PHYSICAL REVIEW A 88, 033802 (2013)

Mechanical switch for state transfer in dual-cavity optomechanical systems
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Dual-cavity optoelectromechanical systems (OEMS) are those where two electromagnetic cavities are
connected by a common mechanical spring. These systems have been shown to facilitate high-fidelity
quantum-state transfer from one cavity to another. In this paper, we explicitly calculate the effect on the fidelity
of state transfer when an additional spring is attached to only one of the cavities. Our quantitative estimates of
loss of fidelity highlight the sensitivity of a dual-cavity OEMS when it couples to additional mechanical modes.
We show that this sensitivity can be used to design an effective mechanical switch for inhibition or high-fidelity

transmission of quantum states between the cavities.
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I. INTRODUCTION

A cornerstone optomechanical device is an optical cavity
attached with a mechanical spring to one of its cavity surfaces.
The dynamical back action resulting from the coupling of the
cavity mode with the mechanical mode gives rise to a steady
state, wherein the resonance frequency of the cavity and the
spring constant of the spring are altered [1]. Rapid progress
in this field was made after the experimental demonstration of
cooling of the mechanical resonator to its quantum-mechanical
ground state [2]. The question of the utility of such a device
to store and transfer quantum states is an active area of
experimental and theoretical investigation due to the ability of
optoelectromechanical systems (OEMS) to interface between
different information processing modules. Indeed, hybrid
optoelectromechanical systems are fast becoming effective
lossless interfacing devices.

A prototype optomechanical interface device was put forth
by [3-6], which was subsequently experimentally realized [7].
The effectiveness of this interface device as a high-fidelity
quantum-state-transfer device [5] is due to the existence of
a dark state in the system Hamiltonian. This state does not
include the mechanical mode, thus minimizing loss during
state transfer. The dark state in such optomechanical systems
is quite analogous to the dark state present in atomic systems,
which exhibit the electromagnetically induced transparency
(EIT) effect. Consequently, an optomechanically induced
transparency (OMIT) effect was predicted [8] and observed [9]
in these systems. The search for quantum optics effects in
these systems has given rise to theoretical predictions of a
wide variety of phenomena, including slowing down a probe
light [10] and the electromagnetically induced absorption
(EIA) [11] effect.

In this paper, we focus on the consequences of coupling an
additional mechanical mode (spring 2) to one of the cavities of
a dual-cavity OEMS architecture (Fig. 1). Such an analysis be-
comes highly relevant when compact optomechanical sensors
like a silicon microdisk are being engineered [12] to interrogate
another mechanical motion, like the motion of a cantilever
in an atomic force microscope. The mechanical motion of
the cantilever couples to the optical modes of the microdisk,
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which can then be read out. However, the microdisk itself
supports mechanical modes of its own, whose frequencies can
match that of the cantilever under study. In such systems, it is
very pertinent to know how the microdisk’s mechanical modes
couple through its optical modes to the mechanical motion of
the cantilever. This situation maps to the architecture of a single
optical cavity coupled to two springs, which is a subset of our
dual-spring—dual-cavity architecture (Fig. 1).

We show in this paper that even one additional mechanical
mode coupled to one of the cavities in a dual-cavity OEMS
can reduce the fidelity of state transfer below 0.5. This feature
allows the use of the additional mechanical mode as a switch,
which either enables or inhibits high-fidelity state transfer
between cavities.

II. MODEL HAMILTONIAN

The dual-cavity—dual-spring system shown in Fig. 1 is
described by the Hamiltonian (& = 1)

+ Gs(ald) + axd)). (1)

The cavities represented by the annihilation operators d;
can both be optical cavities or, as is assumed in [13], one
optical cavity and one microwave cavity. The optomechanical
coupling of both the cavities with the springs a; is provided by
strong drive fields. w,, is the mechanical oscillation frequency
of the springs, which is taken to be the same for both
springs. The drive fields are red tuned with A; = —w,,. The
coupling constants are denoted by G; = c; g;, where ¢;’s are
proportional to the amplitude of the drive fields and g;’s denote
the single-photon coupling strength. g;’s are usually small,
which results in the absence of quadratic cavity annihilation
operator terms in the cavity coupling. Thus, the coupling of the
cavity modes with the mechanical modes is linear [14,15] in the
Hamiltonian. This Hamiltonian is written in a frame displaced
by the strength |¢;|?> of the drive fields and in the interaction
picture. The internal losses of the cavities are denoted by «;
and that of the springs by y;. We take the good cavity limit
with G; > k; and work in the resolved sideband regime with
Ki < Wpy.
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FIG. 1. (Color online) Schematic of the dual-spring—dual-cavity
optomechanical system. The first cavity is attached to two
springs.

In [13], the question of state transfer from cavity I to
IT was addressed when both the cavities were coupled to
a single spring. However, in realistic systems, there might
be additional mechanical modes to which the cavity modes
couple asymmetrically. In this paper, we address this question
by considering explicit coupling of the first cavity to another
spring (denoted by 2 in Fig. 1). To simplify the calculation, we
have made spring 2 identical to spring 1.
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III. DYNAMICAL EVOLUTION

For explicitly studying the dynamical evolution of both
cavity modes, we consider the hybrid scheme of [13], wherein
the couplings G; are turned on simultaneously. In the hybrid
scheme, there is equal participation of dark and bright modes
during state transfer. In our architecture, due to the additional
coupling, no dark state for the system Hamiltonian exists. In
our calculations, we consider G| = G, = G with G3 = pG,
where p is a tunable parameter.

The absence of dark modes in the system’s eigenstates
results in the mixing of cavity modes and mechanical modes
during dynamical evolution of the system. Thus the states
of the cavity modes cannot be swapped with each other due
to the contribution from mechanical modes. To explicitly
see this, we evolve the cavity modes and mechanical modes
using Heisenberg equations of motion in the absence of cavity
dissipation k; and mechanical dissipation y;. These are given
by

ht
el’w"zfﬁz(t)=az(0)(” cos (4 )ZMOS(‘*)) +4x(0)
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We see from Eq. (2a) that at all times, there is a nonvanishing
contribution of 4; to the state of the second cavity d,. To
address the question of state transfer we choose an optimum
time given by #y = 4 /h,. For values of p > 1, we have
d(t0) ~ d»(0) and d,(f9) ~ di(0). So it is clear that when
the additional mechanical mode is strongly coupled to one
of the cavity modes, the state transfer gets totally inhibited.
More importantly, we also see that the cavities retain the initial
state in which they were prepared. For small values of p and
for the particular case of p = 0, at appropriate time fy, we
find ﬁl (ty) = —32(0) and c?z(to) = —c?’l (0) (neglecting phase
factors), thus recovering the results of the hybrid scheme.

We exploit this sensitivity of fidelity to additional mechan-
ical modes in a dual-cavity OEMS to outline a design for
a mechanically mediated switch. This switch will facilitate
high-fidelity state transfer or totally inhibit it. For practical
implementation of this effect, we need an additional spring
2, whose spring constant can be varied externally. This can
be done, for example, through application of an external
voltage. Initially, spring 2 is kept floppy so that no effective
optomechanical coupling is established. Thus state transfer
between cavities proceed with high fidelity through spring
1. Then by application of an external voltage the spring

acquires a voltage-dependent stiffness which establishes ef-
fective optomechanical coupling. This, as we rigorously show
below, reduces the fidelity of state transfer. We understand
that electrostatic spring-softening and -stiffening structures
are already available in the field of micro-electro-mechanical
systems (MEMS) [16], thus making practical implementation
of this idea feasible.

Alternately, the coupling of spring 2 to cavity I can also be
modified through its single-photon optomechanical coupling

h
2mawy,

is shown in [17], it is possible t0 tune go of a cavity-spring
system through two orders of magnitude. So if we use this
architecture to fabricate our dual-cavity—dual-spring system,
then we can achieve a large tuning range for p.

In the following section, we show detailed calculations of
fidelity for intracavity state transfer for input Gaussian states
in cavity I in our dual-spring—dual-cavity architecture (Fig. 1).

cavlty

o, .
parameter gy, where go = xzpp , With xzpp = As

IV. FIDELITY CALCULATION FOR INPUT
GAUSSIAN STATES

In this section, we give the details of our calculations and
present the results for transfer fidelity for input Gaussian states.
The input states are represented using Wigner functions, and
their dynamical evolution is calculated using the Lindblad

033802-2



MECHANICAL SWITCH FOR STATE TRANSFER IN DUAL- ...

model for dissipation. The cavity and spring systems are
assumed to be in a bath at temperature 7. The bath modes
couple to the system modes, giving rise to the density matrix R,

which evolves according to the equation R = —i[H,R]. The
reduced density matrix g, corresponding to the resonator and
cavity modes, is obtained upon tracing out the bath degrees of
freedom. p is expressed using the quadrature modes of cavity

(¢) and resonator (m) as X7 = (£c,,Pers - - - +Xmys Pmy)> With
- - ¥, oot

~  _ ditdp o _ ata A Ldi—d, A _ . Qi +ay,
c — T 13 s Xmy = 2 and Pey = —1 2 Pm = —1 2

where k can be 1/I or 2/II. The effective master equation
for the reduced density matrix corresponding to the bilinear
Hamiltonian form is given by
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J

2

3)
D(0)p =20p0" — 010p — pO'0 is the Lindblad super-
operator. L/TX corresponds to the mode annihilation operators
of both the cavities and the springs. I';_ denotes the rate
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of loss or amplification of energy from the bath into the
system’s jth mode, where j can be cy/i(m1,2), corresponding
to the first or second cavity (mechanical resonator). We
consider the symmetric-cavity case of x| = k, = k. We also
consider similar decay parameters for both the springs with
y1 = y» = y. For simplicity, we consider the average number
of thermal quanta exchanged by both the cavities with the
bath to be the same. The same holds true even for the
springs, i.e., N, = No, = N, and N,,, = N,,, = N,,,. With
these parameters, wehave I',, - = Nk, Iy, = Npy, T =
(Ne + Dk,and Ty = (N + Dy
We express the initial single-mode Gaussian state in cavity
I as a Wigner function W;(X). The Wigner function is
characterized by the first moment of the mode quadratures X
and their covariance matrix o ;. From Eq. (3), one can evolve
X and o as
dXx _
Tl oXx,

The matrices Q and N are given by

%:QG-FO'QT-FN. 4)

0 pG
—-pG 0
0 0
0 0 1. _ _
0 0 , /\/:ZDlag{lc,lc,lc,lc,y,y,y,y}, 3)
0 0
-v/2 0
0 —v/2

which is a diagonal matrix, with ¥k = k(2N, + 1) and y = y(2N,, + 1). The matrix Q is responsible for the evolution of the
system under the Hamiltonian including the intrinsic damping terms, while the matrix A consists solely of the bath parameters
that determine the effect of the bath on the system. Evolving the initial state W;(X), using Egs. (3)—(5), we arrive at the final state
W (X) at time 1y in cavity II. The fidelity between these initial (i) and final ( f) single-mode Gaussian states is given by

F 1 22 62)
= exp| — , a
Tvm P\ T4m,
ny = 2/Detlo; +07] — 1, (6b)
- — JDetlo; +07] — -
V=X -X)- Y¥—1 . X;-Xy). 6¢
(X f) o +o; (X; f) (6¢)
For simplicity, we consider the initial state to be a squeezed state given by
la,r) = D(@)8(r)|0), (7)
with
8() = exp ( =d2 — Zd?), (8)
2 2!
where r is real and
D(a) = exp(ozciir —a*d), 9)
with o = |a|e’?. Therefore the covariance matrix and first moment of the quadratures are given by
— || cos ¢ 1/e” 0
X;= . ) 0 = — |- (10)
|| sin ¢ 4\ 0 e’
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FIG. 2. (Color online) (a) Fidelity F, (b) amplitude decay A, and (c) heat exchange with the bath 7, as a function of coupling strength %

These graphs are drawn for an initial squeezed state with squeezing parameter r = 1, with |e| = 1, ¢ = %, and with p =5 (thick blue solid

line). In all three graphs a comparison plot is drawn for p = 0 (red dashed line), which is the case where the extra spring 2 is absent. The
graphs are plotted for experimentally realizable parameters, which are y = S—IOK =2 x 1 kHz and w,, = 27 x 10 MHz with the symmetric

cavity condition, i.e., N = Ny = N, calculating for wcuiy = 27 x 10 GHz at Ty, = 1.5 K.

Based on the mathematical formulation outlined above, we calculate the first moment and covariance matrix for the output state

These work out to be

Yf :ekttyto( 1+A )Yh
Va4 + pt
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[ e S sin?(Mehydt, Tn, = [
and Cj respectively, we have

C
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We see from the graph for fidelity [Fig. 2(a)] that, with
the additional spring, the fidelity falls to values below 0.3
for strong couplings over a wide range. The loss of fidelity is

4

sin(%) and the integrals Z;, =

Cs

13)

(e”" cos’> ¢ + e~ sin’ ¢>):|. (14)

mainly due to the decay of amplitude, denoted by the parameter

A [Fig. 2(b)], rather than
denoted by 7, [Fig. 2(c)].

from heat exchange with the bath,
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FIG. 3. (Color online) (a) Fidelity F, (b) A, and (c) n;, as a function of coupling strength % for a coherent state with » = 0, « = 1 and for
p =5 (thick blue solid line). Shown also in each graph is a plot for p = 0 (red dashed line), which signifies the absence of the extra spring.

The graphs are plotted for experimentally realizable parameters, where y = 2

cavity condition, i.e., N = Ny = N, calculating for @iy = 27 x 10 GHz at Ty, = 1.5 K.
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Figures 3(a)-3(c) show fidelity, amplitude decay, and heat
exchange as a function of % for state transfer from cavity I to
cavity II for an input coherent state with |o| = 1 for p = 5.
Comparing with the corresponding graphs in Fig. 2, we see
that, qualitatively, the coherent state exhibits similar features
to the squeezed state. Our calculations show that, for higher
values of p, the fidelity for coherent states reaches a limiting
value of (%)“"‘2 and is insensitive to the decay parameters of the
cavity and spring. In addition, for input coherent states, at very
low bath temperatures around O K, the heating parameter 7,
— 0, but the amplitude decay A is 20.9. These features enable
the action of the mechanical spring as a switch to function
with cavities of varying finesse and also at very low ambient
temperatures [18].
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V. CONCLUSIONS

Dual-cavity OEMS are fast becoming model systems for
high-fidelity quantum-state transfer. In this paper, we analyze
and answer the very pertinent question of the fidelity of
state transfer when one of the cavities of this model system
is coupled to an extra mechanical mode. We show that the
fidelity drops to a value below 0.5 for a wide range of values
of coupling strength and decay parameters. This highlights
the need to isolate all spurious mechanical couplings in the
design of interface optomechanical architectures. Based on our
calculations, we propose a mechanical switch which will either
enable or inhibit high-fidelity state transfer. We envisage that
the switch can be made out of state-of-the-art MEMS actuators
working on the electrostatic spring-softening mechanism.
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