is a new kinematical representation which
corresponds to a quantum geometry with a nondegenerate vacuum metric. The representation
of this kind was originally introduced in the context of Loop Quantum Gravity [6, 7], in order
to incorporate the notion of a smooth effective spacetime within the quantum kinematics. In the
case of PFT, the states in this representation have continuous embedding labels in addition to
the discrete embedding and matter labels. Using the smooth background structure underlying
this construction, the boundary conditions for the basic fields at spatial infinity were shown to
be consistently implemented in the quantum theory. This signifies an important step, since it
is not known how to impose the asymptotic conditions within the standard representation with
a degenerate vacuum geometry, which is devoid of any smooth structure.

The action of PFT is invariant under the group of conformal isometries, which generate
Weyl rescalings of the metric. This contains the global Poincare group consisting of translations
and boosts. However, in the quantum theory, only the continuous global translations, which
characterize a subgroup of the Poincare group, are realized. This happens to be exactly the
same subgroup as is obtained in the quantization of two dimensional PFT on a compact spatial
slice, as analysed in [10]. However, it is still possible to have state dependent boosts within
this formulation. If such a nontrivial ‘symmetry group’ of conformal isometries is treated to
be more fundamental than the classical one, it is to be seen how the quantum theory responds
to such a viewpoint. This issue requires a deeper study.

The quantum spacetime, as determined by a physical state in the quantum theory, is made
up of discrete rectangular strips at the interior region, and exhibits a smooth geometry at the
asymptotia. We emphasize that such a feature cannot be realized within the standard loop
(polymer) representation with a degenerate vacuum geometry. It is true that one still needs
to understand the details regarding the possible coarse-graining which leads to the effective
smoothness of the charge-network states at the spatial infinity. In other words, one must ask
whether there is a way to implement the boundary conditions and recover the spacetime
continuum at asymptotia directly within the discrete setting without using any extra structure
such as a smooth embedding. However, we believe that even if a complete understanding of
such issues is missing at this stage, it might be worthwhile to generalize the framework as set
up here to the case of four dimensional gravity theory on noncompact spatial slices.
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