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In a double slit interference experiment, the wave function at the screen with both slits open is not exactly
equal to the sum of the wave functions with the slits individually open one at a time. The three scenarios
represent three different boundary conditions and as such, the superposition principle should not be
applicable. However, most well-known text books in quantum mechanics implicitly and/or explicitly use
this assumption that is only approximately true. In our present study, we have used the Feynman path
integral formalism to quantify contributions from nonclassical paths in quantum interference experiments
that provide a measurable deviation from a naive application of the superposition principle. A direct
experimental demonstration for the existence of these nonclassical paths is difficult to present. We find that
contributions from such paths can be significant and we propose simple three-slit interference experiments
to directly confirm their existence.
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Quantum mechanics has been one of the most successful
theories of the twentieth century, both in describing
fundamental aspects of modern science as well as in pivotal
applications. However, in spite of these obvious triumphs,
there is universal agreement that there are aspects of
the theory which are counterintuitive and perhaps even
paradoxical. Furthermore, understanding fundamental
problems involving dark matter and dark energy [1,2] in
cosmology may need a consistent quantum theory of
gravity. Unification of quantum mechanics and general
relativity towards a unified theory of quantum gravity [3,4]
is the holy grail of modern theoretical physics. Such
unification attempts involve modifications of either or both
theories. However, all such attempts would rely very
strongly on precise knowledge and understanding of the
current versions of both theories. This makes precision tests
of fundamental aspects of both quantum mechanics and
general relativity very important to provide guiding
beacons for theoretical development.
The double slit experiment (Fig. 1) is one of the most

beautiful experiments in physics. In addition to its pivotal
role in optics, it is frequently used in classic textbooks on
quantum mechanics [5–7] to illustrate basic principles.
Consider a double slit experiment with incident particles
(e.g., photons, electrons). The wave function at the detector
with slit A open is ψA. The wave function with the slit B
open is ψB. What is the wave function with both slits open?
It is usually assumed to be ψAB ¼ ψA þ ψB [5–7]. This is
illustrated in Fig. 1. From the mathematical perspective of
solving the Schrödinger equation, this assumption is
definitely not true. The three cases described above
correspond to three different boundary conditions [8,9]
and as such the application of the superposition principle

can at best be approximate. Recent numerical simulations
of Maxwell’s equations using finite difference time domain
analysis have shown this to be true in the classical domain
[9]. How do we quantify this effect in quantum mechanics?
An intuitive and simple way of understanding this

problem is to appeal to Feynman’s path integral formalism
[10]. The path integral formalism involves an integration
over all possible paths that can be taken by the particle
through the two slits. This not only includes the nearly
straight paths from the source to the detector through either
slit (the classical paths) like the green paths in Fig. 2 but
also includes paths of the type shown in purple in Fig. 2
(nonclassical paths). These looped paths are expected to
make a much smaller contribution to the total intensity at
the detector screen as opposed to the contribution from the
straight line paths. However, their contribution is finite.
Formally, a classical path is one that extremizes the
classical action. Any other path is a nonclassical path.
This leads to a modification of the wave function at the
screen which now becomes
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FIG. 1 (color online). Two-slit experiment. Inset shows a typical
interference pattern obtained by assuming ψAB ¼ ψA þ ψB.
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ψAB ¼ ψA þ ψB þ ψL; ð1Þ

where ψL is the contribution due to the looped. i.e.,
nonclassical paths. That ψL is nonzero was first pointed
out in [8] in the nonrelativistic domain where certain
unphysical approximations were made in computing ψL
and hence the results or the methods cannot be used in an
experimental situation. Recently, the authors of [9] have
reiterated the point that ψL can be nonzero without
attempting to quantify it in quantum mechanics.
In this paper, we will quantify the effect of such non-

classical paths in interference experiments, thus quantify-
ing the deviation from the common but incorrect
application of the superposition principle in different
possible experimental conditions. A well-known example
of a direct experimental demonstration of such nonclassical
paths involves the measurement of the Aharonov-Bohm
phase [11]. Berry’s “many-whirls” representation [12]
provides insight into simple explanations of the
Aharonov-Bohm effect in terms of an interference between
whirling waves passing around the flux tube. However, in
most experimental attempts to measure the Aharonov-
Bohm phase, the detection relies on rather complicated
experimental architecture and the results are also open to
interpretational issues and further discussion [13,14]. In
this work, we propose simple triple slit based interference
experiments [15] which can be used as tabletop demon-
strations of nonclassical paths in the path integral formal-
ism. Nonclassical paths have been used to compute the
semiclassical off-diagonal contributions to the two-point
correlation function of a quantum system whose classical
limit is chaotic [16]. The paths in this case are real. In the
Feynman path integral approach, all possible paths going
from the initial to final state need to be considered with an
appropriate weight. In this sense all paths are real although

in a physical quantity the contribution from certain paths
may be suppressed.
The triple slit experiment provides a simple way to

quantify the effects from nonclassical paths in terms of
directly measurable quantities. The triple slit (path) setup
has been used as a test bed for testing fundamental aspects
of quantum mechanics over the last few years [15,17–21].
Three-state systems are also fast becoming a popular choice
for fundamental quantummechanical tests [22,23]. In order
to analyze the effect of nonclassical paths in interference
experiments, we have considered the effect of such paths on
an experimentally measurable quantity κ. κ (defined below)
has been measured in many experiments over the last few
years in order to arrive at an experimental bound on
possible higher order interference terms in quantum
mechanics [24,25] and in effect the Born rule for proba-
bilities [15,18,19]. Investigations of this quantity may also
be relevant to theoretical attempts to derive the Born rule
[26]. If Born’s postulate for a square law for probabilities is
true and if ψL ¼ 0, then the quantity ϵ defined by

ϵ ¼ pABC − ðpAB þ pBC þ pCAÞ þ ðpA þ pB þ pCÞ ð2Þ

is identically zero in quantum mechanics. Here pABC is the
probability at the detector when all three slits are open, pAB
is the probability when slits A and B are open, and so on.
In the experiments reported in the literature, the nor-

malization factor has been chosen to be the sum of the
three double slit interference terms called δ given by
δ ¼ jIABj þ jIBCj þ jICAj, where IAB ¼ pAB − pA − pB
and so on. This choice of normalization can sometimes
lead to false peaks in the κ as a function of detector position
due to the denominator becoming very small at certain
positions. We use a somewhat different normalization,
δ ¼ Imax, where Imax is the intensity at the central maxi-
mum of the triple slit interference pattern to avoid this
problem. Then the normalized quantity κ is given by

κ ¼ ϵ

δ
: ð3Þ

In discussions which invoke the “zeroness” of κ, it is
implicitly assumed that only classical paths contribute to
the interference. In his seminal work [17], Sorkin had also
assumed that the contribution from nonclassical paths was
negligible. Now, what is the effect of nonclassical paths on
κ? If one can derive a nonzero contribution to κ by taking
into account all possible paths in the Feynman path integral
formalism, that would mean ψAB ¼ ψA þ ψB is not strictly
true, and experimentalists should not be led to conclude
that a measurement of nonzero κ would immediately
indicate a falsification of the Born rule for probabilities
in quantum mechanics. A measured nonzero κ could also
be explained by taking into account the nonclassical paths
in the path integral. There is thus a theoretical estimate for a
nonzero κ. Of course, the immediate expectation would be

FIG. 2 (color online). Path integrals in a lab. The green line
demonstrates a representative classical path. The purple line
demonstrates a representative nonclassical path. The various
length parameters are marked; d designates the interslit distance,
w designates the slit width, h designates the slit height, L
designates the distance from the source to the slit plane, and
D designates the distance from the slit plane to the detector plane.
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a clear domination of the classical contribution and perhaps
a very negligible contribution from the nonclassical paths
that would in turn imply that ψAB ¼ ψA þ ψB is true in all
“experimentally observable conditions.” However, what we
go on to discover is that this expectation is not always
true. It is possible to have experimental parameter regimes
in which κ is measurably large. This in turn leads to a
paradigm shift in such precision experiments. Observation
of a nonzero κ that is expected from the proposed correction
to ψAB ¼ ψA þ ψB would in fact also serve as an exper-
imental validation of the full scope of the Feynman path
integral formalism.
As mentioned before, in calculating κ, one inherently

assumes contributions only from the classical straight line
paths as shown in green in Fig. 2. In this paper, we have
estimated the contribution to κ from nonclassical paths,
thus providing the first theoretical estimate for κ.
For simplicity, we will use the free particle propagator in

our calculations. For a particle in free space and away from
the slits, this is a reasonable approximation. We account for
the slits by simply removing from the integral all paths that
pass through the opaque metal. An estimate for the error
due to this assumption has been worked out in the
Supplemental Material [27]. The normalized energy space
propagator K [27] for a free particle with wave number k
from a position ~r0 to ~r is given by

Kð~r; ~r0Þ ¼ k
2πi

1

j~r − ~r0j e
ikj~r−~r0j: ð4Þ

Although in this paper, we will be mainly focusing on
analyzing optics-based experiments using photons, this
propagator equation can be used both for the electron
and the photon as argued in [27]. We should point out that
there are corrections to the propagator due to closed loops
in momentum space from quantum field theory consid-
erations. We have explicitly estimated that the effects of
such corrections will be negligibly small [32].
Consider the triple slit configuration shown in Fig. 2.

According to the path integral prescription, all paths that go
from the source to the detector should contribute in the
analysis. In the quantity of interest, κ, some important
simplifications occur. Only those nonclassical paths that
involve propagation between at least two slits would
contribute to the leading nonzero value. This is because
any nonclassical path that goes through only the ith slit can
be taken into account in the wave function ψ i at the detector
and hence would cancel out in κ as can be easily checked.
In light of the above, the entire set of paths from the source
to the detector through the slits can be divided into two
classes: (i) paths that cross the slit plane exactly once
pertaining to a probability amplitude Kc; a representative
path is shown by the green line; and (ii) paths that cross the
slit plane more than once at two or more slits pertaining to a

probability amplitude Knc [27] as for instance, represented
by the purple line.

∴ K ¼ Kc þ Knc: ð5Þ

We wish to estimate Knc relative to Kc. An example of a
representative Kc in our problem is the probability ampli-
tude to go from the source ð−L; 0; 0Þ to the detector
ðD; yD; 0Þ through slit A which we call KAðS;D; kÞ.
This uses the general scheme that a path in Feyman’s path
integral formalism can be broken into many subpaths and
the propagator is the product of the individual propagators
[27]. For instance,

KA
c ¼ −

�
k
2π

�
2
Z

dþw
2

d−w
2

Z
h

−h
dydz

eikðl1þl2Þ

l1l2
; ð6Þ

where d is the interslit distance, w is the slit width, h is the
slit height, l21 ¼ y2 þ L2 þ z2 and l22 ¼ ðyD − yÞ2 þD2 þ z2

as shown in Fig. 2. For the source and the detector far apart
from one another, i.e., in the Fraunhofer regime, D ≫ d
and L ≫ d in the region of integration; therefore,
l1 ≈Lþðy2þ z2=2LÞ. Similarly l22 ¼ ðyD − yÞ2þD2þ z2

giving l2 ≈Dþ ððyD − yÞ2 þ z2=2DÞ. Thus we have

KA
c ¼ −γ

�
k
2π

�
2
Z

dþw
2

d−w
2

Z
h

−h
dydzeik½

y2þz2

2L þðyD−yÞ2þz2

2D �: ð7Þ

Here γ ¼ ð1=LDÞeikðLþDÞ. These are Fresnel integrals and
have been evaluated using Mathematica.
Let us now proceed to the probability amplitude for

multiple slit crossings, i.e., Knc. An example of a repre-
sentative Knc in our problem is the probability amplitude to
go from the source ð−L; 0; 0Þ to the detector ðD; yD; 0Þ
following the kind of path shown in Fig. 2. In this case, the
particle goes from the source to the first slit and then loops
around the second and third slits before proceeding to the
detector. We represent this byKA

ncðS;D; kÞ. This is approxi-
mated by [27]

KA
nc ¼ i

�
k
2π

�
3
Z

dy1dy2dz1dz2
eikðl1þl2þl3Þ

l1l2l3
: ð8Þ

Here the y1 integral runs over slit A and y2 integral
runs over slits B and C and where l21 ¼ ðy1 − ySÞ2þ
L2 þ z21; l

2
2 ¼ ðy2 − y1Þ2 þ ðz2 − z1Þ2, and l23¼ðyD−y2Þ2þ

D2þz22. Making approximations appropriate to the
Fraunhofer regime, using stationary phase approximation
[34] for the oscillatory integrals the integral becomes

KA
nc ¼ γi3=2

�
k
2π

�
5=2

Z
dy1dy2dz1jy2 − y1j−1=2

× e
ik

h
y2
1
þz2

1
2L þðy2−y1Þþ

ðyD−y2Þ2þz2
1

2D

i
: ð9Þ
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An important simplification occurs at this stage: the z
integral in KA

nc is same as in the integral for KA
c . Since we

are just concerned with ratios, the contributions from the z
integrals cancel out.
In terms of Kc and Knc, the propagator to go from

the source to the detector when all three slits are open is
given by

KABC ¼ KA
c þ KB

c þ KC
c þ KABC

nc ; ð10Þ

where KABC
nc includes nonclassical terms arising when all

slits are open. Similarly,

KAB ¼ KA
c þ KB

c þ KAB
nc : ð11Þ

KAB
nc are nonclassical terms involving only A and B.

Similarly for AC and BC. Thus, in terms of propagators,

ϵ ¼ jKABCj2 − jKABj2 − jKACj2 − jKBCj2
þ jKAj2 þ jKBj2 þ jKCj2; ð12Þ

and the normalization δ is given by δ ¼ jKABCð0Þj2, where
jKABCð0Þj2 is the value of jKABCj2 at the central maximum.
By numerical integration, we find κ at the central maximum
of the triple slit interference pattern to be of the order of
10−6 for the parameters used in the triple slit experiment
reported in Ref. [15]. What would have been expected to be
zero considering only straight line paths now turns out to be
measurably nonzero having taken the nonclassical ones
into account [35]. In Fig. 3, we show κ as a function of
detector position. We also show a plot of the triple slit
interference pattern as a function of detector position,
which gives a clearer understanding of the modulation in
the plot for κ.
The experiment reported in Ref. [15] was not sensitive to

a theoretically expected nonzeroness in κ due to systematic
errors. However, in the absence of such systematic errors, it
is definitely possible to use a similar setup to measure a
nonzero κ. Simulation results indicate that the setup could
have measured a much lower value of κ but the presence of
the systematic error due to one misaligned opening in the
blocking mask set the limitation of the experiment making
it possible to only measure a value of κ up to 10−2. There is
no reason why this systematic error cannot be removed in a
future version of the experiment thus making it a perfect
tabletop experiment to test for the presence of nonclassical
paths in interference experiments. However, experiments of
the kind reported in [18] are not as ideally suited for this
purpose. This is because, in our analysis, we have worked
in the thin-slit approximation. The effective “slit thickness”
in a diffraction grating-based interferometer setup would be
quite large and hence the resulting κ would certainly be
smaller.
What we go on to also find in our current analysis is that

κ is very strongly dependent on certain experimental

parameters and one can definitely find a parameter regime
where κ would be even bigger, and hence easier to observe.
We find that keeping all other experimental parameters
fixed, κ increases with an increase in wavelength. Thus, for
instance, for an incident beam of wavelength 4 cm (micro-
wave regime) and slit width of 120 cm and interslit distance
of 400 cm, a theoretical estimate for κ would be 10−3. This
is an experiment that can be performed, for instance, in a
radio astronomy lab.
Experiments of this kind where the value of κ due to

nonclassical paths can be estimated would definitely be of
great interest as they would serve as a simple experimental
demonstration of how the basic assumption that a
composite wave function is just the sum of component
wave functions is not always true. In a sense they would
also serve as a direct tabletop demonstration of the
complete scope of the Feynman path integral formalism

(a)

(b)

FIG. 3 (color online). Normalized values of κ as a function
of detector position. Here In ¼ jKABCðyÞj2=jKABCð0Þj2.
(a) This is for incident photons, slit width ¼ 30 μm, interslit
distance ¼ 100 μm, distance between source and slits and slits and
detector ¼ 18 cm and incident wavelength ¼ 810 nm [15].
(b) This is for incident electrons, slit width ¼ 62 nm,
interslit distance ¼ 272 nm, distance between source and slits ¼
30.5 cm and slits and detector ¼ 24 cm and deBroglie
wavelength ¼ 50 pm [36].
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where not only the straight line paths are important but also
the looped paths can make a sizeable contribution depend-
ing on one’s choice of experiment. The effects due to such
nonclassical paths may also be used to model possible
decoherence mechanisms in interferometer-based quantum
computing applications.
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