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We present a general dynamical theory of a membrane coupled to an actin cortex containing
polymerizing filaments with active stresses and currents, and demonstrate that active membrane dynamics
[S. Ramaswamy et al., Phys. Rev. Lett. 84, 3494 (2000)] and spontaneous shape oscillations emerge from
this description. We also consider membrane instabilities and patterns induced by the presence of filaments
with polar orientational correlations in the tangent plane of the membrane. The dynamical features we
predict should be seen in a variety of cellular contexts involving the dynamics of the membrane-
cytoskeleton composite and cytoskeletal extracts coupled to synthetic vesicles.

DOI: 10.1103/PhysRevLett.112.258101 PACS numbers: 87.16.dj, 87.16.Ln, 87.16.Uv

The plasma membrane of a living cell displays striking
dynamical structures in the form of growing tubules,
ruffles, ridges, and spontaneously generated waves
[1–3]. The generality of these observations prompts us
to search for a minimal physical description, independent
of system-specific detail, unlike Refs. [4,5]. We show that
the essential mechanism lies in the interaction of the
membrane with the cytoskeleton, driven by molecular
motors and adenosine triphosphate (ATP), which can be
viewed as a fluid containing orientable, self-driven fila-
ments [6]. Our work is significantly different from a recent
paper on membrane waves driven by actin and myosin [7],
as we explain in this Letter. Our predictions are general and
testable in extracts and artificial settings as well.
Our main results are the following: (i) Active membrane

dynamics [8–10] emerges naturally from a complete hydro-
dynamic theory of a membrane forced by a fluid containing
orientable motile elements carrying active stresses. The
membrane acquires a tension from the intrinsic stresses on
the filaments and a sustained normal velocity from their
nonequilibrium directed motion. (ii) Within a mode-trun-
cated description, we find an instability to a spontaneously
oscillating state. (iii) Including an in-plane polar orientation
field in the membrane gives rise to height bands just past
the onset of spontaneous alignment, traveling instabilities
deep in the ordered phase, with a growth rate ∼q1=2x qy,
where x is the direction of mean ordering of the filaments,
for a small in-plane wave vector (qx, qy), and possibly
tubules or ridges in a regime where the polarization focuses
onto points or lines.
We now construct the dynamics of a fluid membrane

coupled to a bulk solvent [11,12] containing active orientable
particles [13] described by a vector order parameter PðrÞ
and a nematic order parameter QðrÞ, as functions of

three-dimensional position r. The membrane conformation
Rð~uÞ is parametrized by ~u ¼ ðu1; u2Þ, where ~u is a two-
dimensional position vector labeling points in the membrane.
The local membrane velocity is denoted by Vmð~u; tÞ. If we
impose that all surface points labeled by ~u retain their
coordinates (i.e., we use a convected coordinate system
[14,15]),Vm ≡ ∂tR. Wework with this choice in the present
Letter. We present the general equations for our model in
Supplemental Material [16]. We denote by ψ the “signed”
concentration of a species living on or closely associatedwith
themembrane (Fig. 1).That is, eachparticle of this species has

FIG. 1 (color online). Schematic diagram of a membrane in an
active fluid. The membrane is depicted in Monge gauge:
R ¼ ðx; y; hðx; y; tÞÞ, where hðx; y; tÞ is the height above points
(x, y) on a reference plane. The signed species ψ is represented by
circles, with dots (crosses) denoting parallel (antiparallel) align-
ment with respect to the outward membrane normal N. Dashed
arrows on the membrane are the in-plane polar filaments, whose
concentration is c, and continuous arrows denote the bulk active
orientable fluid.
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a vectorial orientation, whose axis is taken to lie along the
membrane normal, and is counted as þ (−) for parallel
(antiparallel) alignment. ψ could represent [8] actin polym-
erization nucleators, asymmetric membrane proteins or ion
channels, or an internal state coupling to local curvature [19].
We denote by c the concentration of polar filaments restricted
to the immediate vicinity of the membrane. In the cellular
context, this represents tangential actin, whose presence has
been persuasively argued for in recent studies on membrane
composition and trafficking [20].
In the absence of flow and activity, the system relaxes

to equilibrium governed by a free-energy functional
F½P;Q;R;ψ ;c�¼R

d3rðfbþ
R
ufmÞ with contributions fb

from the cytoplasm and fm at the membrane. HereR
u…≡R

d2ug1=2δðr−RÞ…, with g being the determinant
of the membrane metric. fb ¼ ða1=2ÞP2 þ ða2=2ÞQ∶Q
controls the relaxation of the order parameter fields in
the bulk. The contributions from the degrees of freedom
associated with the membrane are contained in fm ¼ fcþ
fR þ fR−c þ fop. Here fc describes the cost of concen-
tration fluctuations of both the in-plane polar filaments and
the signed species, and fR ¼ ðκ=2ÞðTrKÞ2 penalizes defor-
mations of the membrane, where K is the curvature tensor
[21]. fR−c ¼ ϒðcÞψTrK couples the signed density field
and the local mean curvature RamTonPro. Lastly,

fop ¼ wQu∶ NN − Λψpn − w2pnTrKþ ac ~pt
2

þ αcDu · ~pt þ κpψK∶ ðDu ~ptÞ þ κtψ ~pt ~pt ∶ K ð1Þ

is the free-energy associated with orientational order
at the membrane: Puð~uÞ ¼ Pðr ¼ Rð~uÞÞ and Quðu⃗Þ ¼
Qðr ¼ Rð~uÞÞ, parametrized by ~u. Du is the covariant
derivative on the membrane [14], and Nð~uÞ is the membrane
normal. We decompose Pu into its normal component pn ¼
Pu · N and the tangent plane vector ~pt ¼ eu · Pu, where the
projector eu ≡ ðe1ð~uÞ; e2ð~uÞÞ ¼ ð∂u1R; ∂u2RÞ. The local
polarity ψ of the membrane favors one direction of P
through Λ, while w, depending on its sign, softly anchors
the filaments parallel or perpendicular to the membrane [22].
w2, κp, and κt couple orientation to curvature [23], and ac
controls the orientational free energy of membrane-
associated tangential polar filaments (hereafter, “horizontal
filaments”). The coefficient α governs local spontaneous
splay in response to polar filament concentration [24,25].
In the presence of active processes, the membrane,

treated as a permeable fluid film [21], has a local velocity

Vm ¼ ½V þ v0Pþ ζ∇ · ðPPÞ�jr¼R − μpg−1=2
δF
δR

; ð2Þ

where V is the three-dimensional hydrodynamic velocity.
The second and third terms in square brackets in (2),
forbidden in a passive system, arise as follows [6]: Free
energy is dissipated at a rate RΔμ, where R is the reaction
rate and Δμ the chemical potential difference between the

fuel (e.g., ATP) and its reaction products. Let us treatVm and
R as fluxes [26,27], with corresponding forces δF=δR and
Δμ. To first order in gradients, P and ∇ · ðPPÞ, measuring
local polarity, contribute terms of the form ζ1P · δF=δR and
ζ2∇ · ðPPÞ · δF=δR to R, where the independent kinetic
coefficients ζ1 and ζ2 vanish for an impermeable membrane,
as does μp. The symmetry of dissipative Onsager coeffi-
cients then implies terms ζ1ΔμP≡ v0P and ζ2Δμ∇ ·
ðPPÞ≡ ζ∇ · ðPPÞ in the Vm equation. In the cellular
context, v0 is the scale of the drift speed of the membrane
arising from filament polymerization [28].
The signed density field ψ has a dynamics given by

Dtψ ¼ −Du · ~J − k2ψ þ k1; ð3Þ

where Dt is the covariant time derivative, and k1, k2 are
rates of association and dissociation with the membrane.
The current

~J ¼ ~J0 ≡ −ψeu · ∂tR −D

�
ψDu

�
g−1=2

δF
δψ

��
ð4Þ

contains drift and diffusion; the diffusivity D can include
active contributions.
The Stokesian hydrodynamic velocity field VðrÞ ¼R

r0 Hðr − r0Þ · F ðr0Þ, where Hðr0Þ is the Oseen tensor
[29]. The force density F ðr; tÞ ¼ ∇ · σQ þ R

u δF=δR,
where the order parameter stress [30] σQ has an active
contribution of the form ζQQ [31,32].
The order parameters have standard equations of motion

[6] _P ¼ −ΓpδF=δP and _Q ¼ λ0S − ΓQδF=δQ, where S is
the symmetrized velocity gradient tensor.
The local dynamics of the membrane on scales that are

small compared to the whole cell can be understood in the
Monge gauge (Fig. 1), R ¼ ðx; hðx; tÞÞ, g ¼ 1þ ð∇⊥hÞ2,
and N ¼ g−1=2ð−∇⊥h; 1Þ, where hðxÞ is the height of the
membrane above a point x on the reference plane. We first
concentrateon thecoupleddynamicsofh andψ in an isotropic
bulk phase with negligible c. On long time scales the order
parameters relax to values governed by their coupling to the
membrane which, to lowest order in gradients, are

Pu ¼ ψ
Λ
a1

N; ð5aÞ

Qu ¼
ΓQλ0
a2

Sjr¼R −
w
a2

ðNN − I=3Þ: ð5bÞ

Using these expressions for P and Q in Eqs. (2), (3) and
(4) leads to the coupled equations

∂th ¼ g1=2
�
~vψ − μp

δF
δh

�

−
Z

q
eiq⊥·x

1

4~ηq⊥

�
γactq2⊥hq þ

δF
δh

�
; ð6aÞ
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∂tψ ¼ ~v∇⊥ · ðg−1=2ψ2∇⊥hÞ þD∇⊥ ·

�
ψ∇⊥

�
g−1=2

δF
δψ

��

− k2ψ þ k1; ð6bÞ

in which the active stress contributes a tension
γact ¼ −ζQw=a2 (see Ref. [22] for a one-dimensional
analogue) and, as in Ref. [33], a modified viscosity
~η ¼ ηþ ð−λ0a2 þ ζQÞΓQλ0=a2. We have not included
the effects of the active term with the coefficient ζ defined
in Eq. (2). The lowest order term it contributes to the height
equation is ∇2⊥h, i.e., an active nonhydrodynamic tension.
Its more crucial consequences are examined later in this
Letter. Note that the active modification of the hydro-
dynamic tension is missing in Ref. [10], where the force
dipoles are taken to be situated at the reference rather than
the actual location of the membrane. Local polarity leads to
the propulsion of the membrane at a rate ψ ~v ¼ ψv0Λ=a1. F
in Eqs. (6a) and (6b) is the original free-energy functional,
with P and Q eliminated in favor of ψ and h via Eqs. (5a)
and (5b), respectively. The first term on the right-hand side
in Eq. (6b) arises kinematically, due to the change of
density of an in-membrane species resulting from a change
in the conformation of the fluid film [21]. Setting k1 and k2
to zero to specialize to the case of a zero mean conserved
species, Eqs. (6a) and (6b) take precisely the form
presented [9] on general grounds for an active membrane
[34]. This establishes one of our main results: A membrane
in an active fluid is an active membrane, propelled by polar
activity—polymerization, in the context of actomyosin—
with a tension from contractility. Equations (2)–(6), with
suitable boundary conditions, can be applied to cell
membranes or reconstituted systems.
The terms proportional to ~v in Eq. (6) constitute an

excitatory-inhibitory pair which, we now show, leads to
sustained spontaneous oscillations in a regime of parameter
space. We work in one dimension, retaining only the
smallest wave number and only one nonlinear term:
∇⊥ · ðψ2∇⊥hÞ in Eq. (6b). The resulting coupled ODEs
[16], upon rescaling and defining new constants, describe a
generalized Van der Pol oscillator with linear damping and
cubic nonlinearities:

ϕ̈þ ϕþ s1 _ϕþ s2ϕ2 _ϕþ s3ϕð _ϕÞ2 þ s4ϕ3 ¼ 0; ð7Þ

which has been shown [35] to have a limit cycle if
sgnðs1s2Þ ¼ −1. We provide further details regarding the
mode truncation and present a representative phase portrait
in Ref. [16].
Note that wavelike dispersion relations, as in

Refs. [7,36], are distinct from the experimentally observed
membrane waves [2,3], which are not a response to an
external perturbation but are self-generated, in a manner
consistent with our findings from the truncated model.

Moreover, the wave speed in our theory is set solely by the
normal drift speed, not by free-energy couplings.
Our analysis of Eq. (6) suggests an explanation for the

experimentally observed waves [2,3] on the lamellipodium
[37] of a crawling or spreading cell, whose leading edge
should be viewed as an actively moving one-dimensional
membrane. We expect similar waves on the surface of self-
propelled drops [38], e.g., in parameter regimes correspond-
ing to the instability discussed in Ref. [9], which arises here
if ~vϒ > 0. In the case we present here and in Supplemental
Material [16], actin polymerization, not contractility, is the
proximate cause of the membrane waves [3]. Note that even
without permeability, a local normal velocity at the mem-
brane, proportional to jq⊥jψq, which can be shown to arise
from an active contractile stress, can generate spontaneous
waves with dispersion ω2 ∼ q3 [10,16].
Now we examine another case of importance to cell

biology, in which a distinct population of filaments, lying
in the vicinity of the membrane and disposed parallel to it,
are present at sufficient concentration for their dynamics
to be slow and therefore relevant on the time scale of
interest to this work. This is motivated by experimental
studies [20] of the nanoclustering of cell-surface mole-
cules, whose anomalous statistical properties are naturally
accounted for as arising from active transport mediated by
a new class of “horizontal actin filaments.” We study the
effect of such tangential active orientable filaments on
membrane fluctuations and make predictions that can be
tested in future experiments. For this, we introduce a
separate dynamical equation for the polar order parameter
Pu at the membrane [21]:

DtPu − ðeu · ∂tRÞ ·DuPu þ vp ~pt ·DuPu

¼ −g−1=2ΓpδF=δPu; ð8Þ
where vp is the self-propulsion velocity [39]. In the following
treatment, for simplicity, we replace hydrodynamic damping
by local friction with respect to a fixed background
medium. We assume the horizontal filaments are close to
an ordering transition but take the normal component pn to
relax rapidly. To the lowest order in gradients, Eq. (5a)
implies pn ¼ ðΛ=a1Þψ . The equation for the tangential
component is

Dt ~pt − eu · ½ðeu · ∂tRÞ ·DuPu� þ vpeu · ð ~pt ·DuPuÞ

¼ −
1
ffiffiffi
g

p Γpeu ·
δF
δPu

þ ðDteuÞ · Pu; ð9Þ

Conservation of horizontal filaments implies

Dtc ¼ −Du · ðc~vcÞ þDcDu ·

�
cDu

�
g−1=2

δF
δc

��
; ð10aÞ

~vc ¼ −eu · ∂tRþ v1 ~pt: ð10bÞ
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The membrane conformation is given by Eq. (2), while the
current of ψ in Eq. (3) is modified to ~J ¼ ~J0 þ vψ ~pt. v1 and
vψ are active polar velocity parameters, independent of
each other and of vp in Eq. (8).
Equations (2), (3), (9), and (10) are a formally complete

description of the dynamics of a membrane endowed with
in-plane polar orientational order and signed species
coupled to active “horizontal” and “vertical” filaments.
A complete exploration of the range of behaviors of this
system requires a numerical study. We limit ourselves here
to a linear stability analysis about the isotropic and in-plane
ordered states in a steadily moving membrane which is flat
on average. This is the regime in which dynamics of ψ is
fast and relaxes to a steady state value ψ0 ¼ k1=k2, Eq. (3).
As k−12 ∼ 0.1–1s [40] our assumption is justified if we are
looking at the dynamics on time scales greater than 1s. We
rescale our equations so that ψ0 ¼ 1.
The coupled equations of the height field h, the in-plane

component of the polar order parameter p and concen-
tration c, to leading order in gradients, are

∂th ¼ ~vðcÞ þ ζ

a1
∇⊥ · ½ΛðcÞp�

þ μp½Σ∇2⊥h − κ∇4⊥hþ∇2⊥ϒðcÞ − κp∇2⊥∇⊥ · p

− κt∇⊥∇⊥∶pp�; ð11aÞ

∂tp ¼ −vpp · ∇⊥pþ ~vðcÞv0
a1

∇⊥ΛðcÞ

þ Γp½− ~Apþ κp∇⊥∇2⊥hþ α∇⊥c − κtp · ∇⊥∇⊥h�
þDp∇2⊥p; ð11bÞ

∂tc ¼ ∇⊥ · ½cðv1pþ ~vðcÞ∇⊥hÞ� þDc∇2⊥c; ð11cÞ

where ∇2⊥ϒðcÞ arises from the free-energy contribution
fR−c. Σ in Eq. (11a) is an active tension [9], arising, for
example, via an interplay of the active polymerization and
the polar anchoring modeled by the free-energy cost
−
R
u w2pnTrK in Eq. (1). This coupling generates a term

of the form ∇2⊥h in the pn equation and, therefore, because
of propulsion, an effective tension in the h equation.
Equation (11b) was obtained by projecting (9) onto the
reference horizontal, with ~A ¼ ðac þ a1Þ. The term with
coefficient Dp arises from the Frank elasticity of the polar
filaments. Note the absence of a term proportional to ∇⊥h
in Eq. (11b), a consequence of three-dimensional rotation
invariance [11]. The propulsive velocity ~v in Eq. (11) is
taken to depend only on c, as ψ has been set to a constant
value. We turn next to some original instability mechanisms
emerging from Eq. (11).
First consider the case of large positive ~A. p is then deep

in the isotropic phase and can thus be eliminated in favor of
h and c on time scales that are long compared to its finite
relaxation time. The resulting equations are then those of

Ref. [9], with a modified diffusivity Dc → Dc þ αv1= ~A.
The complete problem, including the dynamics of p, is
characterized by two eigenmodes with relaxation rates ∼q0
and two of order ∼q2, unaffected to leading order in q by
the coupling ∇⊥∇2⊥h in the p equation. A large enough
negative α leads to an instability with aggregation of c and
modulation of h. This picture is borne out by a linear
stability analysis in which the dynamics of p is retained
[16], revealing an eigenvalue of order q2 that changes sign
for sufficiently large negative αv1. The projection of the
corresponding eigenvector onto h grows with increasing ~v.
The underlying process involves the focusing of p and
hence the concentration, leading, through the ~vðcÞ term in
Eq. (11a), to growth of the height field. Whether the
focusing of p takes the form of asters or walls, leading,
respectively, to height modulations in the form of tubules or
ridges, requires a numerical calculation. If both ~A and α are
negative, an extrapolation of the results of Ref. [25] would
suggest the formation of ordered modulations of h.
In flocking models [41], just past the onset of the

ordered phase of p, the coupled dynamics of c and p
gives rise, through the c dependence of ~A, to a state with
traveling bands of concentration [42]. In the present
context where the dynamics takes place on a membrane,
this should be accompanied, through ~vðcÞ in Eq. (11a),
by a one-dimensional fore-aft asymmetric modulation of
the membrane height.
The coupled dynamics of p and h with c fixed shows a

distinct class of modes and instabilities deep in the regime
where p is ordered. For vp ¼ 0 there is a traveling
instability with a relaxation rate of transverse fluctuations
∼qyq

1=2
x , if the ordering direction is taken along x. As vp is

increased, this crosses over to ∼q2y [16]. Note that, despite
the similarity of form with the mode structure of Ref. [43],
the detailed mechanisms are different.
To summarize, we have shown that the equations of

motion for an active membrane [9] emerge from the
dynamics of an ordinary fluid membrane coupled to a
medium with active, motile filaments. We find that the
resulting equations display spontaneous sustained oscilla-
tions driven by the active motion of the membrane normal to
itself, which are the natural explanation of membrane waves
[2,3]. In addition, when polar “horizontal filaments" [20] are
included, the coupled dynamics of their concentration and
orientation and the membrane height leads to instabilities
towards one- or two-dimensional modulations, as well as
traveling undulations. Deep in the orientationally ordered
phase of the filaments, we find propagating instabilities with
singularly anisotropic dependence on the wave vector.
Ongoing numerical studies of the long-time dynamics
emerging from these instabilities find a varied range of
behaviors, including stable tubules and spatiotemporal chaos
[44]. Meanwhile, we look forward to tests of our predictions
in actomyosin extracts with ATP and actin nucleators in
contact with model lipid membranes.
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