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Classroom

In this section of Resonance, we invite readers to pose questions likely to be raised in a
classroom situation. We may suggest strategies for dealing with them, or invite responses,
or both. “Classroom” is equally a forum for raising broader issues and sharing personal
experiences and viewpoints on matters related to teaching and learning science.
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As an all-time student and a some-time teacher
of physics, the author is of the view that prob-
lem solving should inform all classroom learning.
Problems chosen, however, must be wholesome
¡ demanding clarity of ideas involved in their
formulation, physics of approximations made
in their solution, followed by some lateral think-
ing. This is illustrated in this article through a
speci¯c classroom exercise.

1. Introduction: The Physical Problem

Consider a metallic ring (circular loop of a thin wire)
made to spin about a diameter held normal to an exter-
nally applied magnetic ¯eld. The ¯eld is approximated
as static and spatially uniform over the laboratory (ex-
perimental) scale, e.g., Earth's magnetic ¯eld, as shown
in Figure 1.

The problem now is to understand physically, and solve
mathematically for, the motion of the magnetic dipole
(detector) in the laboratory frame under the combined
torque exerted by the primary static magnetic ¯eld B
and the secondary time-varying ¯eld b(t), generated by
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Figure 1. Aschematic show-
ing the experimental geom-
etry. A circular ring of thin
(d«D) wire spinning at angu-
lar velocity about a diam-
eter parallel to X-axis in a
uniform static magnetic field
B directed along the Z-axis.
A magnetic dipole (not
shown) is well pivoted at the
ring centre and serves as a
field detector. Note that both
the ring and the dipole can
rotate only about the X-axis.

Figure 2. Figure 1 redrawn
so as to give the angles and
thesense of ring motion. Also
shown is the magnetic dipole
(S N) pivoted freely at the
ring centre.

the current I(t) induced in the metallic ring due to its
rotation ! relative to B. It is essentially a dynamo-motor
problem, but one with a strangeness of proportion as we
shall see.

The causal chain of physical reasoning involved can be
traced as follows: (a) The magnetic ¯eld lines (B) thread-
ing the ring subtend a time-varying magnetic °ux link-
age Á(t) equal to the ¯eld strength B times the instan-
taneous area of the spinning ring projected normal to
B giving Á(t) = AB cos(!t); (b) the harmonically time-
varying °ux linkage generates an electromagnetic force
(emf) V (t) = ¡@Á

@t
in the ring (Faraday's law, or the

universal °ux rule); (c) this motional emf in turn gener-
ates a harmonic current I(t) in the ring determined by
the electrical ring impedance coming from its resistance
R and inductance L.This is the dynamo action; (d) the
ring current I(t) in turn generates a harmonic magnetic
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The Faraday law of
electromagnetic
induction (the

universal flux rule)
giving emf generated
due to rate of change
of the magnetic flux

linking the loop
spinning about a
diameter held

perpendicular to
Earth’smagnetic field.

¯eld b(t) (Biot{Savart law) co-rotating with the ring;
the corresponding ¯eld in the laboratory frame exerts
a mechanical torque on the magnetic dipole pivoted at
the ring centre; (e) the magnetic dipole (¹) with a mo-
ment of inertia (m) is de°ected by an angle µ(t) under
the in°uence of the static primary ¯eld (B) competing
with the rotationally recti¯ed time-varying secondary
¯eld b(t). This is the motor action.

All we have to do now is to translate the above physical
cause-e®ect sequence into the corresponding mathemati-
cal equations, and then solve these for certain quantities
of interest within well-de¯ned approximations suggested
by the physics of the problem. This is to be followed by
physical interpretation of the results so obtained, and
some lateral thinking on possible generalization.

2. Mathematical Derivation

The instantaneous magnetic °ux Á(t) linking the spin-
ning ring (the circular loop of thin wire) at time t is
given by

Á(t) = BA cos!t; (1)

with A(= ¼D2=4) the area of the ring and D the ring
diameter. The emf induced in the ring due to the time-
varying magnetic °ux linkage is

V (t) = ¡dÁ(t)
dt

= AB! sin(!t): (2)

Here d=dt denotes the total time derivative. In the
present case, however, it is just the motional e®ect inas-
much as the ¯eld B is static.

The induced ring current I(t) is then described by the
well-known resistive-reactive circuit equation

L
dI(t)

dt
+RI(t) = V (t) (3)

with R = ring resistance, and L = ring self-inductance.
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Equivalent
electrical circuit for
the inductive (L) –
resistive (R)
system shown in
Figure 2.

This system of three coupled linear di®erential equations
(1{3) can be readily solved for the ring current I(t) for
any given initial (t = 0) condition. We are, of course,
not interested in the short-time transients, but rather
in the long-time steady-state solution which is expected
to be periodic in time with the circular frequency !.
For this one can straightforwardly adopt the well-known
technique commonly used for harmonically driven linear
LCR circuits. We write

Á(t) = ReÁ(!)ei!t (4)

with Re denoting the real part and Á(!) = BA, which is
the maximum °ux linkage due to the external magnetic
¯eld and is real. Here the cisoid ei!t = cos!t+ i sin!t
with i =

p¡1. (It is interesting to note in passing that
while physicists use the symbol i after Euler, engineers
prefer the symbol j following Steinmetz, who is said to
have created electricity from the square-root of ¡1. Be-
sides, the symbol j avoids confusing it with the symbol
for the current, usually taken to be i, or I).

With this notation in hand, one can at once write

V (t) = ReV (!)ei!t; with V (!) = ¡i!Á(!); (5)

I(t) = ReI(!)ei!t; with I(!) =
V (!)

Z(!)
; (6)

where Z(!) ´ R+i!L is the electrical impedance of the
ring of resistance R(ohm) and inductance L(Henry). All
through we will be using the SI system of units.

More explicitly,

I(t) =
!ABp

R2 + (!L)2
sin

µ
!t¡ arctan!L

R

¶
; (7)

where arctan !L
R
is the reactive phase-shift with respect

to the emf V (t) generated in the spinning ring.

Electromagnetically
induced current in the
spinning conducting
loop.
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Secondary
magnetic field

produced along the
rotating loop-axis

by the loop current:
Ampere’s Law.

Equation of angular
motion of the

magnetic dipole
(detector) pivoted at

the current loop
centre as caused by
the magnetic torque.

Next, we have to derive the secondary magnetic ¯eld
generated by this ring current at the ring centre, where
the magnetic dipole (detector) is pivoted. This is given
by the Biot{Savart law as

b(t) =
¹0I(t)

D
´ ¹0!AB

D
p
R2 + (!L)2

sin

µ
!t¡ arctan!L

R

¶
:

(8)

This time-varying ¯eld is directed along the ring axis,
and co-rotates with it as shown in Figure 2. Here ¹0
is the magnetic permeability of space, ¹0 = 4¼ £ 10¡7
Hm¡1 (Henry metre¡1).

Finally, we turn to the rotational motion of the mag-
netic dipole, pivoted at the ring centre in the laboratory
(inertial) frame, under the forcing torque exerted by the
primary static ¯eld B and the time-periodic dynami-
cally generated secondary ¯eld b(t). This motor action
is described by

M
d2µ(t)

dt2
= ¡mB sin µ(t)

+
¹0m!AB

DR
q
1 +

¡
!L
R

¢2 sin
µ
!t¡ arctan!L

R

¶
sin(!t¡ µ(t));

(9)

where M is the moment of inertia of the dipole. (Note
that the angle µ as used here is the negative of the usual
de¯nition in spherical coordinate system). It can be
readily seen that the ¯rst term on the RHS is the same as
that for a nonlinear pendulum with a natural frequency
of (mB=N)1=2. The second term is an unusual driving
term that depends on µ. In the absence of this driving
term, µ = 0 is a stable equilibrium with the frequency of
small perturbations equal to (mB=M)1=2. If sin(!t¡ µ)
in the second term (rotationally recti¯ed term) on RHS
is set to one, it reduces to the usual driven oscillator. It
is the rotationally recti¯ed term that causes the equilib-
rium µ0 to deviate from zero.
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Adiabatic
approximation for
slow dipole rotation
and a relatively fast
spinning of the loop.

Note the multiplicative factor sin(!t¡µ(t)) on the right-
hand side of (9) that projects the instantaneous compo-
nent of the induced ¯eld b(t) (which is along the ring
axis and co-rotates with it) normal to the instantaneous
magnetic-dipole moment ¹ with µ(t) 6= !t in general.
This phase di®erence is crucial to the e®ect we are about
to discuss.

With this, our mathematical derivation of the equation
of motion of the dipole is completed. Next, we turn to
its solution. One may, of course, always resort to nu-
merical computation. Indeed, the interested reader is
strongly encouraged to solve (9) on her/his laptop for a
detailed solution in the parameter space of interest, and
thus gain a comprehensive appreciation of the range of
possible behaviour. For now, however, we will press on
with our analytical approach basing on certain physi-
cally motivated approximations.

3. Adiabatic Approximation and the Dipole De-
°ection

In (9) we can identify certain terms that are slow-varying
in time relative to some other terms that are fast vary-
ing. Thus, e.g., the driving terms such as sin!t and
cos!t are fast variables while the angular variable µ(t)
for the driven dipole ¹ (with its mechanical moment of
inertia M) is expected to be a relatively slow variable.
It is a good approximation then to replace the fast vari-
ables by their time-averaged values, i.e., hcos!ti = 0 =
hsin!ti and hcos2 !ti = 1

2
= hsin2 !ti in (9), eliminating

thus the fast variables in favour of slow variables. This is
referred to as the adiabatic approximation ¡ well known
in physics.

In this adiabatic approximation, (9) reduces to

d2µ(t)

dt2
= ¡(®¡ ¯ sin °) sin µ(t) + ¯ cos ° cos µ(t) (10)
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The steady-state time-
averageddeflection of
themagnetic dipole

(detector) in the
adiabatic

approximation.

with

® = mB=M; ¯ =
¹0m!AB

2DRM
q
1 +

¡
!L
R

¢2 ; and
° = arctan

!L

R
:

The sin µ(t) term on the RHS is the e®ect of the static
primary ¯eld B. The cos µ(t) term is clearly due to the
rotationally recti¯ed ¯eld b(t) (in the adiabatic approx-
imation), and is directed normal to the primary ¯eld.

Equation (10) can be reduced to quadrature by multi-

plying both sides by dµ(t)
dt

and integrating with respect
to time. The result is, however, not expressible in terms
of elementary function. We are, however, interested in
the steady (static) de°ection µ0 of the dipole detector
which can be experimentally measured. Equation (10)
gives this null (¯xed) point µ0 at which the right-hand
side vanishes, i.e.,

sin µ0

cos
¡
µ0 ¡ arctan!LR

¢ = ¹0!(¼D
2=4)

2DR
q
1 +

¡
!L
R

¢2 : (11)

The null point µ0 is the dipole de°ection away from B
at which the dipole (detector) will come to rest. In fact,
it will oscillate about µ0 with a small amplitude (for
some typical choice of parameters), but any mechanical
friction not considered here explicitly, will dampen it to
rest at µ0 in the long-time limit.

4. Estimated Fixed-Point De°ection µ0

We now turn to a quantitative estimate of the de°ection
µ0 expected for some typical values of the parameters
involved, namely,

(a) Geometrical: Ring diameter D = 0.25 m.
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Steady-state time-
averaged
deflection of the
dipole giving an
absolute standard
for resistance (R)
in terms of length
(D), time (1/ ), and
the vacuum
permeability ( 0).

(b) Electrical: Resistance of the nichrome ring

R =
¼D½nichrome
(¼d2=4)

' 1 ;

with ½nichrome ' 10¡6 m.

(c) Ring Inductance L = ¹0
£
D
2

¡
ln
¡
8D
d

¢ ¡ 1:75)¤H; giv-
ing inductive reactance !L (at ! ´ 2¼f with f = 50Hz)
' 0:3m . Clearly, the ring resistance À the ring reac-
tance.

We can, therefore, approximate (11) to

tan µ0 ' ¡
µ
¼¹0!D

8R

¶
: (12)

Thus, the magnitude of µ0 (for small µ0) increases lin-
early with the rotational frequency ! of the ring and
the ring diameter, as also inversely with the ring resis-
tance R. But there is a con°ict in that for higher ! the
inductive reactance comes into play; and for !L À R,
the de°ection µ0 decreases again. Similarly, the gain ex-
pected from increasing the ring diameter D is o®set by
the concomitant increase in R (and L as well; see point
(b) in this section). Thus, the de°ection seems to remain
small as a rule. For the above choice of parameters, we
have µ0 ' 1 millidegree, which is rather small. One
could consider reducing the wire diameter d and using
a lower resistivity material like copper. Recalling that
the inductance increases rather weakly (logarithmically)
with decreasing wire diameter, while the resistance in-
creases rapidly (as 1=d2), the above combination should
favour greater de°ection µ0, and more so by allowing the
use of higher rotational velocity !. In fact, for a ring of
copper (½Cu = 1:7 £ 10¡8 m) with other parameters
remaining the same, we can obtain a reasonable de°ec-
tion »1 degree. Of course, one could carry out further
optimization ¡ by use of a laptop.
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Figure 3. The single con-
ducting ring of Figure 1 re-
placed by a number (N » 1) of
identical rings arranged lon-
gitudinally about a common
diameter. Rings are electri-
cally insulated and induc-
tively well separated. This en-
hances the steady deflection

0 of the magnetic dipole (de-
tector) N-fold.

It is to be noted that in (12) the external ¯eld B sim-
ply cancels out, as also does M , the moment of inertia,
and the dipole moment m. (These will, of course, deter-
mine the slow oscillations about the ¯xed-point de°ec-
tion µ0). Most importantly, the electrical resistance R
gets determined in terms of the geometrical quantities
(lengths D; d), time 2¼=!, and the inductance L (which
can again be expressed in terms of D; d and the perme-
ability ¹0 of space). It was along these lines that James
Clerk Maxwell arrived at the ¯rst ever fundamental unit
of resistance that served as an electrical standard for
quite some time.

5. Some Lateral Thinking

The con°icting e®ects of the parameters (resistance R
inductance L, and the circular frequency !) frustrates
all simple attempts to maximize the measured quan-
tity of interest, namely the de°ection µ0 in the labora-
tory! It is tempting to use a tight coil of many turns
(N À 1) instead of the single ring; but the mutual in-
ductance e®ectively gives an inductive reactance that
scales as N2, and any gain whatsoever may get o®set.
One can, however, think laterally ¡ replacing the single
ring by a number N À 1 of identical rings, electrically
insulated and magnetically well-isolated, and arranged
longitudinally as shown in Figure 3. This is an arrange-
ment that, in the adiabatic approximation, enhances the
steady torque due to the rotationally recti¯ed b(t) ¯eld
N-fold, and thus gives an N -fold increase of the de°ec-
tion µ0, for small µ0. But, again, very large N will bring
the mutual inductance back into the adverse action.

Clearly, the limit N ! 1 (without insulation) would
correspond to replacing the rings by a thin conduct-
ing shell. In turn, replacing the shell by a conducting
sphere may further change the physics drastically. One
may be led to considering some variant of a self-excited
dynamo theory for the magnetic ¯elds associated with
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rotating planetary and other astrophysical rotating bod-
ies. Many other questions come to mind, e.g., can the
induced rotationally recti¯ed ¯eld b(t) become compara-
ble with the static source ¯eld (B) in magnitude, and if
so, for what choice of parameters. The inward-bound
physics of this problem is indeed fascinating. Inter-
ested reader is encouraged to pursue some other lines
of thought as well in this connection.


