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It is a common misconception that spacetime discreteness necessarily implies a violation of local

Lorentz invariance. In fact, in the causal set approach to quantum gravity, Lorentz invariance follows from

the specific implementation of the discreteness hypothesis. However, this comes at the cost of locality. In

particular, it is difficult to define a ‘‘local’’ region in a manifoldlike causal set, i.e., one that corresponds to

an approximately flat spacetime region. Following up on suggestions from previous work, we bridge this

lacuna by proposing a definition of locality based on the abundance of m-element order-intervals as a

function of m in a causal set. We obtain analytic expressions for the expectation value of this function for

an ensemble of causal set that faithfully embeds into an Alexandrov interval in d-dimensional Minkowski

spacetime and use it to define local regions in a manifoldlike causal set. We use this to argue that evidence

of local regions is a necessary condition for manifoldlikeness in a causal set. This in addition provides a

new continuum dimension estimator. We perform extensive simulations which support our claims.
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I. INTRODUCTION

Causal set theory is a candidate for quantum gravity
where the spacetime continuum is replaced by a discrete
substructure which is a locally finite partially ordered set
[1–4]. It is often assumed that Lorentz violation is an
inevitable consequence of spacetime discreteness. This
is explicitly false in a causal set discretization of a
spacetime—on the contrary, as shown in [5], the causal
set hypothesis instead implies Lorentz invariance.
However, this comes at the cost of locality. In a causal
set, the nearest neighbors of an element are the links or
irreducible relations. For example, in infinite causal set that
is approximated by Minkowski spacetime, every element
has an infinite number of nearest neighbors, both to the past
and to the future. The resulting graph is therefore of infinite
valency, in stark contrast to other types of spacetime dis-
creteness in which the graphs are of finite valency. Indeed,
it is this very feature of a causal set which captures the
essence of Lorentz-invariant discreteness, since there are
noncompact invariant hyperbolas associated with every
Lorentz boost about a spacetime event in Minkowski
spacetime. This feature of causal set discretization in turn
is due to the requirement of a uniform distribution which
preserves the number to volume correspondence, crucial to
the recovery of the Lorentzian spacetime geometry in the
continuum approximation [5].

While Lorentz invariance is a great asset to causal set
theory, the resulting nonlocality of the causal set graph
impedes a straightforward reconstruction of continuum
information from the discrete substructure. Unlike a sim-
plicial decomposition, for example, where the discrete
scalar curvature has a simple local geometric interpreta-
tion, there is no analogous local construction in a causal
set. Indeed, it is only recently that a causal set expression

for scalar curvature and hence a causal set action has been
found in arbitrary dimensions [6,7]. Nevertheless, despite
the difficulty in recovering local information from a causal
set, over the years substantial progress has been made in
understanding how topology and geometry emerges from a
causal set, sometimes with the aid of fairly ingenious
order-theoretic constructions. This includes the reconstruc-
tion of spacetime dimension, timelike distance, spacelike
distance and spatial homology, for causal sets that are
approximated by continuum spacetimes [8].
Importantly, in many of these reconstructions the causal

set is assumed to be approximated by a region of curved
spacetime which is small compared to the scale of flatness.
In the continuum such a region has a natural interpretation
of being ‘‘local’’ or approximately flat. From the contin-
uum perspective small, or local neighborhoods are essen-
tial to several geometric constructions and are key to the
conception of a manifold. However, until now there has
been no purely order theoretic characterization of such
local neighborhoods in a causal set. It is therefore an
important step to be able to define local regions in a causal
set and hence provide an appropriate context for some of
the reconstruction results.
Our prescription for locality uses a well-known order

theoretic definition of a spacetime region, namely an
Alexandrov interval I½x; y� :¼ fzjx �� z �� yg, where �
� is the chronological relation. In the continuum I½x; y� is
characterized both by the timelike distance �ðx; yÞ from x
to y, as well as its volume VolðI½x; y�Þ. Unlike open ball
neighborhoods in a Riemannian manifold, however, even
arbitrarily small choices of �ðx; yÞ or VolðI½x; y�Þ do not
correspond to a region in which the scale of flatness is large
as illustrated in Fig. 1. In the continuum, �ðx; yÞ or
VolðI½x; y�Þ are the only Lorentz invariant quantities
that characterize I½x; y�. However, it is clear that the
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corresponding discrete geometry, i.e., a causal set which
faithfully embeds into I½x; y�, should contain more detailed
geometric information.

The main proposal of our work is that there is indeed an
order theoretic characterization of locality. The motivation
for this arises from the work of Benincasa and Dowker
[6,7] where it was found that the scalar curvature of an
element e in a causal set C can be obtained from knowing
the abundances Nm of order-intervals of size m that lie to
the past of e. Here, N0 is the abundance of 0 order-
intervals, i.e., the number of irreducible relations or links
in C, N1 the abundance of 1-element order intervals, or
irreducible 3-chains, etc. For a generic nonlocality scale
the discrete Einstein-Hilbert action is constructed from all
possible Nm, but when the nonlocality scale is taken to be
the Planck scale, the action simplifies considerably. For
example, the 2d causal set action takes the elegant form

1

ℏ
S2D ¼ N � 2N0 þ 4N1 � 2N2; (1)

which only involves the abundances of intervals of volume
0, 1 and 2.

In simulations of 2d quantum gravity using Markov
Chain Monte Carlo methods the Nm were used as covariant
observables for tracking thermalization [9]. Importantly, it
was observed that Nm as a function of m has a character-
istic behavior in the phase in which flat spacetime is
emergent, and differs drastically from the nonmanifold
phase. Simulations of 2d flat spacetime showed that this
characteristic curve could indeed be used as a reliable
indicator of flatness.

In this work we carry this idea forward. We begin by
obtaining analytic expressions for the expectation value of
the interval abundances hNd

mi for a causal set that faithfully
embeds into an Alexandrov interval in flat spacetime of
arbitrary dimensions d. Our main proposal is that the
characteristic curves for hNd

mi as a function of m can be
used to define a local region in a manifoldlike causal set C.
The existence of a local region in a causal set is therefore a

necessary condition for manifoldlikeness of C and hence a
new continuum dimension estimator. Specifically, since the
characteristic curves for hNd

mi for fixed cardinality are
sufficiently distinct for each d, it is possible to use them
to find the continuum dimension of the local region in the
causal set. This estimator therefore gives a null result for
causal sets which are nonmanifoldlike. Because the hNd

mi
provide an entire family of observables, it is tempting to
conjecture that the requirement on interval abundances is
not only a necessary but also a sufficient requirement for
manifoldlikeness of a causal set.
We test our proposals with simulations of causal sets

that are approximated by spacetimes as well as those that
are not. We find that our necessary condition for manifold-
likeness works extremely well even for relatively small
causal sets.
Indeed, not only do the simulated interval abundances

reproduce on average the characteristic curve, they follow
it with reasonable precision even in a single realization.
The latter is especially important in assessing manifold-

likeness in a single causal set, as opposed to an ensemble of
causal sets. Our simulations verify that apart from being
able to determine the local regions of a manifoldlike causal
set, our prescription is also a test for manifoldlikeness itself
and thence, manifold dimension.
Our construction demonstrates clearly the geometric

richness of a locally finite poset which is approximated
by a spacetime. Our analysis indicates the existence of a
local geometric ‘‘rigidity’’ present in manifoldlike causal
sets—significant deviations from the hNd

mi result in
Alexandrov intervals that are explicitly not local. Thus,
hNd

mi as a function of m provides us a local, covariant,
geometric measure for manifoldlikeness.
In Sec. II we give a short introduction to the main

concepts of causal set theory and define quantities that
we will need further on. The calculation of the interval
abundances in flat spacetime are in Sec. III. We find that
the ratio of these abundances is scale invariant in the large
N limit, which provides a strong motivation for using the
hNd

mi as indicators of locality. In Sec. IV we present the
main ideas in this work, namely, how the hNd

mi can be used
to define locality in a manifoldlike causal set. We then
conjecture that the hNd

mi provide a rigidity criterion for
manifoldlikeness for a causal set that faithfully embeds
into an Alexandrov interval in flat spacetime. In Sec. V we
present results from extensive numerical simulations that
support these ideas. In particular, we examine the interval
abundances of causal sets that we know a priori to be either
manifoldlike or not and find that our test works extremely
well. Our tests include flat spacetimes of different dimen-
sions, the 2-d cut-trousers topology, as well as the flat
geometries on S1 � R and T2 � R, 4-d FRW spacetimes,
including de Sitter spacetime, and some examples of non-
manifoldlike causal sets. In particular, we examine the
claim from [10] that causal sets grown with transitive

(p)

p

q

r
η(p)g(r) ~

g(q)~ η

FIG. 1. The two Alexandrov intervals I½p; q� and I½p; r� have
the same volume, but the former lies in an approximately flat
neighborhood of p, while the latter does not.
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percolation are manifoldlike. We find that while macro-
scopic indicators may suggest manifoldlikeness, it fails our
microscopic test. We end with a discussion on open ques-
tions and future directions in Sec. VI.

II. PRELIMINARIES

Studies of Lorentzian geometry have long stressed the
importance of the causal structure [11]. For causal space-
times, the causal structure provides a partial order on the
set of spacetime events. This partial order is a unique
characteristic of a Lorentzian signature (ð�;þ;þ� � �þÞ)
spacetime, a feature absent in all other signature space-
times. It was shown by Malament, Hawking and others in
[12] that a bijection between two past and future distin-
guishing spacetimes which preserves the causal structure is
a conformal isomorphism. Thus, knowing the causal rela-
tions between all points in a spacetime is enough to define
its geometry up to a conformal factor. The causal set
hypothesis of a fundamental discreteness adds to this clas-
sical result by providing a discrete volume element to help
recover the conformal factor. Roughly, every discrete event
comes with approximately one unit of spacetime volume so
that the number of events in a region corresponds to the
volume of that region. In other words, in causal set theory,
an appropriately discretized partially ordered set replaces
continuum Lorentzian geometry, summarized in the
slogan: Orderþ Number � Spacetime.

Formally a causal set C is defined to be a locally finite
partially ordered set, namely a countable set C with an
order relation � on its elements which is

(i) Reflexive: for all x 2 C, x � x
(ii) Transitive: for all x, y, z 2 C and x � y and y � z

then x � z,
(iii) Acyclic: for all x, y 2 C, x � y � x ) x ¼ y
(iv) Locally Finite: for all x, y 2 C jIðx; yÞj � jfzjx �

z � ygj<1.

This last condition is equivalent to the assumption of a
fundamental discreteness. The first figure in Fig. 2 shows
the Hesse diagram of a small causal set where the elements
are numbered and the links are denoted by arrows.
Causal set quantum gravity is thus a quantum theory

of causal sets with the continuum existing only as an
approximation to a fundamentally discrete substructure.
In particular, the ensemble of causal sets that are approxi-
mated by a given spacetime ðM;gÞ is obtained via a
Poisson process for a given discreteness scale ��1. The
probability of assigning m-elements of a causal set C in a
spacetime region of volume V is given by

PVðmÞ ¼ ð�VÞm
m!

e��V: (2)

The causal set is then recovered via the induced causal
relations on the set of elements. This Poisson ‘‘sprinkling’’
is a key feature of causal set discretization of the contin-
uum. The second figure in Fig. 2 shows a sprinkling of 100
elements into flat space. Conversely, given a causal set, C,
we say that it is approximated by a spacetime ðM;gÞ if
there exists a faithful embedding �: C ! ðM;gÞ such that
�ðCÞ 	 ðM;gÞ corresponds to a high probability Poisson
sprinkling into ðM;gÞ with the order relations in C being
the same as those induced by the causal relations in ðM;gÞ
onto �ðCÞ. An important conjecture in the theory is that a
given causal set cannot faithfully embed into two distinct
spacetimes, namely, those which differ on scales larger
than the discreteness scale. In other words continuum
structures below the discreteness scale are irrelevant to
the theory. We refer the reader to the literature for more
details on the basics of the causal set hypothesis [1–4].
As discussed in the introduction, the key focus of this

work is to be able to define a local region in a manifoldlike
causal set. In the continuum, an Alexandrov interval
I½x; y� � fzjx �� z �� yg, where �� is the chronological
relation. In a causal set, there is no a priori distinction

FIG. 2 (color online). On the left is the Hesse diagram of a simple causal set where only the links are shown by arrows. The figure on
the right is a sprinkling of 100 elements into an interval of flat spacetime, where all the causal relations are depicted by lines.
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between causal and chronological relations and hence we
define an order interval I½x; y� 	 C as I½x;y�¼fzjx�z�yg.
A natural characterization of I½x; y� is its cardinality or
discrete volume. However, this information does not suf-
fice to distinguish an I½x; y� which is local and one that is
not. Since the discrete geometry should include all relevant
information about the continuum, we expect that there
must exist other observables in I½x; y� which can be used
to characterize locality. In this work, we find that the
abundance ofm-element order-intervals in I½x; y� is indeed
such a family of observables. Namely, for every m we
count the number or abundance of order intervals of size
m in I½x; y�. For us, an m ¼ 0 order interval is a link,
namely, an order interval which contains only its end-
points, anm ¼ 1 order interval is one with a single element
that lies between the endpoints, or an irreducible 3 chain,
and m ¼ 2 can be an irreducible 4 chain or an irreducible
diamond poset, i.e., an order interval with two elements
between the endpoints.

For a causal set that faithfully embeds into flat space-
time, we find that the interval abundances follow a char-
acteristic, monotonically decreasing curve as m increases.
It is this characteristic curve that we will use as a ‘‘ruler’’ to
determine the locality of an order interval in a more general
manifoldlike causal set. However, in order to do so, we
would like to ensure that the scale of flatness in every
region of the spacetime is much larger than the discreteness
scale, so that the manifold approximation of the causal set
is well-defined everywhere. By this we mean the following.
Consider a causal set that faithfully embeds into an ‘‘ap-
proximately flat’’ spacetime region in which Riemann
normal coordinates are valid. Such a region is character-
ized by a dimensionless size which we will refer to as the
scale of flatness ��1 
 1 where � ¼ R�2 with R denoting
any component of the Riemann tensor at an event in the
region and � the proper time between any two events in the
region. In flat spacetime � ¼ 0 and hence the size ��1 !
1 as expected. For a generic spacetime we will refer to
such regions as ‘‘small’’: for a given R, the size of the
region � must be small enough for � � 1. Let C be a
causal set that faithfully embeds at density � into an
Alexandrov interval I½x; y� of volume V which lies in a
region for which ��1 
 1. If N � �V � 1 then the con-
tinuum approximation ofC breaks down. Thus, in order for
the I½x; y� to be adequately represented by the causal set,
we require that N 
 1, i.e., the discreteness scale N�1

must be small with respect to the scale of flatness ��1.

III. THE ABUNDANCES OF ORDER
INTERVALS IN FLAT SPACETIME

We now find closed form expressions for the abundance
of order-intervals in a causal set C that is faithfully em-
bedded into an Alexandrov interval I½p; q� in flat space-
time. To begin with we find the abundance of links hNd

0 i.
Lorentz invariance then allows us to generalize this

expression to that for hNd
mi in a straightforward way.

Although we use series expansions to evaluate the inte-
grals, the final expressions take relatively simple closed
forms.
Consider the interval I½p; q� in Fig. 3 with volume V and

proper time � from p to q. The probability that there is a
link from an element x to an element y in this region is
given by

Pxy ¼ e��Vxy ; (3)

where Vxy is the spacetime volume of the Alexandrov

interval I½x; y� 	 I½p; q� in the embedding spacetime.
Moreover, given x, y lies to its future, i.e., y 2 I½x; q�,
while x can lie anywhere in I½p; q�. Thus, the expectation
value for the number of links in I½p; q� is given by

hNd
0 ð�; VÞi ¼ �2

Z

dVx

Z
x

dVye
��Vxy ; (4)

where the symbol  denotes I½p; q� and the symbol x

denotes I½x; q�. Since this expression is Lorentz invariant,
it can only depend on the proper time � or volume V of
I½p; q�. Thus we may choose p at the origin p ¼ ð0; . . . ; 0Þ
and q on the time axis q ¼ ð ffiffiffi

a
p

; 0; . . . ; 0Þ, where � ¼ ffiffiffi
2

p
a.

Lorentz covariance also implies that the integration over
x depends only the proper time �ðx; qÞ and the volume
Vxq of I½x; q�. We may thus again calculate this integral in

convenient coordinates and then recast it in terms of �ðx; qÞ
and Vxq. We take x to lie at the origin x ¼ ð0; . . . ; 0Þ and q

to lie on the time axis q ¼ ð ffiffiffi
2

p
a0; 0; . . . ; 0Þ, where

�ðx; qÞ ¼ ffiffiffi
2

p
a0 � ffiffiffi

2
p

a. Using light-cone coordinates

v ¼ 1ffiffiffi
2

p ðtþ rÞ u ¼ 1ffiffiffi
2

p ðt� rÞ; (5)

the integration measure in flat space for y ¼ ðuy; vy; ~�yÞ is
then

Z
dVy ¼ 1

2
d
2�1

Z
d�y

Z a0

0
dvy

Z v

0
duyðv� uÞd�2: (6)

FIG. 3. The Alexandrov neighborhood I½p; q� in the integra-
tion Eq. (4): x lies anywhere in I½p; q� while y lies in the
intersection of I½p; q� with the chronological future of x.
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The function we will integrate over does not involve the

angular coordinates of y, since �ðx; yÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2uyvy

p
. We can

then rewrite

�Vxy ¼ �
Sd�22

�d
2þ1

dðd� 1Þ ðuyvyÞd2 ¼ ��dðuyvyÞd2; (7)

where Sd�2 is the volume of the d� 2 sphere Sd�2 ¼R
d�y ¼ 2�

d�1
2

�ðd�1
2 Þ , and we define the dimension-dependent

constant �d � Sd�22
�d
2
þ1

dðd�1Þ . Thus the angular integration over

x factors out so that, in these coordinates, the integral
I0x

� R
x

dVye
��Vxy reduces to

I0x
¼ dðd� 1Þ�d

Z a0

0
dv

Z v

0
duðv� uÞd�2e���dðuvÞd=2 ;

(8)

where we have suppressed the subscripts in ðuy; vyÞ.
Expanding ðv� uÞd�2 in terms of binomial coefficients

and e���dðuvÞd=2 as a power series simplifies the integration
considerably

I0x
¼ dðd� 1Þ�d

X1
n¼0

ð���dÞn
n!

Xd�2

k¼0

d� 2

k

 !
ð�1Þk

�
Z a0

0
dv

Z v

0
duvdðn2þ1Þ�2�ku

dn
2 þk (9)

¼ dðd�1Þ�d
X1
n¼0

ð���dÞn
n!

a0dðnþ1Þ

dðnþ1Þ
Xd�2

k¼0

d�2

k

 ! ð�1Þk
dn
2 þkþ1

:

(10)

Rewriting

Xd�2

k¼0

d� 2

k

 ! ð�1Þk
dn
2 þ kþ 1

¼ �ðd� 1Þ�ðdn2 þ 1Þ
�ðd2 ðnþ 2ÞÞ (11)

we find that

I0x
¼dðd�1Þ�d�ðd�1ÞX1

n¼0

ð���dÞn
n!

a0dðnþ1Þ

dðnþ1Þ
�ðdn2 þ1Þ
�ðd2ðnþ2ÞÞ :

(12)

We can now convert the above expression into a Lorentz
covariant form by substituting a0 for the proper time

�ðx; qÞ ¼ ffiffiffi
2

p
a0 of I½x; q�. In the original coordinates

adapted for I½p; q� this is �ðx; qÞ2 ¼ 2ða� vxÞða� uxÞ
Thus, to complete the calculation of hNd

0 i we must evaluate

the integral

I ¼
Z

dVxðða� uxÞða� vxÞÞdðnþ1Þ

2

¼ �ddðd� 1Þ
Z a

0
dvx

Z vx

0
duxðvx � uxÞd�2ðða� uxÞ

� ða� vxÞÞdðnþ1Þ
2 : (13)

To shorten the notation we defined this integral without
the sum over n which we will have to restore in the
final expression for hNd

0 i. Substituting u ¼ a� ux and

v ¼ a� vx and again using the binomial expansion

I ¼ �ddðd� 1ÞXd�2

k¼0

d� 2

k

 !
ð�1Þk

�
Z a

0
dv

Z v

0
duu

d
2ðnþ1Þþkv

d
2ðnþ3Þ�2�k (14)

¼ �ddðd� 1Þ adðnþ2Þ

dðnþ 2Þ
Xd�2

k¼0

d� 2

k

 !
ð�1Þk

� 1
d
2 ðnþ 1Þ þ kþ 1

: (15)

Using the identity (11), and the fact that V ¼ �da
d, we find

the Lorentz covariant expression for the average number of
links in an interval I½p; q� of volume V to be

hNd
0 ið�;VÞ¼�ðdÞ2X1

n¼0

ð��VÞnþ2

ðnþ2Þ!
�ðdn2 þ1Þ
�ðd2ðnþ2ÞÞ

��ðd2ðnþ1Þþ1Þ
�ðd2ðnþ3ÞÞ : (16)

This expression can now be used to find the m element
interval abundances in flat space for general m by observ-
ing that (2) can be rewritten as

Pðm;V; �Þ ¼ ð��Þm
m!

@m

@�m e��V: (17)

FIG. 4 (color online). The function hNd
mi v/s m for N ¼ 1000

and d ¼ 1; . . . ; 5.
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Thus, the average number of m-element intervals in a volume V is simply given as

hNd
mið�;VÞ¼�2

Z

dvy

Z
y

dVx

ð�VÞm
m!

e��V ¼ð��Þmþ2

m!

@m

@�m

Z

dVx

Z
y

dvye
��V ¼ð��Þmþ2

m!

@m

@�m�
�2hNd

0 ið�;VÞ (18)

which evaluates to:

hNd
mið�;VÞ¼�ðdÞ2

m!
ð��VÞmþ2

X1
n¼0

ð��VÞn
n!

1

ðnþmþ1Þðnþmþ2Þ�
�ðd2ðnþmÞþ1Þ
�ðd2ðnþmþ2ÞÞ

�ðd2ðnþmþ1Þþ1Þ
�ðd2ðnþmþ3ÞÞ : (19)

This can then be recast as a closed form expression in terms of generalized hypergeometric functions:

hNd
mið�;VÞ ¼ ð�VÞmþ2

ðmþ 2Þ!
�ðdÞ2

ðd2 ðmþ 1Þ þ 1Þd�1

1

ðd2mþ 1Þd�1
dFd

1þm; 2dþm; 4dþm; . . . ; 2ðd�1Þ
d þm

3þm; 2dþmþ 2; 4dþmþ 2; . . . ; 2ðd�1Þ
d þmþ 2

�������������V

0
@

1
A;

(20)

where pFqðfa1; . . . ; apg; fb1; . . . ; bqgj � zÞ is a generalized
hypergeometric function and ðaÞn is the Pochhammer sym-
bol. This expression is convergent because, as is well
known, generalized hypergeometric functions converge
for all z values if p � q. The details of obtaining this
form for the hNd

mi are given in Appendix A.
In Fig. 4 we plot the function hNd

mi for different values
of d. hNd

mi rapidly and monotonically decreases as m
increases thus providing a clear characteristic signature
for the flat spacetime case, which we will use to
define locality and thence a continuum dimension
estimator.

A. The asymptotic limit

We now examine the behavior of these expressions in
the large N ¼ �V limit. Although the continuum limit is
not physically relevant per se to causal set theory, it is
nevertheless an interesting limit of the theory. Clearly,
hNd

mi will diverge with N, but it is not clear a priori what
the behavior will be after normalization, say with respect to
the abundance of links, hNd

0 i. If there were a leading order

N-dependence, then either this would diverge, or go to zero
in the limit, thus drastically changing the nature of the hNd

mi
characteristic curve.

What we find is that the ratio is in fact independent of N
to leading order and yields a surprisingly simple expression
in the asymptotic limit

S d
m � lim

�!1
hNd

mið�; VÞ
hNd

0 ið�; VÞ
¼ �ð2d þmÞ

�ð2dÞ�ðmþ 1Þ : (21)

This scale invariance seems to echo that of Minkowski
spacetime suggesting that the hNd

mi captures an essential
and perhaps even defining ingredient of flat spacetime
geometry. We discuss this in some detail in the following
section.
Here we give a quick sketch of how this limit is obtained,

leaving details to Appendix C. TheN ¼ �V dependence in
Eq. (20) comes from the overall Nmþ2 factor as well as the
hypergeometric function dFd which when appropriately

rearranged is of the form

dFd

a1; . . . ; ad

a1 þ 2; . . . ; ad þ 2

���������N

 !
;

ai ¼ 2i

d
þm; i ¼ 1; . . . d� 1; ad ¼ 1þm: (22)

Thus, to investigate theN ! 1 limit of the hNd
miwe need a

large N expansion of this function. We make repeated use
of the following identity [13]

pFq

a1; . . . ; ap

a1 þm1; . . . ; an þmn; bnþ1; . . . ; bq

��������z
 !

¼ Yn
j¼1

ðajÞmj

ðmj � 1Þ!
Xn
k¼1

Xm1�1

j1¼0

� � � Xmn�1

jn¼0

1

ak þ jk

Yn
l¼1

ð1�mlÞjl
jl!

�Yn
i¼1
i�k

1

ai þ ji � ak � jk
p�nþ1Fq�nþ1

ak þ jk; anþ1; . . . ; ap

ak þ jk þ 1; bnþ1; . . . ; bq

��������z
 !

;

mn 2 Z ^mn > 0 ^ n � q ^ ai þ ji � ak þ jk; 8 ji ¼ 0; . . .mi; 1 � i; j � n: (23)

LISA GLASER AND SUMATI SURYA PHYSICAL REVIEW D 88, 124026 (2013)

124026-6



This can be used to reduce the dFd of the form in Eq. (22)
to (i) a sum over 1F1 in odd dimensions, (ii) a sum over 3F3

in even dimensions d > 2. In d ¼ 2 dFd is simply 2F2

which can be examined directly. We demonstrate these
results explicitly in Appendix C.

Specifically, in odd dimensions there is a sum over

1F1

ak þ jk

ak þ jk þ 1

���������N

 !
;

which using

1F1

a

aþ 1

���������z

 !
¼ aðzÞ�að�ðaÞ � �ða; zÞÞ (24)

�ða;zÞ / e�zza�1

�
�ð2�aÞð1�aÞ

z2
�1�a

z
þ���þ1

��
; ðjzj!1Þ: (25)

gives a leading order dependence ofN�ak�jk , for the small-
est values of ak þ jk which is k ¼ 1, j1 ¼ 0, which makes

itN�2
d�m. In even dimensions for d > 2, the dependence on

N appears in a sum over

3F3

2
d kþmþ jk;

2
d lþmþ 1; mþ 1

2
d kþmþ jk þ 1; 2d lþmþ 2; mþ 3

���������N

 !
:

(26)

We obtain an asymptotic expansion of this using
MATHEMATICA and find that the leading order contribution

is again N�ak�jk and hence comes from the k ¼ 1, j1 ¼ 0

term which makes it�N�2
d�m. In d ¼ 2, the hypergeomet-

ric function in Eq. (20) is simply

2F2

mþ 1; mþ 1

mþ 3; mþ 3

���������N

 !

whose leading order contribution is of the form

N�1�mlogN. Combining these we find that hNd
mi�N2�2=d

to leading order for d > 2 and hNd
mi � N logN for d ¼ 2.

What our detailed calculations show, moreover, is that in
all dimensions the coefficient of the leading order term
takes the simple form:

1

m!
�

�
2

d
þm

�
�ðdÞ

ðd2 � 1Þðd2 þ 1Þd�2

(27)

which implies Eq. (21). The subleading contributions
however vary from dimension to dimension as

hNd
miðNÞ ¼ N2�2

d

m!
�

�
2

d
þm

�
�ðdÞ

ðd2 � 1Þðd2 þ 1Þd�2

þ

8>>><
>>>:
OðNÞ for d ¼ 3

OðN logNÞ for d ¼ 4

OðN2�4
dÞ for d > 4

(28)

for all d > 2 and

hN2
miðNÞ ¼ N logN þOðNÞ; (29)

for d ¼ 2. We refer the reader to Appendix C for the details
of the calculation.
In particular we note that all contributions are slower

than N2 and that the convergence toward the limit hap-
pens polynomially, and hence is quite slow. In Fig. 5 we
plot hNd

miðNÞ for d ¼ 4 for a range of N-values, as well as
the asymptotic limit. The slow convergence makes it clear
that it will not be possible to test this limit computation-
ally. In Fig. 5 we plot the asymptotic limits for various d.
Notably, for d ¼ 2 S2m ¼ 1 and therefore independent
of m.

IV. DEFININGLOCALREGIONS INACAUSAL SET

The main goal of this work is to show that hNd
mi can be

used as a definition of locality in a causal set which faith-
fully embeds into a continuum spacetime. Conversely it
can be used as a test for manifoldlikeness as well as a
continuum dimension estimator.

FIG. 5 (color online). These plots illustrate some properties of the N ! 1 limit. (a) The left-hand plot shows the convergence of hNd
mi

hNd
0
i

to Sdm in 4d for N ¼ 10, 100, 1000, 10000. (b) The right-hand plot shows how Sdm changes with dimension.
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Consider an N-element causal set C which faithfully
embeds into an Alexandrov interval I½p; q� in
d-dimensional Minkowski spacetime at a given density
�. As we have just shown above, if one considers the
ensemble of causal sets obtained via a Poisson sprinkling
into I½p; q�, then the average hNd

mi has a characteristic
behavior with m. For large enough �, the interval
abundances NmðCÞ for a single ‘‘typical’’ realization will

with high probability ‘‘track’’ hNd
mi, i.e., NmðCÞ � hNd

mi�
ðN � ffiffiffiffi

N
p Þ for all m. This is what we would expect from a

Poisson distribution. As we will show in the following
section, this expectation is confirmed by simulations.
Simulations, moreover, show that the distribution of the
Nd

m for any givenm for an ensemble of causal sets obtained
via a Poisson sprinkling into I½p; q� is nearly Gaussian

with a standard deviation of � ffiffiffiffi
N

p
.

Importantly, the closeness of a typical NmðCÞ to hNd
mi

can be used as a characterization of locality. Namely, ifC is

such thatNmðCÞ � hNd
miðN � ffiffiffiffi

N
p Þ for allm, and for a fixed

d we will refer to it as a ‘‘local’’ causal set. For a causal set
~C which faithfully embeds into an Alexandrov interval
I½p; q� in an arbitrary curved d-dimensional spacetime,
one expects that because of the deviation from flatness,

Nmð ~CÞwill differ significantly from the hNd
mi. Again, this is

borne out by simulations. Thus, ~C is ‘‘nonlocal’’ in this
sense. However, as long as the scale of flatness everywhere
in I½p; q� is much larger than the discreteness scale as

discussed in Sec. II,1 ~C will contain N-element subcausal
sets C which lie in an approximately flat Alexandrov
interval I½p0; q0� 	 I½p; q�. If N is large enough, then C
will be local in the above sense. Thus, the hNd

mi provide a
strong characterization of local regions in a causal set.
Again, this is borne out by simulations on a class of curved
spacetimes as well as those with nontrivial topology.

Thus, the function hNd
mi suggests a criterion for ‘‘rigid-

ity’’ of C in the sense used by mathematicians. Namely, if

NmðCÞ � hNd
miðN � ffiffiffiffi

N
p Þ for all m, then it suggests that C

must faithfully embed into Minkowski spacetime of di-
mension d at large enough embedding density. We now
formalize these ideas as best as we can, leaving a more
detailed study to future work.

Definition 1 We will say that an N-element causal set C

is strongly d-rigid if 9 a d for which NmðCÞ � hNd
mi�

ðN � ffiffiffiffi
N

p Þ. If C possesses an N0 element sub causal
set C0 which is strongly d-rigid, then C is said to be weakly
d-rigid with respect to C0.

Clearly, strong d-rigidity is a necessary condition for an
N-element causal set C to faithfully embed into an
Alexandrov interval of flat d-dimensional spacetime of
volume V as long as N 
 1. On the other hand, weak
d-rigidity is a rather weak necessary condition for C to
faithfully embed into a d-dimensional curved spacetime,

since the only requirement is that there exist a local or
strongly d-rigid sub-causal set C0 in C. Indeed, in this case,
one should expect a whole family of strongly d-rigid
subcausal sets fC0

ig in C for fixed d. However, a straightfor-
ward analysis of this case is far from clear at the moment
and we leave this for future investigations.
We summarize the above in the following Claim:
Claim 1 Let C be an N-element causal set that faith-

fully embeds into an Alexandrov interval I½p; q� in a
d-dimensional spacetime such that the discreteness scale
is much smaller than the scale of flatness everywhere. Then
there exists a subcausal set C0 	 C of cardinality N0 
 1
such that C0 is strongly d-rigid. Moreover, if I½p; q� is an
Alexandrov interval in d-dimensional Minkowski space-
time then for large enough N, C is itself strongly d-rigid.
While the above arguments require that N and N0 be

arbitrarily large in order to suppress fluctuations, the simu-
lations that we will present in the next section show that the
necessary condition works extremely well even for N0
values as low as 100 for a single ‘‘typical’’ realization of
C0. This is true both for the flat spacetime case as well as
for regions where the scale of flatness is large. Of course,
for a generic curved spacetime, one does need to go to
higher densities, but here too, there is strong evidence that
the numbers can be relatively small.
Could this condition also be sufficient for manifoldlike-

ness? As discussed above, in the general case, it clearly is
insufficient since one needs requirements on an appropri-
ately chosen family of strongly d-rigid sub-causal sets in C.
On the other hand, it is a plausible sufficiency condition for a
causal set to be faithfully embeddable into an interval in
d-dimensional Minkowski spacetime. There are several
hints that support this. We first note that the interval abun-
dance profile for generic causal sets or Kleitman Rothschild
posets [14] which dominate the class of posets for large N
differs vastly from hNd

mi. This difference in profile is easy to
understand: these posets have a large number of links but
almost no two or three element intervals. Thus, even at
relatively smallm, the interval abundances differ drastically
from hNd

mi. Similar arguments can be made for the multiple
layered class of causal sets studied in [15,16] which are
subdominant but are also largely devoid of small intervals
with m> 1. In Sec. VE we show the interval abundances
for a chain and a Kleitman-Rothschild (KR) poset. Another
example of a nonmanifoldlike causal set is the 2D orders
corresponding to the crystalline phase of [9]. These are
again layered, much like the KR posets, but here too, there
is a large deviation from the flat spacetime hNd

mi. Of course
such examples cannot suffice since the space of causal sets is
littered with those that have no simple characterization.
Hence we cannot at the moment prove that strong
d-rigidity is violated for all causal sets which do not faith-
fully embed into an interval in flat spacetime.
On the other hand, as shown in Sec. III A the ratio

hNd
mi=hNd

0 i is scale invariant in the limit N ! 1.1We will henceforth always assume that this condition is met.
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In particular, this mimics the scale invariance of flat space-
time. Prompted by discussions with Sorkin we conjecture:

Conjecture 1 If the interval abundances NmðCÞ for an
N-element causal set C are such that that NmðCÞ � hNd

mi�
ðN � ffiffiffiffi

N
p Þ for some d in the large N limit, then C faithfully

embeds into an Alexandrov interval in d-dimensional
Minkowski spacetime.

In other words, we suggest that hNd
mi provides a rigidity

condition for a causal set to be approximated by an
Alexandrov interval in Minkowski spacetime. A contin-
uum version of this would require C to, moreover, be scale
invariant or homogeneous, and it would be interesting to
explore whether there are examples of homogeneous
orders like the Box spaces [17] which could provide
counter-examples to the conjecture.2

V. SIMULATIONS

We now show evidence for the above results and
conjectures using simulations of relatively small causal
sets. We consider causal sets that are sprinkled into flat
and curved spacetime as well as nonmanifoldlike causal
sets, using the CACTUS code causal set framework [18,19].
In particular, we perform our test on causal sets discretiza-
tions of flat spacetime for d ¼ 2; . . . ; 4 as well as on the 2-d
cut-trousers and the flat geometries on S1 � R and T2 � R.
As examples of curved spacetime we consider Friedmann-
Robertson-Walker (FRW) spacetimes for d ¼ 4 including
de Sitter spacetime, both for small and large scales of
flatness, and find significant deviations from the flat space-
time curves in the case of a small scale of flatness. All these
examples provide ample support for Claim 1 even for
relatively small N. Next, we consider simulations of causal
sets generated by transitive percolation for the specific
cases studied in [10] and show that they do not pass our
test for manifoldlikeness. Finally, as support for our con-
jecture, we examine distinctly nonmanifoldlike causal
sets, a chain and the class of Kleitman-Rothschild causal
sets and show that, as expected, they fail our test of
manifoldlikeness.

Once the causal set C is simulated, the interval
abundances can be obtained within an appropriately
chosen order interval I½p; q� � C. We employ two differ-
ent procedures for this purpose. The first procedure is a test
of locality of an entire causal set. Here we consider sprin-
klings into a large interval in flat spacetime and ‘‘cap’’ C to
the past and the future by adding a pair of extra elements p,
q so that I½p; q� ¼ C. This allows us to measure the
interval abundance for the entire causal set. It is especially
useful when comparing the results from simulations into
flat spacetime with the analytic plots. Thus, we do not look
for local regions in a given causal set, but test for the

locality of an entire causal set, or in the language of the
previous section whether it is strongly d-rigid for some d.
The second procedure is for finding local regions in a

causal set C which may not itself be local. Here we pick
out an element p 2 C and then examine the set of order
intervals to which p belongs. By comparing with the hNd

mi
curves, one can then identify which of these order intervals
might serve as a local neighborhood of p. This method has
two hurdles we must overcome.
First, we cannot control the location of p in the embed-

ding spacetime. This makes it hard to find intervals that
sample a specific feature of a spacetime, say a singularity
in the cut-trousers topology of 5.2 or a point close to the
origin of the FRW spacetime. A little control can be
exerted using the fact that the current CACTUS code uses
a natural labeling of the causal set, namely if p � q then
the labels satisfy lðpÞ< lðqÞ. Thus, picking a point with a
low/high labeling allows us to choose the lower/upper area
of the region we sprinkled in.
Second, the number of intervals that contain an element

can be very large even for moderately sized causal sets.
This can be ameliorated by only examining intervals within
a certain size range.
Thus our second procedure will be to pick an appro-

priate element in the causal set and then examine all
intervals, within a certain size range, that contain this
element.

A. Flat spacetime simulations

We first consider the class of causal sets obtained via
a Poisson sprinkling into flat spacetime intervals with
hNi ¼ 10d elements using the existing CACTUS code and
calculate Nd

m for each realization of a sprinkled causal set,
for d ¼ 2; . . . ; 4. We consider 1000 realizations in each
case and calculate the standard deviation for the interval
abundances. We find a remarkable agreement with the
analytic curve for Nd

m as shown in Fig. 6, where we have

also plotted the analytic curves for N � ffiffiffiffi
N

p
.

We also find that for single realizations of a sprinkled
causal set, the distribution of Nd

m lies well within these
curves as shown in 7. This plot also shows that the abun-
dance can be used as a continuum dimension estimator. For
causal sets that are nonmanifoldlike this will give a null
result since the profile of NmðCÞ will not match that of the
continuum for any d.

B. Examining other topologies

As the simplest generalization of flat spacetime inter-
vals, we consider causal sets that are sprinkled into flat
geometries with nontrivial spatial topology. An example of
this is a ‘‘cut-trousers’’ topology in 2-d, with two disjoint
spatial intervals I [ I joining up to give a single spatial
interval I, as depicted in Fig. 8.
For the plot in Fig. 9 we obtained 100 realizations of a

1000-element causal set. For each of these, we picked large

2We thank Rafael Sorkin for discussions on the continuum
limit.
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intervals by choosing a minimal element p and a maximal
element q such that jI½p; q�j is the largest interval. Because
of the nature of the topology we are considering, these
intervals are ‘‘incomplete’’ if taken to be embedded in flat
spacetime, as shown in Fig. 8. We find that this size
fluctuates by 380:68� 14:01 and thus, we can average
over the 100 realizations to obtain the expectation value
of the interval abundances for 380 element causal sets. This

is within the standard deviation or fluctuation
ffiffiffiffiffiffiffiffi
380

p � 19:5
expected. As shown in Fig. 9, the curves hNmðC0Þi exhibit a
clear deviation from flat spacetime.

We also test causal sets sprinkled into d ¼ 2 and d ¼ 3
flat spacetimes with toroidal spatial topologies, i.e., with
M � R� S1 (the cylinder) andM � R� T2, respectively.
For the large intervals in d ¼ 2, we generate 100 realiza-
tions of 100-element causal sets via sprinkling and for

d ¼ 3, 100 we generate 100 realizations of 1000-element
causal sets. The results are shown in Fig. 10.
For the small intervals we look at single realizations of

10000-element causal sets and examines intervals of size
100 in both cases. We take more points to obtain a higher
density causal set, which allows us to find 100-element
intervals that do not probe the topology. As expected, for
both d ¼ 2 and d ¼ 3 the large intervals, which wrap
around the compact spatial topology, have a distribution of
intervals which has large deviations from the flat spacetime
curve, but most of the small intervals do not. That some of
the small intervals probe the topology of the spacetime is
due to the nonlocality of the causal set. There will always be
some small intervals that are almost lightlike, and thus probe
the topology of the torus. We illustrate both the ‘‘nonlocal’’
and the ‘‘local’’ intervals in Fig. 11.

FIG. 6 (color online). Simulations of the expectation value of interval abundances hNmðCÞi in flat space for N ¼ 10d element causal
sets obtained by sprinkling 1000 times into an interval in flat spacetime. The red dots depict the simulations along with error bars. The
solid blue line is hNd

miðNÞ while the dotted blue lines are hNd
miðN � ffiffiffiffi

N
p Þ. (a) Depicts 100 Points in 2d. (b) 1000 Points in 3d and

(c) 10000 Points in 4d.
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C. Curved spacetime: FRW and de Sitter spacetimes

Next, we consider causal sets which are sprinkled into
4-d k ¼ 0 FRW spacetime with metric

ds2 ¼ �dt2 þ aðtÞ2
0
@X4

i¼1

ðdxiÞ2
1
A; (30)

where

aðtÞ ¼ a0t
q with: q ¼ 2

3ð1þ wÞ (31)

with equation of state p ¼ w�. We show our results from
simulations for w ¼ 0, 1=3 and the de Sitter case w ¼ �1
(resp. matter, radiation and cosmological constant domi-
nated) as examples. In the de Sitter case the de Sitter
radius arises as a new free parameter, we chose a radius
of ‘ ¼ 1:3. For each of these we examine 100 realizations
of hNi ¼ 1000-element causal sets and find the average
interval abundances. We expect significant deviations
from the flat spacetime case, due to the nontrivial space-
time curvature and our simulations do confirm this
expectation.
We first show that the large intervals do not follow the

flat spacetime characteristic curve. As for the intervals
with nontrivial topology, the size of the intervals varies

as Nx �
ffiffiffiffi
N

p
x. The results for all three choices clearly

show the effect of curvature on the interval abundances.
(c.f. Fig. 12).
To test manifoldlikeness of the causal set, we examine

the intervals of size 100 containing a randomly chosen
element in a single realization of an 10000 element causal
set. For w ¼ 1

3 and w ¼ 0 we found that there are intervals

for which the abundances follow the flat spacetime curve
and those which demonstrate significant deviations. As in
the case of nontrivial topology, these latter interval neigh-
borhoods must sample a region in which the scale of flat-
ness ��1 is small, i.e., they are elongated intervals. The
result is shown in Fig. 13. The colored boxes indicate the
plotted intervals in comoving coordinates, while the shad-
ing indicates the scale factor aðtÞ which needs to be taken
into consideration when comparing the intervals. Although
the elongated intervals do not fit the curve for flat 4d space,
they are still not in agreement with higher or lower dimen-
sional spacetime. If the same type of test is done on flat
sprinkled causal sets, sprinkled sufficiently densely, there
are no such stark differences between elongated and flat
intervals. The same is true for intervals in de Sitter space-
time. In Fig. 14 we show intervals of size 100 and 2000
picked out of a 10000 element de Sitter sprinkling. They
are as similar to each other as would be the case for flat
space. This is because de Sitter space is maximally sym-
metric. While the 100 intervals are in agreement with flat
4d spacetime, the 2000 element sets all show a significant
deviation from flatness.

FIG. 8. A sketch of the cut-trousers topology. The Alexandrov
neighborhood between the points x and y is modified by the cut.

FIG. 9 (color online). hNmðCÞi for the largest intervals con-
tained in 100 realizations of N ¼ 1000 element causal sets
obtained from sprinklings into the cut-trousers topology.

FIG. 7 (color online). Simulations in flat space for single
realizations of N ¼ 100 element causal sets obtained via
Poisson sprinkling into flat spacetime intervals. The dots repre-
sent the simulations for a single causal set while the solid and
dotted lines are hNd

miðNÞ and hNd
miðN � ffiffiffiffi

N
p Þ, respectively. The

agreement is striking.
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D. Causal sets obtained from transitive percolation

Causal sets should ideally not be created by sprinkling
but grow naturally from some form of process. One such
process, put forward by Rideout and Sorkin, is transitive
percolation [10,20].

In transitive percolation the causal set grows iteratively,
one element at a time. Each element gets added and then
connected to the older elements with a certain probability.
The probability for an element at step n to be connected to
an element at step n� 1 is denoted as p, which is the only
free parameter. In [10,20] causal sets of this type have been
observed to have some manifoldlike characteristics. One
thing that was examined was the functional relation be-
tween the proper time distance of two points and the
volume that lies causally between them. It was found that
for a variety of parameter combinations this curve can be
well fit with the corresponding volume of a de Sitter space-
time, using the de Sitter radius ‘ and a proportionality
factor between the length of the longest chain and the
proper time � as free parameters. To examine if percolated
causal sets also appear manifoldlike under our new test we
picked some of the possible parameter combinations, sum-
marized in Table I.

In the paper they fit the curve to only those intervals
which for a given proper time, had the largest volume. We
followed this up in finding those intervals and measuring
their interval abundances.
We created 100 percolated causal sets for each of the

parameter combinations stated in Table I and calculated the

FIG. 10 (color online). hNmðCÞi for large intervals in causal sets that are obtained from 100 sprinklings into flat spacetimes with
toroidal spatial slices for (a) d ¼ 2, (b) d ¼ 3.

FIG. 11 (color online). NmðC0Þ for a small 100-element interval causal set C0 contained in a single 10000-element causal set obtained
by sprinkling into flat spacetime with toroidal spatial slices in (a) d ¼ 2, (b) d ¼ 3.

FIG. 12 (color online). hNmðCÞi for N ¼ 1000 element causal
sets obtained from sprinkling 100 times into 4d FRW spacetimes
which are �, matter or radiation dominated.
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FIG. 13 (color online). Single realizations of small interval causal sets C0 contained in an N ¼ 10000 element causal set C obtained
from a sprinkling into 4d FRW spacetimes which are matter (a) or radiation (b) dominated. The sketches on the right-hand side show
which intervals are local and which nonlocal, while the shading indicates the scale factor of the universe.

FIG. 14 (color online). The above plots depict 5 realizations of smaller interval causal sets C0 with N0 ¼ 100 (a) and 2000 (b),
respectively, contained in an N ¼ 10000 element causal set C approximated by 4d de Sitter spacetime. In the former, there is a strong
agreement with the flat spacetime curve and with the latter, a strong deviation.
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average interval abundances for intervals of different
proper times. In Fig. 15 we plot this for the intervals of
height 20. The behavior of the interval abundance is similar
for heights between around 10–50 which is roughly the
range of heights to which the de Sitter volume profile was
fitted in [10]. Indeed there is a striking dissimilarity with
flat spacetime: the abundances NmðC0Þ show a maximum at
some m> 0, unlike in flat spacetime for which NmðC0Þ is a
maximum for the links, i.e., m ¼ 0. This maximum shifts
to larger m as one examines larger Alexandrov intervals.

One could perhaps argue that the different shape of the
intervals could arise from curvature. However, the differ-
ence in shape persists even for very small intervals, which
should look flat. This gives a strong indication that perco-
lated causal sets are not manifoldlike.
Interestingly, while the interval abundance is clearly not

that of flat spacetime it does converge towards the interval
abundance of the dimension measured in [10] for large
intervals. While the abundance of links and 1-element
intervals for the percolated causal sets is very different
from the analytic prediction, it falls off monotonically after
the maximum and appears to get closer to the analytic
prediction for manifoldlikeness.
This suggests that perhaps the percolated causal sets,

while not manifoldlike in the small, might be manifold-

like at a coarse grained level and hence satisfy our test.

The coarse graining procedure involves keeping each

element of C with a certain probability P. In Fig. 16 we

FIG. 15 (color online). The hNmðCÞi for percolated causal sets whose longest chain has 20 elements, are shown in black and
compared with the hNd

mi for (a) d ¼ 2, (b) d ¼ 3, (c) d ¼ 4.

TABLE I. Three sets of parameter values from [10] which we
have examined.

p N d ‘ m

0.03 1000 3d 2:331� 0:011 1:046� 0:006

0.01 2000 3d 4:086� 0:028 1:136� 0:006

0.005 15000 4d 6:20� 0:12 1:710� 0:013
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show the interval abundance for coarse grained transitive

percolated causal sets. We choose P ¼ 0:25, used the

same values of p as before, and fixed the number of

elements such that it would agree with Table I after coarse

graining. Figure 16 shows that coarse graining does

change the structure of the interval abundances signifi-

cantly, since the maximal abundance moves to smaller m
and the abundances become a monotonically decreasing

function of m. However, despite this promising behavior,

the detailed curve differs strongly from the hNd
mi. Of

course the size of the parameter space makes it hard to
make a stronger claim, but for coarse grainings where
three-quarters, half, one quarter or one tenth of the points
were kept we did not find agreement with the analytic
curve for flat spacetime. Further study to compare to the
interval abundance for de Sitter space might be useful, but
first attempts at it do not indicate a substantial change in
the results.

E. Nonmanifoldlike causal sets

There are several types of nonmanifoldlike causal sets
that can be examined in this manner. The first that comes to
mind is the totally ordered poset or chain and the totally
unordered poset or antichain. TheNmðCÞ for the former has
a simple linearly decreasing behavior with m as depicted
by the left-hand plot of Fig. 18, while all the NmðCÞ for the
latter are simply zero. However, apart from such exotic

FIG. 16 (color online). The hNmðCÞi for coarse grained percolated causal sets, whose longest chain is 20 elements long, is shown in
black and compared with the hNd

mi for (a) d ¼ 2, (b) d ¼ 3, (c) d ¼ 4.

FIG. 17. An example of a small KR order.
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causal sets, one is interested in what NmðCÞ looks like for a
more typical causal set. Here, we are aided by analytic
results which tell us that as N becomes large, the set of
causal sets is dominated by those that are of the Kleitman-
Rothschild or KR form. A sketch of a small KR order is
shown in Fig. 17. These are distinctly nonmanifoldlike
since they possess only three ‘‘moments of time.’’ A typi-
cal KR order has three layers with roughly N=4 minimal
and maximal elements each and N=2-elements in the
middle layer. Each minimal and maximal element are
linked to roughly half the elements in the middle layer
and every minimal element is related to every maximal
element. Using David Rideout’s CACTUS thorn to generate
KR orders, we perform 100 realizations of N ¼ 100
element KR orders to obtain hNmðCÞi, which we show in
Fig. 18.

VI. CONCLUSIONS AND OUTLOOK

In this work we demonstrated that interval abundances
NmðCÞ in a causal set C provide an important class of
observables for causal set theory. In particular, by compar-
ing with the expectation value of the interval abundance
hNd

mi for an ensemble of causal sets obtained via a Poisson
sprinkling into a flat spacetime interval, we showed that the
NmðCÞ can be used to obtain ‘‘local’’ regions or subcausal
sets C0 	 C for a C which faithfully embeds into a general
curved spacetime. Conversely, the existence of local re-
gions in a causal set is a necessary test for manifoldlikeness
of C and as a new continuum dimension estimator.

We began by obtaining closed form expressions for
hNd

mi, and showed that the ratio hNd
mi=hNd

0 i is independent
of the size N of the causal set to leading order. This scale
invariance reflects that of flat spacetime and suggests a
rigidity condition encoded by this class of observables.
This prompted us to conjecture that knowing the NmðCÞ
for N 
 1 is sufficient to determine if C faithfully embeds
into a flat spacetime interval of a given dimension. We

tested these ideas with extensive simulations. We found
that even for a relatively small ensemble of causal sets
obtained via a Poisson sprinkling into an interval in
Minkowski spacetime, the expectation value of the inter-
val abundances matches very well with our analytic
curves for hNd

mi. In addition, the agreement is very good
even for a single causal set, up to the expected Poisson

fluctuations in the size of the causal set, N � ffiffiffiffi
N

p
, as

shown in Fig. 7. This suggests a prescription for extract-
ing the continuum spacetime dimension from a causal set
and thus a necessary condition for it to be faithfully
embeddable into Minkowski spacetime.
In curved spacetime we considered both FRW and de

Sitter spacetimes. The simulations agree with the hNd
mi up

to fluctuations as long as the scale of flatness is large, but
deviate strongly from it when the scale of flatness is small.
In the former case we found that the causal set represents a
local or approximately flat spacetime region while in the
latter case it is distinctly not local. We also examined the
effect of topology on the hNd

mi and found that again there is
agreement with hNd

mi only if the region explored in the
spacetime is local.
We then examined a class of causal sets generated via

transitive percolation to see if they passed our test for
manifoldlikeness. In [10] it was claimed that a class of
such causal sets possesses manifoldlike properties and has
a Myrheim-Myer manifold dimension of 3 or 4. We tested
several of these examples and found that they fail our test
since theNmðCÞ do not agreewith the hNd

mi for any d. Hence
we concluded that these causal sets are almost certainly not
manifoldlike. However, it is possible that manifoldlikeness
emerges after coarse graining. Preliminary tests showed that
this is still not the case, but a more detailed study is currently
underway [21].
Our simulations thus provide strong support for the

rigidity conjecture in Sec. IV, namely, that knowing
NmðCÞ is sufficient to determine whether C faithfully em-
beds into a flat spacetime interval or not. However, the

FIG. 18 (color online). The NmðCÞ are plotted for two different nonmanifoldlike causal sets. (a) The left-hand plot is for a chain of 10
elements and (b) the right-hand plot an average over 100 realizations of an 100-element KR order.
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question arises whether and why this class of observables is
more special than others. For one, it does provide an entire
class of observables, and this itself is useful. But this is also
the case for the abundances of chains hCmi, where an
m-chain is a totally ordered m-element subset of C.
Thus, a similar analysis may be possible using the hCmi.
However, what distinguishes m-intervals from m-chains is
that the former do in fact encode Lorentz-invariant local
information while this is not true of the latter. In particular,
the set of m-element intervals with fixed future endpoint q
in a causal set that faithfully embeds into flat spacetime
‘‘layer’’ the past light cone of q along its past invariant
hyperbolas, for each m. For example, elements which are
linked to q lie within a volume���1 to the past of q. Thus,
as m increases, one explores regions further and further
from the past null cone boundary of q. However, a chain
lacks the same local information. For example a relation or
2-chain p < q could either be a link with jI½p; q�j ¼ 0 or
separated by a very large interval size jI½p; q�j 
 1. Thus,
the number of relations to the future or the past of p can lie
arbitrarily far from the boundary of the light cones from p
– they are not nearest neighbors even in the Lorentzian
sense. We believe it is this Lorentz-invariant locality of the
NmðCÞwhich makes them useful in defining locality. There
are no other obvious candidates for families of observables
and it is therefore tempting to conclude that the NmðCÞ are
unique in this sense.

It is relatively straightforward to extend these calcula-
tions to a region of small curvature using Riemann normal
coordinates and the techniques of [22,23]. However, the
expressions for the hNd

mi are far more complex, and ex-
tracting even an analytic curve from them requires more
computationally intensive tools than in the flat spacetime
case. We leave such investigations to future work where
effects of curvature can be studied in greater detail than in
the present work.

Finally, local regions in a manifoldlike causal set C could
in principle be used to define a covering fCig of C ¼ [iCi,
from which a nerve simplicial complex can be constructed.
In the continuum, given a manifold M, a nerve simplicial
complex can be obtained via a locally finite convex cover
O ¼ fOig, M ¼ [iOi, i.e., a cover in which (i) each set is
convex, so that there exists a unique geodesic between any
two points in the set, (ii) every x 2 M is contained in a finite
number of elements of O. The nerve simplicial complex is
obtained from O by mapping each k-wise intersection of
sets in O to a k-simplex. This simplicial complex is then
homotopic toM as shown in [24]. In [25] a nerve simplicial
complex was constructed to obtain the homology of spatial
slices in both the continuum and in a causal set. One of the
main obstructions to extending it to the full continuum
spacetime or the full causal set is that a locally finite cover
built out of Alexandrov intervals does not have an obvious
local characterization. In particular, there is no way of
distinguishing a convex from a nonconvex Alexandrov

interval purely order theoretically. Our prescription for
locality in the discrete case however overcomes this diffi-
culty and it would be interesting to see if the spacetime
homology could in fact be recovered from such a local
covering of a causal set.
Our work opens up several new arenas in the study of

discrete causal structure, some of which may lead us closer
to answering fundamental questions in causal set theory.
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APPENDIX A: A GENERAL FORMULA FOR
HYPERGEOMETRIC FUNCTIONS

After solving the integration for the interval abundance
in Sec. III it is necessary to find a closed form expression
for sums of the type

X1
n¼0

ð��VÞn
n!

�Yq
i¼1

1

nþai

�
�ðxðnþcÞÞ

�ðxðnþcÞþm1Þ
�ðxðnþeÞÞ

�ðxðnþeÞþm2Þ :

(A1)

In this expression it is assumed thatm1,m2 are integers. We
can then rewrite it as

X1
n¼0

ð��VÞn
n!

�Yq
i¼1

1

nþ ai

�� Ym1�1

k¼0

1

xðnþ cÞ þ k

�

�
� Ym2�1

l¼0

1

xðnþ eÞ þ l

�
: (A2)

To express this in a closed form we factorize out the x and
rewrite the products as gamma functions which gives

X1
n¼0

ð��VÞn
n!

xm1þm2

�Yq
i¼1

�ðnþ aiÞ
�ðnþ ai þ 1Þ

�

�
� Ym1�1

k¼0

�ðnþ cþ k
xÞ

�ðnþ cþ k
x þ 1Þ

�� Ym2�1

l¼0

�ðnþ eþ l
xÞ

�ðnþ eþ l
x þ 1Þ

�
:

(A3)

This can be rewritten using Pochhammer symbols
ðaÞn ¼ �ðnþ aÞ=�ðaÞ. Taking all the factors independent
of n out of the sum leads to

TOWARDS A DEFINITION OF LOCALITY IN A . . . PHYSICAL REVIEW D 88, 124026 (2013)

124026-17



xm1þm2

�Yq
i¼1

�ðaiÞ
�ðai þ 1Þ

�� Ym1�1

k¼0

�ðcþ k
xÞ

�ðcþ k
x þ 1Þ

�� Ym2�1

l¼0

�ðeþ l
xÞ

�ðeþ l
x þ 1Þ

�
� X1

n¼0

ð��VÞn
n!

�Yq
i¼1

ðaiÞn
ðai þ 1Þn

�

�
� Ym1�1

k¼0

ðcþ k
xÞn

ðcþ k
x þ 1Þn

�� Ym2�1

l¼0

ðeþ l
xÞn

ðeþ l
x þ 1Þn

�
; (A4)

which can then be reexpressed in terms of the lþm1þm2
Flþm1þm2

hypergeometric function

�Yq
i¼1

1

ai

�� Ym1�1

k¼0

1

xcþ k

�� Ym2�1

l¼0

1

xeþ l

�
� lþm1þm2

Flþm1þm2

½ai�;
h
cþ k

x

i
;
h
eþ l

x

i
½ai þ 1�;

h
cþ k

x þ 1
i
;
h
eþ l

x þ 1
i

�������������V

0
B@

1
CA; (A5)

where the ½ai� stand for a1; . . . ; aq and ½cþ k
x� (respective ½eþ l

x�) do stand form1 (m2) terms in which k (l) varies from 0 to
m1 � 1 (0 to m2 � 1). One last simplification allows us to write

�Yq
i¼1

1

ai

�
�ðxcÞ�ðxeÞ

�ðxcþm1Þ�ðxeþm2Þ � lþm1þm2
Flþm1þm2

½ai�;
h
cþ k

x

i
;
h
eþ l

x

i
½ai þ 1�;

h
cþ k

x þ 1
i
;
h
eþ l

x þ 1
i

�������������V

0
B@

1
CA: (A6)

If c, e, ai have an integer distance smaller thanm1 (m2) it is
possible to simplify this further since arguments of the
hypergeometric function that arise on both sides cancel
each other. In our calculation these simplifications will
indeed take place but details are specific to each case.

APPENDIX B: DERIVING THE m � 0 CASE FROM
THE m ¼ 0 CASE USING HYPERGEOMETRIC

FUNCTION IDENTITIES

We can derive hNd
mi from hNd

0 i by taking derivatives. The
expression for Nd

0 is of the form

�ð�VÞ2pFp

a1; . . . ; ap

b1; . . . ; bp

����������V

 !
; (B1)

where we have lumped some of the dimension dependent
constants into the term �. Using (17) the expression for the
hNd

mi is

�
ð��Þmþ2

m!

@m

@�m V2
pFp

a1; . . . ; ap

b1; . . . ; bp

����������V

 !
: (B2)

We use the identity [26]

@m

@zm pFp

a1; . . . ; ap

b1; . . . ; bp

��������z
 !

¼
Qp

j¼1ðajÞmQp
j¼1ðbjÞm pFp

mþ a1; . . . ; mþ ap

mþ b1; . . . ; mþ bq

��������z
 !

(B3)

to simplify Eq. (B2) to

�
ð�VÞmþ2

m!

Qp
j¼1ðajÞmQp
j¼1ðbjÞm pFp

a1þm; . . . ;apþm

b1þm; . . . ;bpþm

����������V

 !
:

(B4)

This expression allows for further simplifications, depend-
ing on the aj, bj. These can be done for each individual

case.

APPENDIX C: DERIVATION
OF THE CONTINUUM LIMIT

The quantity we calculate is

Sdm � lim
�!1

hNd
mið�; VÞ

hNd
0 ið�; VÞ

; (C1)

where hNd
mi is given by Eq. (20). To investigate the N ! 1

limit of the hNd
miwe need a large N ¼ �V expansion of the

hypergeometric functions that appear in Eq. (20), which
when appropriately rearranged are of the form

dFd

a1; . . . ; ad

a1 þ 2; . . . ; ad þ 2

���������N

 !
;

ai ¼ 2i

d
þm; i ¼ 1; . . . d� 1; ad ¼ 1þm: (C2)

We make repeated use of the identity Eq. (23) as well as the
identity Eq. (24). Since the first identity cannot be used if
two of the ai are equal, or equal up to an integer whose
absolute value is smaller thanmi, we will need to be careful
in even dimensions. For d ¼ 2, in particular we need a
different approach. We will thus treat odd and even dimen-
sions separately and d ¼ 2 as a separate case.

1. Odd dimensions

This involves the most straightforward application of
Eq. (23) to expand (C2):
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dFd

a1; . . . ; ad

a1 þ 2; . . . ; ad þ 2

���������z

 !

¼ Yd
j¼1

ðajÞ2
Xd
k¼1

X1
j1¼0

� � � X1
jd¼0

1

ak þ jk

Yd
l¼1

ð�1Þjl

�Yd
i¼1
i�k

1

ai þ ji � ak � jk
1F1

ak þ jk

ak þ jk þ 1

���������z

 !
:

(C3)

For us ml ¼ 2jl ¼ 0, 1 so that ð1�mlÞjl ¼ ð�1Þjl .
Using Eq. (24) in (C3).

¼ Xd
k¼1

X1
j1¼0

� � � X1
jd¼0

ðzÞ�ak�jkð�ðak þ jkÞ � �ðak þ jk; zÞÞ

�Yd
l¼1

ðalÞ2ð�1Þjl Yd
i¼1
i�k

1

ai þ ji � ak � jk
: (C4)

For z ! 1 the terms containing �ða; zÞ fallofflike e�zza�1,
c.f. Eq. (25) and do not contribute in the large z limit. Thus,
to leading order the hypergeometric function is a power

series with terms z�ai�ji . The leading order term is there-
fore a1 ¼ 2

d þm, j1 ¼ 0, while the next-to-leading order is

ad ¼ 1þm for d ¼ 3 and a2 ¼ 4
d þm for d � 5. We then

only need to calculate the case k ¼ 1, jk ¼ 0.
Combining the products in Eq. (C4), we then sum over

the ji,

X1
ji¼0

ðaiÞ2ð�1Þji
ai þ ji � a1

¼ ðaiÞ2
�

1

ai � a1
� 1

ai þ 1� a1

�

¼ ðaiÞ2
ðai � a1Þðai þ 1� a1Þ (C5)

after which we take the product over i to obtain

ðakÞ2
Yd
i¼1
i�k

ðaiÞ2
ðai � akÞðai þ 1� akÞ

¼
�
2

d
þm

�
2

ðmþ 1Þ2
ð1� 2

dÞð2� 2
dÞ
Yd�1

i¼2

ð2d iþ 1Þ2
2
d ði� 1Þð2d ði� 1Þ þ 1Þ :

(C6)

We do the product for the different parts separately:

�
2

d
þm

�
2

Yd�1

i¼2

�
2

d
iþ 1

�
2
¼ Yd�1

i¼1

�
2

d
iþm

��
2

d
iþmþ 1

�
¼
�
2

d

�
2d�2

�
d

2
mþ 1

�
d�1

�
d

2
ðmþ 1Þ þ 1

�
d�1

;

Yd�1

i¼2

1
2
d ði� 1Þ þ 1

d

2ði� 1Þ ¼
�
2

d

��2dþ2 1

�ðd� 1Þðd2 � 1Þd�2

: (C7)

These are combined to find

z�2
d�m

2�ð2d þmÞðmþ 1Þðmþ 2Þ
�ðdÞðd� 2ÞÞðd2 þ 1Þd�2

�
d

2
ðmþ 1Þ þ 1

�
d�1

�
d

2
mþ 1

�
d�1

þ
8<
:Oðz�m�1Þ if d ¼ 3

Oðz�4
d�mÞ if d � 5:

(C8)

Inserting this into Eq. (20) for large N gives

Nd
mðNÞ ¼ N2�2

d

m!
�

�
2

d
þm

�
�ðdÞ

ðd2 � 1Þðd2 þ 1Þd�2

þ
8<
:OðNÞ if d ¼ 3

OðN2�4
dÞ if d � 5

; (C9)

which gives us Eq. (21).
2. Even dimensions

In even dimensions it is possible for two of the ai to be equal, or equal up to an integer whose absolute value is less than
mi. This therefore requires more care. The arguments of the hypergeometric functions in Eq. (20) however do admit a
nondegenerate split:

dFd

2
d þm; . . . ; 1� 2

d þm;mþ 1; 2d þmþ 1; . . . ; 2� 2
d þm;mþ 1

2

d
þmþ 2; . . . ; 3� 2

d
þm;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

the first d
2�1 terms

mþ 3|fflffl{zfflffl}
the d

2 th term

;
2

d
þmþ 3; . . . ; 4� 2

d
þm|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

the d
2�1 terms before the last

; mþ 3

��������������������
�z

0
BBBBB@

1
CCCCCA; (C10)
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which can be shuffled to simplify the calculation. Exchanging the first d2 � 1 terms and the d
2 � 1 terms before the last in the

upper row changes the relationship between the top and bottom row. Instead of a hypergeometric function of the form (C2)
we now have one of the form

dFd

a1; . . . ; ad
2�1; ad

2
; ad

2þ1; . . . ; ad�1; ad

a1 þ 1; . . . ; ad
2�1 þ 1; ad

2
þ 2; ad

2þ1 þ 3; . . . ; ad�1 þ 3; ad þ 2

���������z

 !
: (C11)

We now proceed in two steps. The first is to use (23) on the first d
2 � 1 terms. Here n ¼ d=2� 1, mi ¼ 1 8 i 2

½1; . . . ; d=2� 1� and hence ji ¼ 0 8 i. Thus

dFd

2
d þmþ 1; . . . ; 2� 2

d þm;mþ 1; 2d þm; . . . ; 1� 2
d þm;mþ 1

2
d þmþ 2; . . . ; 3� 2

d þm;mþ 3; 2d þmþ 3; . . . ; 4� 2
d þm;mþ 3

���������z

 !

¼ Xd2�1

�¼1

d
2þ2

Fd
2þ2

2
d �þmþ 1; 2d þm; . . . ; 1� 2

d þm;mþ 1; mþ 1

2
d �þmþ 2; 2d þmþ 3; . . . ; 4� 2

d þm;mþ 3; mþ 3

���������z

 !Yd2�1

j¼1
j��

jþ d
2 ðmþ 1Þ
j� �

: (C12)

Next we apply Eq. (23) for a second time, with i ¼ 2; . . . d=2þ 1. Now n ¼ d=2 and mi ¼ 3 for i 2 ½2; . . . ; d=2� while
md=2þ1 ¼ 2. Thus,

d
2þ2

Fd
2þ2

2
d �þmþ 1; 2d þm; . . . ; 1� 2

d þm;mþ 1; mþ 1

2
d �þmþ 2; 2d þmþ 3; . . . ; 4� 2

d þm;mþ 3; mþ 3

������������z

0
@

1
A

¼
0
@Yd

2

j¼1

ð2d jþmÞ3
2

1
A � 2

mþ 3

Xd2
k¼1

X2
j1

� � �X2
jd
2
�1

X1
jd
2

ð�1Þjd2
2
d kþ jk þm

0
@Yd2�1

l¼1

ð�2Þjl
jl!

1
A

�
0
@Yd

2

i¼1
i�k

1
2
d ði� kÞ þ ji � jk

1
A

3F3

2
d kþmþ jk;

2
d �þmþ 1; mþ 1

2
d kþmþ jk þ 1; 2d �þmþ 2; mþ 3

������������z

0
@

1
A: (C13)

To take the limit z ! 1 we need to expand this 3F3

for large z. We cannot do the entire expansion because
of the special cases where 2

d kþmþ jk ¼ 2
d �þmþ 1

and 2
d kþmþ jk ¼ mþ 1. We thus need to make the

expansion for three different possibilities:
(i) 2

d kþmþ jk �
2
d �þmþ 1 � mþ 1 in this

case we can find an exact expansion for
all z

(ii) 2
d kþmþ jk ¼ 2

d �þmþ 1 for this case we can

take an expansion in large z and find that its leading
order contributions in that limit are z�1�m log z.

(iii) 2
d kþmþ jk ¼ mþ 1 we can again take a

large z expansion and find terms proportional to
z�m�1 log z in leading order.

The expansions for the first case, 2d kþmþ jk �
2
d �þ

mþ 1 � mþ 1, can be found using Eq. (23)

3F3

2
d kþmþ jk;

2
d �þmþ 1; mþ 1

2
d kþmþ jk þ 1; 2d �þmþ 2; mþ 3

���������z

 !

¼ e�z
ð2þmÞð2d �þmþ 1Þð2d kþmþ jkÞ

2
d �ð2d kþ jk � 1Þ � ð1þmÞð2þmÞð2d �þmþ 1Þð2d kþmþ jkÞ

ð2d �� 1Þð2d kþ jk � 2Þ z�2�mð�ð2þmÞ

� �ð2þm; zÞÞ þ ð2þmÞð2d �þmþ 1Þð2d kþmþ jkÞ
2
d �ð2d kþ jk � 1Þ z�1�mð�ð2þmÞ � �ð2þm; zÞÞ

� ð2þmÞð1þmÞð2d �þmþ 1Þð2d kþmþ jkÞ
2
d �ð2d �� 1Þð2d ð�� kÞ þ 1� jkÞ

z�1�m�2
d�

�
�

�
2

d
�þ 1þm

�
� �

�
2

d
�þ 1þm; z

��

� ð2þmÞð1þmÞð2d �þmþ 1Þð2d kþmþ jkÞ
ð2d kþ jk � 2Þð2d kþ jk � 1Þð2d ðk� �Þ þ jk � 1Þ z

�jk�m�2
dk

�
�

�
jk þmþ 2

d
k

�
� �

�
jk þmþ 2

d
k; z

��
: (C14)
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For the second and third case we use MATHEMATICA to obtain the expansion. In the second case, 2d kþmþ jk ¼ 2
d �þ

mþ 1,

3F3

2
d�þmþ1;2d�þmþ1;mþ1

2
d�þmþ2;2d�þmþ2;mþ3

���������z

 !

¼ðmþ2Þð2d�þmþ1Þ2
ð2d�Þ2

z�m�1�ðmþ2Þ�ðmþ1Þð2d�þmþ1Þ2
ð2d��1Þ2 z�m�2�ðmþ3Þ

þðmþ1Þðmþ2Þð2d�þmþ1Þ
ð2d��1Þ2d�

�

�
mþ2

d
�þ2

�
z�2

d��m�2

�
22
d��1

ð2d��1Þ2d�
þc ð0Þ

�
mþ2

d
�þ1

�
þ logðzÞ

�
þ��� (C15)

and in the third case, 2d kþmþ jk ¼ mþ 1,

3F3

mþ 1; 2d �þmþ 1; mþ 1

mþ 2; 2d �þmþ 2; mþ 3

���������z

 !
¼ �ð1þmÞ2ð2þmÞð1þmþ 2

d �Þ
ð2d �Þ2ð2d �� 1Þ z�1�m�2

d��

�
1þmþ 2

d
�

�

� ðmþ 1Þð1þmþ 2
d �Þ

ð2d �Þ2
z�1�m�ð3þmÞð2� log zþ�ð0Þðmþ 1ÞÞ þ � � �

(C16)

The leading order terms are z�2
d�m, for k ¼ 1, jk ¼ 0 from Eq. (C14). The next-to-leading order term is z�4

d�m if d > 4,
while for d ¼ 4 it is z�m�1 log z, from (C15) and (C16). Thus to leading order we find

�Yd
2

j¼1

ð2d jþmÞ3
2

�
� 2

mþ 3

X2
j1

� � �X2
jd
2
�1

X1
jd
2

1
2
d 1þm

�Yd2�1

l¼1

ð�2Þjl
jl!

Yd2�1

i¼2

1
2
d ði� 1Þ þ ji

�

� ð�1Þjd2
1þ jd

2
� 2

d

ð2þmÞð1þmÞð2d �þmþ 1Þð2d þmÞ
ð2d � 2Þð2d � 1Þð2d ð�� 1Þ þ 1Þ z�m�2

d�

�
mþ 2

d

�
: (C17)

The products in (C17) simplify as

Yd
2

j¼1

ð2d jþmÞ3
2

¼ 2dd�3
2d
�ðd2 ðmþ 3Þ þ 1Þ

�ðd2mþ 1Þ ;

X2
jl¼0

ð�2Þjl
2jl!ð2d ðl� 1Þ þ jlÞ

¼ d3

4ðl� 1Þðl� 1þ dÞððl� 1Þ þ d
2Þ
;

Yd2�1

l¼2

d3

4ðl� 1Þðl� 1þ dÞððl� 1Þ þ d
2Þ
¼ 22�dðd� 2Þðd� 1Þd�4þ3

2d

�ð32d� 1Þ ; (C18)

so that (C17) simplifies to

d�ðd2 ðmþ 3ÞÞ
ðd� 2Þðd� 1Þ

�ð2d þmÞðmþ 1Þðmþ 2Þ
�ðd2mþ 1Þ�ð32d� 1Þ

d
2 ðmþ 1Þ þ �

d
2 þ �� 1

z�2
d�m: (C19)

Inserting this into Eq. (C12) we can perform the summa-
tion over �:

Xd2�1

�¼1

d
2 ðmþ 1Þ þ �

d
2 þ �� 1

Yd2�1

j¼1
j��

jþ d
2 ðmþ 1Þ
j� �

: (C20)

The product in the above expression gives

�
d

2
ðmþ 1Þ þ �

�Yd2�1

j¼1
j��

jþ d
2 ðmþ 1Þ
j� �

¼ ð�1Þ��1�ðd2 ðmþ 2ÞÞ
�ð�Þ�ðd2 � �Þ�ðd2 ðmþ 1Þ þ 1Þ (C21)

so that the sum reduces to
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Xd2�1

�¼1

ð�1Þ��1�ðd2 ðmþ 2ÞÞ
�ð�Þ�ðd2 � �Þ�ðd2 ðmþ 1Þ þ 1Þ

1

�� 1þ d
2

¼ �ðd2Þðd� 1Þ�ðd2 ðmþ 2ÞÞ
�ðdÞ�ðd2 ðmþ 1Þ þ 1Þ : (C22)

Combining this with Eq. (C19) gives

z�m�2
d

d�ðd2Þ
ðd� 2Þ�ðdÞ�ð32d� 1Þ�

�
2

d
þm

�
ðmþ 1Þðmþ 2Þ

�
�
d

2
ðmþ 1Þ þ 1

�
d�1

�
d

2
mþ 1

�
d�1

: (C23)

Thus, we find

hNd
miðNÞ ¼ N2�2

d

m!

�ðdþ 1Þ�ðd2Þ
ðd� 2Þ�ð32 d� 1Þ�

�
2

d
þm

�

þ
8<
:OðN logNÞ for d ¼ 4

OðN2�4
dÞ for d > 4:

Realizing that

d�ðd2Þ
�ð32 d� 1Þ ¼ 2

ðd2 þ 1Þd�2

; (C24)

we note that this agrees with the expression for odd
dimensions, and we can thus write

hNd
miðNÞ ¼ N2�2

d

m!
�

�
2

d
þm

�
�ðdÞ

ðd2 � 1Þðd2 þ 1Þd�2

þ

8>>><
>>>:
OðNÞ for d ¼ 3

OðN logNÞ for d ¼ 4

OðN2�4
dÞ for d > 4

for all d > 2, which gives Eq. (21).

3. The case d ¼ 2

d ¼ 2 is a special case for which 2F2 can be expanded
for z ! 1 using MATHEMATICA,

2F2

mþ 1; mþ 1

mþ 3; mþ 3

���������z

 !

¼ z�1�m�ð3þmÞðmþ 1Þðmþ 2Þ log zþOðz�1�mÞ:
(C25)

Inserting this in (20) leads to

hN2
miðNÞ ¼ N logN þOðNÞ; (C26)

which gives

lim
�!1

hN2
mið�; VÞ

hN2
0ið�; VÞ

¼ 1 (C27)

and hence to leading order agrees with the expression for
d > 2, so that we have finally recovered Eq. (21) for all
d � 2
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