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Classroom

In this section of Resonance, we invite readers to pose questions likely to be raised in a
classroom situation. We may suggest strategies for dealing with them, or invite responses,
or both. “Classroom” is equally a forum for raising broader issues and sharing personal
experiences and viewpoints on matters related to teaching and learning science.

The Discrete, the Continuous and the ‘Concrete’
Classical Harmonic Dynamics
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*Email: nkumar@rri.res.in An elementary treatment of the classical har-
monic dynamics of a linear (1D) array of identi-
cal point-like masses (particles) with equal cou-
plings (elastic spring constants) is re-considered
in three distinct limits − the Discrete, where the
mass-points are identical and equispaced while
the elastic springs are massless; the Continuous,
where we have a 1D elastic medium of uniform
mass-density (mass per unit length); and the
‘Concrete’ lattice which comprises an elastic 1D
continuum having a uniform mass-density and is
embedded in the identically coupled equispaced
mass-points. Analytical expressions are obtained
for some elementary, but often rather subtle, qua-
ntities of physical interest, e.g., the mechanical
power transported, and the mechanical momen-
tum associated with such an apparently simple
purely oscillatory 1D harmonic lattice system.
The classroom exercise will conclude with a sug-
gestion for the possibility that the ‘Concrete’
case may well correspond to that of hard nanopar-
ticulate crystallites embedded in a 1D elastic con-
tinuum, e.g., a spider dragline silk, known for
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its exceptionally fast vibrational-energy trans-
port, which is in fact comparable to that of di-
amond! This should hopefully provide a moti-
vating thought for the curious among the young
readers of Resonance.

1. Introduction: The Physical Problem

It is well known that an inertial mass (m), disturbed
weakly from its state of classical-mechanical equilibrium
(the ground state), will perform a phased oscillatory mo-
tion of small amplitude about its equilibrium position.
This undamped oscillation describes its harmonic dy-
namics. Such a motion is characterized generally by
a coupling constant k (stiffness), a circular frequency
ω corresponding to its time period (T = 2π/ω), and
an amplitude A (real) of its oscillations. This in turn
determines the associated oscillator energy (kinetic K
and potential U), with the total energy (K + U) re-
maining constant in time − a conserved quantity for
the dynamical system (without any friction). This sim-
ple harmonic oscillator model can be extended to a rich
class of dynamical systems, now subsumed under Lat-
tice Dynamics − a fascinating chapter in classical solid
state physics. The purpose of this Classroom exercise
is to introduce certain basic ideas of lattice dynamics
with a minimum of jargon. We will in particular define
and describe three distinct cases that may conveniently
be named as the Discrete (‘Dis-crete’), the Continuous
(‘Con-tinuous’), and somewhat unconventionally, as the
‘Concrete’ (‘Con-crete’)! A central, rather subtle issue
will be to resolve as to if, and when such a purely os-
cillatory mechanical-wave motion can transport power
(energy transported per unit time) across an arbitrar-
ily chosen lattice point/site, n say, and have a linear
mechanical momentum associated with it.

2. The Discrete Case

Let us begin with the discrete case of a 1D N -site
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Figure 1. 1D N-site lattice of

total mass Nm coupled by

massless harmonic springs,
of spring constant ‘k’ with

spring length (lattice con-

stant) ‘a’, and subjected to
the periodic boundary condi-

tion, i.e., site N is identified

with a site 0, making it  effec-
tively a closed string of

coupled mass-points. Let N

>> 1 (essentially infinite) so
that the mass-point motion is

almost tangential to the

closed string, though this is
really not necessary. We will

be considering only the longi-

tudinal motion of the mass-
points.

harmonic lattice of equal point-masses coupled by iden-
tical nearest-neighbour springs of relaxed length (lattice
constant) ‘a’, as indicated in Figure 1

It should be noted that the lattice points here merely
label the points/sites on the x-axis, say, when the cou-
pled mass-points are in the ground state − the mass-
points are not physically pinned on any rigid substrate.
Also, while the particles carry mass (i.e., they are mass-
points), the inter-particle elastic couplings (springs) are
massless − and hence the interactions between the neigh-
bouring mass-points are instantaneous, i.e., there is no
time delay involved here.

The simple harmonic equation of motion for the lattice
system then becomes

m
d2un(t)

dt2
= −k(2un(t)− un+1(t) − un−1(t)), (1)

where un(t) is the displacement of the nth mass-point
from its initial (equilibrium) position at site n; m is its
mass; and k is the spring constant coupling the nearest-
neighbours. (Note that we will often write just un for
un(t) when there is no possibility of confusion).

Equation (1) follows simply from the well-known classi-
cal mechanical Lagrangian

L ≡ K − U ≡
∑

n

1

2
m

(
dun(t)

dt

)2

−
∑

n

1

2
k(un(t) − un−1(t))

2, (2)

0 N             n–1 a            n a      n+1          N–1

 k             k
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where K is the total kinetic energy and U is the total
potential energy for the harmonically coupled system.
The corresponding Lagrangian equation of motion

d

dt

( ∂L

∂u̇n

)− ∂L

∂un
= 0, (3)

then gives at once our equation of motion (1) as dis-
played above. The overhead dot in u̇n denotes the time
derivative.

Here one is tempted to conclude that the total mechan-
ical momentum carried by our N -site periodic system
must add up to zero inasmuch as every mass-point exe-
cutes a phased classical simple-harmonic motion which
is periodic in time and the lattice space. But, as we
will presently show, this is not the case in general −
indeed, there is a net mechanical momentum carried by
the uniform motion of the centre-of-mass of the whole
dynamical system, over and above the purely oscilla-
tory motion naturally expected otherwise. Section 2 is
basically concerned with this somewhat subtle effect of
there being a non-zero translatory displacive velocity of
the centre-of-mass for an apparently purely oscillatory
simple-harmonic motion of mass-points of the effectively
infinite lattice above!

In order to clearly see that this indeed is the case, we
have to solve our starting linear differential equation (1).
To this end, let us apply an impulsive force = Iδn0δ(t)
at site n = 0, directed to the right, say. (Here, I is the
total impulse applied). Now, introduce the time-Laplace
transform

Lun(t) ≡
∫ ∞

0

e−stun(t)dt ≡ ũn(s), (4)

together with the spatial Lattice (discrete) Fourier trans-
form

Fun(t) ≡
N−1∑

0

un(t)e
iqn ≡ ūq(t) (5)
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and solve quite straightforwardly the resulting algebraic

equation for LF(un(t)) ≡
−
ũq (s), giving

LF(un(t)) =
I

m(s2 + 4ω2 sin2 q/2)
≡−

ũq (s), (6)

where I in the numerator is the impulse applied at the
left end of the periodic lattice 0 ≤ n ≤ N − 1, and
ω ≡ √

k/m. The notations L,F , and LF , respec-
tively, denote the Laplace, the Fourier, and the Laplace-
Fourier transforms. The overhead symbol � denotes
LF(un(t)). This notation is obvious from the context
above. Here, we have used the initial-value theorem for
the Laplace transform of time-derivative of the wave am-
plitude un(t), namely, Lu̇n(t) = sũn(s) − un(0). Also,
the variable q is the usual wavevector with −π/a ≤ q ≤
π/a for the periodic boundary condition assumed here.
The lattice constant a will be set equal to unity.

Now, the Laplace-Fourier transform in (6) is readily in-
verted to yield

un(t) =
1

N

∑
q

(
I

2mω sin q/2

)
(sin(2ωt sin q/2))e−iqn,

(7)
giving the quantity of interest, namely the total mechan-
ical momentum

m

N−1∑
0

u̇n(t)

=
m

N

∑
n

(
I

2mω sin q/2

)
sin(2ωt sin q/2)e−iqn

≡ I (8)

for the given impulse I(> 0) applied rightward on the
lattice.

Thus, our final solution implies that the lattice as a
whole is being displaced (it slides) at a constant right-
ward velocity V0 = I/Nm in response to the impulse I .

Under an impulsive

force, a discrete 1D

classical harmonic

lattice of mass-points

with mass-less elastic

couplings can deive a

persistent displacive

velocity for periodic

boundary conditions.
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There is no net mechanical momentum associated with
the sinusoidally oscillating harmonic lattice!

In order to fully appreciate this point, consider a lat-
tice system of just two mass-points (‘beads’) as having
been kicked by an impulsive force (of impulse I) ap-
plied rightward at the first mass-point. (The kick may
be imparted, e.g., by a speeding nucleus!). This prob-
lem has the well-known elementary solution − namely, a
uniformly displacive (translating) centre-of-mass veloc-
ity, and an oscillatory relative motion of the two mass-
points about their centre-of-mass, and thus carrying no
net mechanical momentum by themselves. (Incidentally,
this oscillatory motion is what is referred to as the ’nor-
mal mode’.

Next, one may ask a related question of some physical
interest, namely how a discrete infinitely long harmonic
lattice with the periodic sinusoidal motion can at all
transport a net non-zero mechanical power? The an-
swer to this question, however, turns out to be quite
straightforward. Here, for the discrete lattice dynamics
described by equation (1), the mechanical power (energy
transported per unit time) at time t across a site, n say,
towards its right is given by

Pn(t) = k(un−1(t) − un(t))× the velocity

(
∂un(t)

∂t

)
.

(9a)
Now, for the running sinusoidal wave in question here,
we have the displacement un(t) = A sin(Ωt−nφ), where
un(t) satisfies the equation following from (1), namely

−mΩ2A cos(Ωt − nφ) = −kA[2 cos(Ωt − nφ)

− cos(Ωt − (n + 1)φ) − cos(Ωt − (n − 1)φ), (9b)

where
√

k/m = ω is the circular frequency for the spring
constant k and the point-mass m, and φ = the phase ad-
vance over a lattice spacing (lattice constant ’a’), chosen
to be unity here. The associated wave-mode frequency

A discrete 1D

harmonic periodic

lattice of mass-points

with massless elastic

couplings can

transport mechanical

power across an

arbitrarily chosen

lattiice point, without

transporting matter

through the system.

In order to fully
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consider a lattice

system of just two

mass-points

(`beads') as having

been kicked by an

impulsive force (of

impulse $I$) applied

rightward at the first

mass-point.
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Ω is readily determined from (9b) as

Ω = 2ω | sin φ/2 | . (9c)

All one has to do now is to substitute (9b) and (9c) in
the basic (9a), obtaining

〈Pn(t)〉 = −A2Ω〈[cos(Ωt − (n − 1)φ) − cos(Ωt − nφ)]

× sin(Ωt − nφ)〉
= −A2Ω〈[cos(Ωt − nφ) cos φ− sin(Ωt − nφ) sinφ

− cos(Ωt− nφ)] × sin(Ωt − nφ)〉
= A2ω | sin φ/2 | × sinφ �= 0, in general, (10)

where we have made use of the orthogonality 〈cos(Ωt−
nφ)·sin(Ωt−nφ)〉 = 0, and the normalization 〈sin2(Ωt−
nφ)〉 = 1/2 for the time-average. Also, we have substi-
tuted for Ω from (9c). Following convention, we may
write for the phase advance (per lattice constant) φ ≡
qa, with −π ≤ qa ≤ π being the familiar first-Brillouin
zone (I-BZ), with the zone boundary ±π for the 1D sys-
tem considered here.

Hence, there is indeed a non-zero time-averaged mechan-
ical power transported across any site ‘n’ on the infinite
1D lattice. For the wavevector q greater/less than zero,
the wave clearly propagates to the right/left. The power
transport is readily seen to vanish, both at qa = 0 and
qa = ±π, the I-BZ boundaries. Equation (10) is one of
the main results of Section 1.

We now turn to the case of the continuous 1D elastic
medium with a uniformly distributed mass-density per
unit length. The question now is, if and how can such
a 1D system transport non-zero power and mechanical
momentum. Again, only the longitudinal displacement
waves will be considered. (It may be recalled that for
an infinitely long 1D system, boundary conditions essen-
tially become irrelevant. Indeed, one may always resort
to the periodic boundary condition, or effectively, con-
centrate only on the region far from the distant ends of
the 1D system).



CLASSROOM

771RESONANCE ⎜ August  2014

A 1D elastic medium

of finite mass per unit

length (linear density)

can sustain a

longitudinal wave

motion, without

transporting matter

and energy through

the system.

3. The Continuous Case

This is rather subtle. The harmonic motion of a 1D
elastic medium may, of course, be expected to give the
well-known wave equation

∂2u(x, t)

∂t2
= v2∂2u(x, t)

∂x2
, (11)

where u(x, t) is the longitudinal displacement at the
space-time point (x, t), and v is the velocity of the wave
along the x-axis with v2 = Y/μ. Here Y is Young’s
modulus (= force/extension) and μ is the linear mass
density (i.e., mass per unit length).

Wave equation (11) follows readily from the Lagrangian
density L for the 1D elastic medium

L =
1

2

[
μ

(
du(x, t)

dt

)2

− Y

(
du(x, t)

dx

)2
]

(12)

and the associated Lagrangian equation of motion

d

dt

(
∂L

∂
(

du(x,t)
dt

)
)

+
d

dx

(
∂L

∂
(

du(x,t)
dx

)
)

= 0, (13)

giving the linear equation (4) with a sinusoidal running-
wave solution

u(x, t) = A sin q(x− vt). (14)

This equation is often also re-written as u(x, t) = A sin
(qx−Ωt), where Ω is the circular frequency correspond-
ing to the wavevector q. Here, A is the wave amplitude,
and it is real. Clearly, v > 0 implies a wave propagating
in the positive x-direction.

Following are some of the notable features of this lon-
gitudinal wave motion in the 1D elastic continuum. It
causes locally an oscillatory longitudinal displacement.
The phase (Ωt − qx) of the wave varies linearly in x
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There is a

fundamental

difference between

the discrete and the

continuous 1D

systems. Implicit in

the discrete lattice

dynamics is the

assumption that the

displacement

amplitude is always

smaller than the

lattice spacing ‘a’.

and t. Associated with this, there are periodic fluctua-
tions in the local mass-density (per unit length) without
transport of matter or mechanical momentum over any
finite distance. Here we have, however, a fluctuation of
the energy density (kinetic as well as potential) which is
periodic in space–time.

Very importantly, there is no transport of mechanical
energy associated with this wave − hence often referred
to as a phase-wave. One may attempt to draw an anal-
ogy with our earlier treatment following equation (9c)
for the discrete-lattice case in the limit of the lattice con-
stant ‘a’ tending to zero. This is, however, misleading.
There is a fundamental difference between the discrete
and the continuous 1D systems. Implicit in the discrete
lattice dynamics is the assumption that the displace-
ment amplitude is always smaller than the lattice spac-
ing ‘a’. (Of course, the mass-points are not pinned to
the lattice sites). This is clearly violated in the case of
the continuum. Thus, equation (9c) for the discrete lat-
tice case becomes invalid in the case of the continuum
considered in the present section.

As an aside, one may, however, consider the case of a
1D gaseous systems, e.g., a gas of molecules confined in
an infinitely long but very narrow tube, allowing almost
free motion along the tube. This can, e.g., sustain a
longitudinal sound wave of roughly 1D character. But
then, this is a different system altogether, and we will
not consider it any further.

4. The ‘Concrete’ (Continuous-Discrete) Case

Finally, we turn to the Continuous-Discrete (‘Concrete’)
case. Here the continuous elastic 1D medium providing
the inter-particle restoring force (stiffness) has a uni-
form non-zero mass density (mass per unit length), and
the periodically distributed discrete point-like particles
(mass-points) embedded in this elastic continuum too
carry non-zero mass. This poses a relatively hard pro-
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A nanoparticulate

system of 1D

periodic lattice off

mass-points with

nearest-neighbour

couplings through an

elastic medium of

non-zero mass per

unit length can

transport energy,

without transporting

matter. The spider

drafline silk would be

a notable example.

blem, compared to the one considered earlier in Section
1. There, the mass-less elastic spring exerted instan-
taneously-acting restoring force on the nearest-neighbour-
ing mass-points. Here, in sharp contrast to that, the
interaction between the two neighbouring mass-points
is mediated by a wave propagating at a finite speed
along the intervening elastic medium having non-zero
mass per unit length. (In fact, the boundaries between
the neighbouring mass-points and the intervening elas-
tic medium also move). Such a system of mass-points
coupled through the elastic ‘mass-full’ medium is qual-
itatively different from the cases discussed earlier. The
problem is, however, well posed. It is indeed challeng-
ing. Here, however, we shall not attempt to solve this
problem − it is posed here as an interesting Classroom
exercise for the students. By way of added motivation,
however, we would merely like to point out here a phys-
ically realizable analogue of this problem which is of
considerable current scientific interest, namely that of
a certain spider dragline silk with hard nanoparticulate
crystallites embedded in the elastic fibre. This so-called
dragline silk acts here as the elastic 1D medium, while
the nanoparticulate crystallites act as the mass-points
embedded periodically in it. This ‘concrete’ harmonic
system can be readily modelled in terms of the usual
three basic parameters − the linear mass density (mass
per unit length) of the elastic dragline silk, its elas-
tic constant (Young’s modulus), and the mean spacing
between the neighbouring mass-points (the crystallites
here).

This spider dragline silk is well known to exhibit some
extraordinary physical properties, e.g., its vibrational-
energy transport (lattice thermal conductivity) turns
out to be comparable to that of diamond, and may
in fact even exceed it! This, therefore, seems to be a
remarkable example of a ‘concrete’ conductor. Admit-
tedly, the real spider dragline silk is a highly complex
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physical properties,

e.g., its vibrational-
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material system of biomolecules (protein super-fibres).
But, given the relative simplicity of the physical model
as indicated above, mathematically inclined students of
Resonance may be reasonably encouraged to pursue this
problem in the overall spirit of a challenging Classroom
exercise.


