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Light wave transmission – its compression, amplifica-
tion, and the optical energy storage – in an ultra slow 
wave medium (USWM) is studied analytically. Our 
phenomenological treatment is based entirely on the 
continuity equation for the optical energy flux, and 
the well-known distribution-product property of Dirac 
delta-function. The results so obtained provide a clear 
understanding of some recent experiments on light 
transmission and its complete stoppage in an USWM. 
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ULTRA slowing down of light and its complete stoppage 
in certain highly dispersive optical media is now an esta-
blished experimental fact1–5. The extreme degree of dis-
persion required for this had been realized by the use of 
electromagnetically induced transparency (EIT)6. In the 
present work we have studied analytically the case for a 
light wave traversing such an ultra slow wave medium 
(USWM). Based on the continuity equation for the opti-
cal energy flux, we derive a number of results such as 
wave compression, intensity growth (i.e. amplification), 
and the wave energy storage peaking at the point of  
accumulation in the dispersive medium where the group 
velocity is at a minimum, even tending to zero, i.e. com-
plete stoppage. While these analytical results are interest-
ing in their own right, they also seem to provide a clear 
phenomenological understanding of the experimental  
observations of light wave stoppage and the associated 
energy storage2–5, especially for the EIT-slowed light.  
 Consider the case of a light wave propagating through 
a 1D USWM of length L along the x-axis ((0 ≤ x ≤ L). 
The strongly dispersive USWM is modelled here by a 
spatial profile for the group velocity vg(x) = c0η(x), where 
the slowness function η(x) → 1 as x → 0, and η(x) → 0 
as x → Δ < L (Figure 1). Here c0 is the speed of light out-
side the USWM. Thus, x = Δ is the point of accumulation 
for the wave energy in the USWM. (For a tunable 
USWM, the slowness parameter η(x) can be switched on 
(η(x) = 1), or off (η(x) = 0) in time, and can thus allow 
even gating of the light wave.) 
 The energy flow through the USWM obeys the conti-
nuity equation 
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where 1/τ is the energy dissipation rate (as the medium 
may be lossy) giving an exponential attenuation of the 
wave intensity I(x, t). (Note that in the case of non-zero 
loss, the group velocity vg should, strictly speaking, be  
replaced by the energy flow velocity vE (ref. 7). We will, 
however, ignore this finer point here, and continue to use 
the group velocity vg for the purpose of our phenomeno-
logy.)  
 Now, consider the light wave of intensity I(0) from a 
continuous wave (cw) laser, say, to be incident on the 
USWM at x = 0. As the light cannot escape beyond the 
point of accumulation x = Δ, we expect a steady state to 
reach when the incident energy flux is balanced by the 
dissipation in the USWM because of the loss rate (1/τ). 
The steady-state energy stored in the USWM can be read-
ily calculated. Let Iss(x) be the steady-state intensity in 
the USWM. The total wave energy stored in the steady 
state Uss is obtained by equating the rate of the influx 
c0I(0) with the loss rate Uss/τ, giving  
 
 ss 0 (0) .U c I τ=  (2) 
 
This is, of course, independent of the detailed shape of 
η(x) for the USWM. 
 Next we consider the intensity profile Iss(x) in the 
steady state.  
 Setting (∂I/∂t)(x, t) = 0 in eq. (1), we get the equation 
for the steady-state intensity  
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Figure 1. Group velocity profile η(x) for the model ultra slow wave 
medium (USWM) (0 ≤ x ≤ L), with the point of accumulation Δ, where 
the group velocity vanishes (schematic). 
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Figure 2. Plot of steady-state intensity Iss(X) against the normalized distance x/Δ ≡ X in a USWM for the choice of parameters: 
α = 0.8 and Δ/c0τ ≡ β. Here, β ranges from 0.5 to 100. Note the thick vertical line at x/Δ = 1 representing the delta-function peaks 
at the point of accumulation (the bright spot).  

 
 
The last term Aδ (1 – (x/Δ)) in eq. (4) arises because of 
the division by η(x), which vanishes at the accumulation 
point x = Δ. (Such a term follows from the Dirac distribu-
tion-product identity, viz. for any f (x) with x f (x) = xg(x), 
we have f(x) = g(x) + kδ (x), where the constant k must be 
determined from, for example, a normalization condition. 
Recall that η(x)δ (x – Δ) = 0 for our model of the slow-
ness function η(x) as above, and the light wave is con-
fined to x ≤ Δ.) 
 Equation (4) is readily solved to give for x < Δ, 
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Thus, the point x = Δ will contribute a delta-function at 
x = Δ so as to give the total steady-state energy stored in 
the USWM equal to Uss, consistent with eq. (2). For the 
purpose of explicit illustration now, the USWM will be 
modelled as η(x) = (1 – (x/Δ))α, with the slowness expo-
nent 0 < α < 1.  
 The condition 0 < α < 1 ensures a finite time 
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for the wave to reach the point of accumulation Δ. (Of 
course, α > 1 is not ruled out, and can be treated in the 

same way.) With this choice, we have the steady-state  
solution 
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  + a boundary term, (6) 
 
where the boundary term is localized at x = Δ. It is a 
delta-function that will be fixed now as follows.  
 The steady-state intensity Iss(x < Δ) together with the 
delta-function term located at the boundary x = Δ must 
give the total integrated stored energy ss ss0

( ) dI x x U=∫  
as obtained in eq. (2). This at once fixes the boundary 
term uniquely to be  
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 With this, we finally have the complete steady-state  
solution  
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This is our main result for the model and is plotted in 
Figure 2. It has in it the essential features of wave com-
pression, wave amplification and energy storage in the 
USWM, as stated above. It clearly shows the competition 
between the loss (1/τ) and the group velocity dispersion 
(η). Note the power-law divergence co-existing with the 
delta-function condensation (pile-up) of the wave inten-
sity at the point of accumulation x = Δ.  
 The intensity peaking (which in fact happens to be an 
integrable singularity for the above model choice of η(x)) 
is important to our phenomenological interpretation of 
any experiment on light storage in a USWM.  
 It is to be noted, however, that in the limit of τ → ∞ 
(that is, for no dissipation) and with a finite incoming  
optical pulse, the light wave simply piles up to a com-
plete stop at x = Δ. This should be the case for a USWM 
as realized in a Bose–Einstein Condensation (BEC)1, and 
will manifest as a bright spot appearing at the point of 
stoppage x = Δ.  
 It is important to emphasize here that the above phe-
nomena of wave compression, intensity growth and  
energy storage are generic to any USWM. One may note 
in passing that this phenomenon of wave compression 
and amplification is, of course, analogous to that of 
breaking of waves at the seashore: as the wave train  
approaches the shore, the leading edge (being in shal-
lower waters) advances slower relative to its trailing 
edge, resulting in wave compression. This in turn leads to 
amplitude growth or a pile-up of the compressed wave, 
and then to its eventual breaking close to the shoreline. 
The seashore acts as the slow wave medium here.  
 The above analytical treatment is, of course, readily 
generalized to the case of an arbitrary group velocity pro-
file other than the one shown in Figure 1. This may include, 
in particular, the case where the point of accumulation 
(complete stoppage) gets replaced by a broad maximum, 
allowing the transmission of light beyond the peak. 
 In conclusion, we have proposed and solved analyti-
cally a model for light propagation in USWM having a 
point of accumulation where the group velocity becomes 
extremely low, or even vanishes. Our solution explicitly 
displays wave compression (pile-up), optical energy stor-
age and a point of accumulation that characterize the 
USWM.  
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The scientific community has been putting in continu-
ous efforts to improve long-range forecast of Indian 
summer monsoon rainfall (ISMR). In this study we try 
to search for new predictors which may improve the 
prediction of ISMR. The shared nearest neighbour 
technique has been applied to surface temperature 
(ST) and sea-level pressure (SLP) to obtain the clus-
ters in pre-monsoon months (January through May) 
and seasons (winter, spring). The powers of time series 
averaged over the clusters are used as parameters for 
predicting ISMR. Instead of a single prediction equa-
tion, two separate equations are developed based on 
the positive and negative phase of effective strength 
index (ESI) tendency. Simple multiple regression 
equations are developed using these cluster para-
meters for predicting ISMR during the contrasting 
phases of ESI tendency. During positive (negative) 
phase of ESI tendency, the SLP (ST) cluster parame-
ters can predict ISMR. The prediction of ISMR is  
improved if we use the prediction equation depending 
upon the phase of ESI tendency. 
 
Keywords: Cluster parameters, effective strength index, 
rainfall prediction, sea-level pressure, surface tempera-
ture. 
 
INDIA being an agrarian country, the survival of its people 
mainly depends on the monsoon rains received during the 


