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We present techniques for bridging the gap between idealized inverse covariance weighted quadratic
estimation of 21 cm power spectra and the real-world challenges presented universally by interferometric
observation. By carefully evaluating various estimators and adapting our techniques for large but incom-
plete data sets, we develop a robust power spectrum estimation framework that preserves the so-called
"Epoch of Reionization (EoR) window" and keeps track of estimator errors and covariances. We apply
our method to observations from the 32-tile prototype of the Murchinson Widefield Array to demonstrate
the importance of a judicious analysis technique. Lastly, we apply our method to investigate the depend-
ence of the clean EoR window on frequency—especially the frequency dependence of the so-called
“wedge" feature—and establish upper limits on the power spectrum from z ¼ 6.2 to z ¼ 11:7. Our lowest
limit is ΔðkÞ < 0.3 Kelvin at 95% confidence at a comoving scale k ¼ 0.046 Mpc−1 and z ¼ 9.5.
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I. INTRODUCTION

In recent years, 21 cm tomography has emerged as a
promising probe of the Epoch of Reionization (EoR). As
a direct measurement of the three-dimensional distribution
of neutral hydrogen at high redshift, the technique will
allow detailed study of the complex astrophysical interplay
between the intergalactic medium and the first luminous
structures of our Universe. This will eventually pave the
way towards the use of 21 cm tomography to constrain cos-
mological parameters to exquisite precision, thanks to the
enormity of the physical space within its reach (please see,
e.g., Furlanetto et al. [1], Morales and Wyithe [2], Pritchard
and Loeb [3], Loeb and Furlanetto [4] for recent reviews).
To date, observational efforts have focused on measure-

ments of the 21 cm power spectrum. Such a measurement is

exceedingly difficult. Sensitivity requirements are extreme,
requiring thousands of hours of integration and large
collecting areas [5–9]. Adding to this challenge is the fact
that raw sensitivity is insufficient—what counts is sensitiv-
ity to the cosmological signal above expected contaminants
like galactic synchrotron radiation, which are three to four
orders of magnitude brighter at the relevant frequencies
[10–13].
To deal with these challenges, numerous techniques have

been proposed and implemented for foreground mitigation
and power spectrum estimation. These include foreground
removal via parametric fits [14–17], nonparametric
methods [18–20], principal component analyses [21–24],
filtering [25–27], frequency stacking [28], and quadratic
methods [29–31]. In almost all of these proposals, fore-
grounds are separated from the cosmological signal by
taking advantage of the differences in their spectra.
Foregrounds are dominated by continuum processes and
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thus have smooth spectra. On the other hand, because the
cosmological line-of-sight distance maps to the observed
frequency of the redshifted 21 cm line, the rapid fluctuations
in the brightness temperature distribution that are expected
from theory will map to a measured cosmological signal
with jagged, rapidly fluctuating spectra.When these spectral
differences are considered in conjunction with instrumental
characteristics, one can identify an “EoR window": a region
in Fourier space where power spectrum measurements are
expected to be relatively free from foregrounds [27,32–36].
This is shown schematically in Fig. 1, where we have used
early Murchison Widefield Array (MWA) data to estimate
the power spectrum as a function of k⊥ (Fourier mode
perpendicular to the line of sight) and k∥ (Fourier mode par-
allel to the line of sight). More details regarding this figure
are provided in Sec. III; for now we simply wish to draw
attention to the existence of a relatively contaminant-free
region in the middle of the k⊥-k∥ plane. This clean region
is what we denote the EoR window.
The EoR window is generally considered the sweet spot

for an initial detectionof the cosmological 21cmpower spec-
trum, and constraints are likely to degrade away from the
window. At high k⊥ (i.e., the finest angular features on
the sky), errors increase due to the angular resolution limi-
tations of one’s instrument. For an interferometer, this reso-
lution is roughly set by the length of the longest baseline.
Conversely, the shortest baselines define the largest modes
that are observable by the instrument. Errors therefore also
increase at the lowest k⊥where again there are fewbaselines.
A similar limitation defines the boundary of the EoRwin-

dow at high k∥. Since the spectral nature of 21 cm measure-
ments mean that different observed frequencies map to
different redshifts, the highest k∥ modes are inaccessible
due to the limited spectral resolution of one’s instrument.
At low k∥, one probes spectrally smooth modes—precisely
those that are expected to be foreground contaminated. Thus
there is another boundary to the EoR window at low k∥.
A final delineation of the EoR window is provided by the

region labeled as the “wedge" in Fig. 1. The wedge feature
is a result of an interplay between angular and spectral
effects. Simulations have shown that the wedge is the effect
of chromaticity in one’s synthesized beam (which is inevi-
table when an interferometer is used to survey the sky).
This chromaticity imprints unsmooth spectral features on
measured foregrounds, resulting in foreground contamina-
tion beyond the lowest k∥ modes even if the foregrounds
themselves are spectrally smooth. Luckily, this sort of addi-
tional contamination follows a reasonably predictable pat-
tern in the k⊥-k∥ plane, and in the limit of intrinsically
smooth foregrounds, the wedge can be shown to extend
no farther than the line

k∥ ¼
�
sin θfield

DMðzÞEðzÞ
DHð1þ zÞ

�
k⊥; (1)

where DH ≡ c=H0, EðzÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þΩΛ

p
, DMðzÞ≡R

z
0 dz

0=Eðz0Þ, θfield is angular radius of the field of view, and
c, H0, Ωm, and ΩΛ have their usual meanings [32–35].
Intuitively, the foreground-contaminated wedge extends
to higher k∥ at higher k⊥ because the high k⊥ modes are
probed by the longer baselines of an interferometer array,
which have higher fringe rates that more effectively imprint
spectral structure in the measured signals. For an alternate
but equivalent explanation in terms of delay modes, please
see the illuminating discussion in Parsons et al. [27].

FIG. 1 (color online). The “EoR window," a region of Fourier
space with relatively low noise and foregrounds, is thought to
present the best opportunity for measuring the cosmological
21 cm power spectrum during the epoch of reionization. Here
we show an example power spectrum from early MWA data,
as a function of k⊥ (Fourier components perpendicular to the line
of sight) and k∥ (Fourier components parallel to the line of sight).
More details on how we have calculated and plotted Pðk⊥; k∥Þ are
found in Sec. III. We schematically highlight the instrumental and
foreground effects that delimit the EoR window—the coldest part
of this power spectrum. At low and high k⊥, measurements are
limited by an instrument’s ability to probe the largest and smallest
angular scales, respectively. Limited spectral resolution causes
similar effects at the highest k∥. As spectrally smooth sources,
foregrounds inhabit primarily the low k∥ regions. Thanks to chro-
matic instrumental effects, however, there is a slight encroach-
ment of foregrounds towards higher k∥ at higher k⊥, in what
has been colloquially termed the “wedge" feature.
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The concept of an EoR window is important in that it
provides relatively strict boundaries that separate fairly
foreground-free regions of Fourier space from heavily
foreground-contaminated ones. It therefore provides one
with the option of practicing foreground avoidance rather
than foreground subtraction. If it turns out that foregrounds
cannot be modeled well enough to be directly subtracted
with the level of precision required to detect the cosmologi-
cal signal, foreground avoidance becomes an important alter-
native, in that the only way to robustly suppress foregrounds
is to preferentially make measurements within the EoR win-
dow. Likely, some combination of the two strategies—
foreground subtraction and foreground avoidance—will
prove useful for the detection of the 21 cm power spectrum.
Of course, measurements within the EoR window are still
contaminated by instrumental noise, but fortunately the noise
integrates down with further observation time (as long as cal-
ibration errors and other instrumental systematics can be suf-
ficiently minimized). Observationally, it is encouraging that
the EoR window has now been shown to be free of fore-
grounds to better than one part in a hundred in power [13].
As experimental sensitivities increase, however, one

must take care to preserve the cleanliness of the EoR win-
dow to an even higher dynamic range. There are several
ways in which our notion of the EoR window may be com-
promised. First, as experiments integrate in time and
acquire greater sensitivity, we may discover that our
approximation of spectrally smooth foregrounds is insuffi-
ciently good for a detection of the (faint) cosmological sig-
nal. In other words, foreground sources may have small but
non-negligible high k∥ components in their spectra that
have thus far gone undetected. This would translate into
a smaller-than-expected EoR window. In addition, even
intrinsically smooth foregrounds may appear jagged in a
real measurement because of instrumental effects such as
imperfect calibration. The precise interferometer layout
may also result in unsmooth artifacts that arise from com-
bining data from nonredundant baselines [37]. Finally, sup-
pose that the aforementioned effects are negligible and that
the assumption of spectrally smooth foreground emission
continues to hold. The EoR window still cannot be taken
for granted because nonoptimal data analysis techniques
may result in unwanted foreground artifacts in the region.
For the EoR window to exist at all, it is essential that power
spectra are estimated in a rigorous fashion, with well-
understood statistics.
The goal of this paper is to minimize unwanted data

analysis artifacts by establishing methods for power spec-
trum estimation that are both robust and as optimal as pos-
sible. Previous efforts have rarely met both criteria: either
the methods are robustly applicable to data with real-world
artifacts but fail to achieve optimized (or even rigorously
computable) error properties, or provide an optimal frame-
work but ignore real-world complications. In this paper we
extend the rigorous framework described in Liu and

Tegmark [29] and Dillon et al. [30] to deal with real-world
effects. The result is a computationally feasible approach to
analyzing real data that not only preserves the cleanliness of
the EoR window, but also rigorously keeps track of all rel-
evant error statistics.
To demonstrate the applicability of our approach, we

apply our techniques to early data from the Murchison
Widefield Array (MWA). These data were derived
from ∼22 hours of tracked observations using an early,
32-element prototype array. The results are therefore not
designed to be cosmologically competitive, but instead
illustrate the rigor that will be required for an eventual
detection of the EoR while also providing new measure-
ments on the “wedge" feature that delineates the EoR
window.
This paper is organized as follows. In Sec. II we discuss

various real-world obstacles that must be dealt with when
analyzing real data, and how one can overcome them while
maintaining statistical rigor. We then apply our methods to
MWA data in Sec. III as a “worked example”, highlighting
the importance of various subtleties of power spectrum esti-
mation. In Sec. IV we present some results from the data,
emphasizing the agreement between theoretical expecta-
tions and our observations of the foreground wedge
(particularly regarding the frequency dependence of the
wedge). We also present upper limits on the cosmological
21 cm power spectrum over the broad redshift range of
z ¼ 6.2 to z ¼ 11:1. Finally, we summarize our conclu-
sions in Sec. V.

II. SYSTEMATIC METHODS FOR DEALING
WITH REAL-WORLD OBSTACLES

To understand the gap between an analysis framework
for idealized observations and any real-world data set,
we enumerate and address six different obstacles that rather
universally affect real data. Our goal in this section is to
meet the challenges presented by these obstacles while
maintaining as many of the advantages of the optimal
framework as possible, which we reiterate in Sec. II A,
especially the ability to minimize and precisely quantify
the uncertainties in the measurements. In the following
sections, we address the problems presented by large data
volumes (Sec. II B), uncertainties in the properties of con-
taminants such as foregrounds (Sec. II C), incomplete uv
coverage (Sec. II D), radio frequency interference (RFI)
flagging (Sec. II E), foreground leakage into the EoR win-
dow (Sec. II F), and binning to spherically averaged power
spectra (Sec. II G).

A. A systematic framework for analyzing
idealized observations

In this section, we briefly review the formalism of Liu
and Tegmark [29] for optimal power spectrum estimation,
which was adapted for 21 cm tomography from similar
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techniques used in galaxy survey and cosmic microwave
background analysis [38–41]. For now, we do not include
real-world effects such as missing data from RFI flagging,
and the purpose of later sections is to extend the formalism
to take into account these complications.
In 21 cm tomography, one typically wishes to measure

both the spherically-binned power spectrum PsphðkÞ,
defined by

h ~T�ðkÞ ~Tðk0Þi≡ ð2πÞ3PsphðkÞδðk − k0Þ; (2)

and the cylindrically binned power spectrum Pcylðk⊥; k∥Þ,
defined by

h ~T�ðkÞ ~Tðk0Þi≡ ð2πÞ3Pcylðk⊥; k∥Þδðk − k0Þ; (3)

with ~TðkÞ signifying the spatial Fourier transform of the
21 cm brightness temperature field TðrÞ, k denoting the
spatial wave vector with magnitude k, and components
k⊥ and k∥ as the components perpendicular and parallel
to the line of sight, respectively. The angled brackets
h� � �i represent an ensemble average. The spherical power
spectrum is useful for comparing to theoretical models,
since it is obtained by angularly averaging over spherical
shells in Fourier space, and thus makes the cosmologically
relevant assumption of isotropy. The cylindrical power
spectrum is useful for identifying instrumental and fore-
ground effects, which possess a cylindrical symmetry rather
than a spherical one. Typically, the cylindrical power spec-
trum is produced first as a tool for foreground isolation
(i.e., to identify the EoR window), and then subsequently
binned into a spherical power spectrum. This section
concerns the estimation of the cylindrical power spectrum.
Optimal binning techniques to go from the cylindrical
spectrum to the spherical spectrum are discussed in
Sec. II G.
In estimating a power spectrum from data, one must nec-

essarily discretize the problem.We make the approximation
that the power spectra are piecewise constant functions,
such that we can describe them in terms of a vector of band-
powers with components pα, where

pα ≡ Pcylðkα⊥; kα∥Þ: (4)

It is the bandpowers and their error properties that one
wishes to estimate from the data, which come in the form
of a data vector x. Intuitively, one can think of the data vec-
tor as a list of the 21 cm brightness temperatures measured
at various locations in a three-dimensional “data cube."
Rigorously, we define each element of the data vector
(i.e., each voxel of the data cube) as

xi ≡
Z

TðrÞψ iðrÞd3r; (5)

with ψ iðrÞ being the pixelization kernel and TðrÞ as the
(continuous) three-dimensional 21 cm brightness tempera-
ture field1. In this paper we take the ith pixelization kernel
ψ iðrÞ to be a boxcar function centered on the ith voxel of
the data.2

To estimate the αth bandpower from the data vector, we
first form a quadratic estimator of the form

qα ≡ 1

2
ðx −mÞtC−1C;αC−1ðx −mÞ

−
1

2
tr½CjunkC−1C;αC−1�; (6)

where m≡ hxi is the mean of the data, C≡ hxxti −
hxihxit is its covariance, Cjunk is the component of the
covariance “junk"/contaminants (to be defined in the
following section), and C;α is the derivative of the covari-
ance with respect to the αth bandpower. Since we are
approximating the power spectrum as piecewise constant,
we have

C ¼ Cjunk þ
X
α

pαC;α: (7)

Combined with Eq. (5), this expression can be used to
derive explicit forms for C;α, which reveals that the matrix
essentially Fourier transforms and bins the data [29,30].
Intuitively,C;α can be thought of as the response in the data
covariance C to the bandpower pα. Thus, as long as one
selects an appropriate form for C;α, the formalism of this
section can also be used to directly measure the spherical
power spectrum. However, as we discussed above, in this
paper we choose to first estimate the cylindrical power
spectrum as an intermediate diagnostic step, to quantify
and mitigate foregrounds better.
Once the qαs have been formed, they need to be normal-

ized using a suitable invertible matrix M to form the final
bandpower estimates:

p̂ ¼ Mq; (8)

where we have grouped the bandpower estimates p̂α into a
vector p̂ (and similarly grouped the coefficients qα and q),
with the hat (̂) signifying the fact that we have formed an

1Of course, instrumental noise and foregrounds do not prop-
erly reside in a cosmological three-dimensional volume: noise is
introduced in the electronics of the system, whereas foregrounds
are “nearby” and only appear in the same location in the data cube
as our cosmological signal by virtue of their frequency depend-
ence. However, there is a gain in convenience and no loss of
generality in assigning a noise and foreground contribution to
each voxel, pretending that those contaminants also live in the
observed cosmological volume.

2This choice, following [30], is motivated by the fact that the
covariance between each pixel in this basis for both noise and
foregrounds can be written in an algorithmically convenient way.
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estimator of the true bandpowers3. We shall discuss differ-
ent choices of M in Sec. II F.
To understand the uncertainty in our estimates, we com-

pute several error properties. The first is the covariance
matrix of the final measured bandpowers:

Σ≡ hp̂p̂ti − hp̂ihp̂it ¼ MFMt; (9)

where we have introduced the Fisher matrix F, which has
components

Fαβ ¼
1

2
tr½C−1C;αC−1C;β�: (10)

The Fisher matrix also allows us to relate our estimated
bandpowers p̂ to the true bandpowers p via the window
function matrix W:

hp̂i ¼ Wp; (11)

where W can be shown to take the form

W ¼ MF: (12)

If we chooseM such that the rows ofW each sum to unity,
Eq. (11) shows that each bandpower estimate can be
thought of as a weighted average of the truth, with weights
given by each row (each window function). Even with this
normalization requirement, there are still many choices for
M. We discuss the various options and tradeoffs in Sec. II F.
Whatever the choice of M, our estimator has optimal

error properties in the sense that if p̂ in Eq. (11) is used
to constrain parameters in some theoretical model, those
measured parameters will have the smallest possible error
bars given the observed data [38]. Our goal in the following
sections will be to ensure that both these small error bars
and our ability to rigorously compute them are preserved in
the face of real-world difficulties.

B. A real-world obstacle: data volume

Perhaps the most glaring difficulty presented by the ideal
technique outlined above is its computational cost. Much of
that cost arises from the inversion of the data covariance
matrix C in Eqs. (6) and (10), in addition to the multipli-
cation of C and matrices of the same size. Both of these
operations scale likeOðN3Þ, whereN is the number of vox-
els in each data vector. The computational cost makes tak-
ing full advantage of current generational interferometric
data prohibitive, not to mention upcoming observational
efforts that expect to produce 106 or more voxels of data.

One would like to retain the information theoretic advan-
tages of the quadratic estimator method and its ability to
precisely model errors and window functions, without
OðN3Þ complexity. The solution to this problem, developed
and demonstrated in [30], comes from taking advantage of
a number of symmetries and approximate symmetries of
the survey geometry and the covariance matrix, C, and
can accelerate the technique to OðN log NÞ.
The fast method relies on assembling the data into a data

cube with rectilinear voxels amenable to manipulation with
the Fast Fourier Transform. This is equivalent to the asser-
tion that each voxel represents an equal volume of comov-
ing space, an approximation that relies on two restrictions
on the data cube geometry. First, the range of frequencies
considered must be small enough that DcðzÞ (the line-
of-sight comoving distance, equal toDMðzÞ above in a spa-
tially flat universe) is linear with ν. Generally, one should
limit oneself to analyzing the power spectrum of redshift
ranges short enough that the evolution of the power spec-
trum during reionization can be neglected. This range, sug-
gested by [42] to be Δz≲ 0.5, makes the approximation of
a linear relationship between ν and DcðzÞ better than one
part in 103 at the redshifts of interest to 21 cm cosmology.
Second, the assumption of equal volume voxels relies on

the flat sky approximation. To achieve this the area sur-
veyed can be broken into a number of subfields, each a
few degrees on a side, for which the curvature of the
sky can be neglected. As long as the angular extent of
the data cube is smaller than ∼10∘, the flat sky approxima-
tion is correct to a few parts in 103.
By analyzing a rectilinear volume of the universe, all

steps in calculating the band powers qα can be performed
quickly by exploiting various symmetries and taking
advantage of the Fast Fourier Transform. The model for
C can be broken up into a number of independent matrices
representing signal, noise, and foregrounds. Each of these
models, developed by [29], is well approximated by a
sparse matrix in a convenient combination of real and
Fourier spaces [30]. As a result, multiplication of a vector
by C can be performed in OðN log NÞ. Dillon et al. [30]
showed how that speed-up can be parlayed into a method
for quickly calculating qα using the Conjugate Gradient
Method. The rapid convergence of the iterative method
for calculating C−1x can be ensured by the application
of a preconditioner which relies on the spectral smoothness
of foregrounds and the fact that they are well described by
only a few eigenmodes [22]. Then, by randomly simulating
many data vectors from the covariance C and calculating
qα from each, the Fisher matrix can be estimated from
the fact that

F ¼ hqqti − hqihqti; (13)

which follows from Eq. (9). All of this together allows for
fast, optimal power spectrum estimation—including error

3Note that q, p̂, and M live in a different vector space than x,
C, and C;α. The former are in a vector space where each com-
ponent refers to a different bandpower, whereas the latter are
in one where different components refer to different voxels.
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bars and window functions—despite the challenge pre-
sented by an enormous volume of data.

C. A real-world obstacle: uncertain
contaminant properties

If one had perfect knowledge of the foreground contami-
nation in the data cube, the problem of foreground contami-
nation would be trivial; one would simply perform a direct
subtraction of the foregrounds from the data vector x.
Unfortunately, our knowledge of foregrounds is far from
perfect, particularly at the level of precision required for
a direct detection of the cosmological 21 cm signal.
Because of this, the estimator shown in Eq. (6) in fact com-
bines several different foreground subtraction steps in an
attempt to achieve the lowest possible level of foreground
contamination:

1. A direct subtraction of a foreground model from the
data vector. This is given by x −m. To see this, note
that the data vector can be thought of as being
comprised of the cosmological 21 cm signal x21,
the foregrounds xfg, and the instrumental noise n.
On the other hand, the mean data vector

m≡ hxi ¼ hx21i þ hxfgi þ hni ¼ hxfgi: (14)

contains only the foreground contribution, because we
are interested in the fluctuations of the 21 cm signal,
so the cosmological signal has zero mean, as does the
instrumental noise (in the absence of instrumental sys-
tematics). Note that because the mean here is the mean
in the ensemble average sense (as opposed to just the
spatial mean), m represents a full spatial and spectral
model of the foregrounds.

2. Since the foregrounds also appear in the covariance
matrix, the action ofC−1 is to downweight foreground-
contaminated modes, exploiting foreground proper-
ties such as smooth frequency dependence.

3. Subtracting the term 1
2
tr½CjunkC−1C;αC−1� elimi-

nates the bias from contaminants.
4. Finally, the binning of the cylindrical power spec-

trum to the spherical power spectrum provides yet
more foreground suppression. Foregrounds are dis-
tributed in select regions on the k⊥-k∥ plane
(i.e., outside the EoR window) in patterns that do

not lie along contours of constant k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ k2∥

q
.

Thus, when binning along such contours to produce
a spherical power spectrum, one can selectively
downweight parts of the contour with greater fore-
ground contamination, which constitutes a form of
foreground cleaning. Roughly speaking, this corre-
sponds to taking advantage of the fact that fore-
grounds have a cylindrical symmetry in Fourier
space, whereas the signal is spherically isotropic
[43]. We do note, however, that the formalism we

introduce in Sec. II G is general enough to use
any geometric differences between foregrounds
and signal.

Of these foreground mitigation strategies, the first and third
are direct subtractions (in amplitude and power, respec-
tively), whereas the second and the fourth act through
weightings. The former group represent operations that
are particularly vulnerable to incorrectly modeled fore-
grounds. To see this, recall that the foregrounds are
expected to be larger than the cosmological signal by three
or four orders of magnitude [10–13]. Thus, when perform-
ing direct subtractions, low-level, unaccounted-for inaccur-
acies in the foreground model can translate into extremely
large biases in the final results. In addition, significant
numerical errors may arise from the subtraction of two
large numbers (the data and the foregrounds) to obtain a
small number (the measured cosmological signal).
Our goal for the rest of the section is to immunize our-

selves against biases from direct subtractions. Of the direct
subtraction steps list above, the Step 1 is likely to be rel-
atively harmless for two reasons. First, it is immediately
followed by the C−1 downweighting. The downweighting
mitigates the effects of inaccuracies in modeling, for the
C−1 tends to gives less weight to precisely the modes that
have the largest foreground amplitudes, and therefore
would be the most susceptible to modeling errors in the first
place. In addition, the uncertainty in foreground properties
in those regions of the k⊥-k∥ plane result in large error bars
there, providing a convenient marker of the untrustworthy
parts of the plane, effectively demarcating the boundaries of
the EoR window. For these two reasons, Step 1 is unlikely
to be an issue, at least not inside the EoR window.
More worrisome is Step 3, where the power spectrum

bias of contaminants is subtracted off. If we define “con-
taminants" to be “everything but the cosmological 21 cm
signal", there are two potential sources of bias: foregrounds
and noise. The subtraction of these biases is not followed
by a downweighting analogous to the application C−1 in
Step 1. Moreover, whereas one could argue that the fore-
ground bias is likely to be large only outside the EoR win-
dow, the noise bias will spread throughout the k⊥-k∥ plane.
This noise bias will also be quite large, as current experi-
ments are firmly in the regime where the signal-to-noise is
below unity. It would therefore be advantageous to avoid
bias subtractions altogether if possible.
To avoid having to subtract foreground bias, we simply

redefine what we mean by contaminants/junk. If we modify
our mission to be one where we are measuring the power
spectrum of total sky emission instead of the power spec-
trum of the cosmological 21 cm signal, the foreground con-
tribution to the bias term no longer exists, as foregrounds
now count as part of the signal we wish to measure. Of
course, nothing has really changed, for we have simply
ignored the subtraction of the foreground bias by redefining
what we mean by “contaminants". The method is still
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optimal for measuring the power spectrum of the sky
emission—though now it will not provide the absolute best
possible limits on the EoR power spectrum. Within the
EoR window, this should result in little degradation of
our final constraints, for in this region foreground contami-
nation is expected to be negligible, and the power spectrum
of the cosmological signal should be essentially identical to
the power spectrum of total sky emission. In any case, this
is an assumption that can be checked in the final results,
and represents a conservative assumption throughout
Fourier space since foreground power is necessarily posi-
tive. As detailed low-frequency foreground observations
are conducted, it may be possible to achieve more sensitiv-
ity in foreground contaminated regions by taking advantage
of more detailed maps and developing more faithful mod-
els. This task is left to future power spectrum estimation
studies.
In contrast, escaping to the safe confines of the EoR win-

dow alone is not sufficient to eliminate the instrumental
noise portion of the bias term, for the instrumental noise
bias pervades the entire k⊥-k∥ plane. To eliminate the noise
bias, one can choose to compute not the auto-power spec-
trum of a single data cube with itself, but instead to com-
pute the cross-power spectrum of two data cubes that are
formed from data from interleaved (i.e., odd and even) time
samples. Since the instrumental noise is uncorrelated in
time, this has the effect of automatically removing the
instrumental noise bias4.
More explicitly, we can form a bandpower estimate of

the cross-power spectrum by simply computing

p̂cross
α ¼ xt

1E
αx2; (15)

where x1 and x2 are the data vectors for the two time inter-
leaved data cubes, and for notational brevity we have
defined Eα ≡ 1

2

P
βMαβC−1C;βC−1. For notational cleanli-

ness we will omit the −m term in our power spectrum esti-
mator for this section only, with the understanding that x
signifies the data vector after the best-guess foreground
model has already been subtracted. In a similar fashion,
xfg refers to the foreground residuals, post-subtraction.
To see that the cross-power spectrum has no noise bias, let

us decompose the data vectorsxi into the sumof s andni, the
signal and noise components respectively, where the signal

component has no index because it does not vary in time
(note also that following the discussion above, any true
sky emission counts as signal, so that s≡ x21 þ xfg).
Inserting this decomposition into the preceding equation
and taking the expectation value of the result gives

hp̂cross
α i ¼hðsþ n1ÞtEαðsþ n2Þi

¼hstEαsi þ hn1itEαs

þ stEαhn2i þ hn1Eαn2i
¼hstEαsi; (16)

where the last equality holds because the instrumental noise
has zero mean, i.e., hnii ¼ 0, and no cross-correlation
between different times, i.e., hn1n2i ¼ 0. The resulting esti-
mator depends only on the power spectrumof the signal, and
there is no additive bias.
Importantly, however, we emphasize that while we have

eliminated noise bias by computing a cross-power spec-
trum, we have not eliminated noise variance. In other
words, the instrumental nosie will still contribute to the
error bars. To see this, consider the variance in our estima-
tor, which is given by

Σcross
αβ ¼hp̂cross

α p̂cross
β i − hp̂cross

α ihp̂cross
β i

¼hxt
1E

αx2xt
1E

βx2i − hxt
1E

αx2ihxt
1E

βx2i (17)

The second term simplifies to

hp̂cross
α ihp̂cross

β i ¼
X
ijkl

hxi
1x

j
2ihxk

1x
l
2iEα

ijE
β
kl: (18)

Similarly, the first term is equal to

hp̂cross
α p̂cross

β i ¼
X
ijkl

hxi
1x

j
2x

k
1x

l
2iEα

ijE
β
kl

¼
X
ijkl

ðhxi
1x

j
2ihxk

1x
l
2i þ hxi

1x
k
1ihxj

2x
l
2i

þ hxi
1x

l
2ihxj

1x
k
2iÞEα

ijE
β
kl; (19)

where in the last equality we assumed Gaussian distributed
data to simplify the four-point correlation.5 Our bandpower
covariance is now

4The reader may object to this by (correctly) pointing out that
there exist errors that are correlated in time, with calibration
errors being a prime example. The result would be a cross-power
spectrum that still retained a bias. However, this does not invali-
date the cross-power spectrum approach, in the following sense.
While biases will make our estimates of the power spectrum im-
perfect, these estimate will not be incorrect—the final (biased)
power spectra will still represent perfectly rigorous upper limits
on the cosmological power, provided we are conservative about
how we estimate our error bars. We will discuss how to make
such conservative error estimates later on in this section and
in Sec. III C.

5In principle, x may exhibit departures from Gaussianity, since
foregrounds are typically not Gaussian-distributed. However, there
are several reasons to expect deviations from non-Gaussianity to
be unimportant. First, the most flagrantly non-Gaussian fore-
grounds are typically those that are bright. When we analyze real
data in Sec. III, we alleviate this problem by analyzing only a rel-
atively clean part of the sky. In addition, recall that in this section,
x represents the data after a best-guess model of foregrounds has
been subtracted from the original measurements. Thus, the crucial
probability distribution to consider is not the foregrounds them-
selves, but rather the deviations from the foregrounds, which
are likely to be better-approximated by a Gaussian distribution.
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Σcross
αβ ¼

X
ijkl

ðhxi
1x

k
1ihxj

2x
l
2i

þ hxi
1x

l
2ihxj

1x
k
2iÞEα

ijE
β
kl: (20)

The first term in this expression consists only of auto-
correlations, which contain both noise and signal:

hx1xt
1i ¼ hðsþ n1Þðst þ nt

1Þi − hsihsit ¼ SþN ¼ C;

(21)

where we have defined C to be the total data covariance
(as defined in Sec. II A), S≡ hssti − hsihsit is the sky sig-
nal covariance (as per the discussion earlier in this section),
and N≡ hn1nt

1i ¼ hn2nt
2i is the instrumental noise covari-

ance. We have assumed that there is no correlation6

between the sky emission and the instrumental noise, so
that hsnt

1i ¼ hsnt
2i ¼ 0.

The second term in our bandpower covariance consists
only of cross-correlations, and thus contains no noise
covariance:

hx1xt
2i ¼ hðsþ n1Þðst þ nt

2Þi ¼ S: (22)

Putting everything together, we obtain

Σcross
αβ ¼ tr½CEαCEβ� þ tr½SEαSEβ�: (23)

This, then, is the error covariance of our cross power
spectrum estimator. It gives less variance than the expres-
sion for the auto power spectrum, which in the notation of
this section takes the form

Σauto
αβ ¼ 2 tr½CEαCEβ�: (24)

Despite this difference between Eqs. (23) and (24), one
may conservatively opt to use the above covariance matrix
for the auto-power spectrum to estimate error bars even
when using Eq. (15) to estimate the power spectrum itself.
In fact, it may be prudent to make this choice because there
exists the possibility that the noise between interleaved time
samples may not be truly uncorrelated, making the true
errors closer to those described by Σauto. In our worked
example with MWA data in Sec. III, we will conservatively
use Eq. (24) to estimate the errors of our cross-power spec-
trum. The task of characterizing the noise properties of the
instrument thoroughly enough to eliminate this assumption
is left to future work on a larger data set.
In summary, uncertainties in noise and foreground

properties make it desirable to avoid trying to extract weak

signals by performing subtractions between two large num-
bers (the contamination-dominated data and the possibly
inaccurate contaminant models). Mathematically, the great-
est concern comes with the subtraction of the noise and
foreground biases from power spectra estimates. To deal
with the residual noise bias, one may evaluate cross-power
spectra between interleaved time samples rather than auto-
power spectra. To deal with the foreground bias, one can
conservatively elect to simply leave it in when placing
upper limits on the cosmological signal, and rely on the
robustness of the EoR window to separate out the fore-
grounds from the cosmological 21 cm signal. In effect,
one can practice foreground avoidance rather than fore-
ground subtraction, since the former (if it is sufficient
for a detection of the cosmological signal) will be more
robust than the latter in the face of foreground uncertainties.
Finally, as a brute-force safeguard, to quantify such uncer-
tainties, one can always vary the foreground model used in
power spectrum estimation, as we do in Sec. III C when we
apply our methods to the worked example of MWA data.

D. A real-world obstacle: incomplete uv-coverage

While the methods of the previous section allow one to
alleviate the effects of foreground modeling uncertainty, it
is impossible to avoid the fact that real interferometers are
imperfect imaging instruments. This is because a real inter-
ferometer will inevitably have uv-coverage that is nonideal
in two ways. First, the coverage is nonuniform, resulting in
images that have been convolved with nontrivial syn-
thesized beam kernels. Second, the uv-coverage is incom-
plete, in that certain parts of the uv-plane are not sampled at
all. The idealized methods of Sec. II A deals with neither
problem, and in this section with augment the formalism to
rectify this.
Assume for a moment that uv coverage is complete

(so that there are no “holes" in the uv-plane), but not nec-
essarily uniform. In such a scenario, one has measured an
unevenly weighted sample of the Fourier modes of the sky.
The effect of this nontrivial weighting needs to be
accounted for when measuring the power spectrum, since
uv coordinates roughly map to k⊥. A failure to do so would
therefore result in the final power spectrum estimate being
multiplied by some function of k⊥ corresponding to the uv
distribution.
Put another way, the uv distribution of an interferometer

defines its synthesized beam, the kernel with which the true
sky has been convolved in the production of our image data
cube. The equations of Sec. II A assume that this convo-
lution has already been undone. Thus, we must first per-
form this step, which in our notation may be written as

x ¼ B−1x0; (25)

where x0 represents the convolved data vector,B is the con-
volution matrix encoding the effects of the synthesized

6Note that this assumption has nothing to do with whether or
not the instrument is sky-noise dominated. A sky-noise domi-
nated instrument will have instrumental noise whose amplitude
depends on the sky temperature, but the actual noise fluctuations
will still be uncorrelated with the sky signal.
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beam, and x is the processed data vector that is fed into
Eq. (6). Note that this application of B−1 is meant to undo
only the effects of the synthesized beam, not the pri-
mary beam.
The above method assumes that the matrix B is invert-

ible. In practice, this will likely not be the case as parts of
the uv plane will be missed by the interferometer, resulting
in a singular Bmatrix. In what follows, we will present two
different ways to deal with this. The first is to modify the
equations of Sec. II A so that they accept the convolved
images (the “dirty maps") as input. Since all the statistical
information relevant to the power spectrum are encoded
in the covariance matrix, we simply have to make the
replacement

C≡ hxxti − hxihxit⟶hx0x0ti − hx0ihx0it: (26)

This amounts to

C⟶Bðhxxti − hxihxitÞBt ¼ BCBt: (27)

Of course, changing the covariance matrix also changes
C;α, and we must propagate this change. Differentiating
the preceding equation with respect to the bandpower pα

gives the substitution

C;α⟶BC;αBt: (28)

Since C;α is the response of the data covariance C to the
bandpower pα, this is simply a statement of the fact that if
our data consists of dirty maps, the revised C;α matrix
should encode the response of a dirty map’s data covariance
to the bandpower. With the substitutions given by Eqs. (27)
and (28), the rest of the equations of Sec. II A can be used
unchanged. In the limit of an invertible B matrix, it is
straightforward to show that this is equivalent to
using Eq. (25).
The second method for dealing with a singular B, which

was proposed in Ref. [30], is to replace the ill-defined
inverse matrix B−1 with a pseudoinverse given by

ΠðBþ γUU†Þ−1Π; (29)

where γ is a nonzero but otherwise arbitrary real number,
and Π is a projection matrix given by

Π≡ I − UðU†UÞ−1U†: (30)

The matrix U specifies which modes on the sky are missing
in the data as a result of unobserved pixels on the uv-plane.
It is constructed by computing the responses (on the sky) of
each unobserved uv pixel individually and storing each
response as a column of U. As an example, in the flat-
sky approximation the U matrix would have a sinusoid
in each column, corresponding to the fringes that would
have been observed by the interferometer had data not been

missing in a particular uv pixel. If these modes were
present in the covariance model (which might be the case,
for example, if the covariance were constructed by model-
ing data from a different interferometer with different uv
coverage), then the inverse covariance C−1 in our estimator
needs to be similarly replaced with the pseudoinverse:

ΠðCþ γUU†Þ−1Π: (31)

Importantly, the pseudoinverse can be quickly multiplied
by a vector using the previously discussed conjugate gra-
dient method. Its usage therefore does not sacrifice any of
the speedups that were identified in Sec. II B for dealing
with large data volumes.

E. A real-world obstacle: missing data from RFI

In any practical observation, the presence of narrowband
RFI will mean that certain RFI-contaminated frequency
channels will need to be flagged as outliers and omitted
from a final power spectrum analysis. The result, once
again, is the presence of gaps in the data, only this time
the missing modes are complete frequency channels.
However, the pseudoinverse formalism of the previous sec-
tion is quite flexible in that modes of any form can be pro-
jected out of the analysis. Thus, to correctly account for
RFI-flagged data, one simply uses the pseudoinverse in
exactly the same way as one does to account for missing
uv data.

F. A real-world obstacle: foreground leakage
into the EoR window

As Eq. (11) showed, estimates of the power spectrum are
not truly local, in the sense that every bandpower estimate
p̂α corresponds to a weighted average of the true power
spectrum, with weights specified by the window functions.
Liu and Tegmark [29] showed that these window functions
can be quite broad, particularly in regions with high fore-
ground contamination. There is thus the danger that fore-
ground power could leak into the EoR window. Because the
foregrounds are so much brighter than the cosmological
signal, even a small amount of leakage could compromise
the cleanliness of the EoR window.
Fortunately, one can exert some control over the shape of

the window functions7 by making wise choices regarding
the form of M in Eq. (8), which in turn gives the window
functions via W ¼ MF. As discussed above, M must be
chosen such that the rows of W sum to unity. Beyond that
requirement, however, an infinite number of choices are

7The term “window function" should not be confused with the
term “EoR window". The former refers to the weights that specify
the linear combination of the true bandpowers that each band-
power estimate represents, as per Eq. (11). The latter refers to
the region on the k⊥-k∥ plane that naturally has very low levels
of foreground contamination, as illustrated in Fig. 1.
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admissible. One choice would be M ¼ F−1, which gives
W ¼ I (i.e., delta function windows). This would certainly
minimize the amount of leakage into the EoR window, but
it comes at a high price: the resulting error bars on the
power spectrum measurement—the diagonal elements of
Σ from Eq. (9)—tend to be large, reflecting the data’s in-
ability to make highly localized measurements in Fourier
space when the survey volume is finite.
On the other extreme, the error bars predicted by Σ can

be shown to be their smallest possible if M is taken to be
diagonal [44]. However, this gives broader window func-
tions, for it is via the smoothing/binning effect of these
broad window functions that the small errors can be
achieved. One can also argue that the level of smoothing
dictated by this approach is excessive, since the resulting
bandpowers have positively correlated errors. (To see this,
note that up to a row-dependent normalization, the error
covariance matrix takes the form Σ ∼ F. Since all elements
of a Fisher matrix must necessarily be non-negative, this
implies that all cross-covariances of the estimated band-
powers have positively correlated errors unless F is diago-
nal, which is rarely the case).
As a compromise option, we advise M ∼ F−1=2 (again

after a normalization of each row so that the window func-
tions sum to unity). This choice gives window functions
that are narrower than those for a diagonal M while main-
taining reasonably small error bars. In addition, an inspec-
tion of Eq. (9) reveals that this method gives a diagonal Σ,
which means that errors between different bandpowers are
uncorrelated.
In Sec. III D, we use MWA data to demonstrate the cru-

cial role that the M ∼ F−1=2 choice plays in preserving the
cleanliness of the EoR window.8

G. A real-world obstacle: ensuring that binning
doesn’t destroy error properties

In previous sections, we have discussed how one can pre-
serve all the desirable properties of the power spectrum esti-
mator of Sec. II A in the face of all the real-world
complications presented in Secs. II B through II F. The
result is a rigorous yet practical estimator for the cylindrical
power spectrum Pcylðk⊥; k∥Þ. We now turn to the problem
of binning the cylindrical power spectrum into the cosmo-
logically relevant spherical power spectrum PsphðkÞ, with a

special emphasis on the preservation of the information
content of our estimator.
Just as with the cylindrical power spectrum, we parame-

trize the spherical power spectrum as piecewise constant, so
that all the information is encoded in a vector of band-
powers psph, so that:

psph
α ≡ PsphðkαÞ: (32)

The spherical bandpowers are related to estimates of the
cylindrical bandpowers p̂cyl by the equation

p̂cyl ¼ Apsph þ ε; (33)

where A is a matrix of size Ncyl × Nsph of 1s and 0s that
relates k⊥-k∥ pairs to k bins, with Ncyl and Nsph equal to the
number of cells in the k⊥-k∥ plane and the number of
spherical k bins, respectively. The vector ε is a random vec-
tor of errors on p̂cyl. It has zero mean (assuming that one
has taken the care to avoid additive bias in our estimator of
the cylindrical bandpowers, as discussed above), but non-
zero covariance equal to Σcyl ≡ hεεti, where Σcyl is given by
either Eqs. (23) or (24), depending on whether the cylin-
drical bandpowers were computed using cross or auto-
power spectra. (The methods presented in this section
are applicable either way).
Our goal is to construct an optimal, unbiased estimator of

psph from p̂cyl. This is a solved problem [45], and the best
estimator p̂sph is given by

p̂sph ¼ ½AtΣ−1
cylA�−1AtΣ−1

cylp̂
cyl; (34)

with the final error covariance on the spherical bandpowers
given by

Σsph
αβ ≡ hp̂sph

α p̂sph
β i − hp̂sph

α ihp̂sph
β i ¼ ½AtΣ−1

cylA�−1: (35)

Since the A matrix has (by construction) a single 1 per row
and zeros everywhere else, an inspection of Eq. (35) reveals
that a diagonal Σcyl implies a diagonal Σsph. In other words,
the estimator given by Eq. (34) preserves the decorrelated
nature of the M ∼ F−1=2 version of the cylindrical power
spectrum estimator defined in Sc. II F. This will not be
the case for an arbitrary estimator (such as one that is
formed from taking uniformly weighted Fast Fourier
Transforms, then squaring and binning). We also empha-
size that if one does not choose to use decorrelated cylin-
drical bandpower vectors, Eqs. (34) and (35) require that
one keep full track of the off-diagonal terms of Σ−1

cyl.
Without it, a consistent propagation of errors to the spheri-
cal power spectrum is not possible, and may even lead to a
mistakenly claimed detection of the cosmological signal, as
we discuss in Sec. III D and in Appendix A.
Just as with the cylindrical power spectra, we would like

to compute the window functions. The definition of the

8Of course, there exist other choices that are more elaborate
than the three considered in this paper. For example, with
exquisite foreground and instrumental modeling, one could imag-
ine first decorrelating to delta-function windows by setting
M ¼ F−1 in an attempt to “perfectly" contain the foregrounds
to regions outside the EoR window, and then to re-smooth the
bandpowers within the window to reduce the variance. This is
a promising avenue for future investigation, but for this paper
our goal is simply to apply the F−1=2 decorrelator to real data
(see Sec. III D) to demonstrate the feasibility of containing fore-
grounds using decorrelation techniques.
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spherical window functions are exactly analogous to that
provided in Eq. (11) for the cylindrical power spectrum,
so that

hp̂sphi ¼ Wsphpsph: (36)

Taking the expectation value of Eq. (34), we have

hp̂sphi ¼ ½AtΣ−1
cylA�−1AtΣ−1

cylhp̂cyli
¼ ½AtΣ−1

cylA�−1AtΣ−1
cylW

cylApsph; (37)

where we have used the definition of the cylindrical win-
dow functions to say that hp̂cyli ¼ Wpcyl, as well as the fact
that pcyl ¼ Apsph (with no error term because we are relat-
ing the true cylindrical bandpowers to the true spherical
bandpowers). Inspecting this equation, we see that

Wsph ¼ ½AtΣ−1
cylA�−1AtΣ−1

cylW
cylA: (38)

Therefore, by measuring the width of the spherical window
functions (rows ofWsph), one can place rigorous horizontal
error bars on the final spherical power spectrum estimate.

H. Summary of the issues

In the last few sections, we have provided techniques for
dealing with a number of real-world obstacles. These
include:

1. Taking advantage of the flat-sky approximation and
the rectilinearity of data cubes, as well as the
conjugate gradient algorithm for matrix inversion
to allow large data sets to be analyzed quickly.

2. Using cross-power spectra rather than auto-power
spectra in order to eliminate noise bias.

3. Replacing inverses with pseudoinverses to deal with
data that has missing spatial modes (due to incom-
plete uv coverage) and missing frequency channels
(due to RFI).

4. Performing power spectrum decorrelation to avoid
the leakage of foreground power into the EoR
window.

5. Binning of cylindrical power spectra into spherical
power spectra in a way that preserves desirable error
properties.

Crucial to this is the fact that these techniques all operate
under a self-consistent framework. This allows faithful
error propagation that accurately captures how various
real-world effects act together. For example, it was shown
in [30] that properly accounting for pixelization effects in
Eq. (5) results in low Fisher information at high k∥, provid-
ing a marker for parts of the k⊥-k∥ plane that cannot be
well-constrained because of finite spectral resolution.
The identification of such a region would be trivial if
one had spectrally contiguous data, for then one would sim-
ply say that the largest measurable k∥ was roughly 1=ΔL∥,

where ΔL∥ is the width of a single frequency channel
mapped into a cosmological line-of-sight distance.
However, such a straightforward analysis no longer applies
when there are RFI gaps in the data at arbitrary locations.
In contrast, the unified framework presented in this paper
allows all such complications to be folded in correctly.

III. A WORKED EXAMPLE: EARLY MWA DATA

Now that we have bridged the gap between theoretical
techniques for analyzing ideal data and the numerous chal-
lenges presented by real data, we are ready to bring together
our methods, specify a covariance model, and estimate
power spectra from MWA 32-tile prototype (MWA-32T)
data. The data were taken between the 21st and 29th of
March 2010, the first observing campaign during which
data were taken that were scientifically useful. The obser-
vations are described in more detail by [46]. Real data
affords us two opportunities. In this section, we look at
the data to examine and quantify the differences between
power spectrum estimators and the pitfalls associated with
choice of estimator. In Sec. IV, we take advantage of
everything we have developed to arrive at interesting
new foreground results and a limit on the 21 cm brightness
temperature power spectrum.

A. Description of observations

All of the data used for this paper were taken on the
MWA-32T system. This system has since been upgraded
to a 128-tile instrument (MWA-128T; Tingay et al. [47],
Bowman et al. [48] ), but in this paper we focus exclusively
on MWA-32T data, reserving the MWA-128T data for
future work.
The MWA-32T instrument consisted of 32 phased-array

“antenna tiles" which served as the primary collecting
elements. Each tile contained 16 dual linear-polarization
wideband dipole antennas which were combined to form
a steerable beam with a full width at half maximum
(FWHM) size of ∼25∘ at 150 MHz. The array had an
approximately circular layout with a maximum baseline
length of ∼340m, and a minimum baseline length of
6.6 m, although the shortest operating baseline during this
observational campaign was 16 m. After digitization, filter-
ing, and correlation, the final visibilities had a 1 second
time resolution and 40 kHz spectral resolution over a
30.72 MHz bandwidth. The instrumental capabilities are
summarized in Table I.
For our worked example, we concentrate on March 2010

observations of the MWA “EoR2” field. It is centered
located at R:A:ðJ2000Þ ¼ 10h20m0s, decl:ðJ2000Þ ¼
−10∘000″, and is one of two fields at high Galactic latitude
that have been identified by the MWA collaboration as
candidates for deep integrations, owing to their low bright-
ness temperature in low frequency measurements of
Galactic emission [10,49]. For further details about the
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observational campaign or the EoR2 field, please see
Williams et al. [46], which was based on the same set
of observations as the ones used in this paper.
Observations covered three 30.72 MHz wide bands,

centered at 123:52 MHz, 154:24 MHz and 184:96 MHz,
corresponding to a redshift range of 6.1 < z < 12:1
(the redshift range of the results presented in this work is
slightlysmallerbecauseofdata flagging) for the21cmsignal.
The 123:52 MHz and 154:24 MHz bands were observed
for approximately 5 hours each, and the 184:96 MHz band
was observed for approximately 12 hours.
These early data from the prototype have provided us

with a set of test data that enabled development of extensive
analysis methods and software on which the results of this
paper are based. The early prototype had shortcomings
(e.g., mismatched cables, receiver firmware errors, correla-
tor timing errors) that compromised the calibration to some
extent, raising the apparent noise level. Additionally, the
instrument was only operating with ≲29 tiles, and with
a 50% duty cycle throughout the course of these observa-
tions. We account for this in Sec. III C by determining the
magnitude of the noise empirically, in order to be able to
place rigorously conservative upper limits on the cosmo-
logical power spectrum. We expect that data from later
prototype campaigns and from the full array will produce
result closer to theoretical expectations.

B. Mapmaking

Before the data can be used as a worked example for our
power spectrum estimator, however, we must convert the
measured visibilities into a data cube of sky images at every
frequency in our band. In other words, we must form the
data vector x, defined by Eq. (5), which serves as the input
for our power spectrum pipeline.
To form the data vector, we performed the following

steps. First, we performed a reduction procedure similar
to that described in Williams et al. [46] for the initial
flagging and calibration of the data. Hydra Awas identified
as the dominant bright source in the field, and used for
calibration assuming a point source model. The Hydra
A source model was then subtracted from the uv data.
As this same source model was also used for gain and
phase calibration, this can be thought of as a “peeling”

source removal procedure [50–53] on a single source.
Alternatively, in the absence of gridding artifacts, this is
equivalent to imaging the point-source model and sub-
tracting it from the data as part of the direct foreground sub-
traction step discussed in the first step of Sec. II C [45].
The subtracted data were imaged using the CASA task

clean without deconvolution to produce “dirty” images. No
multi-frequency synthesis was performed, so that the full
40 kHz spectral resolution of the data would be available.
The visibilities were gridded using w-projection kernels
[54] with natural (inverse-variance) weighting to produce
maps at each frequency with a cell size of 30 over a
25:6° field of view. The resulting cubes contained ∼200
million voxels, with 512 elements along each spatial
dimension and 768 elements in the frequency domain. It
is important to note that the pre-flagging performed on
the data resulted in the flagging of entire frequency bands
(which means that there are gaps in the final data cube).
Cubes were generated for each 5 minute snapshot image.
The individual snapshot data cubes were combined using

the primary beam inverse-variance weighting method
described in Williams et al. [46]. The weighting and pri-
mary beams were simulated separately for each 40 kHz fre-
quency channel in each 5 minute snapshot. The combined
maps and weights were saved, along with the effective
point spread function at the center of the field. Two addi-
tional data cubes were created by averaging alternating
5 minute snapshots (i.e., even numbered snapshots were
averaged into one cube, and odd numbered snapshots were
averaged into the other) so that they were generated from
independent data, but with essentially the same sky and uv
coverage properties.
A further flux scale calibration of the integrated cubes

was performed using three bright point sources: MRC
1002-215, PG 1048-090, and PKS 1028-09 to set the flux
scale on a channel-by-channel basis. A two-dimensional
Gaussian fitting procedure was used to fit the peak flux
of each of these sources in each 40 kHz channel of the data
cube. Predictions for each source were derived by fitting a
power law to source measurements from the 4.85 GHz
Parkes-MIT-NRAO survey [55], the 408 MHz Molonglo
Reference Catalog [56], the 365 MHz Texas Survey
[57], the 160 MHz and 80 MHz Culgoora Source
List [58] and the 74 MHz VLA Low-frequency Sky
Survey [59]. A weighted least-squares fit was then per-
formed to calculate and apply a frequency-dependent flux
scaling for the cube to minimize the square deviations of
the source measurements from the power law models.
An additional flagging of spectral channels was per-

formed based on the root-mean-square (RMS) noise in each
spectral channel of the cube. A smooth noise model was
determined by median filtering the RMS channel noise
as a function of frequency (bins of 16 channels were used
in the filtering). Any channel with 5σ or larger deviations
from the smoothed noise model was flagged. Upon

TABLE I. MWA-32 Instrument Parameters

Field of View
(Primary Beam Width)

∼25∘ at 150 MHz

Angular Resolution ∼200 at 150 MHz
Collecting Area ∼690 m2 towards zenith at

150 MHz
Polarization Linear X-Y
Frequency Range 80 MHz to 300 MHz
Instantaneous Bandwidth 30.72 MHz
Spectral Resolution 40 kHz
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inspection, these additional flagged channels were
observed to be primarily located at the edges of the coarse
digital filterbank channels, which were corrupted due to an
error in the receiver firmware. After this procedure, approx-
imately one third of the spectral channels were found to
have been flagged.
Each individual map covered 25:6∘ × 25:6∘ at a resolu-

tion of 30 with 768 frequency channels (40 kHz frequency
resolution). To decrease the computational burden of the
covariance estimation, each map was subdivided into 9 sub-
fields, and the pixels were averaged to a size of 150. The
data cubes were mapped to comoving cosmological coor-
dinates using WMAP-7 derived cosmological parameters,
with ΩM ¼ 0.266, ΩΛ ¼ 0.734, H0 ¼ 71 km s−1 Mpc−1,
and Ωk ≡ 0 [60].
At this point, the data cubes were ready to be used as

input data to our power spectrum estimator, i.e., we had
arrived at the final form of the data vector x. However, esti-
mating power spectra and error statistics using the formal-
ism of Sec. II also requires a covariance model, which we
construct in the next section.

C. Covariance model

We follow [29] and [30] in modeling the covariance
matrix C as the sum of independent parts attributable to
noise and foregrounds. We leave off the signal covariance
because it only contributes to the final error bars by
accounting for cosmic variance—a completely negligible
effect in comparison to foreground and noise-induced
errors. We adopt a conservative model of the extragalactic
foregrounds by treating them as a Poisson random field of
sources with fluxes less than 100 Jy, after the manual
removal of Hydra A. By treating all extragalactic fore-
grounds as “unresolved," we effectively throw out informa-
tion about which lines of sight are most contaminated by
bright foregrounds. As [30] showed, future analyses can
improve on our limits by including more information about
the foregrounds. We begin with the parametrized covari-
ance model of [29],

Cunresolved
ij ¼

�
1.4 × 10−3 K

Jy

�
2
�Z

Scut

0

S2
dn
dS

dS

�

×

�
vivj
v2�

�−2−κ̄
exp

�
σ2κ̄
2

�
ln

�
vivj
v2�

��
2
�

× exp

�ðr⊥i − r⊥jÞ2
2σ2⊥

�
ðΩpixÞ−1 (39)

where ν� ¼ 150MHz is a reference frequency, νi is the fre-
quency of the ith voxel, which has an angular distance of
r⊥i from the field center. The spectral index is κ̄ ¼ 0.5, the
uncertainty in the spectral index is σκ ¼ 0.5, the clustering
correlation length is σ⊥ ¼ 70, Ωpix is the angular size of
each pixel, the flux cut Scut ¼ 100 Jy, and dn=dS is the dif-
ferential source count from [61],

dn
dS

¼ð4000 Jy−1sr−1Þ

×

8><
>:

�
S

0.880Jy

�−2.51
for S > 0:880 Jy�

S
0.880Jy

�−1.75
for S ≤ 0:880 Jy:

(40)

We adapt this model for the fast power spectrum estimation
method outlined in Sec. II B by calculating the translation-
ally invariant approximation to this model in the manner
described in [30].
For the Galactic synchrotron, we also follow [29] and

[30] for the parametrization of the synchrotron emission
covariance. Namely, we adopt κ̄ ¼ 0.8, σκ ¼ 0.1,
σ⊥ ¼ 30∘, and replace the first three terms of the covariance
in Eq. (39)with T2

synch ¼ ð335:4 KÞ2.
Our model for the instrumental noise is adopted from

[30], with one key difference: the overall normalization.
For each subband, we let the noise covariance matrix scale
by a free multiplicative constant. This is equivalent to treat-
ing the combination T2

sys=ðA2
anttobsÞ as a free parameter. We

then fit for that parameter by requiring the RMS difference
between the two time slices—which should be free of sky
signal—for the densely sampled inner region of uv space
and rescaling our noise covariance matrix to match. The
spatial structure of the covariance was left unchanged.
Even though the data is somewhat nosier than suggested
by a first principles calculation assuming fiducial values
for system temperature and antenna effective area, this
empirical renormalization allows for an honest account
of the errors introduced by instrumental effects.
To verify that our parametrization of the foregrounds was

reasonable, we varied these parameters over an order of
magnitude and found that they had little effect on our final
power spectrum estimates, except at the lowest values of k.
There are two reasons for this: first, since we are only meas-
uring the power spectrum of the sky, we need not worry
about precisely subtracting foregrounds. Second, because
the noise in our instrument is still more than two orders
of magnitude from the cosmological signal, in the EoR
window our band power measurements will be noise domi-
nated and agnostic to our foreground model. Future analy-
ses might include a more thorough treatment of the
foregrounds, especially by utilizing the full power of the
Dillon et al. [30] method to include information about
the positions, fluxes, and spectral indices of individual
point sources.

D. Evaluating power spectrum estimator choices

With both a data vector x and a covariance matrix C in
hand, we can now apply the methods of Sec. II to estimate
power spectra. In doing so, we deal with real-world
obstacles using all of the techniques that we have devel-
oped. In this section, we show why all this is necessary.
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In Sec. II F we touted the choice of power spectrum esti-
mator p̂ ¼ Mq with M ∼ F−1=2 as a compromise solution
between the choice with the smallest error bars,M ∼ I, and
the choice with the narrowest window functions,M ∼ F−1.
In the race to detect the power spectrum from the EoR, one
might be tempted to aggressively seek out the smallest pos-
sible errors. This could prove a deleterious choice, as we
will now show using MWA-32T data.
First, in Fig. 2 we compare cylindrical power spectra, p̂,

generated using two different estimators of the power spec-
trum that we presented in Sec. II F.9 On the left, we have
used M ∼ I, the estimator with the smallest error bars, and
on the right we have used M ∼ F−1=2, the estimator with

decorrelated errors. In both cases, we have plotted the abso-
lute value of the power spectrum estimates (which can be
negative because they are cross-power spectra). Because
the two estimates are related to one another by an invertible
matrix, they contain the same cosmological information.
In a sense, the M ∼ F−1=2 method is the most honest esti-
mator of the power spectrum because the band powers form
a mutually exclusive and collectively exhaustive set of mea-
surements. In other words, they represent all the all the
power spectrum information from the data, divided into
independent pieces.
Moreover, just because two sets of estimators have the

same information content does not mean that they are
equally useful for distinguishing the cosmological power
spectrum from foreground contamination. In Fig. 2, the
minimum variance estimator for the power spectrum intro-
duces considerable foreground contamination into the EoR
window, demarcated by the expected angular extent of the
wedge feature (which we introduced in Sec. I and will

FIG. 2 (color online). Unless one chooses a power spectrum estimator with decorrelated errors, foregrounds and other instrumental
effects can leak significantly into the EoR window. Here we show the absolute value of the cylindrical power spectrum estimate from
the subband centered on 158 MHz (z ¼ 8.0) and averaged over all 9 fields. On the left, we have set M ∼ I. On the right, M ∼ F−1=2.
We expect contamination from smooth spectrum foregrounds interacting with the chromatic synthesized beam to occupy the “wedge"
portion of Fourier space, defined in Eq. (1). Optimistically, the wedge is delimited by the extent of the main lobe of the primary beam;
conservatively, we should not see bright foreground contamination beyond the horizon. In the regions where the power spectrum is noise
dominated, we expect little structure in the k∥ direction in the EoR window above some moderate value of k∥. In the left panel, we see
considerably more k∥ structure in the form of horizontal bands, attributable to foreground contamination and instrumental effects, that
has leaked into the putative EoR window.

9In our comparison of choices for M, we drop the M ∼ F−1,
δ-function windows choice. In addition to proving the noisiest
estimator, it suffers from strong anti-correlated errors. We adopt
the perspective that the important comparison is between the
“obvious" choice, the minimum variance M ∼ I, and our pre-
ferred choice with decorrelated errors, M ∼ F−1=2.
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discuss in greater detail in Sec. IVA). Even highly suspect
features at high k⊥ where uv coverage is spottiest seem
to get smeared across k⊥ and into the EoR window. We
cannot simply cut out the wedge from our cylindrical-
to-spherical binning and expect a clean measurement of
the power spectrum in the EoR window.
Looking closely at Fig. 2, one might notice that some

regions of the EoR window on the left-hand panel still seem
very clean—cleaner perhaps that the same regions in the
right-hand panel. To examine that apparent fact, we plot
p̂α instead of jp̂αj in Fig. 3. To make the figure more intel-
ligible, we have plotted colors based on an sinh −1 color
scale with a sharp color division at 0. The sinh −1 has
the advantage of behaving linearly at small values of p̂α

and logarithmically at large positive or negative p̂α.
What emerges is a striking difference between the two

estimators. For the reasons discussed in Sec. II C, we have
chosen to estimate the cross power spectrum between two
time-interleaved sets of observations. As a result, we expect
that instrumental noise should be equally likely to contrib-
ute positive power as it is to contribute negative power.
In noise dominated regions of the k⊥-k∥ plane, we expect

about half of our measurements to be positive and about
half to be negative. That is exactly what we see in the
EoR window of the M ∼ F−1=2 estimator. However, the
M ∼ I estimator in the left-hand panel clearly shows pos-
itive power throughout the entire supposed EoR window.
Though the magnitude of that power is not enormous—
often it is well within the vertical error bars—the overall
bias towards positive cross power means that sky signal
is contaminating the EoR window. This is precisely the
problem we were worried about in Sec. II F and the data
have clearly manifested it.10

FIG. 3 (color online). One advantage of calculating the cross power spectrum of interleaved time slices of data is that we can easily
tell which regions of Fourier space are noise dominated. Here we reproduce the power spectra from Fig. 2 without taking the absolute
value of PðkÞ. By plotting with a discontinuous, sinh −1 color scale, it is easy to see that the EoR window for our decorrelated power
spectrum estimate (right panel) has roughly an equal number of positive and negative band power estimates—exactly what we would
expect from a noise dominated region. By contrast, our power spectrum estimate with correlated errors (left panel) shows positive power
over almost all of Fourier space, indicating ubiquitous leakage of contaminants into the EoR window.

10Of course, as we noted in Sec. II F, the choice of M ∼ F−1=2
is not unique in its ability to mitigate foreground leakage,
and other choices certainly warrant future investigation. Picking
M ∼ F−1=2 is, however, a good choice for a first attempt at
decorrelation, particularly given its various other desirable prop-
erties that we have described. The important point here is that
while M ∼ F−1=2 may not be necessarily optimal for containing
foregrounds within the wedge, our results show that it is a rea-
sonable one. In contrast, the “straightforward" approach of nor-
malizing the power spectrum with the diagonal choice M ∼ I is
clearly ill advised.
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This also explains why there appeared to be less power in
the EoR window of the left-hand panel of Fig. 2; by taking
the absolute value of the weighted average of positive and
negative quantities, we expect to measure a smaller abso-
lute value of the power. However, as this figure clearly
shows, that weighted average is biased by foreground leak-
age. And, even though there still appears to be a region just
inside the EoR window that retains positive band powers
consistent with foregrounds, that small amount of leakage
can be attributed to finite sized windows functions and to
calibration uncertainties. Regardless, it does not appear to
be an insurmountable limitation to the cleanliness of the
EoR window; rather, it suggests that we should be careful
in how we demarcate the EoR window when calculating
spherically-averaged power spectra.
In addition to producing a cleaner EoR window, the

decorrelated estimator of the power spectrum yields
another advantage: narrower window functions. Both the
estimator with the minimum variance and estimator with
decorrelated errors represent, in aggregate, the weighted
average of the true, underlying band power spectrum, as

we discussed in Sec. II A. In Fig. 4, we show the improve-
ment that the decorrelated estimator offers over the mini-
mum variance estimator by narrowing the window
functions considerably.11 We show five example window
functions from the same subband that we plot in Fig. 2,
cropped to fit together on one set of axes, each centered
at their respective peaks. Because the window functions
are normalized to sum to 1, the breadth of each window
function is reflected by the value of the central peak.
As we expected, the window functions are considerably
narrower for our decorrelated power spectrum estimator.
Even after binning from cylindrical power spectra to

spherical power spectra, the difference remains quite stark.
In Fig. 5 we see clearly that choosing a power spectrum
estimator with decorrelated errors also considerably

FIG. 4 (color online). By using an estimator of the 21 cm power spectrum with uncorrelated errors, we significantly narrow the
window functions that relate the ensemble average of our estimator to the true, underlying power spectrum. Here we show a sample
of five cropped window functions for the power spectrum estimate in Fig. 2, each centered at their maxima, for both an estimator with
correlated errors (left panel) and an estimator with uncorrelated errors (right panel). Though the estimator with correlated errors pro-
duces smaller vertical error bars, it acheives this by “over-smoothing" many band powers together. Narrow window functions let us
independently measure many modes of the power spectrum. The band power measured with M ∼ F−1=2 is one of a set of mutually
exclusive and collectively exhaustive pieces of information.

11While the choice of M ∼ F−1=2 ensures that the power spec-
trum estimator covariance is diagonal (recall, Σ ¼ MFMt while
W ¼ MF), it does not mean that the window functions are delta
functions. The off-diagonal terms of Σ might be zero even if the
off-diagonal terms of W are not.
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improves the window functions in one dimension as well
as two.
Lastly, as we mentioned in Sec. II G, one of the advan-

tages of our method is that it keeps a full accounting of the
error covariance, Σ. When M is not chosen to make Σ
diagonal, an improper accounting can lead to a suboptimal
or simply incorrect propagation of errors. In Appendix

Awe work through an example of the consequences of
assuming the independence of errors at various steps in
the analysis. This should serve as a warning of the impor-
tance of careful analysis; incorrectly assuming a diagonal Σ
can lead to unnecessarily wide window functions, an over-
estimation of errors, or—worst of all—an underestimation
of errors that could lead to an unjustified claim of a
detection.

IV. EARLY RESULTS

Having developed and demonstrated a technique that
robustly preserves the EoR window while thoroughly
and honestly keeping track of the errors on and correlations
between our band power estimates, we can now confidently
generate some interesting preliminary science results.
Because these data span the widest redshift range to date,
we are able to investigate the behavior of the wedge feature
over many frequencies. Understanding the behavior of the
EoR window over a large redshift range is important, since
there is still considerable uncertainty about the timing and
duration of the EoR. Moreover, it is often argued that a
tentative first detection of the cosmological signal will only
be convincingly distinguishable from residual foregrounds
if one can show that the 21 cm brightness temperature
fluctuations peak at some redshift, since theory predicts that
the midpoint of reionization should be marked by such a
peak [7,62]. It is therefore essential to characterize the
EoR window (and by extension, residual foregrounds) over
a broad frequency range. We also apply our methods from
Sec. II to calculate spherically averaged power spectra over
our entire redshift range, including error bars and window
functions, thus setting a limit on the 21 cm brightness tem-
perature power spectrum during the EoR.

A. The wedge

In Fig. 6, we show all the cylindrical power spectra over
the redshift range probed by our current observations. The
spectra are sorted into three rows, each of which contain
data coming from a single 30:72MHz wide frequency
band. All of the spectra were generated using the same tech-
niques that were used to generate the example cylindrical
power spectra in Sec. III D and thus contain all the desirable
statistical properties discussed in Sec. II. One sees that in
every case the foregrounds are mostly confined to the
wedge region in the bottom right corner of the k⊥-k∥ plane.
This builds upon the single frequency observations of [13],
demonstrating the existence of the EoR window across a
wide range of frequencies relevant to EoR observations.
Having these measurements also allows us to examine

the behavior of the EoR window as a function of frequency.
Consider first the high k⊥ regions of the k⊥-k∥ plane. The
most striking feature here is the wedge. Consistent with
being dominated by foreground power, the wedge generally
gets brighter with decreasing frequency within each wide
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FIG. 5 (color online). Even after optimally binning the cylin-
drical power spectra from Fig. 2 to spherical power spectra,
the choice of a power spectrum estimator with decorrelated errors
produces much narrower window functions than the minimum
variance technique. In addition to maintaining a clean EoR
window, the choice of M ∼ F−1=2 provides the additional
benefit of allowing power spectrum modes to be measured more
independently.
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frequency band, just as foreground emission is known to
behave. The extent of the wedge is also in line with theo-
retical expectations. Recall from Eq. (1) that the wider the
field of view, the farther up in k∥ the wedge goes. Since the
field of view is defined by the primary beam, whose extent
decreases with increasing frequency, one expects the wedge

to have the largest area at the lowest frequencies. This trend
is clearly visible in the cylindrical power spectra of Fig. 6,
where the wedge extends to the highest k∥ at the highest
redshifts. Importantly, the wedge is confined to its expected
location across the entire range of the observations. To see
this, note that we have overlaid Eq. (1) on the plots, with the

FIG. 6 (color online). Examining cylindrically binned power spectra for each subband (each averaged over all nine subfields), reveals
several important trends with frequency of the EoR window and the foregrounds. Each row is a single simultaneously observed fre-
quency band. Since different bands were observed for different amounts of time, direct comparisons between rows is challenging.
However, several clear trends emerge. For each band, moving to higher redshift (increasing wavelength) shows stronger foregrounds,
a larger wedge (in part due to a wider primary beam), and a noisier EoR window (due to a higher system temperature). In general the
brightest foreground contamination is well demarcated by the wedge line in Eq. (1) for the primary beam (dotted line) and especially by
the wedge line for the horizon (solid line). In short, the wedge displays the theoretically expected frequency dependence.
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dashed line corresponding to θmax equal to that of the first
null of the primary beam, and the solid line with θmax ¼
π=2 (the horizon). At all frequencies, the most serious con-
taminations lie within the first null, ensuring that the EoR
window is foreground free.
Foregrounds also enter indirectly into the instrumental

noise-dominated regions because the MWA is sky-noise
dominated. Thus, as the brightest sources of emission in
our observations, the foregrounds set the system tempera-
ture, and result in a higher instrumental noise at higher red-
shifts. This trend can be seen within each wide frequency
band (each row of Fig. 6), although the slight interruption
of this trend between bands suggests an additional source
of noise.
At low k⊥, theory suggests that foregrounds will con-

taminate a horizontally oriented region at the bottom of
the plot. This is clearly seen in the highest frequency plots.
Interestingly, at lower frequencies the increasing instru-
mental noise plays more of a role, and the foreground con-
tribution is less obvious in comparison (although it is still
there). While a naive reading of some of these low fre-
quency plots (such as the one for z ¼ 9.1) might suggest
that the EoR window extends to the lowest k∥, such a con-
clusion would be misguided. As we shall see in Sec. IV B,
these modes are likely dominated by foregrounds (and
therefore do not integrate down with further integration
unlike instrumental noise dominated modes). Moreover,
the error statistics (which self-consistently include fore-
ground errors in our formalism) suggest that low k∥ modes
are less useful for constraining theoretical models, and that
the true EoR window does in fact lie at higher k∥, as sug-
gested by theory. Again, this highlights the importance of
estimating power spectra in a framework that naturally con-
tains a rigorous calculation of the errors involved.

B. Spherical power spectrum limits

Having confirmed that the EoR window behaves as
expected, we will now proceed to place constraints on
the spherical power spectrum. In top panel of Fig. 7 we
show the result of binning the z ¼ 10:3 cylindrical power
spectrum of Fig. 6, using the optimal binning formulae pre-
sented in Sec. II G. In addition, for ease of interpretation,
we elect to plot

ΔðkÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3

2π2
PðkÞ

s
(41)

(which simply has units of temperature) rather than PðkÞ
itself.
To quantify the errors in our spherical power spectrum

estimate, we also bin the cylindrical power spectrum meas-
urement covariances and window functions using the for-
mulae of Sec. II G. The resulting window functions are
shown in the bottom panel, and give an estimate of the

horizontal error bars. Thinking of these window functions
(which, recall, are normalized to integrate to unity) as
probability distributions, the horizontal error bars shown
in the top panel are demarcated by the 20th and 80th
percentiles of the distribution. (This corresponds to the
full-width-half-maximum in the event that the window
functions are Gaussians). The vertical error bars were
obtained by taking the square root of each diagonal element
of the covariance matrix. Since the methods of Sec. II G
carefully preserved the diagonal nature of the bandpower
covariance, each data point in Fig. 7 represents a sta-
tistically independent measurement. This would not have
been the case had we not employed the decorrelation tech-
nique of Sec. II F.
Immediately obvious from the plot is that there is a

qualitative difference between the data points at low k and
those at highk. In particular, the points at lowk are detections
of the sky power spectrum, whereas the points at high k are
formal upper limits. This is not to say, of course, that the
cosmological EoR signal has been detected at low k.
Rather, recall fromSec. IIC that in anattempt to avoidhaving
to make large bias subtractions, we elected to compute
cross-power spectra of total sky emission rather than of
the cosmological signal, with the expectation (largely con-
firmed in Sec. IV A) that the intrinsic cleanliness of the
EoR window would be sufficient to ensure a relatively fore-
ground-free measurement at high k∥. Now, our survey vol-
ume is such that we are sensitive almost exclusively to
regions in Fourier space where k∥ ≫ k⊥. When binning
along contours of constant k in the cylindrical Fourier space,

we have that k≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ k2∥

q
≈ k∥, and therefore the low k

points of Fig. 7 map to low k∥. The detections seen at
low k thus reside outside the EoR window and are almost
certainly detections of the foreground power spectrum.
Despite the fact that the low k modes are foreground

dominated, they still constitute a formal upper limit on
the cosmological power spectrum, since the foreground
power spectrum is necessarily positive. In fact, our current,
most competitive upper limit resides at the lowest k values.
However, this is unlikely to continue to be the case as more
data is taken with the MWA, for two reasons. First, as fore-
ground-limited measurements, the data points at low k will
not average down with further integration time. In addition,
the error statistics in the region are not particularly encour-
aging. The window functions (and therefore the horizontal
error bars) are seen to broaden towards lower k, reducing
the ability of constraints at those k to place limits on theo-
retical models. (This is most easily seen by recalling that
the window functions integrate to unity by construction,
and thus the increase in their peak values towards higher
k implies a broadening of the window functions). The
broadening of the window functions is an expected conse-
quence of foreground subtraction [29] and thus will likely
continue to limit the usefulness of the low k regime unless
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future measurements can characterize foreground proper-
ties with exquisite precision.
In contrast, the points at high k do reside in the EoR win-

dow. The constraints here are limited by thermal noise, as
we saw in Sec. III D. Bolstering this view is the fact that the
data here are consistent with zero, as one expects for a
noise-dominated cross-power spectrum. The limits here
are given by the 2σ errors predicted by the Eq. (35). As
mentioned in Sec. III C, these errors are somewhat larger
than what might be predicted by a theoretical sensitivity
calculation. However, they are consistent with rough esti-
mates of the errors obtained from a calculation of root-
mean-square values from the images produced in
Sec. III B. This suggests that the larger-than-expected

errors are due to noisier-than-expected input maps, and
not to any approximations made in the power spectrum esti-
mation techniques presented in this paper. The data on
which these results are based are from the very first oper-
ation of the prototype array, and we expect better perfor-
mance in later data. Encouragingly, we note also that as
noise-dominated constraints, the measurements at high k
will continue to improve with integration time.
In Fig. 8, we show power spectrum limits across the entire

frequency range of the MWA, along with some theoretical
predictions generated using themodels in [63]. At the lowest
redshift, no theory curve is plotted because the model pre-
dicts that reionization is complete by then. This yet again
underscores the importance of making measurements over
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FIG. 7 (color online). Our method allows for the estimation of the spherically binned power spectrum in temperature units,ΔðkÞ, while
keeping full acount of both vertical error bars and window functions (horizontal error bars) and making an optimal choice in the tradeoff
between the two. In the top panel, we have plotted our spherical power spectrum estimates of the subband centered on 158 MHz
(z ¼ 8.0), including 1σ errors on detections (which are often only barely visible), 2σ upper limits on nondetections, and horizontal
error bars that span the middle three quintiles of the window functions (bottom panel). At low k, the wide error bars are the expected
consequence of foreground contamination [29]. Downward arrows represent measurements consistent with noise at the 2σ level. Even
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theoretical power spectrum is taken from [63].
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a broad frequency range—with access to a wide range of
redshifts, future detections of the cosmological signal can
be distinguished from residual foregrounds by measuring
null signals at redshifts where reionization is complete.
Each redshift bin of Fig. 8 exhibits trends that are quali-

tatively similar to those discussed above for the z ¼ 10:3
case. We see many apparent detections of correlations pos-
itive correlations between the two time-interleaved data
cubes—more than can be attributed to foregrounds alone.
As we saw with the cylindrically binned power spectrum in
Fig. 2, there is evidence of systematic and instrumental
effects sending foreground power into the EoR window,
leading to higher k detections and large differences between
neighboring k bins. With as new an instrument as the MWA
was at time of this observation, this issues are

understandable. The exact physical origin of those system-
atics is beyond the scope of this paper, however they should
serve as a reminder to stay vigilant for them in future data-
sets from a more battle-tested instrument. However,
because we see no evidence of strong anticorrelations
between data cubes, we expect that the extra power intro-
duced by systematics into the EoR window only the effect
of worsening the limits we can set.
Over all bands, our best limit is ΔðkÞ < 0.3K, occurring

at z ¼ 9.5 and k ¼ 0.046 c Mpc−1. However, as remarked
in Sec. III C, the lowest k bins can be rather sensitive to the
covariance model, and if one excludes those bins, our best
limit is ΔðkÞ < 2K, at z ¼ 9.5 and k ¼ 0.134 cMpc−1.
While our limits may not be quite as low as other existing
limits in the literature [24,64], they are the only limits on
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FIG. 8 (color online). Taking advantage of our fast yet thorough power spectrum estimation technique, we estimate ΔðkÞ for a wide
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the EoR power spectrum that span a broad redshift range
from z ¼ 6.2 to z ¼ 11:7. Moreover, these statistically
rigorous limits will likely improve with newer and more
sensitive data from the MWA.

V. CONCLUSIONS

In this paper, we have accomplished three goals. First,
we adapted 21 cm power spectrum estimation techniques
from Liu and Tegmark [29] and Dillon et al. [30] with
real-world obstacles in mind, so that they could be applied
to real data. With early MWA data, our generalized formal-
ism was then used to demonstrate the importance of
employing a statistically rigorous framework for power
spectrum estimation, lest one corrupt the naturally
foreground-free region of Fourier space known as the
EoR window. Finally, we used the MWA data to set limits
on the EoR power spectrum.
In confronting real-world obstacles, our desire is to pre-

serve the as much of the statistical rigor in previous matrix-
based power spectrum estimation frameworks as possible.
To avoid having to perform direct subtractions of instru-
mental noise biases, we advocate computing cross-power
spectra between statistically identical subsets of the data
(in the case of the MWA worked example of this paper,
these subsets were formed from odd and even time
samples of the data). This has the effect of eliminating noise
bias in the power spectrum, although instrumental noise
continues to contribute to the error bars. To avoid direct
subtractions of foreground biases, we simply look prefer-
entially in the EoR window, where foregrounds are
expected to be low. Missing data, whether from incomplete
uv coverage or RFI flagging, can be dealt with using the
pseudoinverse formalism. Doing this allows the effects of
missing data to be self-consistently propagated into error
statistics such as the power spectrum covariance and the
window functions. In an effort to preserve the cleanliness
of the EoR window, one should form decorrelated band-
power estimates, which have uncorrelated errors and rea-
sonably narrow window functions. Care must then be
taken to preserve these nice properties via an optimal
binning of cylindrical bandpowers into spherical
bandpowers.
Using early MWA data to demonstrate these techniques,

we have confirmed theoretical predictions for the existence
of the EoR window and have extended previous observa-
tions done by other groups to a much wider frequency
range. This allowed us to check predicted trends of the
EoR window as a function of frequency, all of which
are consistent with theory. Crucially, we found that without
using the decorrelation technology of Sec. II F, measure-
ments in the EoR window are not in fact instrumental
noise dominated, and contain a systematic bias that is
indicative of foreground leakage from outside the EoR
window.

The early MWA data has also allowed us to place limits
on the cosmological EoR power spectrum. Our best limit is
ΔðkÞ < 0.3K, at z ¼ 9.5 and k ¼ 0.046 cMpc (or ΔðkÞ <
2K at z ¼ 9.5 and k ¼ 0.134 cMpc−1 if one discards the
lowest k bin to immunize oneself against foreground mod-
eling uncertainties). This may not be competitive with other
published observations, but generalizes them in an impor-
tant way: instead of focusing on one particular frequency,
our limits span a wide range of redshifts relevant to the
EoR, going from z ¼ 6.2 to z ¼ 11:7. In addition, these
limits will almost certainly improve in the near future, using
already-collected (but yet to be analyzed) data from the
MWA-32T system, as well as soon-to-be-collected data
from the MWA-128T system. The rigorous statistical tools
developed in this paper should be equally applicable to
these newer data sets, ensuring that foreground contamina-
tion remains confined to outside the EoR window, safe-
guarding the potential of current generation experiments
to make an exciting first detection of the EoR within the
next few years.
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APPENDIX: ON THE IMPORTANCE OF
MODELING THE FULL ERROR COVARIANCE

In Sec. II G, we argued that an inverse covariance
weighted binning scheme for estimating spherical band
powers produced optimal spherical power spectrum esti-
mate. In the case where M is chosen either for the smallest
possible error bars or the narrowest possible window func-
tions, the estimator covariance Σcyl is nondiagonal.
Assuming that the matrix is actually diagonal, at one or
more steps in the binning and error propagation, can lead
error bars that are overly conservative or—worse yet—error

bars that are insufficiently conservative and might falsely
lead to a claimed detection. In Fig. 9, we show the effects
of making a suboptimal choice for binning.
If one fully models the covariance matrix Σcyl, including

off-diagonal elements, but chooses to generate p̂sph as an
inverse variance (and not inverse covariance) weighted
average of cylindrical band powers, neglecting off diagonal
terms in the weighting, one’s estimators will be noisier as a
result (see the solid lines in Fig. 9). These are the correct
errors for the suboptimal choice of estimators.
Even worse, if one assumes that Σcyl is diagonal when it is

not, one is led either to overestimate the error bars, in the
case of M ∼ F−1, or underestimate them, as would be the
case whenM ∼ I. This is because the former case generally
exhibits anticorrelated errors while the latter suffers from
correlated errors. The last scenario is the most troubling:
by aggressively choosing the estimator with the smallest
vertical error bars (M ∼ I) and then neglecting the correla-
tions between errors, one will underestimate the error bars
and might be lead to falsely claiming a detection. In this
case, the estimator is suboptimal and the errors are incorrect.
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FIG. 9 (color online). Neglecting the fact that the covariance of the power spectrum estimator is, in general, nondiagonal, can lead to
two mistakes that can either unnecessarily enlarge our error bars or, even worse, unjustifiably shrink them. In this figure, we first show an
approximately 10% increase in the vertical error bars on the power spectrum (solid lines) from a suboptimal inverse variance weighted
binning scheme, rather than the inverse covariance weighted binning of Eq. (34). This problem is obviated by choosing an estimator with
decorrelated errors and thus a diagonal covariance matrix. If one simply assumes that the estimator covariance in Eq. (35) is diagonal
when it is not (dotted lines), one is led, depending on the choice of estimator, either to roughly 50% larger error bars than necessary or,
worse yet, artificially small error bars. The last mistake, choosing an estimator with small error bars—despite its wide window functions
—and then neglecting the off-diagonal terms in the estimator covariance, is potentially the most pernicious since it could lead to a
claimed detection in the absence of signal.
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Additionally, as we show in Fig. 10, if one were to calculate
the window functions under the assumption that Σcyl is
diagonal, one would find window functions several times
boarder than they would otherwise be. Thankfully, choos-
ing the cylindrical power spectrum estimator with decorre-
lated errors avoids the subtle difference between inverse

variance and inverse covariance weighted binning.
The M ∼ F−1=2 decorrelated estimator preserves the
EoR window and allows for easy, optimal binning of uncon-
taminated regions into spherical band power spectrum
estimates.
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