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Momentum-dependent s-wave and d-wave interactions in atomic Bose-Einstein condensates
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We investigate the role of momentum-dependent interactions to determine the ground-state properties in the
Bose-Einstein condensate for large scattering lengths (a) such that ka � 1, even for small momentum (p) where
p = h̄k and k is the wave number. The results for momentum-dependent and momentum-independent interactions
differ significantly, even for moderate values of a, and the effect of higher partial-wave interaction increases
with the increase in a. We have made an attempt to compare the theoretical column density with experimental
results at different magnetic fields [Cornish et al., Phys. Rev. Lett. 85, 1795 (2000)]. Since the initial number
of atoms changes while swapping the magnetic field and the actual value of the number of atoms at different
magnetic fields is not known, we studied the dependence of column densities on the value of N at different
magnetic fields. We present here the results for those values of N for which the theoretical column densities are
comparable with the experimental results. It is shown that the column density for 85Rb atoms at 100 nK with
momentum-dependent interaction is in fairly good agreement with the experimental values for different values
of N at two different values of magnetic fields (B = 157.2 and 156.4 G).
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I. INTRODUCTION

For a very dilute Bose-Einstein condensate (BEC), which is
the case in most of the experiments, the interatomic interaction
is sufficiently weak and the mean-field Gross-Pitaevskii theory
is a logical tool to study such a system [1]. The physics of
cold atom scattering is dominated by the two-body contact
interaction, which is well described by the s-wave scattering
length. In this case the momentum dependence of interatomic
interaction is neglected, since ka � 1, where k is the wave
number (momentum p = h̄k) and a is the scattering length of
the atoms. In BECs the momentum of the interacting atoms
is small, and if the scattering length is confined to a moderate
value (�1000 a0 for 100-nK temperature), the momentum
dependence of the interaction can be neglected [2,3]. It is well
known that the interatomic interaction can be tuned to different
values by varying the scattering length and in this process ka

may exceed unity, although the momentum is small for such
systems. Hence when ka � 1, the momentum dependence
of the interatomic interaction cannot be neglected. Recent
experiments [4–6] have explored the possibilities of increasing
the scattering length by exploiting the magnetic Feshbach
resonance. In the experiment performed at JILA [4], the
scattering length of the 85Rb (cylindrically trapped 104 atoms
at 100 nK) was varied from negative value to 10,000 a0 by
swapping the magnetic field through Feshbach resonance (B ≈
155 G). In this case ka becomes greater than unity at and above
a = 3000 a0, and hence the momentum-dependent interaction
becomes important. The 85Rb system has been used in several
experiments to explore the physics of interacting quantum
systems [4,7,8]. Properties of cold Bose gases in the regime
of large scattering length has been studied [9,10]. Calculation
of the interspecies scattering length for the sodium-rubidium
(Na-Rb) system has also been reported [11].
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The first-order theory of Beliaev [2] gives the momentum
dependence of scattering amplitude by applying field-theoretic
diagrammatic treatment to the zero-temperature homogeneous
dilute interacting Bose gas [2,12]. Subsequently, Beliaev’s
theory was generalized to give the temperature dependence
of the excitation spectrum of Bose gas [13,14]. In the regime
ka � 1, Beliaev’s first-order theory reduces to the Bogoliubov
spectrum [15] for contact potential. The work of Lee, Huang,
and Yang (LHY) [16,17] on the low-temperature properties
of dilute hard sphere gas considering the perturbation theory
gives the first correction to the Bogoliubov mean-field theory
for dilute gases for relatively stronger interaction. The energy
correction obtained from Beliaev’s second-order theory [2]
coincides with the LHY correction. Brueckner and Sawada
also determined the quantum depletion and correction to the
ground-state energy of a homogeneous dilute Bose gas [18]. To
study the ground-state and dynamic properties of a dilute Bose
gas with strong interactions, momentum-dependent scattering
of atoms along with the contribution from LHY correction
needs to be considered.

Our aim here is to emphasize the significance of the
momentum (k)-dependent scattering amplitudes (both for
s-wave and higher partial-wave scattering) to determine the
ground-state properties and the column densities of the system
for large scattering lengths (ka > 1) even at small values
of momentum. For strongly interacting systems (ka � 1),
the higher-order partial waves are likely to give significant
contribution to the scattering amplitudes. For Bose gases only
the even partial waves will contribute. It has been mentioned by
Beliaev [2] that the d-wave contribution to the energy spectrum
can be ∼10%. Here we will show that d-wave contribution to
the column density can be more significant at the center of the
trap for large values of scattering length.

In this paper we present the ground-state energy functional
of trapped atomic Bose-Einstein condensate, including the
effect of momentum-dependent scattering and also including
the LHY correction term. Higher partial-wave interactions
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have been incorporated in the energy functional. From the
ground-state energy functional the time-independent equation
has been derived to give the condensate density. We have
considered cylindrically trapped 104 85Rb atoms at 100 nK
with the scattering length varying from 3000 a0 to 8700 a0. The
corresponding range of variation of ka is 1.15–3.33, and the
values of the peak gas parameter xpk ∼ 10−2 [xpk = n(0)a3,
where n(0) is the peak density of Bose gas]. Column densities
considering k-independent scattering have been compared
with those for k-dependent s- and (s + d)-wave scattering
(including the LHY correction term) in a situation where (i)
the number of atoms has been kept fixed and the scattering
length is varied or (ii) the scattering length is kept fixed and
the number of atoms is allowed to vary in a range of values.
The results obtained by solving Gross-Pitaevskii (GP) equation
(i.e., without including LHY interaction) have also been given
for comparison. It is found that for ka > 1, the contribution
of the momentum-dependent scattering (s-wave and higher
partial waves) to the column density becomes important and
the nature of column density differs significantly from that
obtained for k-independent scattering (contact interaction with
LHY correction). As in the vicinity of Feshbach resonance the

two- and three-body loss rates play a crucial role [19–22], their
effects have also been included phenomenologically in the
time-independent equations of the condensate. The patterns
of the column densities as observed experimentally agree
fairly well with our results, considering momentum-dependent
interactions at B = 157.2 G (a ≈ 3000 a0) and B = 156.4 G
(a ≈ 8700 a0). However, the long tail part of the density profile
away from the center of the trap could not be explained.

II. THEORY

Using partial-wave expansion, the scattering amplitude for
identical bosons can be expressed as

f (θ ) = (1/k)
∞∑
l=0

(2l + 1) exp(iδl) sin δlPl(cos θ ), (1)

where l denotes partial waves, δl is the phase shift, and θ is the
scattering angle [23]. For identical bosons only even values
of l will contribute to the scattering amplitude. According to
Beliaev’s first-order theory, the excitation spectrum of a dilute
Bose gas can be given by the dispersion relation
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where ε0
k = h̄2k2/(2m) is the kinetic energy and m is the atomic mass. The two distinct scattering amplitudes (considering

s-wave) are

f (0,0) = 4πa

and

f (k,0) = 4π sin(ka)/k. (3)

The symmetrized amplitude f d (k/2,k/2) for the higher partial wave (l = 2) is added with f s(k/2,k/2) (for l = 0) to give the
following dispersion relation:
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The values of symmetrized scattering amplitudes considering s and d waves are

f s(k/2,k/2) = 4π [sin(ka) − i2 sin2(ka/2)]/k

and

f d (k/2,k/2) = −40π (cos δ2 sin δ2 + i sin2 δ2)/k,

where
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To derive d-wave scattering amplitude only the forward
scattering of atoms is considered.

The LHY correction term for the ground-state energy of a
dilute Bose gas is

E[n] = (2πh̄2an)128(na3/π )1/2/(15m). (5)

From the ground-state energy functional, by performing a
functional variation with respect to ψ∗ the Euler-Lagrange

equation [24,25] takes the following form:

(
− h̄2
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4
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|ψ |4

+ 128
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)
ψ = μψ, (6)
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where μ is the chemical potential which accounts for the
conservation of number of particles, where

g1 = h̄2

m
{2[f s(k/2,k/2) + f d (k/2,k/2)] − f (0,0)}

and

g2 = h̄2

m
f (k,0). (7)

The trapping potential Vtr (r) is taken to be axially symmetric,

Vtr (r) = 1
2m

(
ω2

⊥r2
⊥ + ω2

zz
2
)
, (8)

where ω⊥ and ωz are the radial and axial frequencies of
the cylindrical trap. In g1 and g2 the imaginary part of the
scattering amplitudes has not been taken into account, as in
the first-order Beliaev’s theory it is sufficient to take the real
part of the scattering amplitude when using it to calculate the
spectrum [3].

In Eq. (6) the two-body dipolar (K2) and three-body recom-
bination (K3) loss rates are introduced phenomenologically to
give[
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(9)

At small momenta (ka < 1), neglecting the d-wave scatter-
ing and setting f s( k

2 , k
2 ) = f (k,0) = f (0,0), Eq. (6) reduces

to[
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where g′
1 = 4πh̄2a/m. Equation (10) is known as modified

Gross-Pitaevskii (MGP) equation for the atomic condensate
[26]. By neglecting the LHY term from the MGP Eq. (10),
one gets the corresponding Gross-Pitaevskii (GP) equation as
given below:[

− h̄2

2m
∇2 + Vtr + g′

1|ψ |2
]

ψ = μψ. (11)

The column density, which is an accessible experimental
quantity, is defined as nc(z) = ∫

dr⊥|ψ(r⊥,z)|2. A measure
of the extension of the condensate is the half-width of the
column density R1/2, defined as the z value when nc(z =
R1/2) = 1

2nc(z = 0).

III. RESULTS AND DISCUSSION

In this section we first report the results for ground-state
properties and column densities for 85Rb BEC considering
k-independent and k-dependent interactions confined in a
cylindrical trap. The radial (axial) frequency of the trap is
ω⊥/2π = 17.5 Hz (ωz/2π = 6.8 Hz). We have considered
here the large gas parameter values (∼10−2) as achieved
in the experiment of Cornish et al. [4]. We have com-
pared the theoretical density profiles (both for k-dependent

TABLE I. Results for the ground-state properties of 10485Rb
atoms trapped in a cylindrically symmetric trap with ω⊥

2π
= 17.5 Hz

and ωz

2π
= 6.8 Hz. Chemical potentials are in the units of h̄ω⊥;

half-widths are in the units of μm. Results are given for k-dependent
s-wave scattering [s(k)], k-dependent (s + d)-wave scattering
[(s + d)(k)], and k-independent s-wave scattering [s], including the
LHY term. The GP results are also tabulated.

a (a0) ka μ xpk Half-width

3000 1.15 s(k) 12.47 3.89(–3) 21.01
(s + d)(k) 12.59 3.84(–3) 21.09

s 14.48 3.19(–3) 22.42
GP 13.23 3.91(–3) 20.86

5000 1.92 s(k) 12.74 1.49(–2) 22.52
(s + d)(k) 13.79 1.37(–2) 23.09

s 18.77 9.72(–3) 25.88
GP 16.25 1.33(–2) 23.14

7000 2.68 s(k) 11.51 3.61(–2) 23.72
(s + d)(k) 15.15 2.97(-2) 25.15

s 22.56 1.96(–2) 28.62
GP 18.61 2.98(–2) 24.76

8700 3.33 s(k) 11.16 5.89(–2) 25.15
(s + d)(k) 17.79 4.45(–2) 27.37

s 25.57 3.08(–2) 30.63
GP 20.29 5.03(–2) 25.80

and k-independent interactions) with the experimental results
at a = 3000 a0 and 8700 a0.

In Table I we list the values of the chemical potential (μ),
peak gas parameter (xpk), and the half-widths of the column
density distributions along with the values of ka considering
k-independent s-wave, k-dependent s-wave, and k-dependent
(s + d)-wave scattering including the LHY term in atom-atom
interaction for different values of ka ranging from 1.15 to
3.33. The table also shows the results obtained by solving
the GP equation for comparison. For this study the value
of ka has been changed by changing the value of a (since
the value of k is fixed). Thus the scattering length a has
been varied from 3000 a0 to 8700 a0 to vary the value of
ka from 1.15 to 3.33. By comparing the results (for μ, xpk ,
and half-width) listed in Table I, it is found that the results
for k-independent and k-dependent s-wave interactions differ
significantly with the increase in the value of ka. Furthermore,
the difference between the results for k-dependent s-wave and
(s+d)-wave increases with the increase in ka. It is likely that
with the increase in ka, the effect of higher partial wave
will be prominent in the scattering phenomena. Here we
have demonstrated quantitatively that the contribution from
the k-dependent d-wave scattering can affect the ground-state
properties of BEC significantly for large values of ka. The
differences are 59% for μ, 24% for xpk , and 9% for the
half-width at a = 8700a0. Initially the difference in the values
of μ, xpk , and half-width for k-dependent s and (s + d)-
wave interactions is small for a = 3000 a0, but it increases
with the increase in scattering length. Here we attempt to
explore the dependence of density profile and the ground-state
properties on the value of ka and N of the condensate atoms
in the strong interaction region by solving the nonlinear
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Schrödinger-like equations considering k-dependent s-wave
and higher partial-wave interactions. The values of μ, xpk , and
half-width considering k-independent s-wave interaction and
the k-dependent s-wave scattering differ significantly even at
smaller values of a (a = 3000 a0), indicating that k-dependent
interactions play crucial role in determining the ground-state
properties when ka approaches unity and it is greater than
unity. We note that for all the results presented here, the
LHY correction has been considered both for k-independent
and k-dependent interactions. Note that for the k-dependent
s-wave scattering μ increases up to a = 5000 a0 and then
decreases. However, this effect is smeared out when the d-wave
contribution is added, giving rise to overall increase in μ.

From Table I it is found that the GP results for chemical
potential (μ) always lie in between k-independent and k-
dependent results, and the value of μ for k-independent
interaction (mean field with LHY correction) is the highest
compared to others. The GP results for the peak value of
the gas parameter at z = 0 (xpk) lie very close to those
for k-dependent interactions at a = 3000 a0, and it lies
in between those for k-dependent s-wave and (s + d)-wave
interactions with increase of a. However, the value of xpk

for k-independent interaction always lies below those for
k-dependent interactions and GP results. This shows that
the effect of damping due to increase in nonlinearity on
the peak density (i.e., peak-gas-parameter) is the strongest
for k-independent s-wave interaction, considering the LHY
correction for N = 10 000. The k-dependent (s + d)-wave
results deviate from GP results by 4.8% (for μ), 1.8% (for xpk),
and 1.1% (for half-width) at a = 3000 a0. These deviations
increase to 12.3% (for μ), 11.5% (for xpk), and 6% (for
half-width) at a = 8700 a0.

The column densities considering k-dependent s- and
(s + d)-wave [obtained by solving Eq. (6)] and k-independent
s-wave [obtained by solving Eq. (10)] atom-atom scattering
are presented in Figs. 1(a), 1(b), and 1(c) for a = 3000 a0,
7000 a0, and 8700 a0, respectively, for N = 10 000. The
dotted and solid lines correspond to the k-dependent s-wave
and (s + d)-wave scattering; dashed are the k-independent
s-wave results; and the circles give the column densities
for (s + d)-wave scattering considering two-body (K2) and
three-body (K3) losses [obtained by solving Eq. (9)]. The
values of K2 and K3 are taken from Fig. 2 in Ref. [20].
For a = 3000, 7000, and 8700 a0, the values of K2 are
5 × 10−19 m3 s−1, 2 × 10−18 m3 s−1, and 4 × 10−18 m3 s−1,
respectively, and the values of K3 are 4.5 × 10−36 m6 s−1,
1 × 10−35 m6 s−1, and 5 × 10−35 m6 s−1, respectively. The
triangles in Fig. 1 correspond to the density profiles obtained
by solving GP equations. It is found that the column densities
for k-dependent s- and (s + d)-wave scattering are almost the
same for a = 3000 a0 [Fig. 1(a)]. But with the increase in
a, column densities differ significantly for s- and (s + d)-
wave scattering [Figs. 1(b) and 1(c)]. The contribution from
d-wave scattering leads to damping of density at the center
of the trap, giving rise to spread of density towards the
large values of z. Hence the half-width increases as shown
in Table I. At a = 8700 a0 the deviation in peak density
at z = 0 for k-dependent s- and (s + d)-wave interaction
is 20.6%, which can be experimentally detected, where the
accuracy of measurement is higher [27]. The contribution from
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FIG. 1. Column densities of 104 85Rb atoms at (a) a = 3000 a0,
(b) a = 7000 a0, and (c) a = 8700 a0 as a function of axial distance
(z) for a cylindrical trap with ω⊥/2π = 17.5 Hz and ωz/2π = 6.8 Hz.
The vertical axis is multiplied by 2 × a2

⊥/N [a⊥ = √
h̄/(mω⊥)]. The

dotted and solid lines represent the densities with k-dependent s-wave
and (s + d)-wave scattering; dashed lines are the k-independent s-
wave results; and the circles give the column density considering
two-body (K2) and three-body (K3) losses. Triangles represent the
GP density profiles.

the g-wave interaction to the column density is negligible
(less than 1%) for a = 8700 a0. The column density for k-
independent s-wave scattering is further damped at the center
of the trap, giving rise to further increase in the half-width
for each value of a. Thus for each value of a the column
densities for k-dependent and k-independent interactions differ
significantly. The GP density near the trap center is lower than
the k-dependent density profiles for a = 3000 and 7000 a0 but
higher than the k-dependent density profile for a = 8700 a0.
A negative contribution arising from the nonlinear interaction

term 3
4

g2
1−g2

2

ε0
k

|ψ |4 in Eq. (6) at a = 8700 a0 may cause such

results.
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FIG. 2. Column densities of 85Rb atoms at a = 3000 a0 with
N = 5000 (a), 7000 (b), and 15 000 (c) as a function of axial distance
(z) for a cylindrical trap with ω⊥/2π = 17.5 Hz and ωz/2π = 6.8 Hz.
The vertical axis is multiplied by 2 × a2

⊥/N [a⊥ = √
h̄/(mω⊥)]. The

dotted and solid lines represent the densities with k-dependent s-wave
and (s + d)-wave scattering; dashed lines are the k-independent
s-wave results. Triangles represent the GP density profiles.

It is to be mentioned here that in the present study we have
neglected the imaginary part of the k-dependent interaction,
which is an approximation. At first order of Beliaev theory it is
sufficient to take the real part of the scattering amplitude [3].
Results presented here are valid within this approximation.
Nevertheless, one may explore this effect on the density profile
in the future.

The column density profiles for the number of atoms
N = 5000, 7000, and 15 000 are shown in Figs. 2(a), 2(b), and
2(c), respectively, for a = 3000 a0, and the density profiles
with N = 3000, 5000, and 7000 are plotted in Figs. 3(a),
3(b), and 3(c), respectively, for a = 8700 a0. The dotted,
solid, and dashed lines correspond to the k-dependent s-wave,
k-dependent (s + d)-wave, and k-independent s-wave results,
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FIG. 3. Column densities of 85Rb atoms at a = 8700 a0 with
N = 3000 (a), 5000 (b), and 7000 (c) as a function of axial
distance (z) for a cylindrical trap with ω⊥/2π = 17.5 Hz and
ωz/2π = 6.8 Hz. The vertical axis is multiplied by 2 × a2

⊥/N [a⊥ =√
h̄/(mω⊥)]. The dotted and solid lines represent the densities with

k-dependent s-wave and (s + d)-wave scattering; dashed lines are
the k-independent s-wave results. Triangles represent the GP density
profiles.

respectively. Triangles give the GP column density profile. For
a fixed scattering length, as N is increased the nonlinearity
keeps on increasing. With the increase in nonlinearity the
column densities for both the k-dependent and k-independent
interactions are reduced at the center of the trap and expand
towards the larger values of z, but the column densities for
k-independent and k-dependent interactions differ from each
other at each value of N . At each value of N , the peak
density for k-independent interaction is always lower than
those for k-dependent and GP interactions. The width of
density profile for k-independent interaction is larger than
the density profiles for other interactions. This feature is
also obtained when the scattering length is increased for
N = 10 000, as shown in Table I. The increase in nonlinearity
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(with increase in N ) affects the density profiles for k-
dependent and k-independent interactions differently. As a
result, the density profiles for k-dependent and k-independent
interactions differ with increase in N . Comparison of
Figs. 2(a), 2(b), and 2(c) shows that with the increase in N

the difference between peak densities at z = 0 for k-dependent
and k-independent interactions decreases and the difference is
15.4%, 15.1%, and 14.2% for N = 5000, 7000, and 15 000,
respectively. This is because the damping in the density profile
for k-dependent interaction is much faster than that in the
density profile for k-independent interaction. At each value of
N the GP density profiles are close to those for k-dependent
interactions, but it shifts upwards with increase in N . A similar
feature has been obtained when a is increased for N = 10 000
(Fig. 1). It is found that at this value of scattering length,
a = 3000 a0, the effect of k-dependent d-wave interaction
is negligible and hence the density profiles for k-dependent
s-wave and (s + d)-wave interactions almost coincide at each
value of N (Fig. 2). This shows that the effect of d-wave
interactions on the density profile for a = 3000 a0 is very
small even if N is increased.

The effect of strong nonlinearity on density profiles is
much more prominent for large values of scattering length
a = 8700 a0 (Fig. 3). First of all, at such large scattering
lengths the effect of k-dependent d-wave scattering on the

density profile becomes significant even for small values of N,

and hence leads to different density profiles for k-dependent
s-wave and (s + d)-wave interactions at each value of N

(3000, 5000, and 7000). The difference between peak density
for k-dependent s-wave and (s + d) waves is 24.5%, 21.9%,
and 20.4% for N = 3000, 5000, and 7000, respectively.
Secondly, the effect of damping on the density profiles for
k-independent and k-dependent [s-wave and (s + d)-wave]
interactions differ significantly with increase in N , leading to
different density profiles for different types of interactions.
The difference between the peak density for k-dependent
and k-independent s-wave interactions is 79.7%, 70.1%, and
64.6% for N = 3000, 5000, and 7000, respectively. This shows
that the difference between the peak density at z = 0 for
k-independent and k-dependent [s-wave and (s + d)-wave]
interactions decreases with increase in N , as in the case of
a = 3000 a0. This is due to the fact that the density profiles for
different interactions (k-independent, k-dependent, and GP)
are affected differently at different values of N . At the value
of scattering length a = 8700 a0, for N = 3000, the column
density for GP interaction is lower than the column density
for (s + d)-wave interaction by 3.5%. With the increase in
the number of atoms N , the GP and (s + d)-wave density
profile almost overlap in the central region of the trap. If
the value of N is increased to 7000, the GP values of the
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FIG. 4. Column densities of 85Rb atoms for a = 3000 and (a) N = 5000, (b) N = 7000, (c) N = 10 000, and (d) N = 15 000 as a function
of axial distance (z) for a cylindrical trap with ω⊥/2π = 17.5 Hz and ωz/2π = 6.8 Hz. The dotted and solid lines represent the densities
with k-dependent s-wave and (s + d)-wave scattering; dashed lines are the k-independent s-wave results. Triangles represent the GP density
profiles. Solid circles are the plots of the experimental condensate column density taken from Fig. 3(d) in Ref. [4].
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FIG. 5. Column densities of 85Rb atoms for a = 8700 a0 and (a) N = 2000, (b) N = 3000, and (c) N = 5000 as a function of axial distance
(z) for a cylindrical trap with ω⊥/2π = 17.5 Hz and ωz/2π = 6.8 Hz. The dotted and solid lines represent the densities with k-dependent
s-wave and (s + d)-wave scattering; dashed lines are the k-independent s-wave results. Triangles represent the GP density profiles. Solid circles
are the plots of the experimental condensate column density taken from Fig. 3(e) in Ref. [4].

column density become larger than the column density for
(s + d)-wave interaction by 3.2% [Fig. 3(c)]. A similar feature
has been obtained in Fig. 1, where the scattering length has
been increased keeping N fixed. This upward shift of the
density profiles for GP interaction from those for (s + d)-wave
interaction with the increase in the interaction strength is due to
the negative contribution arising from the difference between
the square of the momentum-dependent nonlinear interactions
(g2

1 − g2
2) in Eq. (6).

In Figs. 4 and 5 the column densities (both due to k-
dependent and k-independent interactions) for a = 3000 and
8700 a0 considering different values of N have been plotted
and compared with the experimental column densities for
B = 157.2 and 156.4 G, respectively, as given in Figs. 3(d)
and 3(e) of Ref. [4]. In the conditions of this experiment the
scattering length corresponding to B = 157.2 and 156.4 G
are 3000 and 8700 a0, respectively (as obtained by manual
interpolation from Fig. 1 of Ref. [4]). The dotted and solid
lines correspond to the k-dependent s-wave and (s + d)-wave
scattering; dashed lines are the k-independent s-wave results;
triangles give the GP results; and the solid circles are the
experimental points. It is well known that column densities
of atomic BEC for the ground state obtained by solving the
Gross-Pitaevskii or modified Gross-Pitaevskii equations are in
general Gaussian and are flat very close to the center of the trap,
as shown here. Therefore the sharp fall of the experimental

column density around the center of the trap could not be
reproduced in this study. Here we have fitted the theoretical
column densities with the experimental curve at z = 4.1 μm
in Fig. 4 and at z = 3.42 μm in Fig. 5, respectively. As a result,
the theoretical density at z = 0 differs from that for experiment
by ∼10%. In the experiment value of N has been varied from
3000 to 15 000. Since the actual value of N at these two values
of magnetic fields is not available [28], for comparison with
experiment we have varied N from 2000 to 15 000 at each value
of a (3000 and 8700 a0), and we presented here the results for
those values of N for which theoretical column densities are
comparable to experimental results. In Figs. 4(a)–4(d) we have
plotted column densities for N = 5000, 7000, 10 000, and
15 000, respectively, for a = 3000 a0 and those for a = 8700
a0 considering N = 2000, 3000, and 5000 have been plotted
in Figs. 5(a)–5(c), respectively. Experimental column densities
for a = 3000 a0 (solid circles in Fig. 4) and for a = 8700 a0

(solid circles in Fig. 5) are obtained by interpolation from
Figs. 3(d) (which corresponds to B = 157.2 G) and 3(e)
(which corresponds to B = 156.4 G) in Ref. [4], respectively.
As shown before for a = 3000 a0 (Fig. 2), the fitted theoretical
column densities for k-dependent s-wave and (s + d)-wave
interactions almost coincide, since at this value of scattering
length the effect of d-wave interaction is negligible. The
density profile for k-independent interaction spreads outward
and deviates from those for k-dependent interaction and GP
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results for each value of N . By comparing the theoretical
density profiles with experimental densities (Fig. 4), it is
found that for smaller values of N (N = 5000 and 7000)
the experimental points are closer to the density profile for
k-independent interaction up to z ∼ 25 μm, but when the
value of N is further increased (N = 10 000 and 15 000),
the experimental points are closer to the density profiles for
k-dependent interactions compared to those for k-independent
interactions and the agreement is good up to a large value of
z ( 35 μm). Since the result for GP density is close to that for
k-dependent interaction in the region of smaller value of z, the
experimental density agrees fairly well with GP density in this
region, but for larger values of z GP density falls faster than
that for k-dependent interaction with an increase in N. This
has also been shown in the table (first row) that the half-width
for GP is smaller than that for (s + d)-wave interaction for
a = 3000 a0 and N = 10 000. Thus the overall agreement of
the experimental result with that for k-dependent interaction
for large values of N is better than those for other interactions.

For large scattering lengths, a = 8700 a0, the fitted density
profiles for k-dependent s-wave and (s + d)-wave interactions
differ significantly at different values of N (Fig. 5), similar to
that shown in Fig. 3. As mentioned above, since the actual value
of N is not known, we have presented the results for N = 2000,
3000, and 5000, which are comparable to the experimental
profiles. It is found that for these values of N (a = 8700 a0),
the density profile for mean-field (GP) interaction is close to
that for k-dependent (s + d)-wave interaction in the region of
small value of z and it spreads outward compared to that for
k-dependent (s + d)-wave interaction with increase in z (for
N = 2000 and 3000). For these combinations of a and N ,
the difference between the peak densities for GP and the k-
dependent (s + d)-wave results varies around 3.5% for change
in N from 3000 to 7000. Hence after fitting with experimental
value at z = 3.42 μm, it appears that both the results [GP and
k-dependent (s + d)-wave] are in fairly good agreement with
experimental values for small values of z, but the difference in
the density profiles exists as z is increased (for N = 2000 and
3000). The density profile for k-independent interaction (with
LHY correction) spreads outwards throughout the range of z

considered and the deviation of this density profile from those
for k-dependent interactions and GP profiles increases with
the increase in N . It is found that for N = 2000 experimental
densities are closer to the density profiles for k-dependent
s-wave interaction for a small value of z = 20 μm, after
which it spreads outwards. But with the increase in N

(N = 3000), the agreement between experimental density
with those for k-dependent s-wave interaction is good up
to z ∼ 30 μm. With further increase in N (N = 5000) the
difference between experimental density and k-dependent
density profiles increases, since all the density profiles spread
outwards due to the increase in nonlinearity. But for all the
values of N the density profile for k-independent interaction
spreads away from those for k-dependent interactions and
hence lie away from the experimental density points. Thus
for large scattering length values k-dependent interactions
play a crucial role in determining the density profile even
at small values of N , leading to fairly good agreement with
the experimental results.

However, the long tail away from the center of the trap
obtained in the experimental densities could not be explained
in this calculation both for a = 3000 a0 and 8700 a0 (Figs. 4
and 5). To investigate whether this long tail part of the
experimental density profile arises due to the evolution of
condensate after switching off the trap, we have repeated
the calculation to study the time evolution of the condensate
after switching off the trap within 0.2 ms. It is found that the
column density remains almost the same up to 3 ms, after
which it starts to expand, but the column density reported in
the experiment was obtained before 3 ms after switching off
the trap within 0.2 ms. Therefore the consideration of the
evolution of condensate after switching off the trap could
not explain the long tail part of the experimental column
density. The long tail may occur due to the expansion of
heated atoms when the scattering length is increased (i.e.,
the magnetic field is approaching the value for Feshbach
resonance). Therefore this long tail part of the density profile
can be explained by considering the interaction due to the
high-energy collision of atoms. This long tail part in the
experimental density is more prominent for large values of
a (8700 a0), since at this value of scattering length, which is
closer to the Feshbach resonance, the atomic cloud becomes
very hot, leading to higher atom loss [28]. This explains that for
a = 8700 a0, the agreement between theory and experiment
is fairly good for smaller values of N than that for a =
3000 a0.

IV. SUMMARY

We have shown that the inclusion of the momentum-
dependent scattering amplitudes due to s-wave and higher
partial waves (d-wave) is important to determine the ground-
state properties of the condensate when ka > 1 and xpk ∼
10−2. Experimentally detectable significant quantitative dif-
ferences are found between the peak densities for momentum-
dependent s- and d-wave interactions. We have shown that
theoretical column densities both for a = 3000 and 8700
a0 depend on the total number of atoms N . We have also
compared the GP column density with that for k-dependent
(s + d)-wave interaction and found that for small values of
N GP density lies below that for k-dependent (s + d)-wave
interaction, but with increase in N it crosses over to lie above
the k-dependent density. The reason for this behavior has
been attributed to the effect of a nonlinear term arising from
k-dependent interaction. Theoretical column densities for 85Rb
atoms considering k-dependent scattering are found to exhibit
fairly good agreement with the experimental results for large
values of N for small values of scattering length a = 3000
a0 (corresponding to B = 157.2 G) and for small values of
N for large values of scattering length a = 8700 a0 (which
correspond to B = 156.4 G), respectively.
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