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Magnetic Fields and Bohr’s Quantization Rule

This article deals with quantization, using Bohr’s
quantization rule, of orbits of charged particles
moving in a magnetic field. It is pointed out
that the momentum to be used in the Bohr—
Sommerfeld quantization rule is not always the
familiar mv but the so-called canonical or conju-
gate momentum which is obtained from the La-
grangian appropriate to the problem. Stating the
well-known Lagrange equations of motion we ar-
rive at the expression for the Lagrangian which
will reproduce the familiar Newtonian equations
for the problem at hand. This leads us to an
expression for the canonical momentum. Mag-
netic flux quantization follows from the applica-
tion of Bohr’s rule using the canonical momen-
tum instead of mv. Examples discussed include
the Landau levels, and hydrogen atoms on the
surface of neutron stars. The article concludes
with comments on a justification of Bohr’s rule.

1. Bohr Quantization Rule

Prior to the advent of quantum theory there existed
a large amount of spectroscopic data which defied any
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explanation. The spectrum of hydrogen, for example,
contained several spectral lines (the experimental arran-
gement is such that light of a given frequency appears
as a line which is actually the slit used) in the visible.
The classical explanation was that the charge cloud in
the atom oscillates at each of these frequencies and thus,
based on Larmor’s result emitted radiation at these fre-
quencies. There was no clue as to why the atomic charge
cloud chose to oscillate at these frequencies.

While dealing with the thermodynamics of black bodies,
in 1900, Max Planck created a revolution by proposing
his quantum hypothesis in which the energy of an oscil-
lator, representing radiation of a given frequency, could
have energy in multiples of a basic unit, the so-called
quanta.

In 1913 Niels Bohr proposed his atomic model. The
model was an extension of the Rutherford model of the
atom with some additional prescriptions. An electron
going around a proton, to take the simplest atom, has
nonzero acceleration due to the (Coulomb) force of the
nucleus. A result by Larmor then requires the acceler-
ated electron to go on radiating energy, eventually sink-
ing into the proton! Numerical estimate of the lifetime
turns out to be tens of picoseconds (somewhat smaller
than our own ages; not to think of the age of the uni-
verse!). Classically, the radius of an electron’s orbit
could take any continuous value. By a postulate Bohr
ruled that the electron can move only in certain orbits
and while it did so it did not radiate a la Larmor! The
electron could, however, jump from one allowed orbit to
another and give away (or absorb) the difference in the
energies of the two orbits in the form of a photon. To
appreciate the economy of thought, that such a prescrip-
tion brings, consider a hypothetical atom which has 100
allowed energy levels. Let us number them according to
increasing energies. When the electron jumps from any
of the 99 higher energy orbits to the first energy orbit
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Bohr's model, by

shifting the emphasis
from spectral lines to
energy levels, with the

lines related to the
energy differences,

grossly reduces the

number of required
‘explanations’.

we get 99 spectral lines. These 99 lines belong to ‘se-
ries 1’ as they all have the level 1 in common. We have
98 spectral lines in the ‘series 2’; 97 in the ‘series 3’;
till the last ‘series 99 which is the transition from the
level 100 to the level 99. How many lines do we have in
all? Sum of first 99 natural numbers is 4950. Accord-
ing to the classical theory the atom’s electronic cloud
would have been obliged to oscillate at 4950 frequen-
cies! Surely a terminal case of malaria! Bohr’s model,
by shifting the emphasis from spectral lines to energy
levels, with the lines related to the energy differences,
grossly reduces the number of required ‘explanations’.
In the case of our hypothetical atom one needs to ex-
plain only 100 levels as opposed to the 4950 oscillations
a classical theory would be required to explain. Bohr
even had a prescription for the energy levels which is
known as Bohr’s quantization rule.

Which of the classical orbits are allowed? Bohr pos-
tulated that only those orbits are allowed for which the
angular momentum of the electron is a multiple of a fun-
damental unit. With Bohr’s restriction to circular orbits
the angular momentum is given by mvR and the Bohr’s
quantization condition becomes mvR = nh = n% By
shifting the 27 to the other side, it can be combined with
the radius R of the orbit to suggest the circumference
of the orbit. If we denote by g the coordinate along the
orbit and by p = muv the familiar (dynamical in techni-
cal nomenclature) momentum, Bohr’s condition can be

written as follows:
p j{ dq = nh,

where the circle on the integral sign indicates an integral
along the entire orbit. In this problem the magnitude of
the momentum is constant along the orbit so it can well

be taken inside:
7{ p dq = nh.
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Soon after Bohr, Wilson and Sommerfeld, independently,
came up with a generalization of the Bohr quantization
condition. Their rule amounts to the above equation but
allows the possibility that the magnitude of p can vary.
In this form it applies to elliptic orbits as well. Since
Sommerfeld applied this rule to the hydrogen atom, the
extension:

fp(Q) dg = nh

is usually called Bohr—Sommerfeld rather than Bohr—
Sommerfeld-Wilson quantization rule (we have stressed
now that the momentum can depend on the coordinate
q along the orbit).

In this article we will use this generalization of the Bohr’s
rule and, having once mentioned its inventors, call it the
Bohr rule for brevity.

Bohr’s rule has a natural geometrical interpretation. A
particle can be (fully) described classically by specify-
ing its position and momentum. If we construct a two-
dimensional space with position and momentum as the
two coordinates then specifying these two coordinates,
amounts to a single point in this, so-called, ‘phase space’
(for a particle moving in 3 dimensions the phase space
has 6 dimensions; for N particles the phase space has
6N dimensions). The integral involved in Bohr’s rule
is just the area (for 2D phase space) inside the classi-
cal orbit as plotted in the phase space. The right-hand
side (RHS) of the rule, then, tells us that this area is
quantized in units of the Planck’s constant. The phase
space area between the consecutive allowed orbits is h
(for N particles this will be h'¥). Another way of stating
the result is that there is one quantum state per area
h (or the appropriate power of h) in the phase space.
This rule for counting the number of quantum states in
a given region of phase space is very crucial in statis-
tical physics. Bohr’s rule (or WKB, an approximation

Geometrical
Interpretation of
Bohr Rule:

The area, in phase
space, occupied by
allowed orbits is
quantized. This

interpretation justifies
counting of quantum

states used in
quantum statistical
mechanics.
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In the presence of
magnetic fileds the
momentum, to be

used in Bohr's rule, is

not the familiar mv

but what is called the

canonical
momentum.

to Schrodinger’s equation) is one instance which justi-
fies this counting for a wide class of (slowly varying 1D)
potentials.

When Bohr’s rule is applied to the hydrogen atom the
momentum used is p = mwv. This is fine as, for the
hydrogen problem, it is the canonical momentum. How-
ever, when magnetic fields are present the canonical mo-
mentum turns out to be not the familiar momentum. To
get the canonical momentum one needs to obtain the la-
grangian for the problem. By comparing Newton’s equa-
tions and Lagrange’s (Euler-Lagranges’) equations, we
obtain the expression for the Lagrangian and hence the
canonical momentum for a charged particle in the pres-
ence of a magnetic field. Our derivation brings out the
well-understood ambiguity in the expressions for both
these quantities and also points out the step at which
the ambiguity enters into the picture.

2. Classical Motion of Electron in Magnetic Field

Throughout this article we denote the charge of electron
as e (e < 0; it is — |e| with |e| as the fundamental
unit of charge (1.6 x 107! C)). The magnetic field is
in the positive z direction and the motion is in the x—y
plane. We also assume that the reader has a picture
of the circular orbits in mind wherein the direction of
the magnetic field and motion are consistent. Newton’s
equation of motion (second law) for an electron moving
in the magnetic field B (default positive z direction) is

ma = et X (B2Z).

Let us resolve all the vectors into their Cartesian com-
ponents as follows:

= §@ 7,

=xr +vy

[SIa=1}

The expression for the force becomes F = e 7/ (Bz) =
eB(y& — &y). Substituting these resolutions into the
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above vector form of Newton’s equation of motion and
using the fact that the basis vectors are linearly indepen-
dent we get the component form of Newton’s equations
of motion.

mx =e By,

my=—eB .

These coupled differential equations have the general so-
lution (see Boz 1):

z=X+R cos (wt+ ),
y=Y + R sin (wt+¢),

provided the so-called cyclotron or Larmor frequency w
is given by
le| B

w =

m

Box 1. Solving Newton’s Equations of Motion

One way to solve this set of coupled equations will be to take a derivative of the first
equation with respect to time which will result in the right-hand side having a second
time-derivative of y which is then replaced using the second equation. The resulting
equation is © = — (%)2 4. This is our good old friend, the simple harmonic oscillator
(SHO), though for the x component of velocity. One gets a similar (SHO) equation
for the y component of velocity. These equations can be readily integrated once to get
expressions for the z and the y coordinates of the particle. Another interesting way is
to combine x and y coordinates into a single complex number z = x + ¢y and use the
above two differential equations to get a (naturally) single differential equation for z:
mZ = —i eBZ. Note that this is a first order equation for Z. One could also think of
this system as a first order system for a vector (as a computer would be told to do) and
get a first order differential equation in a matrix form:

d Ve - eB 0 -1 Vg

il )=5 () ()
This way of solving the problem is quite interesting as one ends up with an exponential,
which for a matrix is defined by the series, of a matrix (incidentally it is the same 2 x 2
matrix that appears on the right-hand side of the above differential equation). The
special feature of this matrix is that all its powers are either (+ or —) the same matrix

or (+ or —) unit matrix. This helps to sum the entire series nicely in terms of sin and
cos functions.
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You may verify the above solution if you find it easier
than solving those equations upfront. The result is the
same as what we get (school physics) if we argue that
the motion is going to be circular and use the toolbox of
circular motion (mv? = |e |vB and so on). The reason
why we have not chosen that shortcut to arrive at the
cyclotron frequency is that we are actually hunting for
the Lagrangian.

3. Lagrangian and Canonical Momentum for a
Charged Particle Moving in a Uniform Magnetic
Field

Newton’s form of mechanics is local in operation. At ev-
ery instant we are told by the equation how to move to
the next position. After reaching that position we know
how to move next. A chain of displacements linked to-
gether by local directions. It is like a treasure hunt.
Every time you crack a clue you get the next clue. You
wouldn’t know that the treasure was right under your
chair till you went around following the directions given
in the clues. All the clues, although present, are not
accessible at the same time. There is another formu-
lation of mechanics, the Lagrangian mechanics, which
operates on global specifications. It is like telling some-
one to go along any path, but reach in the shortest time.
On a flat ground the person will be forced to follow a
straight path. Lagrangian mechanics is based on Hamil-
ton’s principle which states that among all paths possi-
ble the path actually followed has the lowest (extremum
to be precise) value of the integral (the action):

S lqla, ) = / Lig,d,t)dt.

The way to go about this is to consider a candidate
path ¢ = ¢(t), i.e., the coordinate as function of time.
The paths considered are such that they all begin, at
time a, at the same point, say A, and end, at time b,
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in the same point, say B (which could be same as A).
From this function ¢(¢) one can estimate the speed gt);
evaluate the Lagrangian L at every instant using these
values for that instant. After doing the integration one
gets the action S. It, therefore, depends on the entire
path. A function gives a number for an input number.
To emphasize the fact that the value of S depends on
the entire path, it is called a functional (function input;
number output). This action is least (or technically an
extremum) for the true path which satisfies the following
Euler-Lagrange (EL) equation:

a4 fory _ov
dt \oq) 9dq°

If the motion is in a two-dimensional plane, with x and
y the two coordinates, then we get two equations:

dafoLy oL a(ory oL
dt \oz) 0z > dt\dy) 9Jy

These must be equivalent to the Newtonian equations of
motion for the problem derived above. We will use this
requirement to get a Lagrangian for charged particle in
a magnetic field as follows:

We want the Euler equation for the z coordinate, namely
% (%) = %v to be equivalent to the corresponding
Newton’s equation, namely mi = eBy. We guess
that L must have a term %mﬁ so that prior to the
time derivative, on the left-hand side (LHS), we will get
2 (4mi?) = ma. The time derivative will then give us
the LHS of Newton’s equation. If we want to get the
RHS of this Newton’s equation from the RHS of the EL
equation we anticipate L to have a term like yx so that
the RHS of the EL will reduce to that of the Newtonian
equation, just from this term. Similarly the y-equation
prompts us to add a term of the form —zy. Let us,

therefore, try a Lagrangian of the form

1
L:Em(¢2+y2)+eB(ag)x—ﬁdvy).
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Using this Lagrangian we can reproduce both the New-
tonian equations if a + = 1. It is not possible to fix
a and ( individually. There is a deeper reason why this
cannot be done. The additional piece (other than the
familiar kinetic energy) is the well-known velocity de-
pendent potential which is essentially a scalar product
of the magnetic vector potential A and the velocity v.
In fact, this additional piece is e A - 7. As is well known
one can have many vector potentials corresponding to
the same magnetic field (see Boz 2). If we set o = 3+
and § = 5 — 7, which covers the most general p0881ble
pair of « and [ subject to the condition that their sum is
unity, and use them in the above expression for the La-
grangian, the v term in it is eB”y%(a:y) which is a total
derivative with respective to time. The action principle,
stated above, involves an integral over time. When this
term is integrated we get eB”yxyﬁ. The value of this
term depends only on the values of x and y at the end
points; but as stated earlier a rule of the game is to vary

Box 2. Freedom in Choosing Magnetic Vector Potential

To see that this is so let us recall the relation between the magnetic vector potential
and the magnetic field. The vector potential A has to be such that its curl should be
B 2. Now, by definition the curl of an arbitrary vector can be written in the following
determinantal form:

z Y Z
>3 1 1o} 1o} 1o}
BZVXA:% By D2
A, A, A.

While expanding the determinant keep in mind that the middle row elements, the deriva-
tives, operate on the third row elements. Since we are dealing with a magnetic field along
the 2 direction we must have the components of A such that B has no z or y component.
This can be easily arranged if A has no z component and the other two components do
not depend on z. So we are left with the z component which is related to the vector
potential A by B = a%Ay - a%Ax' We can get a contribution from the first term if A,
depends on z linearly and from the second term if A, depends on y linearly (nonlinear
dependences will result in a non-uniform magnetic field). So the form of the vector po-
tential is A = B (e z §— 8 y ). It does not matter whether the first or the second term
contributes. Only the overall contribution, which turns out to be B («a + (), is required
to be B giving us a + 3 = 1.
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the paths as one may wish, keeping the end points fixed.
So this term remains inert through the variation; obvi-
ously does not influence the equations of motion.

4. Bohr Quantization Rule in the Presence of
Magnetic fields: Magnetic Flux Quantization

Since the choices of o and ( are arbitrary subject to
their sum being unity, we choose both equal to half.
It remains to be seen that the result is independent of
this special choice (the so-called symmetric gauge). The
Lagrangian is then:

1 eB
inm(¢2+y2)+7(a7?)—x'y)-

Transforming to the cylindrical coordinates, (the system
has a circular symmetry), using

xr =1 cosf,
y=r sinf,
ie,i=r7 cosl—r0 sinf
and ¢ =7 sinf+76 cosb,

we get the following Lagrangian in the cylindrical coor-

dinates 1 B

L= 5™ (7% + r? 92)+%r29.
It can be seen that the Lagrangian does not depend on
the angle 6 (it is what is called an ignorable coordinate)
and by the Euler-Lagrange equation the conjugate mo-
mentum is a constant of motion:

oL , . €eB
=—=mr 0+—r".
Do 2 5

We also know that r and 6 are constants, with our choice
of origin at the center of the circular orbit. We are
now in a position to do the integral required for the
application of the Bohr’s rule:

21 21
$pdg=$pydf = [pgdd =py [dO=py2m
0 0

— 2tmr2 + nreB.

Lagrangian for a
charged particle in
magneticfield.
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Although the
magnetic vector
potential, (hence)
the Lagranigan and
the canonical
momentum, are not
unique, all choices
yield the same value
of the y{ pdg
integral; non-unique
part, so to say, gives
zero on integrating
over the entire range
of 6!

Using the formula for the angular frequency 6 (which is
the same as w), and (most importantly) remembering
that the charge of electron is negative, i.e., — | e |we see
that the second term is half the first one with a minus
sign. That this result remains the same for other choices
of the vector potentials, 7 # 0 in our notation, is left to
the reader as an exercise.

Bohr’s quantization rule, therefore, becomes:
%p dg = nr® |e| B = |e| &5 = nh,

where we have combined the orbit area 7r? and the
magnetic field strength B into the magnetic flux, &g,
threading the orbit. Bohr’s quantization rule then im-
plies that the allowed orbits are such that the magnetic
flux threading them is quantized in units of h/ |e|:

h
@B:n—.

€]

5. Landau Levels and Hydrogen Atoms Near the
Surface of a Neutron Star

The energy levels that a charged particle is allowed to
have in the presence of a constant magnetic field are
known as the Landau levels. We have seen above that
Bohr’s rule yields a discrete set of values for the radius
of the orbit. Now the speed and the radius are related
by the equation of motion (the circular motion form):

mu?

—— = le|Bv
”

or muv = |e|Br.

The energy of the electron is given by

' (mwv)? _ e?B?r?
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By using Bohr’s quantization rule, derived above, and
the expression for the Larmor frequency, the expression
for the energy becomes:

_e’B*r?> _ |e|Blle|Brr?* L h

E

om m 2 w or
E,=nhw.

An interesting situation arises when we ask what hap-
pens if a hydrogen atom is placed in a magnetic field.
This problem is discussed in textbooks under the title
‘Zeeman effect’. The magnetic fields considered there
have, however, much smaller effect on the electron’s mo-
tion when compared to the Coulomb field of the nucleus.
But there are real situations, such as the atmospheres
of white dwarfs and neutron stars where the magnetic
field is very strong. The magnetic field on the surface
of a neutron star could be as high as 10® Tesla (com-
pare this to few tens of Tesla that can be produced in
labs). If we calculate the radius of the first orbit using
the above flux quantization we get 3 picometers! Much
smaller than the half angstrom radius of hydrogen atom!
So the magnetic field is providing the major component
of the centrifugal force needed and the Coulomb force
is a perturbation. The situation is even more interest-
ing as the magnetic field does not do anything along
its direction. Across the magnetic field we expect the
shape of the orbital to have a diameter of six picome-
ter, but along the field it is the Coulomb field which is
responsible for binding and we may expect the orbital
to have one angstrom width. The hydrogen atom will
be like a needle with its length few thousand times its
width. Properties of matter in such extreme environ-
ments need to be worked out, abinitio, from quantum
mechanics (Dirac’s equation which takes care of rela-
tivistic effects and the spin of electron). The collective
behavior of such atoms could also be very interesting.
We have no possible help from laboratories here; the
fields are beyond their reach.

Properties of
matter in very high
magneticfields
could be very
different.
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6. Justification of Bohr’s Rule

Bohr’s quantization rule brought understanding, in the
context of spectral lines. It was the dawn of a new the-
ory. The fact that his rule gave the spectral lines was a
clear proof that the development was in the right direc-
tion.

But surely there must be an explanation of his ad hoc
rule. Why should the angular momentum be quantized?
A prince (in marked contrast to usual fairy tales!) came
up, in his doctoral thesis, with an explanation! The
prince suggested that all matter particles had waves as-
sociated with them, the wavelength of which is related
to the momentum. The classical circular motion equa-
tion relates the particle’s momentum to the radius of
its orbit. So, only one of them can be considered in-
dependent. Now imagine a wave going around the cir-
cumference of such an orbit. Like the waves in a flute
or a violin string, only certain wavelengths will satisfy a
resonance condition: those for which the circumference
is an integer multiple of the wavelength given by the
prince’s formula. When the details are worked out the
prince’s formula for the wavelength and the resonance
condition do amount to the quantization of angular mo-
mentum. The prince had explained Bohr’s rule in terms
of something deeper: wave nature of matter.

The prince’s story didn’t end there. When his thesis was
reviewed in a meeting in Zurich in 1925, Peter Debye, of
the lattice fame, remarked to Schrodinger, that it makes
no sense to talk about waves without a wave equation.
To this task Schrodinger set himself in the romantic set-
ting of an alpine villa on the next Christmas vacation.
There he first derived a relativistic equation which is
now known as the Klein—-Gordon equation. This equa-
tion has certain difficulties associated with it and, there-
fore, Schrodinger derived a non-relativistic wave equa-
tion, now known after him, and solved the hydrogen
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atom problem. After coming back he communicated his
papers and then told his wife (during all this exciting
time she wasn’t with him on the vacation; historians
are not sure who was; they certainly know four or five
candidates who could have been but were definitely not
with him during this vacation) that he will get a Nobel
Prize, which he did in 1933.

Now that the Schrodinger equation is the truth can one
derive Bohr’s quantization rule, as some approximation,
from it? Usually, an approximation referred to as WKB
(Wenzel, Brilloin and Kramers) is cited as a derivation of
Bohr’s rule. The end result of the WKB can be written
in terms of the classical orbit

fp(Q) dg = (n+%> h

and, for large quantum numbers, is essentially the same
as the Bohr’s quantization rule. This analysis provides
a rigorous justification of Bohr’s rule.

Few remarks are, however, in order. At the outset Bohr’s
rule, in the historical context, deals with two-dimensional
motion whereas the WKB applies strictly to one dimen-
sion. There is a subtler difference between the two set-
tings. Bohr’s rule has a classical picture of orbit in mind.
Now such classical orbits translate into what are known
as coherent states in quantum mechanics. To make the
point clear, let us consider a simple harmonic oscilla-
tor. The stationary states, fixed energy and number,
have the property that their associated probability dis-
tribution is time independent. There is no way such
probability distributions may look like a classical pen-
dulum going from one end to the other. This is true no
matter how large the quantum number n is. It is not
true, therefore, that one recovers classical mechanics by
simply going to large quantum numbers. To get some-
thing like an oscillating probability distribution, like
the classical pendulum, it is necessary to superimpose
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different states. Such a superposition of states has a
time-dependent probability distribution and can look
like a pendulum. Another way of looking at the prob-
lem is to note that classical trajectories, orbits, have
well-defined position and momentum which is not per-
missible in quantum mechanics. If strictly classical is
not possible, can we get something which is as classical
as possible? Yes. These are special superpositions which
have the lowest possible uncertainty (zero uncertainty
would be the classical target). These, so-called, coher-
ent states behave very much like the oscillating pendu-
lum or the classical electron that Bohr imagined going
around the nucleus. To get classical mechanics from
quantum mechanics one has to construct such coherent
states (with minimum uncertainty) in addition to going
for large quantum numbers. Coming back to Bohr’s rule
we note that it must be a coherent state underlying his
classical orbits. The WKB approximation, on the other
hand deals with a stationary state and not a coherent
state. A coherent state has fluctuations associated with
it. For example, if the average energy of a oscillator in a
coherent state (read classical) is n (in units of Planck’s
quanta) then there is fluctuation of order \/n. Now /n
may be much smaller than n but it is much greater than
1. Why is it that a rule based on classical trajectories,
which has fluctuations of order y/n in its properties, can
be exact to order unity, the difference between adja-
cent levels. The quantization should not have survived
an averaging over /n states. It is just a coincidence
that Bohr’s rule, with its implicit coherent state pic-
ture, turns out to be the same as that of the WKB rule
which deals explicitly with a fixed number state.

A real justification of Bohr’s rule comes from a formula-
tion of quantum mechanics, due to Dirac and Feynman.
In this path integral formulation a particle propagates
along all possible paths. However, the contributions, like
the theory of diffraction in optics, along different paths
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add up with different phases. The phase of a propaga-
tion by a certain path is just the value of the action for
that path divided by Planck’s constant (both have the
same dimensions). Contributions from most paths can-
cel out as the action varies a lot (remember we are divid-
ing by a small constant). However, the classical paths,
as mentioned earlier, are paths of least action. Just as
an ordinary function is flat (does not change its value)
near its maxima or minima the action does not change
much for paths near the classical path. The contribu-
tions from such paths, therefore, add up constructively.
The relevant value of action , therefore, turns out to
be that of the classical path and we get Bohr’s rule as a
byproduct. This path integral approach also answers the
question, very valid in classical mechanics: how does the
particle know the path along which the action is least?
(Does it solve the EL equations before starting?). In
path integral approach the answer is simple to state but
difficult to grasp: it goes along all possible paths!
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Suggested Reading

1] The principle of least action has been discussed by R P Feynman in
Chapter 19 of the second volume of his Lectures on Physics, Narosa Book
Distributors Pvt. Ltd., 2008. This is one of the most lively discussions of
the principle; a must read for a physics student.

2] For all matters related to classical mechanics, such as Lagrangian
mechanics, in particular the Lagrangian for a charged particle in
magnetic field (a more general derivation than presented here) the
classic text by H Goldstein, J Safko and C P Poole, Classical Mechanics
and Path Integrals, 3rd Edition, Pearson, 2011, can be consulted.

3] The path integral approach con be read from the book by R P Feynman
and A R Hibbs, Quantum Mechanics and Path Integrals, Dover, 2010.
Alternative good read on path integrals is the Dover book by I S
Schulman, Techniques and Applications of Path Integration, Dover
Books on Physics, 2005.
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