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We analyze the issue of anomaly-free representations of the constraint algebra in loop quantum

gravity (LQG) in the context of a diffeomorphism-invariant Uð1Þ3 theory in three spacetime dimensions.

We construct a Hamiltonian constraint operator whose commutator matches with a quantization of the

classical Poisson bracket involving structure functions. Our quantization scheme is based on a geometric

interpretation of the Hamiltonian constraint as a generator of phase space-dependent diffeomorphisms.

The resulting Hamiltonian constraint at finite triangulation has a conceptual similarity with the �� scheme

in loop quantum cosmology and highly intricate action on the spin-network states of the theory. We

construct a subspace of non-normalizable states (distributions) on which the continuum Hamiltonian

constraint is defined which leads to an anomaly-free representation of the Poisson bracket of

two Hamiltonian constraints in loop quantized framework. Our work, along with the work done in

[C. Tomlin and M. Varadarajan, Phys. Rev. D 87, 044039 (2013)], suggests a new approach to the

construction of anomaly-free quantum dynamics in Euclidean LQG.
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I. INTRODUCTION

Loop quantum gravity (LQG) started out as an approach
to nonperturbative quantization of the gravitational field
using a classical canonical formulation of gravity as
a starting point [1,2]. The (spatial) diffeomorphism
invariance of the theory guaranteed a pretty kinematical
framework with tight analytic control rarely seen in four-
dimensional quantum field theories [3]. The initial attempts
at a formulation of the dynamics (via the implementation of
the Hamiltonian constraint) were very promising. In the
mid-nineties Thiemann proposed a quantization of the
Euclidean as well as the Lorentzian Hamiltonian constraint
in a series of remarkable papers titled ‘‘Quantum Spin
Dynamics’’[4–6]. Thiemann’s Hamiltonian constraint had
some rather intriguing properties, like UV finiteness;
however, despite this initial promise, the Hamiltonian
constraint program in canonical LQG has reached a strange
impasse. Several issues still remain open and in our
opinion it is hard to argue against the assertion that there
is no satisfactory definition of Hamiltonian constraint.
(For some very interesting recent progress in this direction
we refer the reader to [7,8].) This impasse has in turn led to
new avenues to analyze the dynamics of LQG; e.g., the
master constraint program [9,10], covariant spin foam
models (for reviews, see [11,12]), and deparametrized
dust models [13,14].

There are two primary reasons for the above assertion.
On one hand, there is no unique definition of the
Hamiltonian constraint; quantization of the Hamiltonian
constraint in LQG involves (just as for any composite
operator in any quantum field theory) an intermediate
choice of regularization. This regularization amounts to
choosing a family of loops, edges, surfaces, and certain

discrete representation-theoretic labels from which a
regularized Hamiltonian constraint operator is built.
There are an infinite number of choices for each of the
regulating structures involved, and in principle each such
choice can give rise to a distinct operator that is well
defined on the kinematical Hilbert space H kin of LQG.
This would not be a problem if the continuum limit of the
regularized constraint were independent of the regulating
structures involved. However, this is not the case, and even
the continuum Hamiltonian has an infinite-dimensional
parameter worth of ambiguity.
As the Hamiltonian constraint in canonical gravity is a

generator of the so-called Dirac algebra, a priori one might
expect that, as we require the quantum Hamiltonian con-
straint to be anomaly free (in the sense that there exists a
representation of the Dirac algebra in quantum theory),
there will be certain nontrivial restrictions on the quantiza-
tion choices mentioned above. However as it turns out, this
is not quite true: Anomaly freedom is only achieved in
LQG (in the language of gauge theories) partially on shell.
That is, one requires both the left- and the right-hand sides
of the commutator relations to trivialize on states that are
solutions to (at least some of) the constraints. This condi-
tion places relatively few restrictions on the available (and,
even in the continuum limit, distinguishable) quantization
choices. Even more worrisome, there are some very con-
crete signs that this on-shell trivialization might extend to
states which are not on shell, thus indicating some serious
problems with the definition of the quantum constraint.
In this paper, we analyze the issue in a simple three-

dimensional diffeomorphism-invariant gauge theory with
Abelian gauge group Uð1Þ3; to the best of our knowledge,
this model was first conceived by Smolin in four spacetime
dimensions [15]. Our aim is to quantize the Hamiltonian

PHYSICAL REVIEW D 88, 044028 (2013)

1550-7998=2013=88(4)=044028(38) 044028-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.88.044028


constraint of the theory (in the loop formulation) such that
it has a chance to generate an anomaly-free Dirac algebra.
In the next section, we outline what we regard as problems
with Thiemann’s Hamiltonian constraint in more detail and
outline the work done in this paper.

II. MOTIVATION AND OUTLINE

A. The issue

In this section we explain the problems with Thiemann’s
Hamiltonian constraint that we referred to in the
Introduction. The underlying issues are rather involved
and we may not be able to do justice to different points
of view which exist in the literature. We refer the reader to
[16–18] for more details.

Traditionally, the continuum Hamiltonian constraint
operator is a densely defined operator on H kin. This
is accomplished by placing a rather unusual topology
[referred to as the Uniform-Rovelli-Smolin (URS) topol-
ogy] on the space of operators in which convergence of the
one-parameter family of finite-triangulation Hamiltonian
constraint operators turns out to be an operator on H kin.
Roughly speaking, this topology is such that limit points of
any two operator sequences (indexed by finite triangulation

T) Ô1T and Ô2T which are such that

Ô1T � Ô2T ¼ ðÛð�Þ � 1ÞÔ3T (2.1)

for some diffeomorphism � 2 Diffð�Þ (where � is

the spatial manifold, and Û denotes the usual unitary
representation of Diffð�Þ on H kin), and for some

Ô3T , are identified; that is, in the URS topology,

lim T!1ðÔ1T � Ô2TÞ ¼ 0.
In this topology the commutator of two (continuum)

Hamiltonian constraints ½Ĥ½N�; Ĥ½M�� on H kin vanishes
(here N and M are scalar lapse smearing functions).
As shown in [6], there exists a quantization (at finite
triangulation) of the right-hand side of the Poisson bracket
relation (see Sec. III)

fH½N�; H½M�g ¼ V½ ~!�; (2.2)

[where V½ ~!� denotes the vector constraint smeared with
the phase space-dependent vector field !a ¼
qabðM@bN � N@bMÞ] which is of the form ðÛð�Þ �
1ÞÔ3T , whence its continuum limit in the URS topology
is zero. Thus the quantization of both the left- and right-
hand sides of (2.2) vanish. Although this was originally
taken to be a sign of internal consistency and anomaly
freedom, a closer look at the structural aspects of the
computation was performed in a series of remarkable
papers by Gambini et al. [19,20]. They looked at the
convergence of the finite-triangulation commutator se-
quence not on H kin, but on a certain distributional space
(which is an extension of the space of diffeomorphism-
invariant distributions) referred to as a habitat. Since the
habitat consists of (distributional) states which are not

diffeomorphism invariant, a priori neither the quantization
of the left-hand side (LHS) or the right-hand side (RHS) of
(2.2) is expected to be a trivial operator. However, it turned

out that dfH½N�; H½M�g is the zero operator on the habitat,
and there exists a quantization of V½ ~!� at finite triangu-
lation on H kin whose continuum limit on the habitat is
trivial. However, this vanishing of the quantization of both
the RHS and LHS of (2.2) on diffeomorphism noninvariant
states is rather unsatisfactory. Perhaps more worrisome, the
reasons for the vanishing of the LHS and RHS are entirely
different. The most transparent way to see this is given in
[20], where the authors argue that, if instead of working
with density weight one constraints, one works with higher
density constraints, but keeps the quantization choices
essentially the same, then on their habitat, the LHS will
continue to vanish, but the RHS will not, whence sug-
gesting the presence of an anomaly in the whole scheme
(we come back to this point in more detail below).

B. Our goal

Success of the canonical LQG program is defined by the
following. Starting with the (unique) diffeomorphism-
covariant representation of the holonomy-flux algebra,
does there exist a vector space V (whose elements are
linear combinations of spin network states) that is a repre-
sentation space for the Dirac algebra, in the sense that

Ûð�1ÞÛð�2Þ� ¼ Ûð�1 ��2Þ�;

½Ĥ½N�; Ĥ½M��� ¼ V̂½ ~!��;

Ûð��1ÞĤ½N�Ûð�Þ� ¼ Ĥ½��N��;

(2.3)

8� 2 V , where
(i) � is a spatial diffeomorphism (usually taken to be in

the semianalytic category) and Ûð�Þ is a represen-
tation of the diffeomorphism group on V induced
via its unitary representation on H kin and

1

(ii) Ĥ½N� is a continuum quantum Hamiltonian con-
straint operator obtained as a limit point of a net
of finite-triangulation operators defined on H kin?

We refer to (2.3), and in particular to the second equation

in (2.3), as the off-shell closure condition for Ĥ½N� [22].
Once a quantization of the Hamiltonian constraint is

found which meets the above criteria, its kernel (in V ) is
expected to give rise to the physical Hilbert space of the
theory. This is a rather ambitious aim, and it is instructive
to accomplish it in models which are, on one hand,
diffeomorphism-invariant field theories with a gauge alge-
bra being the Dirac algebra, and on the other hand, are
simpler and more tractable than gravity. Models where this

1In light of work done in [21], one could ask for a genuine
representation of Dirac algebra involving the diffeomorphism
constraint operator V̂½ ~N� instead of Ûð�Þ, but we do not attempt
this here.
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aim has been accomplished include a two-dimensional
parametrized field theory (PFT) [23,24], and the Husain-
Kuchař (HK) model2 [21]. However, the main reasons that
the constraint algebra in these models could be represented
without anomalies are the following:

(1) Two dimensions are special, in the sense that the
Dirac algebra in two-dimensional PFT is a true Lie
algebra which is isomorphic to the Witt algebra
[diffðS1Þ � diffðS1Þ]. In the HK model, the only con-
straint (apart from the Gauss constraint) is the spatial
diffeomorphism constraint, whose algebra is isomor-
phic to the Lie algebra of (spatial) vector fields.

(2) The Poisson action of constraint functionals on clas-
sical fields in these models has a clear geometric
interpretation which provided key insights into the
possible quantization choices.

Neither of the above are true in the case of canonical
gravity, and so as appealing as the results obtained in the
PFT and the HK model are, we need to see if the lessons
learned there can be applied to models which are more
closely related to canonical gravity. In this paper we propose
just such a model. It is a diffeomorphism-invariant (in fact
topological) field theory in three dimensions which can be
thought of as a weak coupling limit of three-dimensional
Euclidean gravity.3 Though the usual weak-coupling limit in
Euclidean gravity amounts to switching off self-interactions,
in this case it amounts to switching the gauge group from
SU(2) to Uð1Þ3. The canonical formulation of the theory
corresponds to the phase space of a Uð1Þ3 Yang-Mills theory
in 2þ 1 dimensions with Hamiltonian, diffeomorphism, and
Gauss constraints. On the (Gauss) gauge-invariant sector of
the phase space, the remaining constraints (Hamiltonian and
diffeomorphism) generate the Dirac algebra.

Our aim in this paper is to loop quantize this system such
that the (continuum) Hamiltonian constraint satisfies the
second equation in (2.3).4,5 However, blindly looking for a
possible quantization of the Hamiltonian constraint which
will lead to off-shell closure is a hopeless task, so we draw
upon the lessons learned in [21,23] to achieve our goal. In
order to familiarize the reader with these lessons, we
briefly recall them below.

1. Determination of the correct density weight

As explained rather beautifully in [19], if one chooses to
work with the density one Hamiltonian constraint, then no

matter what domain one chooses to take the limit of finite-
triangulation Hamiltonian constraint on, the resulting op-
erator will always have a vanishing commutator with itself
(as long as limits of the finite-triangulation commutator are
well defined). In particular, the commutator of two density
one constraints can never give rise to an operator which
could resemble a quantization of the RHS. The reason for
this is rather simple. Consider the Hamiltonian constraint
in D spatial (D � 2) dimensions:

H½N� ¼
Z
�
dDxNð1�kÞðxÞHðkÞðxÞ; (2.4)

where the superscripts indicate the density weights of the
various fields with k 2 R: The smearing function N is a
scalar density of weight (1� k) while the local

Hamiltonian density HðkÞðxÞ � qðk�2Þ=2FEE has density
weight k.6 In LQG, the quantization of H½N� proceeds by
first approximating the integral by a Riemann sum over
simplices (which constitute a triangulation T of �) and
then approximating each term in the sum by a function of
appropriate holonomies and fluxes. Typically in LQG the
‘‘fineness’’ of the triangulation is measured by a parameter
� (usually associated with the coordinate volume of a
simplex 4 in T), and a simple dimensional analysis shows
that, when one uses regulating structures of size �, the
Hamiltonian approximant at triangulation fineness Tð�Þ
reads7

HTð�Þ½N� ¼ X
42Tð�Þ

�D � ��2Dðk�2Þ=2 � ��2 � ��ðD�1Þ

� ��ðD�1Þ � Nð1�kÞðvð4ÞÞO4ðvð4ÞÞ
¼ X

42Tð�Þ
�Dð1�kÞNð1�kÞðvð4ÞÞO4ðvð4ÞÞ; (2.5)

where vð4Þ is a point in the simplex 4, and Oðvð4ÞÞ is a
function of holonomies and fluxes, constructed out of loops
and (hyper)surfaces associated to 4. Quantization choices
involved in the definition of O4ðvð4ÞÞ are such that
it has no explicit dependence on �. Thus for any d, if the
lapse N is a scalar with density weight zero (k ¼ 1), then
HTð�Þ½N� has no explicit dependence on �. Along with a

special property of Thiemann’s quantization [that the
Hamiltonian constraint operator does not act on the verti-
ces (of a spin network state) that it creates], this ensures

2The HK model is essentially canonical gravity without the
Hamiltonian constraint.

3We are indebted to Miguel Campiglia for pointing this
out to us.

4The remaining relations which are related to the diffeomor-
phism covariance properties of the Hamiltonian constraint will
be analyzed in [25].

5In the terminology of [22] we are aiming towards a quantiza-
tion of the Hamiltonian constraint which satisfies the off-shell
closure condition.

6F denotes the curvature of a connection one-form A, and E a
vector density of weight 1 conjugate to A. The metric determi-
nant q ¼ q½E� is a function of E; its specific form depends on the
number of spatial dimensions and the internal symmetry group.
See Sec. III A below for precise definitions.

7It is straightforward to verify that qD�1 	 ðdet qÞD�1 �
P2DðEÞ, where P2D is some homogeneous polynomial of degree
2D (Ea

i need not be expressible as a square matrix; this is the
case in 2þ 1 dimensions), and Ea

i gets smeared over (D� 1)-
dimensional hypersurfaces associated with Tð�Þ, hence q� �
��2D�. The (leading order) regularized F is proportional to ��2,
and the coordinate measure to �D.
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that the commutator of two density one operators vanish.
Note that as there are no explicit factors of � left in the

definition of ĤTð�Þ½N�, and so also in the commutator, a

quantization of the RHS can never arise, as it involves
derivatives of the lapse functions, which themselves re-
quire at least one factor of ��1. This observation led the
authors of [20] to conclude that one must quantize higher
density constraints in order to have explicit factors of ��1

which in the continuum limit could give rise to terms like
ðN@aM�M@aNÞ. The lesson we draw from these argu-
ments is that even though density one constraints can be
quantized on H kin, if we are interested in seeking an
anomaly-free representation of the constraint algebra,
then one needs to work with higher density constraints
(for an interesting counterpoint to this argument, see
[24]). It was also argued in [20] that, if one chose to
work with higher density constraints such that one has
enough factors of ��1 to obtain a nontrivial quantization
of V½ ~!� on the habitat, then the LHS will continue to
vanish unless the Hamiltonian constraint acts nontrivially
on the vertices that it creates.

In [23] these observations were taken seriously and
applied to two-dimensional PFT. It was shown that one
could obtain an anomaly-free representation of the Dirac
algebra if one quantized density two constraints. The key
point was to work with an appropriate density weight such
that at finite triangulation, the Hamiltonian constraint,
when written in terms of holonomies and fluxes, should
have precisely one explicit factor of ��1. In this case, the
commutator will have a factor of ð��0Þ�1, and this has the

correct dimensionality to yield a quantization of V½ ~!� in
the continuum limit.8

In the model considered in this paper, where the classical
Hamiltonian constraint is

H½N� ¼
Z
�
d2xNq��=2�ijkFi

abE
a
jE

b
kðxÞ; (2.6)

in order to quantize the constraint such that, at finite
triangulation, it has an explicit factor of ��1, we need to
choose � ¼ 1

2 , so that N needs to be a scalar density of

weight � 1
2 .

2. What should the constraint operators do?

As we mentioned above, one of the aspects which
distinguishes two-dimensional PFT and the HK model
from canonical gravity (or the model studied in this paper)
is that the Poisson action of the constraints on phase space
has a transparent geometric interpretation. In the first case,
the Hamiltonian constraint, being a generator of the Witt
algebra, is intricately linked to spatial diffeomorphisms on
S1. In the HK model, as the only constraint is the diffeo-
morphism constraint, its Poisson action on ðA; EÞ is nothing
but the Lie derivative by the shift field. These interpreta-
tions were key inputs in pinning down the quantization
choices for these constraints. The connection between the
geometric interpretation and quantization can be encoded
in the following schematic equation. Given a spin network
state�, let the corresponding classical cylindrical function
be denoted �ðAÞ. Then

Ô Tð�Þ½V�� 	 1

�
½ðFinite action generated byO½V�; parametrized by�Þ � 1��ðAÞ: (2.7)

For example, in the case of the HK model, the
quantization choices made in [21] to construct the
diffeomorphism constraint operator were such that this
operator at finite triangulation equalled D½ ~N� ¼ 1

� 

ðÛð� ~N

� Þ � 1Þ.
If we were to follow this route to find out what

quantization choices are to be made to construct Ĥ½N�,
we are forced to look for a geometric interpretation
of Poisson action of the Hamiltonian constraint. As
we show in Sec. VI, there indeed does exist such an
interpretation9:

XH½N�Ai
a � �ijkLq�1=4N ~Ej

Ak
a ffi �ijk

ð�q�1=4N ~Ej

� Þ� � 1

�
Ak
a;

(2.8)

where � refers to equality modulo Gauß law. Thus
the change in, say, A1 under the action of the
Hamiltonian vector field of H½N� equals the Lie
derivative of A3 with respect to the vector field

q�1=4N ~E2 minus the Lie derivative of A2 with respect

to the vector field q�1=4N ~E3. The second approximation
is a discrete approximant to the Hamiltonian vector
field. We will seek a quantization of H½N� at finite
triangulation which mimics this action on spin-network
states.

3. Where should the continuum limit be taken?

As the finite-triangulation Hamiltonian constraint has
an explicit factor of ��1, it cannot admit a continuum limit

9Rather remarkably this interpretation also holds for the SU(2)
case, and is likely to be important in extending this program to
Euclidean quantum gravity.

8One factor of ��1 can, in the continuum limit, give one
derivative, and hence can yield terms like N@aM�M@aN,
and the other factor is precisely the factor one needs to obtain
a quantum diffeomorphism constraint, which we expect to be
linked with Lie derivatives.
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on H kin (in any operator topology), and so the obvious
questions are, is there any admissible topology on the space
of operators, and are there any subspaces of the space of
distributions on which the continuum limit can be taken?
Once again the case of two-dimensional PFT and the HK
model provide important clues. One needs to build spaces
(or habitats as termed in [19]) by studying the specific
deformations of a spin network that the finite triangulation
constraints generate. The topology on the space of opera-
tors can then come by looking at seminorms defined by
(generalized) matrix elements of operators between these
habitat states and states in H kin. A priori, there can be
infinitely many habitats which can function as a home for
the quantum constraints. In this paper, we consider the
simplest possible habitat on which the continuum limit of
the Hamiltonian constraint exists and on which the off-
shell closure relation is to be checked. We do not know if
this habitat is physically interesting in the sense that it is a
representation space for Dirac observables. However, as
our modest aim in this paper is to see if there is an
anomaly-free representation of the Hamiltonian constraint
on some space, we leave a detailed analysis of the con-
struction of ‘‘physically interesting’’ habitats for future
research.

In the remainder of this section, we outline how we
implement the above lessons in our model and arrive at a
quantum Hamiltonian constraint which satisfies the off-
shell closure condition.

C. Outline

1. The idea of the quantum shift and the role of
inverse volume

As we want to quantize the Hamiltonian constraint at
finite triangulation such that it mimics the action in (2.8) on
charge network states,10 we need to define the quantum

counterparts of the classical vector fields q�1=4NEa
i . This is

where the loop representation throws its first surprise.
Although classically the triad fields are smooth, quantum
mechanically they turn out to be operator-valued distribu-
tions. More precisely, given any charge network state jci,
the graph of this charge network is the ‘‘locus of disconti-

nuity’’ of the q̂�1=4NÊa
i operator. Nonetheless, as we show

below, one can quantize q�1=4NEa
i in such a way that each

charge network is an eigenstate, with its spectrum belong-
ing to Tv� (where v 2 � is some vertex of the graph
underlying c). Given any charge network state jci based
on the graph �, the expectation value of q̂�1=4NÊa

i ðvÞ is
nonvanishing only if v 2 Vð�Þ; the resulting ‘‘vectors’’ at
the vertices of � will be referred to as the quantum shift
associated to that state.

2. Image of the regularized Hamiltonian constraint and
the birth of extraordinary vertices

Given a charge network state jci, the action of the
regularized Hamiltonian constraint operator produces two
generic effects:
(i) The change in the edge labels is state dependent.
(ii) A new degenerate vertex (by degenerate we mean

that the inverse volume operator acting at that vertex
vanishes) is created whose location depends on the

quantum shift hÊa
i ðvÞi.

We call such vertices extraordinary vertices. The restric-
tion of a charge network in the neighborhood of an ex-
traordinary vertex has certain invariant properties that we
enumerate below, and these help us isolate all the charge
network states which lie in the image of the regularized
Hamiltonian constraint operator.

3. Geometric interpretation of the Poisson action of the
product of Hamiltonian constraints

As the extraordinary vertices which are created by the
Hamiltonian constraint are degenerate, naively one
would expect the (regularized) Hamiltonian constraint
to act trivially at such vertices. However, this result
relies upon specific quantization choices and would
lead to an anomaly in the constraint algebra. We cure
this problem by once again taking a cue from a classical
computation.
The classical discrete approximant to the action of the

Hamiltonian vector field of H½N� on a cylindrical function
fcðAÞ creates a linear combination of cylindrical functions
with exact analogs of the extraordinary vertices mentioned
above. These vertices are located along the integral curves
of a triad-dependent vector field, so the action of a second
Hamiltonian constraint on a cylindrical function contain-
ing such vertices moves them (as such an action will have a
nontrivial effect on integral curves of phase space-
dependent vector fields). This observation helps us in
modifying the action of the Hamiltonian constraint on
extraordinary vertices, by making use of the quantization
ambiguities that are available to us due to the structure of
the loop representation.

4. Proposal for the habitat

Finally by studying the precise nature of extraordinary
vertices (that is, the deformations in a charge network
that the Hamiltonian constraint operator creates), we
propose a definition of a habitat. It is a subspace of
distributions, where each distribution is a linear combi-
nation of an infinite number of a specific class of charge
networks with coefficients being dependent on the vertex
set of the charge network. The underlying idea of this
habitat is precisely the same as that proposed in [19]
(though the habitat itself is completely different) whence
we call it a Lewandowski-Marolf-Inspired (LMI) habitat.

10We refer to the spin network states of the Uð1Þ3 theory as
charge networks [26], as the edge labels in this case are U(1)
charges.
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As we show in Appendix D, on this habitat, the regular-
ized Hamiltonian constraint admits a continuum limit.

5. Quantization of the RHS and the off-shell
closure condition

We finally demonstrate that there exists a quantization of

the RHS, V̂½ ~!� on the LMI habitat such that the continuum
limit of regularized commutators between the two

Hamiltonian constraints equals V̂½ ~!�. This is our main result.
We finally end with conclusions and highlight the open issues
and some of the unsatisfactory aspects of our construction.
Some of these issues will be analyzed in the sequel [25].

III. CLASSICAL THEORY

In this section we describe the constrained Hamiltonian
system that we aim to quantize in this paper. The algebra of
constraints that we eventually arrive at can be obtained
simply by replacing the internal gauge group SU(2) of
general relativity in connection variables with a direct
product of three commuting copies of U(1), but there is
another way, due to Smolin [15], in which one takes
Newton’s gravitational constant GN ! 0 at the level of
the action, and analyzes the resulting canonical theory.
We follow this second route.

Our starting point is the Palatini action for general
relativity in three dimensions:

SP½e;!� ¼ 1

16�GN

Z
M
d3x��	
�i

�	e
i; (3.1)

where the basic variables are a (dimensionless) cotriad ei�,

and a connection !i
� (with dimensions of inverse length)

with curvature�i
�	.GN has units of inverse momentum (in

c ¼ 1 units), and the Planck length is defined as lP ¼ ℏGN

(where ℏ as usual has units of angular momentum). Here
�; 	; . . . ¼ 0, 1, 2 are spacetime indexes (while below we
will use a; b; . . . ¼ 1, 2 as spatial indexes), and i; j; . . .
label the generators of a group G in whose Lie algebra
both e� and !� take values. ��	
 is the (e- and

A-independent) Levi-Civita tensor density of weight þ1
on the manifold M. We take the manifold M to be topo-
logically �
 R with � a closed two-dimensional
Riemann surface. For G ¼ SUð2Þ, the action is equivalent
to that of Euclidean-signature general relativity, whileG ¼
SUð1; 1Þ corresponds to Lorentzian general relativity. In
the SU(2) case,

�i
�	 ¼ 2@½�!i

	� þ �ijk!j
�!k

	; (3.2)

and setting Ai
� :¼ ð8�GNÞ�1!i

� [which has units of mo-

mentum (or mass) per length], one can rewrite the action as

SP½e;!� ¼ 1

2

Z
M
d3x��	
ð2@½�Ai

	� þ 8�GN�
ijkAj

�Ak
	Þe
i:
(3.3)

In the limit GN ! 0, we obtain the following action:

S½e;A�¼1

2

Z
M
d3x��	
Fi

�	e
i; Fi
�	 :¼2@½�Ai

	�; (3.4)

in which the SU(2) gauge symmetry

!� ! g!�g
�1 � 1

8�GN

ð@�gÞg�1 (3.5)

has become a Uð1Þ3 gauge symmetry:

Ai
� ! Ai

� � @��
i: (3.6)

A. Constraints

In this section we essentially follow [27]. Canonical
analysis of the theory defined by S reveals Ea

i
:¼ �abeib

as the momentum conjugate to Ai
a, where �

ab is the Levi-
Civita density on �, a symplectic structure given by

fAi
aðxÞ; Eb

j ðyÞg ¼ �b
a�

i
j�

ð2Þðx; yÞ; (3.7)

and first class constraints

G½�� :¼
Z

d2x�i@aE
a
i ; F½N� :¼ 1

2

Z
d2xNi�

abFi
ab;

(3.8)

where �i, Ni are Lagrange multipliers. G½�� constitutes
three U(1) Gauss constraints, and F½N� is referred to as the
curvature constraint.

Considering F½N�, when the 2-metric qab :¼ eiae
j
b�ij

has nonzero determinant detq 	 q, one may perform an
invertible phase space-dependent transformation on the
Lagrange multipliers Ni and arrive at an alternative set of
constraints that more closely resemble those that arise in
3þ 1 dimensions (for Euclidean signature and Barbero-
Immirzi parameter equal to 1). Namely, one may define
a vector field Na and a scalar density N of weight � 1

2

such that

Ni ¼ Na�abE
b
i þ Nq�1=4Ei; (3.9)

where Ei :¼ 1
2 �

ijk�abE
a
jE

b
k is the called degeneracy vector

in [27], which satisfies EiEi ¼ q and EiEa
i ¼ 0. With this

decomposition of Ni, the single curvature constraint can be
written as the sum of two constraints

F½N� ¼ V½ ~N� þH½N�; (3.10)

where

V½ ~N� :¼
Z

d2xNaFi
abE

b
i ;

H½N� :¼ 1

2

Z
d2xNq�1=4�ijkFi

abE
a
jE

b
k:

(3.11)

By subtracting a multiple of the Gauß constraint from V½ ~N�
one obtains the generator of diffeomorphisms:
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D½ ~N� :¼ V½ ~N� �G½A � ~N� ¼
Z

d2xEa
i L ~NA

i
a

¼ �
Z

d2xAi
aL ~NE

a
i : (3.12)

The Poisson algebra of constraints G½��, D½ ~N�, H½N� is
first class:

fG½��; G½�0�g ¼ fG½��; H½N�g ¼ 0; (3.13)

fD½ ~N�; G½��g ¼ G½L ~N��; (3.14)

fD½ ~N�; D½ ~N0�g ¼ D½L ~N
~N0�; (3.15)

fD½ ~N�; H½N�g ¼ H½L ~NN�; (3.16)

fH½N�; H½M�g ¼ D½ ~!� þG½A � ~!� ¼ V½ ~!�;
!a :¼ q�1=2Ea

i E
b
i ðM@bN � N@bMÞ:

(3.17)

IV. QUANTUM KINEMATICS

Here we briefly review the Hilbert space on which
the basic kinematical operators, the holonomies and
fluxes, are defined. It is in complete analogy with the
SU(2) case so we direct the reader to [16] for further
details. The kinematical Hilbert space can be defined
by specifying a complete orthonormal basis, as follows.
We refer to the basis states as charge networks,
which, like the SU(2) spin networks, are specified by
a graph with representation labels. These states are
written as

jci ¼ O3
i¼1

ON
I¼1

h
nieI
eI : (4.1)

c denotes the compound label c ¼ f�; f ~nIgNI¼1g where �
is a finite, piecewise-analytic graph embedded in �
consisting of N oriented analytic edges eI meeting at
vertices v (technically, since the usual Gelfand-
Neimark-Segal construction would provide states based
on three distinct graphs �i, i ¼ 1, 2, 3, where the charge
labels on each �i are all nonzero, we consider the graph
� to be the finest possible graph associated with the
union [i�i). Each edge eI is colored by a triplet nieI [i ¼
1, 2, 3 labeling the different U(1) copies] of integers,
which we denote in vector notation by ~nI ¼
ðn1eI ; n2eI ; n3eI Þ. By splitting edges in their interior at ‘‘triv-

ial vertices’’ (points at which � remains analytic), we
arrange that at each nontrivial vertex all edges are out-
going by reversing the orientation of appropriate seg-
ments; if a segment’s orientation is reversed by this
procedure, the corresponding charges undergo a change
of sign. On the right side of (4.1),

hieI ½A� :¼ e
i�
R

eI
Ai
adx

a

(4.2)

is the holonomy of the Uð1Þi connection Ai along
the oriented edge eI in the fundamental representation

(nieI ¼ 1), and h
nieI
eI ½A� is the holonomy in the nieI repre-

sentation (the factor of � has the same units as GN and
is needed to make the exponent dimensionless). jci will
be gauge invariant with respect to Uð1Þ3 gauge trans-
formations only if it is gauge invariant with respect to
each Uð1Þi separately, and jci is Uð1Þi gauge invariant if,
at each nontrivial vertex v, the sum of the charges

P
In

i
eI

on (outgoing) edges eI at v vanishes. The set of all
gauge-invariant charge networks provides a complete
orthonormal basis [with respect to the Ashtekar-
Lewandowski measure built from the normalized U(1)
Haar measure] for the kinematical Uð1Þ3 gauge-invariant
Hilbert space H kin.
In the connection representation, holonomies act on

charge network functions cðAÞ by multiplication, and the
densitized triads as

Êa
i ðxÞcðAÞ ¼ iℏfEa

i ðxÞ; cðAÞg ¼ �iℏ
�cðAÞ
�Ai

aðxÞ
¼ �ℏ

X
I

�Z 1

0
dtI�

ð2Þðx; eIðtIÞÞ _eaI ðtIÞ
�
nieIcðAÞ;

(4.3)

where each edge eI is parametrized by tI 2 ½0; 1�, and _eaI is
its tangent. Given a one-dimensional oriented surface L,
parametrized by s 2 ½0; 1� with tangent _La one can define
a flux operator

ÊiðLÞ :¼
Z 1

0
ds�abÊ

a
i ðLðsÞÞ _LbðsÞ: (4.4)

Its action on a holonomy functional based on an edge
which emanates from L is given by

ÊiðLÞhnie ½A� ¼ �ℏ
Z 1

0
ds�ab

_LbðsÞ



Z 1

0
dt�ð2ÞðLðsÞ; eðtÞÞ _eaðtÞnihnie ½A�

¼ 1

2
�ℏ�ðL; eÞnihnie ½A�; (4.5)

where �ðL; eÞ ¼ 1, 0 is the relative orientation L and e.
The factor of 1

2 appears because we have assumed that e

has an end point on L and evaluated one of the �
functions at the boundary of integration. If e has an end
point on the boundary of L, then an additional factor of 1

2

appears. ÊiðLÞ extends by Leibniz’s rule to charge net-
works, and we observe that it is diagonal in the charge
network basis.

V. THE ACTION OF THIEMANN’S
HAMILTONIAN CONSTRAINT

In this section we describe Thiemann’s seminal
construction of the Euclidean Hamiltonian constraint in
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LQG. As we are working in 2þ 1 dimensions, we will
summarize the construction as given in [27], and will
restrict ourselves to the Uð1Þ3 case.11 We will only focus
on the salient features of his construction which are most
relevant to us. This will help us bring out the contrast
between quantization choices we make and the choices
made in [27].

Given a graph � with a vertex set Vð�Þ, Thiemann’s
construction involves a choice of the following ingredients:

(1) A one parameter family of triangulations Tð�Þ
adapted to the graph �.

(2) An approximation of the classical smeared
Hamiltonian constraint by a suitable Riemann sum
over the simplices of Tð�Þ such that, in the limit of
shrinking triangulation, one recovers the continuum
expression.

(3) Associated to each simplex in the triangulation
which contributes to the Riemann sum, the choice
of a loop (to approximate the curvature) and a

choice of a collection of edge segments (to approxi-
mate the inverse metric determinant).

(4) The approximant to the continuum curvature is a
holonomy around the prechosen (based) loop in a
representation which Thiemann selects to be the
fundamental representation (or at least this repre-
sentation is chosen to be fixed once and for all and is
not considered to be state dependent).

Choice of Triangulation: Given a vertex v 2 Vð�Þ, let
there be n (outgoing) edges emanating from v,
fe1; . . . ; eng. Let us assume that these edges are such
that ðei; eiþ1Þ are right oriented 8 i 2 f1; . . . ; ng with
nþ 1 :¼ 1.12 Now assign to each pair ðei; eiþ1Þ a two
simplex 4iðvÞji¼1;...;n which has one of the vertices as v
and whose boundary is traversed by two segments s, s0 in
e, e0, respectively, and an (analytic) arc as;s0 between

end points of s and s0. Note that Thiemann’s choice of
triangulation is such that the Riemann sum which
approximates H½N� is given by

HTð�Þ½N� ¼ X
v2Vð�Þ

4

n

Xn
i¼1

F4iðvÞðA; E;NÞ þ Sum over simplices which do not contain vertices of�: (5.1)

Here F4iðvÞðA; EÞ is a suitable approximant toR
4iðvÞ d

3xN
ffiffiffi
q

p
�ijkFi

abE
a
jE

b
k � k written in terms of va-

rious holonomies and fluxes.13

This nice split of the Riemann sum means that upon
quantization, the sum over simplices which do not contain
vertices of � gives the zero operator. Thus

ĤTð�Þ½N� ¼ X
v2Vð�Þ

4

n

Xn
i¼1

NðvÞ dF4iðvÞðA; EÞ; (5.2)

where dF4iðvÞðA; EÞ is a composite operator built out of

holonomy operators ĥ@ð4iðvÞÞ, ĥsi , ĥsiþ1
and the volume

operator V̂ðvÞ at v. Schematically, it looks like

dF4iðvÞðA; EÞ ¼
1

�m Oðĥ@ð4iðvÞÞĥsi ĥsiþ1
; V̂ðvÞÞ; (5.3)

where the parameter � is such that the coordinate area of
4iðvÞ is Oð�2Þ and m depends on what density weight
constraint one chooses.14

We emphasize three of the four features mentioned at the
beginning of this section once again, as it will help us
illustrate the key difference between Thiemann’s regulari-
zation and the one we adopt in this paper.
(1) All the holonomies in the construction are typically

in the fundamental (or at least a state-independent)
representation.

(2) The action of this (finite-triangulation) Hamiltonian
constraint is on a state based on � results in the
addition of two new vertices and one new edge. The
locations of these vertices and edges are indepen-
dent of the colorings of the state, and only depend on
the graph.

(3) The Hamiltonian constraint has a trivial action on
the newly created vertices.15

13Usually k is chosen to be 1, but at least as far as the finite-
triangulation operator is concerned, one can be more general.
The density weight of the lapse depends on k.

12The notion of orientation is given in (Definition 4.1 of) [27].
Roughly speaking, it means that, given a pair of edges e; e0, if
upon starting at e and moving counterclockwise one encounters
e0 before encountering the analytic extension of e, then the
ordered pair ðe; e0Þ is said to be right oriented.

11Although Thiemann has defined a quantum Hamiltonian
constraint in 2þ 1 as well as 3þ 1 dimensions for the SU(2)
theory, his constructs can be trivially generalized to any compact
group, and in particular Uð1Þ3.

14Thiemann’s quantization is specific to the density one con-
straint. This is because it is only for density weight one that one
can take the continuum limit of ĤTð�Þ½N� onH kin. If one were to
work with higher density constraints (whose continuum limit
will not be a well-defined operator on H kin but on some
distributional space), the germ of Thiemann’s construction
would essentially go through except for extra factors of 1

�m

floating around.
15This statement is less obvious in two dimensions than in
three; however, in [27] it is ensured by constraining the tangent
space structure of the graph at these vertices.
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In Sec. VII D, we will see how the quantization of the
Hamiltonian constraint performed in this paper differs in
these three aspects from Thiemann’s construction.

VI. A CLASSICAL COMPUTATION

In this section we exhibit a classical computation
which motivates our proposal for the action of the quantum
Hamiltonian constraint operator at finite triangulation. We
work in this section with the density two Hamiltonian
constraint, i.e., with no power of the metric determinant
q appearing (and the lapse is a scalar density with
weight �1). This simplifies the calculation considerably,
and allows for a geometric interpretation of the action of
the constraint. Moreover, in the Uð1Þ3 quantum theory, q̂ is
just a multiple of the identity on charge networks (and
hence any power of it is also), so we expect this simplified
calculation to capture the most important ingredients of the
classical theory that we want to retain in quantization.

We are interested in the action of the density two
Hamiltonian constraint

H½N� ¼ 1

2

Z
d2xN�ijkEa

i E
b
jF

k
ab (6.1)

on cylindrical functions. First observe that the action of the
corresponding Hamiltonian vector field on the connection
can be written as

XH½N�Ai
aðxÞ :¼ fH½N�; Ai

aðxÞg ¼ ��ijkNEb
jF

k
abðxÞ

¼ �ijkLVj
Ak
aðxÞ � �ijk@aðNEb

jA
k
bðxÞÞ: (6.2)

Here Va
i
:¼ NEa

i is a phase space-dependent vector field
(of density weight zero) for each value of i. The second
term can be seen as the result of a U(1) gauge transforma-
tion, and since we will work with a basis of states
(the charge networks) that are invariant under Uð1Þ3, this
term will not contribute to the analysis. We see in (6.2)
that the action results in a linear combination of (phase
space-dependent) infinitesimal ‘‘diffeomorphisms.’’ Of
course these are not diffeomorphisms in the usual sense
since the Uð1Þ3 indexes get reshuffled.

Consider now the action of XH½N� on a holonomy

functional associated with an edge e,

h
~ne
e 	 hn

1
e

e hn
2
e

e hn
3
e

e : A ! Uð1Þ3;
A ¼ ðA1; A2; A3Þ � hn

1
e

e ½A1�hn2ee ½A2�hn3ee ½A3�;
(6.3)

where A is the space of smooth Uð1Þ3 connections. We
suppose that the vector fields Va

i have support only in some

�-neighborhood U� of sðeÞ, the source of e (as mentioned
above, in the quantum theory, which features a nontrivial
power of q̂, this is the only relevant situation, in fact with �
as small as one pleases, since q̂ acts only at the vertices of
charge networks). Using (6.2), we find (discarding the
terms coming from the total derivative)

XH½N�h
~ne
e ½A� ¼ �

�
in2e

Z
e
LV3

A1 � in3e
Z
e
LV2

A1 þ cyclic

�

 hn

1
e

e ½A1�hn2ee ½A2�hn3ee ½A3�: (6.4)

We approximate the Lie derivatives by

LVA ¼ 1

�
ðð’�

VÞ�A� AÞ þOð�Þ; (6.5)

where’�
V is a one-parameter family (parametrized by �) of

finite transformations generated by the vector field V,
ð’�

VÞ� being the pullback map. Since suppðVÞ ¼ U�,
we have

i�ne
Z
e
LVA ¼ ine

Z
s�

LVA

¼ 1

�
i�ne

Z
s�

ðð’�
VÞ�A� AÞ þOð�Þ

¼ 1

�
�

�
ine

Z
’�
V�s�

A� ine
Z
s�

A

�
þOð�Þ

¼ 1

�
ðhne

’�
V�s�

½A� � hnes� ½A�Þ þOð�Þ; (6.6)

where s� ¼ e \U� is a small segment of e lying inU� [see
Fig. 1]. Substituting in (6.4), we obtain

FIG. 1. The action of a diffeomorphism generated by the
vector field ~Vi (which is compactly supported in U�) on a
holonomy functional.
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XH½N�h
~ne
e ½A� ¼ 1

�
ððhn2e

’�
V3
�s�½A1� � hn

2
e

s� ½A1�Þ � ðhn3e
’�
V2
�s�½A1� � hn

3
e

s� ½A1�Þ þ cyclicÞhn1ee ½A1�hn2ee ½A2�hn3ee ½A3� þOð�Þ

¼ 1

�
ðhn2e

’�
V3
�s�½A1�h�n2e

s� ½A1� � 1Þhn2es� ½A1�hn1ee ½A1�hn2ee ½A2�hn3ee ½A3�

� 1

�
ðhn3e

’�
V2
�s�½A1�h�n3e

s� ½A1� � 1Þhn3es� ½A1�hn1ee ½A1�hn2ee ½A2�hn3ee ½A3� þ cyclicþOð�Þ: (6.7)

Approximating hn
i
e

s� ½A1� outside the parentheses as 1þOð�Þ, we have finally

XH½N�h
~ne
e ½A� ¼ 1

�
ðhn2e

’�
V3
�s�½A1�h�n2e

s� ½A1� � 1Þhn1ee ½A1�hn2ee ½A2�hn3ee ½A3�

� 1

�
ðhn3e

’�
V2
�s�½A1�h�n3e

s� ½A1� � 1Þhn1ee ½A1�hn2ee ½A2�hn3ee ½A3� þ cyclicþOð�; �Þ: (6.8)

We can extend this calculation to charge networks. Consider a charge network c based on a graph containing anN-valent
vertex v 2 suppðViÞ [with suppðViÞ an �-neighborhood of v] and suppose no other vertex of c lies in suppðViÞ. Then a
simple Leibniz rule application of (6.8) yields

XH½N�cðAÞ ¼ cðAÞ 1
�

XN
I¼1

½ðhn2eI
’�
V3
�sI�½A1�h�n2eI

sI�
½A1� � 1Þ � ðhn3eI

’�
V2
�sI�½A1�h�n3eI

sI�
½A1� � 1Þ� þ cyclicþOð�; �Þ: (6.9)

We can rewrite this result in terms of a product over I by noting that, given some �-dependent quantities fIð�Þ ¼ 1þ �gI
(short holonomies being an example), X

I

ðfIð�Þ � 1Þ ¼ Y
I

fIð�Þ � 1þOð�2Þ: (6.10)

Using (6.10) and (6.9) becomes

XH½N�cðAÞ ¼ cðAÞ 1
�

�YN
I¼1

h
n2eI
’�
V3
�sI�½A1�h�n2eI

sI�
½A1� �YN

I¼1

h
n3eI
’�
V2
�sI�½A1�h�n3eI

sI�
½A1�

�
þ cyclicþOð�; �Þ: (6.11)

It is easy to check that if cðAÞ is gauge invariant at v then
the XH½N�cðAÞ derived in (6.11) will be gauge invariant as
well.

We can now restate our goal: Our aim is to quantize the
Hamiltonian constraint (3.11) at finite triangulation in such
a way that its action on charge networks gives the linear
combination in (6.11) [up to factors coming from the
quantization of the nontrivial power of q appearing in
(3.11)]. Of course (6.11) is not the only approximant one
can obtain starting with the geometric action of XH½N�. The
justification of the choices we have made lies in the fact
that the off-shell closure condition is satisfied.

VII. DEFINITION OF Ĥ½N�
The classical Hamiltonian constraint (3.11) is written in

terms of the local connection and densitized triad fields,
but neither of these objects is a well-defined operator in our
quantum theory, so we cannot immediately write down an

operator Ĥ½N� corresponding to (3.11). The strategy [16] is
to first derive a classical approximant HT½N� to H½N�,
where HT½N� is written solely in terms of holonomies
and fluxes, and then quantize it as an operator on H kin.
Since there are an uncountably infinite number of different

ways that the connection and triad can be approximated
using holonomies and fluxes (generally leading to inequi-
valent quantum operators), we tune our choices to the end
we seek, which is to mimic the classical action found
above. There are many choices to be made, and in the
following subsections, we motivate and specify each.

A. Choice of triangulation

All subsequent regularization choices are based first on a
one parameter family of triangulations Tð�Þ of �, by
which we mean, for a fixed value of �, a tesselation or
cover of � by subsets 4 � �.16 We proceed to spell out
what is required of Tð�Þ.
We fix once and for all a volume form ! on � used to

assign areas in subsequent constructions. Then, the argu-
ment � of Tð�Þ is a parameter which roughly measures the
(square root of the) area of each4 2 Tð�Þ. All we require
of Tð�Þ is that the Riemann sum

P
42Tð�ÞH4½N� converge

16We use the term triangulation rather loosely here. It does not
mean a triangulation in the sense of algebraic topology where an
n-dimensional triangulation of a space implies covering the
space with n-dimensional simplices which themselves intersect
only in lower dimensional simplices.
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to H½N� as � ! 0 (the triangulation becoming infinitely
fine), where H4½N� is some approximant to H½N� in 4.
The allowed values of �, and hence the class of admissible
triangulations, will be fixed by the charge network state c

that ĤT will act on. We emphasize that any one-parameter
family Tð�Þ satisfying this requirement is an admissible
family of triangulations, in the sense that the Riemann sum
correctly approximates the classical Hamiltonian con-
straint, and we use this freedom to choose Tð�Þ which
are ‘‘adapted’’ to charge networks, in a way we describe
below.

Let c be a charge network with an underlying graph �.
We construct a one parameter family of triangulations
Tð�; �Þ adapted to the graph �, satisfying the following
criteria:

(i) The coordinate areas j 4 j :¼ R
4 ! of all 4 2

Tð�; �Þ containing a vertex of � satisfy

j 4 j ¼ �1�2 ¼ �2; (7.1)

where �1 � � � �2. That is, the plaquettes are
chosen to be ‘‘long rectangles’’ oriented along the
edges of � in some local coordinates.17

(ii) We tailor Tð�; �Þ so that each N-valent vertex v in
the vertex set Vð�Þ of � is in the interior of precisely
N plaquettes f4I

vgNI¼1; moreover, we require that4I
v

is aligned along the edge eI emanating from v as
shown in Fig. 2. This requirement ensures that the
overlap of any plaquettes is a region of area ��2

2,
and hence the contribution to the Riemann sum of
these regions will be subleading in � in the sense
that it will vanish in the continuum limit.

(iii) The triangulation of the space ��S
v2Vð�Þ

S
I 4I

v

is only subject to the requirements that no pla-
quettes overlap (except in their boundaries), and
that their areas scale with �2.

The existence of such Tð�Þ, in which the contribution to
a Riemann sum from overlapping cuboids vanishes in the
continuum limit, was shown in [21] for three dimensions.
We assume here a precisely similar construct in two
dimensions.

B. Riemann sum

Given an admissible triangulation Tð�; �Þ adapted to �,
our next task is to construct an approximant H4½N� to
H½N� in each 4 2 Tð�; �Þ. First we expand the classical

Hamiltonian H½N� into terms labeled by the curvature’s
U(1) index:

H½N� ¼ 1

2

Z
d2xNq�1=4ð�1jkF1

abE
a
jE

b
k

þ �2jkF2
abE

a
jE

b
k þ �3jkF3

abE
a
jE

b
kÞ :¼

X3
i¼1

HðiÞ½N�:

(7.2)

Let us focus on Hð1Þ; Hð2Þ and Hð3Þ can be obtained by
cyclic permutations of theUð1Þi indexes. For an admissible

Tð�; �Þ, the following expression converges to Hð1Þ½N� as
� ! 0:

Hð1Þ
Tð�;�Þ½N� ¼ 1

2

X
42Tð�;�Þ

j 4 jNðv4Þq�1=4ðv4Þ�1jkF1
abðv4Þ


 Ea
j ðv4ÞEb

kðv4Þ; (7.3)

where v4 is a point in 4, which we specify after splitting
the sum in the following way: The sum over4 is split into

those 4v that contain a vertex v 2 Vð�Þ, and those �4 that
do not:

2Hð1Þ
Tð�;�Þ½N� ¼ X

4vjv2Vð�Þ
j 4v jNq�1=4�1jkF1

abE
a
jE

b
kðvÞ

þX
�4
j �4jNq�1=4�1jkF1

abE
a
jE

b
kðv �4Þ; (7.4)

and in the first sum, v4 is chosen to be v, the vertex
contained in4, while in the second sum, v �4 is a basepoint

of �4, chosen once and for all. When we quantize (7.4) as an
operator acting on charge networks based on the graph �

with q̂�1=4 acting rightmost, the latter sum will not

contribute, since as shown in Appendix A, q̂�1=4 acts
nontrivially only at charge network vertices.

FIG. 2. Portion of an admissible triangulation adapted to a
graph near a vertex. Each plaquette 4I

v containing the vertex
overlaps the others in an area ��2

2.

17Given a vertex v, fix an open neighborhood Uv and a
coordinate system fxvg around v. For sufficiently small �, the
edges meeting at v are analytic in the open ball B2

ffiffiffi
�

p ðvÞ � Uv of

radius 2
ffiffiffiffi
�

p
centered at v, and hence, for sufficiently small �, are

‘‘almost straight lines’’ in the coordinate system fxvg restricted to
B2

ffiffiffi
�

p ðvÞ. Then for a given edge eI emanating from v, construct a
plaquette 4I

v as a long rectangle in fxvg along the direction

tangent to e at v, with length
ffiffiffiffi
�

p
and width �3=2, which overlaps

the beginning point v of e [see Fig. 2 and requirement (ii)].
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Next we need to approximate the various local fields in
the first sum of (7.4) by holonomies and fluxes. This
consists of choosing surfaces over which the triads are
smeared, holonomies around loops that feature in the
curvature approximant, and holonomies along short paths
that feature in the inverse metric determinant approximant.
We take a cue from the treatment of the diffeomorphism
constraint [21], and tailor the curvature approximant to the
underlying state. In this case however, there is no fixed
shift vector field that one can use to define a small loop. To
stand in its place, we introduce a key ingredient in our
construction, the quantum shift.

C. The quantum shift

Note that classically Nq�1=4Ea
j is a vector field

(of density weight zero) for each j. The rough idea is to
quantize this operator on charge networks and use its
eigenvalues as shift vector components, which then feed
into the definition of the small loop used to approximate
the curvature. It turns out that in the Uð1Þ3 theory, our

quantization of Nq�1=4Ea
j yields an operator diagonal in

the charge network basis, so we define the (regularized)
quantum shift components by

Va
j ðxÞj� :¼ hcjNÊa

j ðxÞj�q̂�1=4
� ðxÞjci; (7.5)

where Êa
j j� and q̂�1=4

� denote some �-regularized Êa
j and

q̂�1=4, which we construct below. As suggested by the

notation, we will quantize Ea
j and q�1=4 separately.

As demonstrated in more detail in Appendix A, the

regulated operator q̂�1=4
� we employ is proportional to

ð�ℏÞ�1, as well as the small parameter � used to construct

the classical identity that is quantized to define q̂�1=4
� . We

leave these factors explicit, and write the eigenvalues as

q̂�1=4
� ðvÞjci :¼ �

�ℏ
ð ~ncvÞjci; (7.6)

where v 2 VðcÞ (otherwise the right-hand side is zero),
and the ð ~ncvÞ are dimensionless numbers depending on
relations amongst the tangents of the edges emanating
from v, their charges, as well as additional regularization
choices.

As for Êa
j j�, we require some extra structure: At each

vertex v 2 c, we fix, once and for all, an �0-neighborhood
U�0 ð�; vÞ with a coordinate chart fxvg with origin at v, and
a coordinate ball Bxðv; �Þ � U�0 ð�; vÞ of radius � centered
at v (�, �0 are independent parameters). Using this struc-
ture, we regularize the � function appearing in the action of

Êa
j , resulting in a regularized operator Êa

j j� which acts as

Êa
j j�ðvÞjci :¼ �ℏ

X
eI\v

�Z 1

0
dt
�Bxðv;�ÞðeIðtÞÞ

��2
_eaI ðtÞ

�
njIjci;

(7.7)

where �S is the characteristic function on S. This
evaluates to

Êa
j j�ðvÞjci ¼

�ℏ
��2

X
eI\v

�Z
eI\Bxðv;�Þ

deaI

�
njIjci

¼ �ℏ
��

X
eI\v

êaI n
j
Ijci þOð1Þ; (7.8)

where êaI is a unit vector in fxvg which passes through
eI \ Bxðv; �Þ.18 Thus we have
V̂a
j ðvÞj�jci ¼ NðvÞÊa

j j�ðvÞq̂�1=4
� ðvÞjci

¼ 1

�
NðvÞð ~ncvÞ

X
eI\v

êaI n
j
Ijci :¼ Va

j ðv; �; cÞjci:

(7.9)

This is a heavily coordinate-dependent construction (note
that it also depends on choices made in the classical

identity used in the construction of q̂�1=4
� ). We place a

bound �0 :¼ �0ðc; �Þ on the parameter � [associated with
Tð�; �Þ] by requiring that for all � � �0, the end point of
the arc �Ea

j is in the ball U�ð�; vÞ.

D. The Hamiltonian constraint operator
at finite triangulation

In this subsection we lay out our proposal for the
Hamiltonian constraint operator at finite triangulation.

Let us order Ĥð1Þ
Tð�;�Þ½N� in the following way:

2Ĥð1Þ
Tð�;�Þ½N� ¼ X

v2Vð�Þ

X
4vjv2Vð�Þ

j 4v j�1jkð dF1
abE

b
kÞ�V̂a

j ðvxÞj�

þX
�4
j �4j�1jkð dF1

abE
b
kÞ�V̂a

j ðv �4Þj�: (7.10)

Since q̂�1=4
� vanishes everywhere except at the vertices of

�, the second sum gives no contribution, leaving

2Ĥð1Þ
Tð�;�Þ½N�jci ¼ X

v2Vð�Þ

X
4vjv2Vð�Þ

j 4v jðVa
2 ðvx; �; cÞ


 ð dF1
abE

b
3ð4vÞÞ� � Va

3 ðvx; �; cÞ

 ð dF1

abE
b
2ð4vÞÞ�Þjci: (7.11)

We now use the eigenvalues Va
i to specify the loops used to

define the curvature operator. Specifically, at a given vertex
v, we associate one loop with each edge emanating from v.
Tð�; �Þ is chosen such that for an N-valent vertex v, there
are N plaquettes f4I

vgNI¼1 containing v, and with each a
loop is associated. We now construct these loops.
For a given edge eI, one segment of the loop is formed

by a coordinate-length � segment of eI itself, and another

18The Oð1Þ term is subleading in 1
� .
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by a segment of length �jEa
i j in the direction of Va

i . Note
here that

jEa
i j :¼

jVa
i ðvx; �; cÞj

jNðvxÞð ~ncvÞj (7.12)

is the norm of the quantum shift eigenvalue, apart from the
inverse volume eigenvalue and the value of the lapse; that
is, we do not use the entire quantum shift for the loop
specification [if NðvxÞð ~ncvÞ ¼ 0, then the quantum shift is
zero, and the Hamiltonian operator is defined to act trivi-
ally]. First we describe the generic case, where the end
point of the arc �Ea

i does not lie on �, and later describe the
special case when this end point lies on �.

The final segment is an arc connecting the ends of these
two segments which is tangent to the edges of � at its end
points (this is a consequence of the fact that the quantum
shift direction determined by Ea

i is tangential to each edge

at the arc position, and it ensures that the operator q̂�1=4,
and hence the Hamiltonian, acts trivially at these newly
created trivalent vertices). We postpone specifying further
properties of these arcs, as they are irrelevant, except that

they do not create any spurious new intersections, and that
their areas satisfy a property spelled out below. Let us
denote the full loops by �v

i;I. By convention, they are

oriented such that the segment which overlaps eI is ingoing
at the vertex. Note that the segment �Ea

i is shared by all
�v

i;I (as I varies). Now consider the following classical

approximant:

ðVa
i F

j
abE

b
kð4I

vÞÞ� ¼ NðvxÞ
ðhj�v

i;I
ÞnkeI � 1

i�nkeI j�v
i;Ij

EkðLIÞ
jLIj qðvxÞ�1=4

� :

(7.13)

Here ðhj�v
i;I
ÞnkeI is theUð1Þj holonomy around the loop�v

i;I in

the nkeI crepresentation, j�v
i;Ij is the coordinate area of �v

i;I,

and LI is a flux surface transverse to eI of area jLIj. This
converges to Va

i F
j
abE

b
kðvÞ classically as j�v

i;Ij, jLIj ! 0.

Making this replacement as an operator in Ĥð1Þ
Tð�;�Þ½N�, we

obtain

2Ĥð1Þ
Tð�;�Þ½N�jci ¼ X

v2Vð�Þ
NðvxÞð ~ncvÞ

X
4vjv2Vð�Þ

j 4v j
0
@ðh1�v

2;I
Þn3eI � 1

i�n3eI j�v
2;Ij

Ê3ðLIÞ
jLIj �

ðh1�v
3;I
Þn2eI � 1

i�n2eI j�v
3;Ij

Ê2ðLIÞ
jLIj

1
Ajci

¼ ℏ
i

X
v2Vð�Þ

NðvxÞð ~ncvÞ
X
I

j 4I j
jLIj

0
@ðh1�v

2;I
Þn3eI � 1

j�v
2;Ij

� ðh1�3;I
Þn2eI � 1

j�v
3;Ij

1
Ajci; (7.14)

where the sum over I extends over the valence of the vertex v and we have chosen flux surfaces LI such that �ðLI; eIÞ ¼
þ1. The charges n2eI , n

3
eI are chosen to be those coloring the edge eI of c. If either n

2
eI , n

3
eI is zero, then we choose the

holonomy to be in the fundamental representation. We have the freedom of tuning the loop, flux, and plaquette areas so as
to arrive at an overall factor of ��1:

2Ĥð1Þ
Tð�;�Þ½N�jci ¼ ℏ

i

X
v2Vð�Þ

NðvxÞð ~ncvÞ 1�
X
I

ðððh1�v
2;I
Þn3eI � 1Þ � ððh1�v

3;I
Þn2eI � 1ÞÞjci: (7.15)

We may again pass to the product form (discarding terms which vanish classically as � ! 0)19

Ĥð1Þ
Tð�;�Þ½N�jci ¼ ℏ

2i

X
v2Vð�Þ

NðvxÞð ~ncvÞ
0
B@
Q

Iðh1�v
2;I
Þn3eI � 1

�
�

Q
Iðh1�v

3;I
Þn2eI � 1

�

1
CAjci

¼:
ℏ
2i�

X
v2Vð�Þ

NðvxÞð ~ncvÞðjc1 [ ��
vðhÊ2i; n3Þ; c2; c3i � jc1 [ ��

vðhÊ3i; n2Þ; c2; c3iÞ: (7.16)

We have introduced the following notation:

jci 	 jc1; c2; c3i; jc1 [ ��
vðhÊ2i; n3Þ; c2; c3i :¼

Y
I

ðh1�v
2;I
Þn3eI jci; (7.17)

19The reader may wonder about the physical motivation in switching to the product form. Although the anomaly freedom of the
continuum Hamiltonian constraint achieved in this paper is intricately tied to the structure of the operator and in particular to this
product form, we believe that an off-shell closure condition could be satisfied even without switching to the product form, if the key
ideas developed here are followed closely. However the real reason to pass to the product form lies in keeping an eye on the SU(2)
theory, which is our main goal. In that case, only the product rule will ensure that the newly created vertex will be nondegenerate and
the second Hamiltonian constraint will have a nontrivial action on it.
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suggestive of the fact that only ci¼1 has been altered by the

action of Ĥði¼1Þ
Tð�;�Þ, and this deformation is performed near

the vertex v, is of ‘‘size’’ �, and depends on the (vector-

valued) eigenvalue hÊ2i (in the state c) as well as the values
of the ni¼3 charges of c. If c is not charged in the i ¼ 2 or

i ¼ 3 factors of U(1), then Ĥð1Þ
Tð�;�Þ annihilates jci, with

similar statements for Ĥð2Þ
Tð�;�Þ and Ĥ

ð3Þ
Tð�;�Þ. To see this, note

that if c is not charged in Uð1Þ2 for example, then n2eI ¼ 0,

and hence �v
2;I collapses to a retraced curve (so that the

corresponding holonomy equals 1), and Ê2 annihilates jci.
The term jc1 [ ��

vðhÊ2i; n3Þ; c2; c3i produced by

Ĥð1Þ
Tð�;�Þ½N� is depicted in Fig. 3.

In the case that the end point of �Ea
i lies on �, the

construction proceeds just as above; however, we observe
that the quantum shift actually points along some edge in
this case, and hence the resulting state has all edge tangents
parallel or antiparallel at this point, as shown in Fig. 4.

At each N-valent vertex v, ĤðiÞ
Tð�;�Þ½N� acts by attaching

at most N loops �v
j;I charged in Uð1Þi only with charge nkeI ,

the charge on the edge that �v
j;I partially overlaps. Our

construction is such that at most two loops do not intersect
any other edges except the ones they overlap, and remaining

loops will have nontrivial intersections with the edges apart
from the ones they overlap (this trivial observation, un-
avoidable in two dimensions, will be important later).
Recall that all the attached loops have precisely one

common segment which is given by the straight line
�Ea

i . Gauge invariance ensures that this segment is [as

part of the resulting state jc1 [ ��
vðhÊ2i; n3Þ; c2; c3i for

instance] uncharged, and thus its end point (the beginning
point being v) will be an Nv � N-valent vertex charged

only in Uð1Þi. Whence the action of Ĥð1Þ
Tð�;�Þ½N� at a charge

network vertex creates precisely two charge network
states, each of which have an additional Nv-valent vertex,
and precisely Nv additional trivalent vertices. We will refer

to the Nv-valent vertex created by the action of Hð1Þ
Tð�;�Þ½N�

as an extraordinary vertex vE. Note that this extraordinary
vertex can lie off the original graph or be in the interior of
one of the edges of the original graph depending on the
quantum shift. By construction, vE lies in the interior of
U�ð�; vÞ. In order to specify the action of the Hamiltonian
constraint on arbitrary charge networks we need a classi-
fication scheme given in the following section.
To summarize, the action of a Hamiltonian constraint at

finite triangulation creates three kinds of vertices. The
extraordinary vertices, whose location depends on the
quantum shift, a set of trivalent vertices which by construc-

tion are such that q̂�1=4 vanishes at such vertices, and the
four-valent vertices which have very specific charge con-
figurations and analyticity properties. As we will see later,
these trivalent and four-valent vertices will play no role in
proving the off-shell closure condition, and hence we will
refer to them as irrelevant vertices.

E. Classification of extraordinary vertices

As we saw above, the action of the Hamiltonian constraint

ĤðiÞ
Tð�;�Þ½N� on a charge network state jci results in the

FIG. 4. The state jc1 [ ��
vðhÊ2i; n3Þ; c2; c3i as produced by the

action of Ĥð1Þ
Tð�;�Þ½N� in the special case where vE lies on �.

FIG. 3. The state jc1 [ ��
vðhÊ2i; n3Þ; c2; c3i as produced by the

action of Ĥð1Þ
Tð�;�Þ½N� in the generic case where vE does not lie on �.

Each segment eI now leaving v has had itsUð1Þ1 charge shifted by
�n3I , and the segments which leave the extraordinary vertex vE are

only charged in Uð1Þ1. The dotted segment �jEa
2j shared by all

�v
2;I is totally uncharged as a result of gauge invariance. The

trivalent verticeswI are such that all edge tangents are here parallel
or antiparallel, and the four-valent vertex w0 is such that there are
two pairs of edges which are analytic extensions of each other.
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creation of what we called extraordinary (EO) vertices.
In this section, we analyze the structure of these vertices in
more detail. Our aim is to argue that, given a charge-network
state j �ci with its vertex set Vð �cÞ, we can uniquely determine

(a) which of the vertices are EO;
(b) if vE is EO, then there exists a unique charge

network state jci such that the action of ĤðiÞ
Tð�;�ÞðvÞ

on jci [for a unique v in Vðc1 [ c2 [ c3Þ and
a particular value of i] results in j �ci with vE

[where ĤðiÞ
Tð�;�ÞðvÞ is defined via ĤðiÞ

Tð�;�Þ½N�jci ¼P
v2Vð�ðcÞÞNðvÞĤðiÞ

Tð�;�ÞðvÞjci].
We will first give a classification scheme, which helps us

isolate EO vertices inside any charge network �c unambig-
uously. We then show that the removal of an EO vertex vE

along with all the edges incident on it and appropriate
shifts in charges on the remaining edges of the graph
results in c with a vertex v such that the action of

ĤðiÞ
Tð�;�ÞðvÞ for some � and i results in �c.

Aswe sawearlier, ifwe act on a state jci by ĤðiÞ
Tð�;�Þ½N�, EO

vertices are end points of a straight line arc determined by
quantum shift vectors. Generically these vertices will lie off
the graph �ðcÞ; however, there can be states in which the EO
vertices will lie on some edge which was already present in
the original graph. We will distinguish these two types of
vertices and call them typeAand typeBvertices, respectively.

Given a charge-network c with a vertex vE, we give a
minimal set of independent conditions which, if satisfied,
determine that vE is an EO vertex. The conditions charac-
terizing type A vertices are given below. The set of con-
ditions characterizing an EO vertex of type B are given in
Appendix B. We caution the reader that the conditions as
listed here are rather technical and not too illuminating.
The most efficient way to understand them is to consult
Fig. 3 simultaneously.

Let �c ¼: ð �c1; �c2; �c3Þ be a charge network with �ð �cÞ the
coarsest graph associated underlying it. Let vE be a vertex
of �ð �cÞ. We will call vE an EO vertex of type ðA;M 2
f1; 2; 3g; j 2 f1; 2; 3gÞ or type (B, M 2 f1; 2; 3g, j 2
f1; 2; 3g) if and only if it satisfies the set of conditions A
or B, respectively.

Remark on notation: Sometimes we will indicate the type
of EO vertices only by omitting one or two of the labels. For
example, when the analysis only depends on the fact that the
EOvertex is type (M ¼ 1, j ¼ 2),wewill omit the labelA=B.

1. Set A

(1) All the edges beginning at vE are charged in theMth

copy [this is the result of the action of Ĥði¼MÞ].
(2) If the valence of vE is Nv,

20 then we will denote the
Nv vertices which are the end points of theNv edges

beginning at vE by the set SvE :¼ fvE
ð1Þ; . . . ; v

E
ðNvÞg.

The valence of all these vertices is bounded between
3 and 4.
(a) At most two vertices in SvE are trivalent.

(3) The trivalent vertices are such that the edges which
are not incident on vE are analytic extensions of
each other and the four-valent vertices are such that
two of the edges which are not incident on vE are
analytic extensions of each other, and the fourth
edge is the analytic extension of the edge which is
incident at vE.
(a) Any four-valent vertex defined in (3) is such

that, if the four edges ðe1; e2; e3; e4Þ incident
on it are such that e1 � e2 is entire analytic
and e3 � e4 is entire analytic then ~ne1 ¼ ~ne2 ,

~ne3 ¼ ~ne4 .

(4) Let evE be an edge beginning at vE which ends in a
four-valent vertex fðevEÞ. By (3), there exists an
edge e0

vE beginning at fðevEÞ such that evE � e0
vE ¼:

~evE is the analytic extension of evE in Eð �cÞ (the edge
set of �c) beginning at vE. The final vertex fð~evEÞ of
~evE is always trivalent. Thus, restricting attention to
analytic extensions of each of the edges beginning at
vE, all such edges end in trivalent vertices, and all of
these trivalent vertices are such that the remaining
two edges incident on them are analytic extensions
of each other (see Fig. 3). The set of these Nv three-
valent vertices associated to vE will be denoted
�SvE :¼ f �vE

1 ; . . . ; �v
E
Nv
g.21

(a) All three edges incident on any element in �SvE

have parallel (or anitparallel) tangents.
(5) Let us denote these [maximally analytic inside

Eð�Þ] edges beginning at vE by f~e1
vE ; . . . ~e

Nv

vE g.
Without loss of generality, consider the case when
all the edges incident at vE are charged in Uð1Þ1
[in this case we say that vE is of type (A, M ¼ 1,
j 2 f2; 3g)]. Let the charges on these edges be
fðn~e1

vE
; 0; 0Þ; . . . ; ðn~eNv

vE
; 0; 0Þg. If ~ek

vE (k2f1;...;Nvg)
ends in a trivalent vertex fð~ek

vEÞ and if the charges

on the remaining two (analytically related) edges
ek0
vE , ek00vE incident at fð~ek

vEÞ are ðn1
ek0
vE

; n2
ek0
vE

; n3
ek0
vE

Þ and
ðn1

ek00
vE

; n2
ek00
vE

¼ n2
ek0
vE

; n3
ek00
vE

¼ n3
ek0
vE

Þ, then either

(a) n1
~ek
vE

¼ n2
ek0
vE

, or

(b) n1
~ek
vE

¼ n3
ek0
vE

.

(6) Now consider the set �SvE . Recall that each element
in this set is a trivalent vertex. Consider a vertex
fð~evEÞ whose three incident edges are ~evE , e0

vE , and

e00
vE . Recall that e0vE , e00vE are analytic continuations of

each other. Depending on whether n~e
vE

+ 0, choose

20The subscript v in Nv may seem out of place; however, when
we list all the conditions in A, its relevance will become clear. 21Note that SvE \ �SvE ¼ 3-valent vertices in SvE .
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the one of the two edges e0
vE , e00vE which has lesser or

greater charge in the first copy than the other edge.
Consider the set of all such chosen edges for each

vertex in �SvE . We refer to this set as TvE .
(a) If all these edges meet in a vertex v which is

such that, if the number of edges incident on v is
greater than Nv and if the charges f~ek

vEgk¼1;...;Nv

are the Uð1Þj charges on the edges in TvE , then

the Uð1Þj charge on edges incident at v which

are not inTvE is zero. As shown in Appendix D,
v, if it exists, is unique.

(7) Finally consider the graph � :¼ �ð �cÞ �
f~e1

vE ; . . . ; ~e
Nv

vE g and a charge-network c based on �

obtained by deleting f~e1
vE ; . . . ; ~e

Nv

vE g along with the

charges on them, and also deleting exactly the same
amount of charge from the edges in TvE . Note that
by construction, v belongs to �. Now consider
U�ð�; vÞ. The final and key feature of an EO vertex
vE is vE 2 U�ð�; vÞ and vE is the end point of the

‘‘straight line curve’’ �hÊa
j ic for some �, where

j ¼ 2 if in (6) condition (a) is satisfied, and j ¼ 3

if in (5), (b) is satisfied. For example, jc1 [
��
vðhÊ2i; n3Þ; c2; c3i has an EO vertex of type

M ¼ 1, j ¼ 2.
It is easy to see that the conditions listed above are

independent of each other, as one could easily conceive
of a charge-network state which satisfies all but one of the
conditions. If all the conditions given in Set A above, or Set
B in the Appendix B, are satisfied, then we call the pair
ðv; vEÞ extraordinary. For the benefit of the reader we
emphasize once again that the type of extraordinariness
of vE is labeled by the triple ðA=B;M 2 f1; 2; 3g; j 2
f1; 2; 3gÞ. For example, M ¼ 1 when all the edges incident
at vE are only charged under Uð1Þ1 and j 2 f2; 3g if these
charges equal the charges in Uð1Þj on edges in TvE .

We now prove a lemma which shows that EO vertices are

always associated to the action of some ĤðiÞ
Tð�;�Þ½N�. This

will imply that any charge network which has an EO vertex

is always in the image of ĤðiÞ
Tð�;�Þ½N� for some i, �, N.

Claim: Let [K2fA;Bg [j2f2;3g f �cjKg ¼ C be the set of

charge network states such that ðv; vEÞ is an EO pair for
each charge network in this set and vE is an EO vertex of
type ðK;M ¼ 1; jÞ.22 Let c be a charge network obtained
by performing the surgery described in condition (7)
above.23 Also let N be a lapse function such that it has
support in a neighborhood of v (which, as we saw above,

belongs to both c and �cjK for eachK and j). If the vertex v is

nondegenerate (i.e., hq̂�1=4ic � 0), and if

Ĥð1Þ
Tð�;�Þ½N�jci ¼ 1

�
NðvÞhq̂�1=4icðvÞ½�jc0i þ �jc00i�;

(7.18)

where �, � 2 f1g, then
(a) both c0, c00 belong to the set C;
(b) conversely, given any �c that is obtained from c

(containing a nondegenerate vertex v which is not
EO) by adding an EO vertex vE of type ðK; 1; jÞ for
some K, j, then �c is always one of the two charge

networks one gets by letting Ĥð1Þ
Tð�;�ÞðvÞ act on jci for

some �.
Proof.—(a) follows by construction. That is, it is

straightforward to verify that both c0 and c00 satisfy all
the conditions listed in Set A or Set B [see Eq. (7.16)].
For (b), consider a charge network �c obtained by adding

an EO vertex vE of type ðK ¼ A;M ¼ 1; j ¼ 2Þ to c such
that ðv; vEÞ is the EO pair (other types of EO vertices can
be treated similarly). Let the Nv-valent segments begin-
ning at vE and terminating at the Nv trivalent vertices
fve1 ; . . . ; veNv

g be denoted by fse1 ; . . . ; seNv g. As the vertex
is of type 1, all of these segments are charged in Uð1Þ1. Let
the vertex vE be along the straight line �0hÊa

2ðvÞic (in the
coordinate system that we have fixed once and for all).
Now consider the Hamiltonian constraint operator

ĤðiÞ
Tð�0ÞðvÞ at a given vertex v 2 VðcÞ as constructed out

of products of holonomies around loops, described above.
Each loop is constructed out of a segment along an edge of
�ðcÞ, the straight line arc given by the quantum shift, and
an arc which joins vE with one of the vertices in SvE . We
need Nv such arcs and upon choosing them to be

ðse1 ; . . . ; seNv Þ, respectively,24 ĤðiÞ
Tð�0ÞðvÞjci will result in a

linear combination of states, one of which will be �c. This
completes the proof.

2. Weakly extraordinary vertices

One highly unpleasant feature of EO vertices is their
background dependence. As we require such vertices to lie
in the coordinate neighborhood U�ðv; �Þ of v, the property
that we termed extraordinariness is not a diffeomorphism-
covariant notion. That is, if vE is EO with respect to v 2
VðcÞ, then it does not imply that �ðvEÞ is EO with respect
to �ðvÞ 2 Vð� � cÞ. With this drawback in mind, we in-
troduce a generalization of extraordinary vertices in this
section. As we will see later, this generalization will play
an important role when we construct a habitat.
Let �c be a charge network with an EO pair ðv; vEÞ, where

vE is an EO vertex of type M ¼ 1, say. Let � be a semi-
analytic diffeomorphism of � such that � � c ¼ c and

22We are restricting attention to the M ¼ 1 case in this lemma.
The proof is exactly analogous for M 2 f2; 3g.
23It is easy to see that under this surgery, one ends up with the
same charge network c no matter which �cjK 2 C one starts with.

24This can always be done as there is enough freedom in
choosing the loops underlying the holonomies out of which
the Hamiltonian constraint is built [respecting the area con-
straints mentioned below Eq. (7.14)].
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consider the state � � �c such that ð�ðvÞ; �ðvEÞÞ is not an
EO pair. In this case we refer to the image of vE in this state
as a weakly extraordinary (WEO) vertex. Notice that as �
keeps c invariant, � � �c has the same ‘‘topological struc-
ture’’ as �c. In particular, such diffeomorphisms cannot
change Nv (defined in the previous section). This implies
the following:

Vertices which have all the properties stated above ex-
cept property (7) in Set A or Set B are weakly extraordinary
vertices.

We would like to emphasize that the real motivation
behind introducing WEO vertices will become clear in
[25] where we will analyze the issue of diffeomorphism
covariance of the Hamiltonian constraint.

F. Action of a ‘‘second’’ Hamiltonian

1. Hints from the classical theory

As observed in [20] and explained in the introduction,
one of the reasons Thiemann’s quantum Hamiltonian con-
straint can never produce a nontrivial commutator (even if
one worked with higher density constraints) is due to the
fact that it has trivial action on the vertices that it creates.
At first sight, it seems like we have run into the same
problem. As we saw above, the EO vertices created by

ĤðiÞ
Tð�Þ½N� are degenerate, whence the action of the

Hamiltonian constraint on a state containing an EO pair
will act trivially at the EO vertex. It then seems plausible
that an analysis similar to the one done in [20] would lead
to a trivial continuum commutator. However, following a
simple observation in the classical theory tells us how this
triviality could be circumvented. The computation done in
Sec. VI (which motivated our quantization choices in the

construction of ĤðiÞ
Tð�Þ½N�) demonstrated how the (classical)

action of a Hamiltonian constraint could be understood in
terms of spatial diffeomorphisms generated by triad fields.
The Poisson action of two successive Hamiltonian con-
straints involves terms which in turn act on these triad
fields. More precisely, the triad field Ei has a nonvanishing

Poisson bracket withHðiÞ½N� and is given by (in the density
two case)

fHðiÞ½N�; Ea
i ðxÞg

¼ ��ijkEa
j @aðNEb

kÞðxÞ
� ��ijkðEa

jE
b
k@aNÞðxÞ � ðNEa

j@aE
b
kÞðxÞ; (7.19)

where we have used the Gauss constraint @aE
a
i ¼ 0. As the

Hamiltonian vector field action of H½N� is approximated
by a transformation involving a triad-dependent dif-
feomorphism, as in (6.8), we would like the second
Hamiltonian constraint to act nontrivially on an EO vertex
via its action on the generator of this diffeomorphism. In
essence, this is the action that is captured by the extra term
in the Hamiltonian constraint (described below) when it
acts on EO vertices. More precisely, the extra term in

ĤðiÞ
Tð�Þ½N� will induce an action on the EO vertex which

will mirror the first term in (7.19) only.25,26

2. The action of ĤTð�Þ½N� on EO pairs

Based on the classical insight of the previous section, we

modify the definition of ĤðiÞ
Tð�Þ½N� such that on any jci not

containing an EO pair, it is still given by (7.16). However, if

jci contains an EO pair, then ĤðiÞ
Tð�Þ½N� contains an addi-

tional term constructed to mimic (7.19) as it modifies the
quantum shift. This term utilizes a dichotomy present
between the classical theory and loop quantized quantum
field theories, which arises due to the underlying represen-
tation of the holonomy-flux algebra.
Consider an edge e and a transversal (codimension one)

surface L�
e which intersects e in some interior point and

whose coordinate length scales with �. Classically, qua-
dratic functions of fluxes like EiðL�

e ÞEjðL�
e Þ are higher

order in � than EiðL�
e Þ, but in the quantum theory,

1

ℏ
ÊiðL�

e Þh~ne
e ðAÞ ¼ nieh

~ne
e ðAÞ;

1

ℏ2
ÊiðL�

e ÞÊjðL�
e Þh~ne

e ðAÞ ¼ nien
j
eh

~ne
e ðAÞ:

(7.20)

Thus, owing to the peculiarity of the holonomy-flux rep-
resentation, spectra of flux operators do not carry the
memory of coordinate area of the underlying surfaces.
We interpret this dichotomy as a quantization ambiguity,
and it is this ambiguity which we will use to modify

ĤðiÞ
Tð�Þ½N�.
In order to explain the most important nontriviality of

the modification, we will first work with density two con-
straints.27 Finally we will switch to the density 5

4 constraint

by choosing a particular operator ordering when including

q̂�1=4. Let us first compute Ĥð1Þ
Tð�0Þ½M�Ĥð2Þ

Tð�Þ½N�jci, with the

constraint operators given in (7.16). Let v 2 VðcÞ be the
only vertex which lies inside the support ofN andM. Then,
suppressing all the factors of ℏ,

25This information suffices to obtain an anomaly-free commu-
tator of Hamiltonian constraints, as will be shown in Sec. VII F 2.
26It is possible to find a discrete approximant to
XH½M�XH½N�fcðAÞ which illustrates this point rather clearly.
Such a computation will produce terms involving f��

~V
�cðAÞ

where ~V is a triad-dependent vector field of the type given
in (7.19). However, this computation is rather involved and as
our primary motivation for considering such classical computa-
tions is merely as guiding tools to make quantization choices, we
do not reproduce it here.
27Density two constraints, when quantized, should have at finite
triangulation an overall factor of (��Þ�1, where � comes from
the regularization of quantum shift. This � is removed when one
switches to density 5

4 constraint since the quantization of q�1=4

involves an overall factor of �. Whence we will suppress the
factor of 1

� in the density two case, as it is not relevant in the final
result.
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Ĥð1Þ
Tð�0Þ½M�Ĥð2Þ

Tð�Þ½N�jc1; c2; c3i

¼ 1

�
NðvÞĤð1Þ

Tð�0Þ½M�½jc1; c2 [ ��
vðhÊ3ic3 ; nc1Þ; c3i � jc1; c2 [ ��

vðhÊ1ic1 ; nc3Þ; c3i�

¼ 1

��0 NðvÞMðvÞ½ðjc1 [ ��0
v ðhÊ2ic2[��

vðhÊ3iÞ; nc3Þ; c2 [ ��
vðhÊ3ic3 ; nc1Þ; c3i

� jc1 [ ��0
v ðhÊ3ic3 ; nc2[��

vðhÊ3iÞÞ; c2 [ ��
vðhÊ3ic3 ; nc1Þ; c3iÞ

� ðjc1 [ ��0
v ðhÊ2ic2[��

vðhÊ3iÞ; nc3Þ; c2 [ ��
vðhÊ1ic1 ; nc3Þ; c3i

� jc1 [ ��0
v ðhÊ3ic3 ; nc2[��

vðhÊ3iÞÞ; c2 [ ��
vðhÊ1ic1 ; nc3Þ; c3iÞ�: (7.21)

Here nc1 denotes the n1 charges on the subset of EðcÞ at v; we suppress the superscript. Let e 2 EðcÞ. Given a point
v0 2 IntðeÞ in the interior of the edge, let Lv0

e ð�Þ be a surface of codimension one (soLv0
e is just a segment which intersects e

transversely) whose coordinate length is of the order �0 ¼ Oð�2Þ.28 Consider a state jc1; c02; c3i which has an EO pair
ðv; vEÞ with vE an EO vertex of type ðM ¼ 2; j ¼ 1Þ. This state is of the type

jc1; c02; c3i ¼ jc1; c2 [ �
�0
v ðhÊ1ic1 ; nc3Þ; c3i (7.22)

for some fixed �0. Our proposal for the action of Ĥ
ð1Þ
Tð�Þ½M� on jc1; c2 [ �vðhÊ1ic1 ; nc3Þ; c3i is as follows (since �0 is fixed,

we suppress it for the clarity of presentation):

Ĥð1Þ
Tð�Þ½M�jc1; c2 [ �vðhÊ1ic1 ; nc3Þ; c3i
¼ X

v2VðcÞ
MðvÞĤð1Þ

Tð�0ÞðvÞjc1; c2 [ �vðhÊ1ic1 ; nc3Þ; c3i

þ �suppðMÞ;vE�

�
1

�

X
e2Eð�Þ

hÊ2ðLv0
e ð�0ÞÞic2ðMðvþ � _eð0ÞÞ �MðvÞÞjc1; c2 [ �vðhÊ3ic3 ; nc3Þ; c3i

� 1

�

X
e2Eð�Þ

hÊ3ðLv0
e ð�0ÞÞic3ðMðvþ � _eð0ÞÞ �MðvÞÞjc1; c2 [ �vðhÊ2ic2 ; nc3Þ; c3i

�
; (7.23)

where
(a) the first term is the unmodified action coming from

(7.16);
(b) the second term is the proposed modification which

is designed to capture the displacement of EO vertex
as motivated from (7.19);

(c) � is a numerical coefficient which we will choose to
be 1 and as we will see later, with this value, the off-
shell closure condition is satisfied; and

(d) �suppðMÞ;vE ¼ 1 if vE lies inside the support of M,

and is zero otherwise.
We need to show that

(1) there exists an operator which when acting on jci
accomplishes (7.23); and

(2) the continuum limit of the classical function which
is quantized to this operator should yield the famil-
iar classical Hamiltonian.

We proceed by defining an operator which yields (7.23)
and then argue that it differs from the unmodified operator
by terms subleading in �, thus showing that it has the
correct classical continuum limit. Once again we assume
that vE is inside the support of the lapse M. If it lies
outside the support then the modification is absent by
definition.

28As we have a length scale in the theory �ℏ, one could use it to define �0 ¼ �2

�ℏ .
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Ĥð1Þ
Tð�Þ½M�jc1; c2 [ �vðhÊ1ic1 ; nc3Þ; c3i

¼ 1

�
MðvÞ

�
ðĥð1Þ

��
vðhÊ2ic2[�vðhÊ1ic1 ;nc3 Þ;nc3 Þ

Þ � ðĥð1Þ
��
vðhÊ3ic3 ;nc2�nc3 Þ

Þ
�
jc1; c2 [ �vðhÊ1ic1 ; nc3Þ; c3i

þ 1

�ℏ�

� X
e2Eð�Þ

hÊ2ðLv0
e ð�0ÞÞic2ðMðvþ � _eð0ÞÞ �MðvÞÞĥð2Þ

�vðhÊ3ic3 ;nc3 Þ
ðĥð2Þ

�vðhÊ1ic1 ;nc3 Þ
Þ�1

� X
e2Eð�Þ

hÊ3ðLv0
e ð�0ÞÞic3ðMðvþ � _eð0ÞÞ �MðvÞÞĥð2Þ

�vðhÊ2ic2 ;nc3 Þ
ðĥð2Þ

�vðhÊ1ic1 ;nc3 Þ
Þ�1

�
jc1; c2 [ �vðhÊ1ic1 ; nc3Þ; c3i: (7.24)

The extra terms in the last two lines of (7.24) are
subleading in � as compared to the first (unmodified)
term. This can be seen as follows. The unmodified operator
Ĥð1Þ

Tð�ÞðvÞ is an operator of the form 1
� ½ĥ�ð�Þ � ĥ�1

�ð�Þ� and
hence Oð�Þ. The second and third terms are of the form
1
� ÊiðLeð�0ÞÞðMðvþ �Þ �MðvÞÞ and hence to leading
order in � they are Oð�0Þ ¼ Oð�2Þ.

These finite-triangulation operators, due to the structure
of the extra terms, are nonlocal in the sense that they can
never be perceived as (quantum counterparts of) the dis-
cretization of a classical local functional. A similar feature
was observed in the correction to the fundamental LQG
curvature operator, that was defined in [21] and led to an
anomaly-free quantization of the diffeomorphism con-
straint. Nonetheless, as we will see later, the continuum
limit of the Hamiltonian constraint operator will be local in

the sense that it will be expressed in terms of local differ-

ential operators.

This then is our proposal for the density two Ĥð1Þ
Tð�Þ½N�

when it acts on a state containing an EO pair ðv; vEÞwith vE

being an EO vertex of type ðK 2 fA;Bg;M ¼ 2; j ¼ 1Þ
[i.e., it is either a type A or type B vertex with all incident

edges charged only in Uð1Þ2, located at a position deter-

mined by the j ¼ 1 quantum shift, with the charge magni-

tudes coming from the Uð1Þ3 labels on edges incident at

vertices in �SvE]. Other cases can be considered similarly.We

nowmodify our results appropriately for the realistic case of

density 5
4 constraint. As we remarked earlier, this amounts to

choosing a particular operator ordering for q̂�1=4, which is a

scalar multiple of the identity operator on any charge net-

work state. The ordering we choose is given by

Ĥð1Þ
Tð�Þ½M�jc1; c2 [ �vðhÊ1ic1 ; nc3Þ; c3i

¼ 1

�
MðvÞhq̂ðvÞ�1=4ic

�
ðĥð1Þ

��
vðhÊ2ic2[�vðhÊ1ic1 ;nc3 Þ;nc3 Þ

Þ � ðĥð1Þ
��
vðhÊ3ic3 ;ðnc2�nc3 Þ

Þ
�
jc1; c2 [ �vðhÊ1ic1 ; nc3Þ; c3i

þ 1

�ℏ�

� X
e2Eð�Þ

hÊ2ðLv0
e ð�0ÞÞic2ðMðvþ � _eð0ÞÞ �MðvÞÞĥð2Þ

�vðhÊ3ic3 ;nc3 Þ
Þq̂ðvÞ�1=4ðĥð2Þ

�vðhÊ1ic1 ;nc3 Þ
Þ�1

� X
e2Eð�Þ

hÊ3ðLv0
e ð�0ÞÞic3ðMðvþ � _eð0ÞÞ �MðvÞÞĥð2Þ

�vðhÊ2ic2 ;nc3 Þ
q̂ðvÞ�1=4ðĥð2Þ

�vðhÊ1ic1 ;nc3 Þ
Þ�1

�
jc1; c2 [ �vðhÊ1ic1 ; nc3Þ; c3i:

(7.25)

Thus we finally have a definition of the Hamiltonian
constraint operator on an arbitrary charge network state. If
the charge-network contains an EO pair then the constraint
operator has an additional piece which is nonlocal and can
be thought of as having a nontrivial action on the EO pair
rather then acting on a single isolated vertex. The complete
implications of having an operator which at finite triangu-
lation not only changes charge network in the neighbor-
hood of a single vertex but also changes it in the
neighborhood of a subgraph are not clear to us.

VIII. LMI HABITAT

In the previous section we completed the construction of
the Hamiltonian constraint operator at finite triangulation,
which is densely defined onH kin. As is well known, due to

the higher density weight of the operator, it will not have a
continuum limit (in any operator topology that we know
of) which is well defined on H kin. In this section we
construct an arena which we call the Lewandowski-
Marolf-inspired habitat, on which the net of finite-
triangulation operators admits a continuum limit. We will
come back to the issue of operator topology later in the
section. First we engineer a habitat taking a cue from
Lewandowski and Marolf’s seminal construction [19].
We want to build our habitat in such a way that not only

does it admit some sort of continuum limit of the
Hamiltonian constraint, but that it admits a representation
of the entire Dirac algebra. We build our habitat keeping
this requirement in mind. Starting with a charge network c
which has no monocolored vertex, construct a set
½c1; c2; c3�ðiÞ as follows:
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½c�ði¼1Þ ¼ ½c1; c2; c3�ði¼1Þ ¼ fcg [[
c01

fðc01; c2; c3Þg; (8.1)

where ðc01; c2; c3Þ has at least one additional weakly ex-
traordinary (WEO) vertex as compared to c1. ½c�ð2Þ and
½c�ð3Þ are defined similarly. Now we consider the following

type of elements of Cyl�:

�fðiÞ
½c�ðiÞ ¼

X
ðc0

1
;c2;c3Þ2½c�ðiÞ

fðiÞð �Vðc01[c2[c3ÞÞhc01;c2;c3j; (8.2)

where

(i) fðiÞ, i ¼ 1, 2, 3 are smooth functions on �jVðcÞj;
(ii) �Vðc01 [ c2 [ c3Þ is defined as follows: Let Vðc01 [

c2 [ c3Þ ¼ fv0; v
WE
0 ; . . . ; vK; v

WE
K ; vKþ1; . . . ; vNg,

where fvWE
0 ; . . . ; vWE

K g are WEO vertices of c01 [
c2 [ c3 associated to fv0; . . . ; vKg � VðcÞ, respec-
tively. Then

�Vðc01 [ c2 [ c3Þ :¼ fvWE
0 ; . . . ; vWE

K ; vKþ1; . . . ; vMg:
(8.3)

Note that by construction j �Vðc01 [ c2 [ c3Þj ¼
jVðcÞj so that fðiÞ are functions on �jVðcÞj.

We define V LMI as a subspace of Cyl� spanned by

distributions of the type �fðiÞ
½c�ðiÞ .

We will now show that ĤðiÞ
Tð�Þ½N� admits a continuum

limit as a linear operator from V LMI ! Cyl�. The topol-
ogy on the space of operators in which we consider the
continuum limit is defined via the following family of
seminorms: Given any pair ð�; jciÞ 2 V LMI 
H kin, we

say that ĤðiÞ½N�0 is a continuum limit of ĤðiÞ
Tð�Þ½N� if for � >

0, 9�0 ¼ �0ð�; c; NÞ such that

jðĤðiÞ½N�0�Þjci ��ðĤðiÞ
Tð�Þ½N�jciÞj< � (8.4)

8� < �0 (we will generally decorate operators acting on
elements of Cyl� with a prime). It turns out that the con-
tinuum Hamiltonian constraint does not preserve the LMI
habitat; rather

ĤðiÞ½N�0: V LMI ! Cyl�: (8.5)

This happens because when acting on a state, say �fð1Þ
½c�ð1Þ 2

V LMI, the resulting states are still infinite linear combina-
tions of (duals of) charge network states, with amplitudes

being functions of vertices. However, in contrast to fð1Þ

which is smooth, coefficients of the charge networks in
these linear combinations will be discontinuous functions.

A. The continuum limit

Consider �fð1Þ
½c�ð1Þ , where fð1Þ: �jVðcÞj ! R. The action of

the continuum Hamiltonian constraint Ĥð1Þ½N�0 þ
Ĥð2Þ½N�0 þ Ĥð3Þ½N�0 on such states can be deduced from
Eqs. (8.8), (8.10), and (8.14) that are given below.
Derivations of these results can be found in Appendix D.

We first consider the action of Ĥð1Þ½N�0 on �f1

½c1;c2;c3�ð1Þ :

Ĥð1Þ½N�0�fð1Þ
½c�ð1Þ ¼

X
v2VðcÞ

h
�

�fð1Þð1Þv

½c�ð1Þ ��
��f
ð1Þð1Þ
v

½c�ð1Þ
i
; (8.6)

where29 �fð1Þð1Þv is given by (see below for ��f
ð1Þð1Þ
v )

�fð1Þð1Þv ðv1; . . . ; vjVðcÞjÞ ¼ fð1Þðv1; . . . ; vjVðcÞjÞ (8.7)

if the following hold:
(1) fv1;...;vjVðcÞjg�Vðc01[c2[c3Þ for any ðc01;c2;c3Þ2

½c�ð1Þ, or
(2) fv1;...;vjVðcÞjg¼Vðc01[c2[c3Þ for some ðc01;c2;c3Þ2

½c�ð1Þ but v6� fv1; . . . ; vjVðcÞjg.
In the case that the complements of (1) and (2) hold,

we have

�fð1Þð1Þv ðv1; . . . ; vjVðcÞjÞ
¼ NðvÞð ~ncvÞhÊa

2ðvÞic2
@

@va f
ð1Þðv1; . . . ; vjVðcÞjÞ:

(8.8)

��f
ð1Þð1Þ
v is defined analogously, except that hÊa

2ðvÞic2 in (8.8)

is replaced by hÊa
3ðvÞic3 .

We now consider the action of Ĥð2Þ½N�0 on �fð1Þ
½c1;c2;c3�ð1Þ:

Ĥð2Þ½N�0�fð1Þ
½c�ð1Þ ¼

X
v2VðcÞ

½��fð1Þð2Þv

½c�ð1Þ ��
��f
ð1Þð2Þ
v

½c�ð1Þ �; (8.9)

where �fð1Þð2Þv and ��f
ð1Þð2Þ
v are defined as follows: Let

fv1; . . . ; vjVðcÞjg ¼ Vðc01 [ c2 [ c3Þ such that

(1) ðc01 [ c2 [ c3Þ 2 ½c�ð1Þ;
(2) v 2 fv1; . . . ; vjVðcÞjg such that v 2 VðcÞ and there

is an EO vertex vE associated to v of type ðM¼1;
j¼2Þ which lies inside the support of N. In this case

�fð1Þð2Þv ð �Vðc01 [ c2 [ c3ÞÞ ¼
� X
e2EðcÞjbðeÞ¼v

hÊ1ðLeÞic1 _eað0Þ@aNðvÞ
�
fð1Þð �Vðc01 [ c2 [ c3ÞÞ; (8.10a)

��f
ð1Þð2Þ
v ð �Vðc01 [ c2 [ c3ÞÞ ¼

� X
e2EðcÞjbðeÞ¼v

hÊ3ðLeÞic3 _eað0Þ@aNðvÞ
�
fð1Þð �Vðc01 [ c2 [ c3ÞÞ; (8.10b)

where Le is as defined in Eq. (D20).

29To avoid notational clutter, we do not explicitly indicate the dependence of ��f
ð1Þð1Þ
v etc. on N, ðc1; c2; c3Þ.
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In the case where the complement of the two conditions (1) and (2) hold, we have

�fð1Þð2Þv ðv1; . . . ; vjVðcÞjÞ ¼ fð1Þðv1; . . . ; vjVðcÞjÞ; (8.11)

��f
ð1Þð2Þ
v ðv1; . . . ; vjVðcÞjÞ ¼ fð1Þðv1; . . . ; vjVðcÞjÞ: (8.12)

The action of Ĥð3Þ½N�0 on �fð1Þ
½c�ð1Þ can be written in analogy with (8.9):

Ĥð3Þ½N�0�fð1Þ
½c�ð1Þ ¼

X
v2VðcÞ

h
�

�fð1Þð3Þv

½c�ð1Þ ��
��f
ð1Þð3Þ
v

½c�ð1Þ
i
; (8.13)

where �fð1Þð3Þv and ��f
ð1Þð3Þ
v are defined as follows: Let fv1; . . . ; vjVðcÞjg ¼ Vðc01 [ c2 [ c3Þ such that

(1) ðc01 [ c2 [ c3Þ 2 ½c�ð1Þ;
(2) v 2 fv1; . . . ; vjVðcÞjg such that v 2 VðcÞ and there is an EO vertex vE associated to v of type ðM ¼ 1; j ¼ 3Þ. In this

case

�fð1Þð3Þv ð �Vðc01 [ c2 [ c3ÞÞ ¼
� X
e2EðcÞjbðeÞ¼v

hÊ2ðLeÞic2 _eað0Þ@aNðvÞ
�
fð1Þð �Vðc01 [ c2 [ c3ÞÞ; (8.14a)

��f
ð1Þð3Þ
v ð �Vðc01 [ c2 [ c3ÞÞ ¼

� X
e2EðcÞjbðeÞ¼v

hÊ1ðLeÞic1 _eað0Þ@aNðvÞ
�
fð1Þð �Vðc01 [ c2 [ c3ÞÞ: (8.14b)

As before, if the set fv1; . . . ; vjVðcÞjg does not satisfy con-

ditions (1) or (2), then the two functions �fð1Þð3Þv and ��f
ð1Þð3Þ
v

take the same value as fð1Þ.
The definitions of �fð1ÞðiÞv ji¼1;2;3 make it rather clear

that the continuum Hamiltonian constraint does not
preserve the LMI habitat. These functions have a
discontinuity as soon as one of their arguments is the
vertex v. This discontinuity is due to the discontinuous
nature of the quantum shift vector, which is in turn tied
to the choice of representation we are forced upon
in LQG.

B. The action of the Hamiltonian constraint
on irrelevant vertices

Before we compute the continuum limit of the commu-
tator of two (regularized) Hamiltonian constraints, we
make two observations which vastly simplify the structure

of the computation (and indeed, without which, Ĥ½N�0 will
not satisfy the off-shell closure condition). These observa-
tions are related to the action of a Hamiltonian constraint
on a charge network state which lies in the image of

ĤðiÞ
T ½N� for some i 2 f1; 2; 3g, N, and T.
The action of such a finite triangulation Hamiltonian

constraint on a charge network which has no EO vertex,
creates a set of vertices which we termed irrelevant vertices
(the name finds its justification in this section). When a
finite-triangulation Hamiltonian acts on a trivalent irrele-
vant vertex, it vanishes (as all such trivalent vertices are in

the kernel of a q̂�1=4 operator). Whence these vertices are
irrelevant as far as the action of a second Hamiltonian on
such a charge network is concerned. This is not quite true

for the four-valent irrelevant vertices.30 However, we now
argue that the continuum limit of the action of a finite-
triangulation Hamiltonian constraint on a four-valent ir-
relevant vertex is trivial. This feature is tied to the choice of
our habitat [or more precisely to the definition of ½c�ðiÞ].
Let ð~c1; c2; c3Þ be a charge-network with an EO vertex

vE
0 , which for the sake of concreteness we consider to be of

type ðM ¼ 1; j ¼ 2Þ. That is,

ð~c1; c2; c3Þ ¼ ðc1 [ ��0
v0
ðhÊ2ðv0Þic2 ; nc3Þ; c2; c3Þ; (8.15)

where c does not have any EO vertices and where vE
0 is

associated with v0. There is a set of irrelevant vertices in
Vð~c1 [ c2 [ c3Þ, and let us denote this set by fvv0

1 ; . . . ; vv0

k g.
Let us consider one of them, say vv0

1 and let the four edges

incident on v1 be e1
v
v0
1

; . . . ; e4
v
v0
1

such that (e1
v
v0
1

, e3
v
v0
1

) and

(e2
v
v0
1

, e4
v
v0
1

) are analytic pairs. Let us assume that (e1
v
v0
1

,

e3
v
v0
1

) are charged only under Uð1Þ1, whence a simple

computation shows that Ĥð1Þ
Tð�0Þðvv0

1 Þ acting on j~c1; c2; c3i
vanishes. However this is not true for Ĥð2Þ

Tð�0Þðvv0

1 Þ or

Ĥð3Þ
Tð�0Þðvv0

1 Þ. Their action will produce EO pairs

ðvv0

1 ; ðvv0

1 ÞEÞ which are of type ðM ¼ 2Þ or type ðM ¼ 3Þ.
Thus the action of the Hamiltonian constraint on j~c1; c2; c3i
produces a state which has a vertex vE

0 charged in Uð1Þ1
and a vertex ðvv0

1 ÞE charged in Uð1Þ2. As there exists no set

30It is important to note that our entire construction, when
generalized to three dimensions, would generically be free of
such four-valent vertices.
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½c0�ðiÞ in which there is ever a charge network with two

monocolored vertices charged in different Uð1Þi, we have

�fðiÞ
½c0�ðĤðiÞ

Tð�Þ½N�j~c1; c2; c3iÞ ¼ 0 (8.16)

8� > 0 and 8 i. Hence we will ignore the action of the
Hamiltonian constraint on irrelevant vertices in what
follows.

IX. COMMUTATOR OF TWO
HAMILTONIAN CONSTRAINTS

In this section we embark upon the key computation
performed in this paper. We argue that the quantum
Hamiltonian constraint that we have obtained above has
the right basic ingredients to achieve an anomaly-free
representation of the Dirac algebra. We will show that
the commutator between two Hamiltonian constraints is,
in a precise sense, a quantization of the right-hand side of
the corresponding classical Poisson bracket.

Let us first describe what it is that we want to show.
Recall that

fH½M�; H½N�g ¼ V½ ~!�;
!a :¼ q�1=2Ea

i E
b
i ðN@bM�M@bNÞ:

(9.1)

Our aim is to show that the above equality holds at the
quantum level. That is, schematically we want to prove that

½Ĥ½M�; Ĥ½N�� ¼ iℏV̂½ ~!�: (9.2)

Our strategy will be the following. As the continuum
Hamiltonian constraint does not preserve the habitat
V LMI, but maps it elements into elements of Cyl�, the
commutator of two continuum Hamiltonians does not
make sense on V LMI. However, things are not as bad as
they look. Let us assume for a moment an ideal scenario
where we had a habitat V grand on which any product of a

finite number of continuum Hamiltonian constraints is a
well-defined operator. Then 8� 2 V grand, we would

haveX
i;j

ð½ĤðiÞ½M�0; ĤðjÞ½N�0��Þjc1; c2; c3i

¼ X
i;j

ððĤðiÞ½M�0ĤðjÞ½N�0 � ðM $ NÞÞ�Þjc1; c2; c3i

¼ X
i;j

lim
�!0

lim
�0!0

�ðĤðjÞ
Tð�0Þ½N�ĤðiÞ

Tð�Þ½M�

� ðM $ NÞÞÞjc1; c2; c3i: (9.3)

As we show below, the right-hand side of this equation is
well defined and constitutes a definition of the continuum
commutator:

ð½Ĥ½M�; Ĥ½N��0�Þjci
:¼ X

i;j

lim
�!0

lim
�0!0

�ððĤðjÞ
Tð�0Þ½N�ĤðiÞ

Tð�Þ½M�

� ðM $ NÞÞjciÞ: (9.4)

In light of (9.3), the equality in (9.2) amounts to proving
thatX
i;j

lim
�!0

lim
�0!0

�ðĤðjÞ
Tð�0Þ½N�ĤðiÞ

Tð�Þ½M� � ðM $ NÞÞjci

¼ lim
�00!0

ð�iℏÞ�ðV̂Tð�00Þ½ ~!�jciÞ (9.5)

8� 2 V LMI, 8ðc1; c2; c3Þ.
The minus sign on the RHS of (9.5) may seem surprising

but it arises due to the argument given in Appendix E.
The strategy used proving (9.5) will be as follows:
(1) The first step in obtaining the continuum

commutator on V LMI is computingP
i;j½ĤðiÞ

Tð�0Þ½N�ĤðjÞ
Tð�Þ½M� � ðM $ NÞ�jc0i for any

charge network state jc0i. As we show in Sec. IXA,
the regularized commutator vanishes 8�, �0
if suppðNÞ \ suppðMÞ ¼ ;. For the case when
suppðNÞ \ suppðMÞ � ;, the computation is slightly
more involved and details are provided in Appendix F.

(2) In Section IXB we use the results of Appendix F to
derive the continuum limit of the right-hand side of
Eq. (9.5).

(3) In Sec. IXC, we define V̂Tð�;�0Þ½ ~!� such that

V̂Tð�;�0Þ½ ~!�jc0i precisely equals the relevant terms31 inX
i;j

½ĤðiÞ
Tð�0Þ½N�ĤðjÞ

Tð�Þ½M� � ðM $ NÞ�jc0i: (9.6)

This will finally lead us to our main result.

A. Analyzing the case when suppðNÞ \ suppðMÞ ¼ ;
Consider a state jc0i such that the only vertices in Vðc0Þ

which lie in the support of N and M, respectively are, vN

and vM. Then for any i, j, we have schematically

½ĤðiÞ
Tð�0Þ½N�ĤðjÞ

Tð�Þ½M� � ðM $ NÞ�jc0i

¼ 1

��0 ½ÔðiÞ
Tð�0ÞðvNÞÔðjÞ

Tð�ÞðvMÞðF ½N;vNÞG½M;vMÞ
� ðM $ NÞÞ�jc0i; (9.7)

where F ½N;vNÞ and G½M;vMÞ are in general local func-
tionals ofN andM, evaluated at vN and vM, respectively.

32

Locality of these functionals implies that

31By relevant terms we mean those states which do not vanish
once they are ‘‘dotted’’ with a state in the habitat.
32The precise form of these functionals depends on the nature
of jc0i, but what is important for our purposes is that they can at
most involve the first derivatives of the lapses evaluated at vN
or vM.
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½ĤðiÞ
Tð�0Þ½N�ĤðjÞ

Tð�Þ½M� � ðM $ NÞ�jc0i ¼ 0 (9.8)

8�, �0 and8jc0i 2 H kin. Whence for any state inV LMI

we have

lim
�!0

lim
�0!0

�fðkÞ
½c�ðkÞ ð½Ĥ

ðiÞ
Tð�0Þ½N�ĤðjÞ

Tð�Þ½M� � ðM $ NÞ�jc0iÞ ¼ 0:

(9.9)

This implies that as long as N, M have nonintersecting
supports,

½Ĥ½M�; Ĥ½N���fðkÞ
½c�ðkÞ ¼ 0: (9.10)

B. Analyzing the case when suppðNÞ \ suppðMÞ � ;
Let�fðiÞ

½c�ðiÞ be such that there exists a single vertex in VðcÞ
which falls inside suppðNÞ \ suppðMÞ. The case where
more than one element of the vertex set VðcÞ falls in the
overlap region is a straightforward generalization of the
analysis given here. In this case, in order to evaluate

�fðiÞ
½c�ðiÞ

�X
i;j

½ĤðiÞ
Tð�0Þ½N�ĤðjÞ

Tð�Þ½M� � ðM $ NÞ�jc0i
�
; (9.11)

it suffices to consider only those states jc0iwhich have only
one vertex in the support of VðcÞ, so we first consider a
state jc0iwith precisely one vertex v0 2 Vðc0Þ \ suppðNÞ \
suppðMÞ. As shown in Appendix F, we have the following:X
i�j

½ĤðiÞ
Tð�0Þ½N�ĤðjÞ

Tð�Þ½M� � ðM $ NÞ�jc01; c02; c03i

¼ jc �;�0
1 ðv0; c

0; ½M;N�Þi þ jc �;�0
2 ðv0; c

0; ½M;N�Þi
þ jc �;�0

3 ðv0; c
0; ½M;N�Þi; (9.12)

where the jc �;�0
i ðv0; c

0; ½M;N�Þi are given in Appendix F in
(F9)–(F11), respectively.

Claim.—lim �;�0!0�
fðiÞ
½c�ðiÞ ðjc

�;�0
j ðv0; c

0; ½N;M�ÞiÞ ¼ 0

8 i � j, c, c0.
Proof.—The proof is straightforward, since

jc �;�0
j ðv0; c

0; ½N;M�Þi is a linear combination of four

states, and each contains (with respect to c0) one EO state
of type j. Thus clearly these states are orthogonal to all
states in ½c�ðiÞ for any c as long as i � j. This completes

the proof.
Then

lim
�;�0!0

�fðiÞ
½c�ðiÞ

�X
j�k

½ĤðjÞ
Tð�0Þ½N�ĤðkÞ½M� � ðM $ NÞ�jc0i

�

¼ lim
�;�0!0

�fðiÞ
½c�ðiÞ ðjc

�;�0
i ðv0; c

0; ½M;N�ÞiÞ: (9.13)

Without loss of generality, we consider the i ¼ 1 case.

Lemma.—8 c0, c, N, M,

lim
�;�0!0

�fð1Þ
½c�ð1Þ ðjc

�;�0
1 ðv0; c

0; ½M;N�ÞiÞ

¼ ð�fð1Þð3;1Þv0
½M;N�

½c�ð1Þ ��
fð1Þð1;3Þv0

½M;N�
½c�ð1Þ ��

fð1Þð1;2Þv0
½M;N�

½c�ð1Þ

þ�
fð1Þð2;1Þv0

½M;N�
½c�ð1Þ Þjc0i; (9.14)

where �
fð1Þði;jÞv0

½M;N�
½c�ð1Þ 6�V LMI are distributions with vertex

functions fð1Þði;jÞv0
½M;N�: �jVðcÞj ! R defined as

fð1Þði;jÞv0
½M;N�ðv1; . . . ; vjVðcÞjÞ ¼ fð1Þðv1; . . . ; vjVðcÞjÞ

(9.15)

if the one of the following holds:
(1) fv1; . . . ; vjVðcÞjg � Vðc01 [ c2 [ c3Þ for any

ðc01; c2; c3Þ 2 ½c�ð1Þ, or
(2) fv1;...;vjVðcÞjg¼Vðc01[c2[c3Þ for some ðc01;c2;c3Þ2

½c�ð1Þ but v0 6�fv1;...;vjVðcÞjg.
In the case that the complements of (1) and (2) hold,

we have

fð1Þði;jÞv0
½M;N�ðv1; . . . ; vjVðcÞjÞ

¼ 1

4

�
ℏ
i

�
2
2ð ~ncvÞ�ð1; i; jÞ

� X
e2EðcÞ

hÊiðLðeÞÞi _eað0Þ


 ðMðv0Þ@aNðv0Þ � Nðv0Þ@aMðv0ÞÞ
�
hÊb

j ðv0Þi


 @

@va f
ð1Þðv1; . . . ; vjVðcÞjÞ; (9.16)

where

�ð1; i; jÞ ¼

8>>>><
>>>>:

0; i ¼ j

0; at least one of i or j � 1

þ1; i � j ¼ 1

�1; i ¼ 1 � j

: (9.17)

The proof is exactly analogous to the proof for the

continuum limit of Ĥð1Þ
Tð�Þ½N� on V LMI, hence we do not

give further details here.
Thus finally, in the topology that we have put on the

space of (finite-triangulation) operators, the continuum
limit of the commutator is as follows:

½Ĥ½M�; Ĥ½N��0
�
�fð1Þ

½c�ð1Þ þ�fð2Þ
½c�ð2Þ þ�fð3Þ

½c�ð3Þ

�

¼ X3
i¼1

X
j�i

�
�

fðiÞðj;iÞv0
½M;N�

½c�ðiÞ ��
fðiÞði;jÞv0

½M;N�
½c�ðiÞ

�
: (9.18)

fðiÞðj;iÞv0
½M;N� and fðiÞði;jÞv0

½M;N� are defined above in (9.16)
for i ¼ 1. For i ¼ 2, 3 they are defined similarly. We
remind the reader that our analysis has been restricted to
K :¼ VðcÞ \ suppðNÞ \ suppðMÞ ¼ fv0g. The most gen-
eral case is when this set contains more than one element
and in this case Eq. (9.18) generalizes to
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½Ĥ½M�; Ĥ½N��0ð�fð1Þ
½c�ð1Þ þ�fð2Þ

½c�ð2Þ þ�fð3Þ
½c�ð3Þ Þ ¼

X
v2K

X3
i¼1

X
j�i

ð�fðiÞðj;iÞv ½M;N�
½c�ðiÞ ��fðiÞði;jÞv ½M;N�

½c�ðiÞ Þ: (9.19)

Next we quantize V½ ~!� on V LMI and show that (9.5) is satisfied.

C. Quantization of V½ ~!�
Recall that

fH½M�; H½N�g ¼ V½ ~!� ¼
Z
�
d2xq�1=2Ea

i E
b
i ðN@bM�M@bNÞFj

acEc
j : (9.20)

Before quantizing this classical functional, let us rewrite it as

V½ ~!� ¼
Z
�
d2xðN@aM�M@aNÞ

�X
i�1

ðEa
i E

b
i ÞF1

bcE
c
1 þ

X
i�2

ðEa
i E

b
i ÞF2

bcE
c
2 þ

X
i�3

ðEa
i E

b
i ÞF3

bcE
c
3

�
q�1=2

	 V1ð½N;M�Þ þ V2ð½N;M�Þ þ V3ð½N;M�Þ; (9.21)

where

V1ð½N;M�Þ :¼
Z
�
d2xðN@aM�M@aNÞX

i�1

ðEa
i E

b
i ÞF1

bcE
c
1q

�1=2

¼
Z
�
d2xðN@aM�M@aNÞðEa

2E
c
1F

1
bcE

b
2 þ Ea

3E
c
1F

1
bcE

b
3Þq�1=2

¼
Z
�
d2xðN@aM�M@aNÞððEa

2E
c
1 � Ea

1E
c
2ÞF1

bcE
b
2 þ ðEa

3E
c
1 � Ea

1E
c
3ÞF1

bcE
b
3Þq�1=2; (9.22)

where we have subtracted classically trivial terms like Ea
1E

c
2F

1
bcE

b
2 which will give a nontrivial contribution in the quantum

theory (these terms upon quantization are higher order in ℏ whence there is no contradiction). V2ð½N;M�Þ and V3ð½N;M�Þ
are defined similarly, and involve terms containing F2 and F3, respectively. We will quantize V½ ~!� as the sum of the
quantizations of these functionals.

1. Quantization of V1ð½N;M�Þ
Before presenting the quantization of V1ð½N;M�Þ in detail, we explain the underlying idea. Spiritually the quantization is

similar to the quantization of ĤðiÞ
Tð�Þ½N�, but there are some differences. Consider a graph � and a triangulation Tð�; �Þ

adapted to � such that every vertex v 2 Vð�Þ, whose valence is N, is contained in N ‘‘rectangles’’ whose area is �2 with
the area of overlap region being Oð�3Þ.

From (9.22) we see that V1ð½N;M�Þ is the sum of two terms. Let us focus on one of them which involves F1
bcE

b
2:

V1ð½N;M�Þ ¼ V1;2ð½N;M�Þ þ V1;3ð½N;M�Þ
:¼

Z
�
d2xðN@aM�M@aNÞððEa

2E
c
1 � Ea

1E
c
2ÞF1

bcE
b
2Þq�1=2 þ term containingF1

bcE
b
3 : (9.23)

We will quantize V1;2ð½N;M�Þ as a product of elementary operators in following rough sense:

Ea
i¼1;2ðN@aM�M@aNÞ! flux;

Ec
j¼1;2q

�1=4j�!quantumshift¼:Vc
j¼1;2ðxÞ;

Ec
j¼1;2q

�1=4ðxÞj�F1
bcE

b
2!holonomyarounda loopgeneratedbyVc

j¼1;2

andchargedwith eigenvalueof flux associated toEb
2 ;

q�1=4
� !quantize separately:

The regularized flux quantization of Ea
i¼1;2ðN@aM�M@aNÞ is defined as follows:
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Êa
i¼1;2ðN@aM�M@aNÞðvÞj�;�0 jci :¼ X

e2Eð�ÞjbðeÞ¼v

Ê2ðL�
e ÞðNðvÞðMðvþ �0 _eð0ÞÞ �MðvÞÞ � ðN $ MÞÞ

jL�
e j�0 : (9.24)

Now we follow essentially the same strategy used in quantizing ĤðiÞ
Tð�Þ½N�. However, there is one key technical difference

in the construction of the quantum shift as compared to the quantum shift used in ĤðiÞ
Tð�Þ½N�. Recall that the definition

of the quantum shift V̂c
jðvÞj� at a given point v depended on the regularization of Êa

j ðvÞ and q�1=4
� ðvÞ separately. The

regularization required Bðv; �Þ, which was used as a smearing object for regularizing the distribution Êa
j ðvÞ and which also

went into the construction of q�1=4
� ðvÞ (as shown in Appendix A). These regularizations gave rise to

Êa
j ðvÞ ¼

1

�
Ôa

1jðvÞ; q�1=4
� ðvÞ ¼ �Ô2ðv; �Þ; (9.25)

where Ô1, Ô2 are densely defined operators onH kin, in contrast to being operator-valued distributions, and Ô2 implicitly
depends on �. This construction implied that the quantum shift V̂a

j ðvÞ ¼ Ôa
1jðvÞÔ2ðv; �Þ was (explicitly) independent of �.

However, for defining the quantum shift in V̂ð½N;M�Þ we use a different regularization, where the ball Bðv; �Þ used for
smearing Êa

j is four times as large as the ball used in constructing q�1=4
� . This implies that

V̂a
j ðvÞ ¼

1

4
Ôa

1jðvÞÔ2ðv; �Þ: (9.26)

The 1
4 factor will account for the overall

1
4 factor that we obtained on the LHS.

We are now ready to put all the pieces together. Given a graph � and a triangulation Tð�; �Þ adapted to �, a quantization
of V1;2

Tð�;�0Þð½N;M�Þ is given by

V̂1;2
Tð�;�0Þð½N;M�Þjc0i ¼ �ℏ2

4i

2
4
0
@ X

v2Vð�Þ

X
4vjv2Vð�Þ

j 4v j
X

e2Eð�ÞjbðeÞ¼v

Ê2ðL�
e ÞðNðvÞðMðvþ �0 _eð0ÞÞ �MðvÞÞ � ðN $ MÞÞ

jL�
e j�0


 X
e02Eð�Þjbðe0Þ¼v

1

jL�
e0 j�2

ððĥ1
�ðe0;hÊ1ðvÞiÞÞ

n2
e0 � 1Þq̂�1=4

� ðvÞÔ2ðv; �Þ
1
A

�
0
@ X

v2Vð�Þ

X
4vjv2Vð�Þ

j 4v j
X

e2Eð�ÞjbðeÞ¼v

Ê1ðL�
e ÞðNðvÞðMðvþ �0 _eð0ÞÞ �MðvÞÞ � ðN $ MÞÞ

jL�
e j�0


 X
e02Eð�Þjbðe0Þ¼v

1

jL�
e0 j�2

ððĥ1
�ðe0;hÊ2ðvÞiÞÞ

n2
e0 � 1Þq̂�1=4

� ðvÞÔ2ðv; �Þ
1
A
3
5jc0i; (9.27)

where we have the following.
(1) L�

e is a (codimension one) surface transversal to e, intersecting in a point which is in the coordinate neighborhood of
v and the length of L�

e is �.

(2) �ðe0; hÊ1ðvÞiÞ is the loop starting at v, spanned by a straight-line arc along the Êa
1ðvÞ, and a segment along e0 such

that the area of the loop is �2.
(3) The factor of jL�

e0 j in the denominator comes from the fact that the quantization of Fi
abE

b
j (see Sec. VII D) along an

edge e0 by ‘‘charging’’ the loop along with holonomy of Ai is defined by the eigenvalue of flux EjðL�
e0 Þ, which

requires dividing the resulting operator by jL�
e0 j. Note that on choosing jL�

e0 j ¼ �, this factor cancels with the factor

of � present in the quantization of q̂�1=4.

(4) The factor of 1
4 in front is due to the quantum shift being 1

4 V̂
a and the factor of (� 1) is due to the classical object

being Ec
i F

1
bcE

b
2 ¼ �Eb

i F
1
bcE

c
2, the latter of which we actually quantize.

(5) The two factors ofℏ come from the quantumshift hÊa
i i, and the fluxeigenvalue underwhich the holonomyaround the loop

is charged (this is the same convention we used when quantizing the Hamiltonian constraint at finite triangulation).33

(6) The factor of i�1 comes from expressing the curvature in terms of a loop holonomy.
We now follow the same steps that we followed in Sec. VII D, and replace the sum over holonomies by a product. The

resulting final operator at finite triangulation is

33Note that our convention is always that hÊa
i i is without a factor of ℏ.
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V̂1;2
Tð�;�0Þð½N;M�Þjc0i ¼ iℏ2

4��0

2
4
0
@ X

v2Vð�Þ

X
e2Eð�ÞjbðeÞ¼v

Ê2ðL�
e ÞðNðvÞðMðvþ �0 _eð0ÞÞ �MðvÞÞ

� ðN $ MÞÞ
2
4 Y

e02Eð�Þjbðe0Þ¼v

ĥ
n2
e0

�ðe0;hÊa
1 ðvÞiÞ

� 1

3
5q̂�1=4

� ðvÞÔ2ðvÞ
1
A

�
0
@ X

v2Vð�Þ

X
e2Eð�ÞjbðeÞ¼v

Ê1ðL�
e ÞðNðvÞðMðvþ �0 _eð0ÞÞ �MðvÞÞ

� ðN $ MÞÞ
2
4 Y

e02Eð�Þjbðe0Þ¼v

ĥ
n2
e0

�ðe0;hÊa
2 ðvÞiÞ

� 1

3
5q̂�1=4

� ðvÞÔ2ðvÞ
1
A
3
5jc0i; (9.28)

which finally yields the following linear combination of charge network states:

V̂1;2
Tð�;�0Þð½N;M�Þjc0i ¼ iℏ3

4��0
1

ℏ2

2
4
0
@ X

v2Vð�Þ
2ð ~ncvÞ

X
e2Eð�ÞjbðeÞ¼v

hE2ðL�
e ÞiðNðvÞðMðvþ �0 _eð0ÞÞ �MðvÞÞ

� ðN $ MÞÞ½jc01 [ ��
vðhÊ1ðvÞi; n2Þ; c02; c03i � jc0i�

1
A

�
0
@ X

v2Vð�Þ
2ð ~ncvÞ

X
e2Eð�ÞjbðeÞ¼v

hÊ1ðL�
e ÞiðNðvÞðMðvþ �0 _eð0ÞÞ �MðvÞÞ

� ðN $ MÞÞ½jc01 [ ��
vðhÊ2ðvÞi; n2Þ; c02; c03i � jc0i�

1
A
3
5: (9.29)

V̂1;3
Tð�Þ;�0 ð½N;M�Þ can be defined analogously. Thus finally we have that

V̂1
Tð�;�0Þð½N;M�Þjc0i ¼ �ℏ

i

1

4��0
X

v2Vð�Þ
NðvÞ2ð ~ncvÞ

X
e2Eðc0ÞjbðeÞ¼v

ðMðvþ�0 _eð0ÞÞ

�MðvÞÞ½ðhÊ3ðLeÞiðjc01 [��
vðhÊ1i; nc03Þ; c02; c03i � jc0iÞ � hÊ1ðLeÞiðjc01 [��

vðhÊ3i; nc03Þ; c02; c03i � jc0iÞÞ
� ðhÊ1ðLeÞiðjc01 [��

vðhÊ2i; nc0
2
Þ; c02; c03i � jc0iÞ � hÊ2ðLeÞiðjc01 [��

vðhÊ2i; nc0
2
Þ; c02; c03i � jc0iÞÞ�

� ðN $MÞ: (9.30)

Without loss of generality let us assume that the only vertex in Vðc0Þwhich is contained in the supports of bothN,M, is v0,
so that then34

V̂1
Tð�Þ;�0 ð½N;M�Þjc0i¼�ℏ

i

1

4��0Nðv0Þ2ð ~ncvÞ
X

e2Eðc0ÞjbðeÞ¼v0

ðMðv0þ�0 _eð0ÞÞ

�Mðv0ÞÞ½ðhÊ3ðLeÞiðjc01[��
v0
ðhÊ1i;nc0

3
Þ;c02;c03i�jc0iÞ�hÊ1ðLeÞiðjc01[��

v0
ðhÊ3i;nc0

3
Þ;c02;c03i�jc0iÞÞ

�ðhÊ1ðLeÞiðjc01[��
v0
ðhÊ2i;nc0

2
Þ;c02;c03i�jc0iÞ�hÊ2ðLeÞiðjc01[��

v0
ðhÊ2i;nc0

2
Þ;c02;c03i�jc0iÞÞ�

�ðN$MÞ: (9.31)

Now notice that [using (F9) and (9.31)],

ð�iℏÞV̂1
Tð�;�0Þð½N;M�Þjc0i ¼ jc �;�0

1 ðv0; c
0; ½M;N�Þi: (9.32)

The remaining V̂i;j
Tð�;�0Þð½N;M�Þ operators are defined analogously. The sum of all these operators constitutes a quantization

of V½q�1½N;M�� on H kin:

ð�iℏÞV̂Tð�;�0Þð½N;M�Þjc0i ¼ ð�iℏÞX
i

V̂i
Tð�;�0Þð½N;M�Þjc0i ¼ X

i

jc �;�0
i ðv0; c

0; ½M;N�Þi: (9.33)

We are now ready to state our main result:

34If N andM have support containing different vertices of the underlying state then, it is easy to see that the operator vanishes at finite
triangulation 8�0 whence its continuum limit will vanish on V LMI. In this case, the equality of the RHS and LHS of (9.5) follows.
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Theorem.—½Ĥ½M�0, Ĥ½N�0�� ¼ ð�iℏÞV̂ð½N;M�Þ0�,
8 � 2 V LMI.

Proof.—For any �fðiÞ
½c�ðiÞ , the LHS is given by (9.18) and

it is a result of the continuum limit of the net given in
(9.13). As the RHS is the continuum limit of the net given
in (9.33), which is precisely the same net as in (9.13), the
result follows.

Thus there exists a quantization of fH½M�; H½N�g as an
operator from V LMI to Cyl� (as a limit point of a net of
finite-triangulation operators in a particular topology
which is similar to the weak *-topology) which equals a
quantization of V½q�1½N;M�� as an operator fromV LMI to
Cyl�. This, in our opinion, demonstrates that the quantiza-
tion of the Hamiltonian constraint we have proposed in this
paper has the right structural properties such that it can give
rise to a faithful representation of Dirac algebra.

X. CONCLUSIONS

A satisfactory definition of quantum dynamics in ca-
nonical LQG is still missing. Even in the Euclidean sector
of the theory, the progress is rather fragmented and is
mainly achieved in a variety of minisuperspace models.
To the best of our knowledge the only midisuperspace
models where a completely satisfactory definition of the
quantum constraints in generally covariant loop quantized
field theories is known are, in fact, nongravitational theo-
ries, namely, two-dimensional PFT and the HK model.
However, these models miss perhaps the most interesting
aspect of the constraint algebra of canonical gravity: That
it is a Lie algebroid instead of being a Lie algebra [28]; that
is, the fact that the Poisson bracket of two Hamiltonian
constraints involves phase space-dependent structure func-
tions. In this paper, we proposed a toy model which has the
same Dirac algebra as Euclidean three-dimensional ca-
nonical gravity but here, in a certain sense, nonlinear
aspects of gravity are absent. We focused on a part of the
constraint algebra and finally derived a quantization of
continuum Hamiltonian constraint, which has the potential
to give rise to a faithful representation of the Dirac algebra.
To the best of our knowledge, our work along with [29] is a
first attempt towards a quantum realization of off-shell
closure of the Dirac algebra within the LQG framework.

As the theory is a topological Abelian gauge theory, one
might perceive this model as being too simplistic. However
this is not quite true. As our main focus has been on
understanding the off-shell closure condition in the quan-
tum theory (and as the theory is topological only on shell),
we work in a genuine field-theoretic context. It is quite
straightforward to generalize our results to (3þ 1)-
dimensional Uð1Þ3 theory (which is precisely the model
studied in [29]) and, in fact, some of the technical annoy-
ance that we face in two dimensions (e.g., the presence of
irrelevant vertices) can be evaded in three spatial dimen-
sions. On the other hand, in 2þ 1 dimensions the physical

spectrum of this topological gauge theory is well under-
stood [as states supported on the moduli space of flat Uð1Þ3
connections], and a complete set of Dirac observables is
known. Hence one could investigate the consistency of the
quantum theory defined here by investigating issues asso-
ciated to the kernel of constraints, and the representation of
quantum Dirac observables.
We now recap the most salient aspects of our construc-

tions before highlighting the key open issues and some of
the unsatisfactory aspects.
The usual construction of composite operators in LQG is

via some classical polynomial function of holonomies and
fluxes. However, as we were motivated to look for a
quantization of Hamiltonian constraint which mimicked a
certain discrete approximant of the classical geometric
action involving phase space-dependent diffeomorphisms,
our quantization choices involved quantizing Fi

abE
b
j as a

holonomy operator (with the holonomy being in a state-
dependent representation) and quantizing the remaining

triad Ea
k (or more precisely Nq�1=4Ea

k) as a quantum shift

which generated the loop underlying the holonomy asso-
ciated to Fi

abE
b
j . These choices have a spiritual similarity to

the ‘‘ ��-scheme’’ which led to a physically viable quanti-
zation of the Hamiltonian constraint in LQC [30].35

The Hamiltonian constraint at finite triangulation

ĤTð�Þ½N� created very specific types of vertices that we

called extraordinary (EO) vertices. As the underlying
gauge group is Uð1Þ3, these vertices are always degenerate
(i.e., they are in the kernel of the inverse volume operator).
This aspect of the construction bares some similarity to
Thiemann’s Hamiltonian, in which the newly created ver-
tices are also degenerate.36 Whence at first sight it seemed
as if one faces the same problem that Thiemann’s
Hamiltonian does, in that the action of a second successive
Hamiltonian will have no nontrivial action at EO vertices
and the objections raised in [20] will remain true in our
case. However, this expected triviality overlooked a key
fact about the EO vertices: Their ‘‘location’’ with respect
to the original charge network is state dependent, which is
in turn due to the fact that these EO vertices are created
along straight-line arcs of the quantum shift. This fact
along with a classical Poisson bracket computation sug-
gested a plausible modification of Hamiltonian constraint
when it acted on EO vertices. The modification was such
that its precise interpretation was a ‘‘nonlocal’’ action (i.e.,
these actions were generated by operators which involved
holonomies around finite loops) not only on the EO vertex

35However notice that the analogy is only superficial. In
the �� scheme, the triad dependence underlying the holonomy
operator does not come from the q�1=2E ^ E term. We thank
Martin Bojowald for pointing this out to us.
36We should note here that the similarity is only restricted to
Uð1Þ3. The superficial extension of our analysis to SU(2) sug-
gests that the EO vertices created in that case will not be
degenerate.
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but on a subgraph containing the EO pair. However, the
detailed understanding of such terms in the context of the
underlying continuum classical theory is not clear to us and
should be investigated further [31].

The action of the finite-triangulation Hamiltonian con-

straint ĤTð�Þ½N� on a charge network jci is remarkably

different from the action considered so far in LQG, and it
is worth summarizing its three main features:

(1) The deformations of the graph underlying c are
state-dependent (as dictated by the quantum shift).

(2) The Uð1Þ3 edge labels in c change, with the change
itself being state dependent.

(3) A certain special class of degenerate vertices moves

under the action of ĤTð�Þ½N�.
All three of these conditions hint at a rather rich struc-

ture of quantum dynamics in the model that could be of
interest to discrete approaches inspired by canonical loop
quantum gravity.

We then constructed a habitat which was designed in
such a way that the continuum limit of the finite-
triangulation Hamiltonian constraint could be taken in
the topology induced by a family of seminorms. The con-

tinuum limit Hamiltonian constraint Ĥ½N�0 does not pre-
serve this habitat and can only be interpreted as a linear
operator fromV LMI to Cyl

�. Although this implies that the

commutator of Ĥ½N�0 with itself is ill defined, it turns out
that the limit of finite-triangulation commutators is still
well defined on V LMI and is nonvanishing. We finally
showed that there exists a quantization of the RHS, which
is not quantized as an ordinary diffeomorphism with triad-
dependent shift, but requires a specific operator ordering.
This quantization matches with the continuum quantum
commutator which is the LHS of the off-shell closure
relation.

We now come to the open issues and certain related
unsatisfactory aspects of our work. Our entire construction
is based upon decomposing the Hamiltonian constraint
into three pieces involving F1, F2, and F3, respectively.
Although each of these pieces is gauge invariant in the
present model, this is not true in the case of SU(2). Thus
more careful analysis is needed to extend our proposal
to a quantization of the Hamiltonian constraint in the
SU(2) case.

The second issue lies in the choice of the habitat. Our
experience of how to construct habitats on which higher
density operators in LQG admit a continuum limit is rather
limited. After the seminal work done in [19], where a
habitat was constructed in which Thiemann’s (regularized)
Hamiltonian constraint admitted a continuum limit (once
again in a seminorm topology induced by the habitat states
and states in H kin), the only places where habitats have
been utilized have been in [21,23]. In these two examples
habitats even turned out to be physically appropriate homes
for the quantum constraints, as the kernel (which was
known via other methods) is a subspace of those habitats.

However, in our case, the nature of the regularized con-
straints makes it rather difficult to construct a suitable
habitat on which not only do the regularized constraints
admit a continuum limit, but also that all the details of the
regularized constraint operators remain intact when we
take continuum limit (for example, the change in edge

labels induced by the action of ĤTð�Þ½N� go amiss when

we consider the dual action on the habitat). It is important
to note that we have constructed a habitat only with two
goals in mind:

(1) Ĥi
Tð�Þ½N� admits a continuum limit; and

(2) ½ĤT½N�; ĤT0 ½M�� admits a continuum limit.
V LMI need not be a physically relevant habitat since
(a) H½N�0 does not preserve V LMI.
(b) We do not know if the states in the moduli space of

flat Uð1Þ3 connections are included in V LMI.
37

(c) The classical theory is a completely integrable sys-
tem, but we do not know if the habitat admits a
representation of quantum observables and if there
a precise sense in which these observables commute
with the quantum constraints.

Detailed investigations of all these three issues could be
key in constructing physically interesting habitats.
There is an alternate viewpoint one could adhere to. Let us

assume that we can extend our constructions to three spatial
dimensions, and appropriately density weighted constraints
that satisfy the off-shell closure condition on some habitat.
As far as the Uð1Þ3 theory is concerned, since the inverse
volume operator is just a multiple of the identity operator on
charge network states, the higher density weighted operator
induces an unambiguous definition of a density one operator.
It is quite plausible that in the Uniform-Rovelli-Smolin
topology (or some suitable generalization thereof), this den-
sity one operator converges to a densely defined operator on
H kin. Then the requirement of off-shell closure would only
be used to select, out of an infinitude of possible choices, a
density one quantum Hamiltonian constraint, and one could
just choose to work on H kin.

38

A faithful representation of the Dirac algebra entails not
only the second equation in Eq. (2.3), but all three of them.
In particular, the construction of a finite-triangulation
Hamiltonian constraint operator involved certain back-
ground structure, which survived in the continuum limit.
The definition of the quantum shift involved a certain
regularization scheme and it is far from clear if this scheme
is diffeomorphism covariant (or if it could be rendered so).
The notion of extraordinary vertices, which are required to
lie inside certain balls around nondegenerate vertices is

37Naively speaking, the habitat states with constant vertex
functions can indeed be thought of as states with support only
on flat connections. However this issue has not been investigated
in detail.
38We do not believe these ideas can work in two spatial
dimensions, due to the presence of irrelevant vertices which
would be absent in three dimensions.
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certainly a noncovariant notion, as one can map an EO
vertex with respect to some charge network c into a WEO
vertex with respect to the same charge network via some
diffeomorphism. Hence in light of the noncovariant struc-
tures which have gone into the construction of the (contin-
uum) Hamiltonian, it is far from clear if the third equation in
(2.3) is satisfied. We will come back to these issues in [25].
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APPENDIX A: VOLUME AND INVERSE
VOLUME OPERATORS

In this appendix we discuss the construction of a Uð1Þ3
volume operator, as well as an operator corresponding to

q�1=4, which are used in the main body of the paper. We
closely follow Thiemann [27].

1. Volume operator

In [27], an operator-valued distribution corresponding to
the degeneracy vector Ei ¼ 1

2 �
ijk�abE

a
jE

b
k is constructed

when the gauge group is SU(2). In the case of Uð1Þ3,
the construction proceeds analogously and leads to the
operator action

ÊiðxÞjci ¼ 1

8
ð�ℏÞ2 X

v2VðcÞ
�ð2Þðx; vÞ


 X
eI\eI0¼fvg

�ðeI; eI0 Þ�ijknjInkI0 jci; (A1)

where VðcÞ is the vertex set of c, and

�ðe; e0Þ :¼ �ab _e
að0Þ _e0bð0Þ

j�ab _e
að0Þ _e0bð0Þj ¼ 1; 0: (A2)

The additional factor of 1
4 comes from evaluating the �

functions at end points of integration over t, t0 (we have

arranged all edges as outgoing at vertices). Classically
q ¼ EiEi, but the presence of the � function requires
an additional regularization as an intermediate step. One
can show that the regularized q̂ is the square of an essen-
tially self-adjoint operator, and it is positive semidefinite,
so its square root is well defined as an operator-valued
distribution:ffiffiffiffiffiffiffiffiffi
q̂ðxÞ

q
jci ¼ 1

8
ð�ℏÞ2 X

v2VðcÞ
�ð2Þðx; vÞ



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� X
eI\eI0¼fvg

�ðeI; eI0 Þ�ijknjInkI0
�
2

vuut jci: (A3)

We can use this to define a regular operator corresponding
to the volume VðRÞ of a region R � �:

V̂ðRÞjci :¼
Z
R
d2x

ffiffiffiffiffiffiffiffiffi
q̂ðxÞ

q
jci ¼ 1

8
ð�ℏÞ2


 X
v2VðcÞ\R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� X
eI\eI0¼fvg

�ðeI; eI0 Þ�ijknjInkI0
�
2

vuut jci:

(A4)

We observe that since Êi vanishes on states charged in only
one copy of U(1), the volume also vanishes on these states.

Moreover, due to the orientation factor �ðeI; eI0 Þ, V̂ van-
ishes at vertices at which there are not at least two edges
with linearly independent tangents.

2. A q�1=4 operator

In this subsection we derive a Thiemann-like classical

identity for q�1=4 which is then promoted to a regularized
operator onH kin. One can imagine several variants on the
following construction, but here we settle on one that
satisfies two properties that we use in the main text:

(i) q̂�1=4 vanishes everywhere except at charge network
vertices whose outgoing edges have linearly inde-
pendent tangents.

(ii) q̂�1=4 vanishes at vertices, all whose incident edges
are charged in a single Uð1Þi.

We will refer to those charge network vertices at which

q̂�1=4 is nonvanishing as nontrivial or nondegenerate, and

those for which q̂�1=4 vanishes will be called trivial or
degenerate.
We begin by noticing that classically, for x 2 R � �,

�ab�ijk

2ð23Þ2ð1� pÞ2 fA
j
aðxÞ; VðRÞ23ð1�pÞg


 fAk
bðxÞ; VðRÞ23ð1�pÞgVðRÞ23ð1�pÞ

¼ VðRÞ�2pEiðxÞ:

Now if Bðx; �Þ is a (coordinate) circular ball of coordinate
radius � centered at x, then
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lim
�!0

Vðx; �Þ
��2

¼
ffiffiffiffiffiffiffiffiffi
qðxÞ

q
; where

Vðx; �Þ :¼
Z
Bðx;�Þ

d2x
ffiffiffiffiffiffiffiffiffi
qðxÞ

q
:

(A5)

Therefore the Poisson bracket identity above allows us to
write

q�5=8EiðxÞ ¼ lim
�!0

8�5=2�5=4�ab�ijkfAj
aðxÞ; Vðx; �Þ14g


 fAk
bðxÞ; Vðx; �Þ14gVðx; �Þ14: (A6)

We can form pure inverse powers of q by taking even

powers of this identity. For instance, q�1=4 ¼ ðq�5=8EiÞ2,
which is the quantity we are interested in. Before such an
identity can be quantized on H kin, we must replace A by
holonomies. Letting hiaðxÞ be a coordinate length � holon-
omy along an edge in the a direction which crosses or
terminates at x, we have

q�5=8EiðxÞ ¼ lim
�!0

8�5=2�5=4�ab�ijk
ðhjaðxÞÞ�1

i��


 fhjaðxÞ; Vðx; �Þ14g ðh
k
bðxÞÞ�1

i��


 fhkbðxÞ; Vðx; �Þ14gVðx; �Þ14: (A7)

Removing the � ! 0 limit, and making the replacements

V ! V̂ and f ; g ! ðiℏÞ�1½ ; �, we obtain a well-defined
(�-regularized) operator on H kin. Squaring the resulting
operator, we arrive at

q̂�1=4
� ¼ �

64�5=2�ab�cd

ð�ℏÞ4
X
i;j

ðhiaÞ�1½hia; V̂1
4�ðhjbÞ�1


 ½hjb; V̂
1
4�V̂1

4ðhicÞ�1½hic; V̂1
4�ðhjdÞ�1½hjd; V̂

1
4�V̂1

4;

(A8)

where we have dropped the various arguments for nota-
tional clarity. Wewill choose the holonomies in (A8) based
on the state jci on which the operator acts. Specifically,
given a vertex v 2 �ðcÞ which is at least bivalent with
linearly independent tangents, we single out a pair of
linearly independent edges to define the x and y coordinate
axes of a coordinate system with origin at v. We let the
holonomies of (A8) lie along these coordinate axes [so that
they partially overlap the edges of �ðcÞ] and have end
points (or beginning points) at v. Then in this coordinate
system,

q̂�1=4
� ¼ �

64�5=2�IJ�KL

ð�ℏÞ4
X
i;j

ðhiIÞ�1½hiI; V̂
1
4�ðhjJÞ�1


 ½hjJ; V̂
1
4�V̂1

4ðhiKÞ�1½hiK; V̂
1
4�ðhjLÞ�1½hjL; V̂

1
4�V̂1

4

(A9)

(with respect to another coordinate system, this expression
will differ by an overall constant). If there are not two

linearly independent directions defined by tangents of
edges at v, then we pick some orthogonal direction by
hand along which to lay holonomies; we will see shortly
that in this case of ‘‘linear vertices,’’ the operator has trivial
action.
Since each action of the volume operator gives an ei-

genvalue proportional to ð�ℏÞ2, the eigenvalues of q̂�1=4
�

are proportional to ð�ℏÞ�1, and we separate this dimen-
sionful dependence, as well as the � dependence, from the
dimensionless part of the eigenvalue, writing

hcjq̂�1=4
� ðvÞjci ¼:

�

�ℏ
ð ~ncvÞ (A10)

for the particular case where v is a nontrivial vertex of jci,
and ~ncv denotes the collection of charge labels on the edges
there. This operator is completely regular in its action
on H kin, so taking � ! 0 one obtains the zero operator.

The strategy in the main text is to combine q̂�1=4
� with a

regularized Êa
i which behaves like ��1 in the regulating

parameter, and hence the combination remains regular as
� ! 0. To see that the two properties (i) and (ii) are

satisfied, note that V̂
1
4 acts rightmost, and hence annihilates

volume-degenerate configurations.
Before concluding this section, we mention that the

overall factor of � is not the only possibility (nor is
the overall constant); as noted in [19], one may choose

the regions associated with each instance of V̂ indepen-
dently so as to obtain an arbitrary power of the regulating
parameter (or some combination of several regulating pa-
rameters). Here and in the main text, we have merely
followed an economical prescription, where all regulating
parameters scale in the same way.

APPENDIX B: CHARACTERIZATION OF TYPE B
EXTRAORDINARY VERTICES

In this section we classify the type B EO vertices. Recall
that if, given a charge-network state jci, a quantum shift is
such that the straight-line arc associated to it lies along one
of the edges, then the corresponding vertex is called type B
(depicted in Fig. 4). The conditions are a minor modifica-
tion of the conditions characterizing type A vertices.
We will call an Nv-valent vertex vE an extraordinary

vertex of type ðM; j; BÞ if and only if the following con-
ditions are satisfied.

1. Set B

(1) Exactly two edges incident at vE are analytic con-
tinuations of each other and these two edges are
necessarily charged in more than one copy of
Uð1Þ3. The remaining Nv � 2 edges are colored in
only Uð1ÞMjM2f1;2;3g. Let us refer to the two multi-

colored edges as eð1Þ
vE , e

ð2Þ
vE .
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(a) Tangents to all the edges incident at vE are
parallel or anitparallel.

(2) Let us denote the Nv � 2 vertices which are the
end points of the Nv � 2 edges beginning at vE

and are distinct from eð1Þ
vE , eð2Þ

vE by the set

SvE :¼ fvE
ð1Þ; . . . ; v

E
ðNv�2Þg.39 The valence of all these

vertices is bounded between three and four.
(a) At most two vertices in SvE are trivalent.

(3) The trivalent vertices are such that the edges which
are not incident at vE are analytic extensions of each
other and the four-valent vertices are such that
two of the edges which are not incident at vE are
analytic extensions of each other and the fourth
edge is the analytic extension of the edge which is
incident at vE.
(a) Any four-valent vertex defined in (3) is such that

if the four edges incident on it ðe1; e2; e3; e4Þ are
such that e1 � e2 is entire analytic and e3 � e4 is
entire analytic, then ~ne1 ¼ ~ne2 , ~ne3 ¼ ~ne4 .

(4) Let evE be an edge beginning at vE which ends in a
four-valent vertex fðevEÞ. By (3), there exists an
analytic extension ~evE of evE in Eð �cÞ beginning at
vE. The final vertex fð~evEÞ of ~evE is always trivalent.
Thus restricting attention to analytic extensions of
each of the edges beginning at vE, all such edges end
in trivalent vertices, and all of these trivalent verti-
ces are such that the remaining two edges incident
on them are analytic extensions of each other. The
set of these Nv � 2 trivalent vertices ‘‘associated’’

to vE is �SvE :¼ f �vE
ð1Þ; . . . ; �v

E
ðNv�2Þg.40

(5) Let us denote these [maximally analytic inside

Eð�Þ] edges beginning at vE by f~eð1Þ
vE ; . . . ; ~e

Nv�2

vE g.
Without loss of generality, consider the case when

all the edges incident on vE except eð1Þ
vE , e

ð2Þ
vE are

charged in Uð1Þ1.41 Let the charges on these edges
be fðn

~eð1Þ
vE
; 0; 0Þ; . . . ; ðn

~eðNv�2Þ
vE

; 0; 0Þg.
If ~eðkÞ

vE (k 2 f1; . . . ; Nv � 2g) ends in a three-valent

vertex fð~eðkÞ
vE Þ and if the charges on the remaining

two (analytically related) edges eðkÞ0
vE , e

ðkÞ00
vE incident

on fð~eðkÞ
vE Þ are ðnð1Þ

eðkÞ0
vE

; nð2Þ
eðkÞ0
vE

; nð3Þ
eðkÞ0
vE

Þ and ðnð1Þ
eðkÞ00
vE

; nð2Þ
eðkÞ00
vE

¼
nð2Þ
eðkÞ0
vE

; nð3Þ
eðkÞ00
vE

¼ nð3Þ
eðkÞ0
vE

Þ, then either

(a) nð1Þ
~eðkÞ
vE

¼ nð2Þ
eðkÞ0
vE

or

(b) nð1Þ
~eðkÞ
vE

¼ nð3Þ
eðkÞ0
vE

.

(6) Now consider the set �SvE . Recall that each element
in this set is a trivalent vertex. Consider the vertex
fð~evEÞ whose three incident edges are ~evE , ~e0

vE , and

~e00
vE , respectively. Recall that ~e0vE , ~e00vE are analytic

continuations of each other. Depending on whether

nð1Þ~e
vE

+ 0, choose one out of the two edges, ~e0
vE , ~e00vE

which has lesser or greater charge [depending on

whether nð1Þ~e
vE

is greater or less than zero] in Uð1Þ1
than the other edge. Consider the set of all such

chosen edges for each vertex in �SvE . We refer to this

set as �T vE . Now consider
P

~e2 �S
vE
nð1Þ~e

vE
. Suppose this

quantity is positive (negative). Then among the two

edges eð1Þ
vE and eð2Þ

vE pick the edge whose charge in

Uð1Þ1 is lesser (greater) than the charge in Uð1Þ1 of
the other edge. Let us assume it is eð1Þ

vE . Then

T vE :¼ �T vE [ feð1Þ
vE g: (B1)

(a) All edges in TvE meet at a vertex v which is
such that if the number of edges incident at v is

greater than Nv and if the charges f~evE

k gk¼1;...;Nv

are the Uð1Þj charges on the edges in TvE , then

the ð1Þj charge on the edges incident at v which

are not inTvE is zero. As shown in Appendix C,
v, if it exists, is unique.

(7) Finally, consider the graph � :¼ �ð �cÞ �
f~eð1Þ

vE ; . . . ; ~e
Nv�2

vE g and a charge-network c based on

� obtained by deleting f~eð1Þ
vE ; . . . ; ~e

Nv�2

vE g along with

the charges on them, and also deleting exactly the
same amount of charges from the edges inTvE . Note
that by construction v belongs to �. Now consider
U�ð�; vÞ. The final and key feature of the EO vertex
vE is vE 2 U�ð�; vÞ and vE is the end point of the
‘‘straight-line curve’’ �hEa

j i for some �, where j ¼
2 if in (6) condition (a) is satisfied, and j ¼ 3 if in
(5), (b) is satisfied.

We call the pair ðv; vEÞ extraordinary with vE a type B EO
vertex.

APPENDIX C: UNIQUENESS OF
v ASSOCIATED TO vE

Lemma.—Consider a charge-network �c containing a
vertex vE of type (M ¼ 1, j ¼ 2, K 2 fA;Bg) satisfying
conditions (1)–(7) as listed in Set A or Set B. Then the
vertex v described in condition(s) (7) is unique.
Proof.—We will only prove the lemma for a type A EO

vertex. The proof for the type B case is exactly analogous.
Let us assume the contrary, i.e., there exist distinct v, v0 2
Vð �cÞ with respect to which vE is EO. This implies that for

all trivalent vertices in �SvE , two edges (which are analytic
extensions of each other) begin, one edge (or its analytic

39This set satisfies exactly the same conditions that SvE satisfies
in the case of type A vertices.
40Note that SvE \ �SvE ¼ trivalent vertices in SvE .
41In this case we will say that vE is of type ðM ¼ 1; j 2
f2; 3g;BÞ.
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extension) ending at v and the other (or its analytic exten-
sion) ending at v0. Moreover all the edges incident at v and

v0, apart from those which begin at a vertex in �SvE , have

zero charge in Uð1Þ2. Now consider one such vertex v1 2
�SvE . If the charge [in Uð1Þ1] on edge evE;v1

(bounded by vE

and v1) is positive, then depending on whether the Uð1Þ2
charge on edge ev1;v [which equals the Uð1Þ2 charge on

ev1;v
0] is positive or negative, check on which of these two

edges the Uð1Þ1 charge is greater. This singles out one of v
or v0 with respect to which vE is EO.

APPENDIX D: CONTINUUM LIMIT OF THE
HAMILTONIAN CONSTRAINT OPERATOR

In this appendix we derive (8.6), (8.9), and (8.13). We do

this by showing that for any N, j~ci, and �fð1Þ
½c�ð1Þ ,

ðĤðiÞ½N�0�fð1Þ
½c�ð1Þ Þj~ci ¼ lim

�!0
�fð1Þ

½c�ð1Þ ðĤ
ðiÞ
Tð�Þ½N�j~ciÞ (D1)

for i ¼ 1; 2; 3. The left-hand side is given in (8.6), (8.9),
and (8.13), respectively.

Proofs.—We want to show that for any ~c, N, and �fðiÞ
½c�ðiÞ ,

the following holds:

lim
�!0

�fðiÞ
½c�ðiÞ ðĤ

ðjÞ
Tð�Þ½N�j~ciÞ ¼ X

v2VðcÞ
ð��fði;jÞv

½c�ðiÞ ��
��f
ði;jÞ
v

½c�ðiÞ Þj~ci

(D2)

for any i, j 2 f1; 2; 3g, where��fði;jÞv

½c�ðiÞ ,�
��f
ði;jÞ
v

½c�ðiÞ are in Cyl
�. The

computation will be divided into several cases as follows.

Type A: The c on which�fðiÞ
½c�ðiÞ is based is such that all the

EO vertices which can be created from this state necessary
lie off �ðcÞ; i.e., all the EO vertices are type A.
Type B: Compliment of the type A case.
We will analyze only the type A case here as the com-

plimentary case can be analyzed in a similar manner but
requires more bookkeeping. The results proven here hold
for both cases. We further divide the analysis of type A into
several subcases.

1. Case (A,1): i¼ j

Without loss of generality, we take i ¼ j ¼ 1.

a. Case (A,1,a): ~c¼ c

Then

lim
�!0

�fð1Þ
½c�ð1Þ ðĤ

ð1Þ
Tð�Þ½N�jciÞ¼ lim

�!0

1

�
�fð1Þ

½c�ð1Þ
X

v2VðcÞ
NðvÞð ~nvc Þðjc1[��

vðhÊ2i;n3Þ;c2;c3i�jc1[��
vðhÊ3i;n2Þ;c2;c3iÞ

¼ lim
�!0

X
v2VðcÞ

NðvÞð ~nvc Þ1�ðf
ð1Þ
½c�ð1Þ ð �Vðc1[��

vðhÊ2i;n3Þ[c2[c3Þ�fð1Þ½c�ð1Þ ð �Vðc1[��
vðhÊ3i;n2Þ[c2[c3ÞÞÞ

¼ lim
�!0

X
v2VðcÞ

NðvÞð ~nvc Þ1�ðf
ð1Þ
½c�ð1Þ ð �Vðc1[c2[c3[fv�

E;ð1;2ÞgÞÞ�fð1Þ½c�ð1Þ ð �Vðc1[c2[c3[fv�
E;ð1;3ÞgÞÞÞ;

(D3)

where v�
E;ð1;2Þ is an EO vertex of type ðM ¼ 1; j ¼ 2Þ associated to v and which is at the ‘‘apex’’ of ��

vðhÊ2i; n3Þ. Similarly
v�
E;ð1;3Þ is the EO vertex that is associated to v and which is at the ‘‘apex’’ of ��

vðhÊ3i; n2Þ. We have used that

�Vðc1 [ ��
vðhÊ2i; n3Þ [ c2 [ c3Þ ¼ �Vðc1 [ c2 [ c3 [ fv�

E;ð1;2ÞgÞÞ (D4)

as the irrelevant vertices do not appear in �Vð~cÞ. We can now take the limit of the above matrix element and get

lim
�!0

�fð1Þ
½c�ð1Þ ðĤ

ð1Þ
Tð�Þ½N�jciÞ ¼ X

v2VðcÞ
NðvÞð ~nvc Þ

�
hÊa

2ðvÞi
@

@va f
1ðVðcÞÞ � hÊa

3ðvÞi
@

@va f
1ðVðcÞÞ

�
: (D5)

Let us now look at the RHS of (8.6):

RHS of ð8:6Þ ¼ X
v2VðcÞ

½��fð1Þð1Þv

½c�ð1Þ ðjciÞ ��
��f
ð1Þð1Þ
v

½c�ð1Þ ðjciÞ� ¼
X

v2VðcÞ
½ �fð1Þð1Þv ðVðcÞÞ � ��f

ð1Þð1Þ
v ðVðcÞÞ�; (D6)

which, using the definitions of �fð1Þð1Þv and ��f
ð1Þð1Þ
v given in Eq. (8.8), matches with (D5).
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b. Case (A,1,b): c� ~c2 ½c�ðiÞ
There are three separate subcases in (A,1,b): Let v0 2 Vð~c1 [ c2 [ c3Þ and let suppðNÞ ¼ Bðv0; �Þ. Then we have the

following.
Case (A,1,b,i): v0 2 Vð~c1 [ c2 [ c3Þ is monocolored. Since v0 is monocolored and ð~c1; c2; c3Þ 2 ½c�ð1Þ, there exists

v0
0 2 VðcÞ with respect to which v0 is WEO. Then

RHS of ð8:6Þ ¼ lim
�!0

�ð1Þ
½c�ð1Þ ðĤ

ð1Þ
Tð�Þ½N�j~c1; c2; c3iÞ ¼ 0: (D7)

On the other hand,

LHS of ð8:6Þ ¼ X
v2VðcÞ

ð��fð1Þv

½c�ð1Þ ðj~c1; c2; c3iÞ ��
��f
ð1Þ
v

½c�ð1Þ ðj~c1; c2; c3iÞÞ

¼ �fð1Þv0
0
ð �Vð~c1 [ c2 [ c3ÞÞ � ��f

ð1Þ
v0
0
ð �Vð~c1 [ c2 [ c3ÞÞ

¼ �fð1Þ
v0
0
ðVðc1 [ c2 [ c3Þ=v0

0 [ fv0gÞ � ��f
ð1Þ
v0
0
ðVðc1 [ c2 [ c3Þ=v0

0 [ fv0gÞ
¼ fð1Þ

v0
0
ðVðc1 [ c2 [ c3Þ=v0

0 [ fv0gÞ � fð1Þ
v0
0
ðVðc1 [ c2 [ c3Þ=v0

0 [ fv0gÞ ¼ 0: (D8)

Case (A,1,b,ii): v0 2 Vð~c1 [ c2 [ c3Þ \ VðcÞ such that v0 has an associatedWEO vertex v0
0 2 Vð~c1 [ c2 [ c3Þ. LetN be

such that the support of N only includes v0, and no other vertex of VðcÞ lies inside the support of N. We prove a small
lemma which will be useful while analyzing this case.

Lemma.—There exists no charge network in ½c�ð1Þ which corresponds to ð~c1 [ ��
v0
ðhÊ2i=hÊ3i; nc3=nc2Þ; c2; c3Þ.

Proof.—Vð~c1 [ ��
v0
ðhÊ2i=hÊ3i; nc3=nc2Þ [ c2 [ c3Þ has a vertex which is not in VðcÞ and is not WEO with respect to any

vertex in VðcÞ. j
Then

lim
�!0

�fð1Þ
½c�ð1Þ ðĤ

ð1Þ
Tð�Þ½N�j~c1; c2; c3iÞ ¼ lim

�!0
Nðv0Þð ~nv0

ð~c1;c2;c3ÞÞ�
fð1Þ
½c�ð1Þ ðj~c1 [ ��

vðhÊ2i; nc3Þ; c2; c3i � j~c1 [ ��
vðhÊ3i; nc2Þ; c2; c3iÞ

¼ lim
�!0

�fð1Þ
½c�ð1ÞNðv0Þð ~nv0

c Þðj~c1 [ ��
vðhÊ2i; nc3Þ; c2; c3i � j~c1 [ ��

vðhÊ3i; nc2Þ; c2; c3iÞ; (D9)

where in the last line we have used ð ~nv0

ð~c1;c2;c3ÞÞ ¼ ð ~nv0
c Þ.

Using the above lemma, we have

�fð1Þ
½c�ð1Þ ðj~c1 [ ��

vðhÊ2i; nc3Þ; c2; c3iÞ ¼ �fð1Þ
½c�ð1Þ ðj~c1 [ ��

vðhÊ3i; nc2Þ; c2; c3iÞ ¼ 0 (D10)

8�. On the other hand, since N has support only in the neighborhood of v0 2 VðcÞ,

ð��fð1Þv0

½c�ð1Þ ��
��f
ð1Þ
v0

½c�ð1Þ Þj~c1; c2; c3i ¼ ð �fð1Þv0
ð �Vð~c1 [ c2 [ c3ÞÞ � ��f

ð1Þ
v0
ð �Vð~c1 [ c2 [ c3ÞÞ: (D11)

But since v0 has a WEO vertex v0
0 associated with it, the arguments of �fð1Þv0

and ��f
ð1Þ
v0

contain v0
0 in place of v0 and as both

functions agree with fð1Þ when no argument is v0, this also vanishes.
Case (A,1,b,iii): v0 2 Vð~c1 [ c2 [ c3Þ \ VðcÞ such that v0 has an associated WEO vertex v0

0 2 Vð~c1 [ c2 [ c3Þ which
lies inside the support of N. The above argument goes through and both sides vanish.

Case (A,1,b,iv): v0 2 Vð~c1 [ c2 [ c3Þ \ VðcÞ such that v0 has no associated WEO vertex. LetN be such that suppðNÞ �
Bðv0; �Þ and v 2 VðcÞ \ Bðv0; �Þ ) v ¼ v0. Then

lim
�!0

�fð1Þ
½c�ð1Þ ðĤ

ð1Þ
Tð�Þ½N�j~c1; c2; c3iÞ ¼ lim

�!0
�fð1Þ

½c�ð1Þ ðj~c1 [ ��
v0
ðhÊ2i; n3Þ; c2; c3i � j~c1 [ ��

v0
ðhÊ3i; n2Þ; c2; c3iÞ: (D12)

Note that since ð~c1; c2; c3Þ 2 ½c�ð1Þ, it is clear that j~c1 [ ��
v0
ðhÊ2i; n3Þ; c2; c3i and j~c1 [ ��

v0
ðhÊ3i; n2Þ; c2; c3i both belong to

½c�ð1Þ. Whence, we have
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lim
�!0

�fð1Þ
½c�ð1Þ ðĤ

ð1Þ
Tð�Þ½N�j~c1; c2; c3iÞ

¼ lim
�!0

1

�
Nðv0Þð ~nv0

c Þðfð1Þð �Vð~c1 [ ��
v0
ðhÊ2i; n3Þ [ c2 [ c3ÞÞ � fð1Þð �Vð~c1 [ ��

v0
ðhÊ3i; n2Þ [ c2 [ c3ÞÞÞ

¼ Nðv0Þð ~nv0
c Þ

�
hÊa

2i
@

@va f
ð1ÞðVðcÞÞ � hÊa

3i
@

@va f
ð1ÞðVðcÞÞ

�
; (D13)

where in the first line we have used ð ~nv0

ð~c1;c2;c3ÞÞ ¼ ð ~nv0
c Þ and in the second line we have used �VðcÞ ¼ VðcÞ.

We now evaluate the RHS. SinceN has support only in the neighborhood of the vertex v0 in VðcÞ, the only nonvanishing
contributions are through �fv0

, ��fv0
. �fv0

: �jVðcÞj ! R such that

�f ð1Þ
v0
ðv1; . . . ; vjVðcÞjÞ ¼ fð1Þðv1; . . . ; vjVðcÞjÞ if fv1; . . . ; vjVðcÞjg � VðcÞ (D14)

and

�f ð1Þ
v0
ðVðcÞÞ ¼ Nðv0Þð ~nv0

c ÞhÊ2iðv0Þ @

@va
0

fð1ÞðVðcÞÞ: (D15)

Similarly, ��fv0
: �jVðcÞj ! R such that

�f ð1Þ
v0
ðv1; . . . ; vjVðcÞjÞ ¼ fð1Þðv1; . . . ; vjVðcÞjÞ if ðv1; . . . ; vjVðcÞjÞ � VðcÞ (D16)

and

�f ð1Þ
v0
ðVðcÞÞ ¼ Nðv0Þð ~nv0

c ÞhÊ2iðv0Þ @

@va
0

fð1ÞðVðcÞÞ: (D17)

Case (A,1,c): ~c6� ½c�ðiÞ. It is rather straightforward to see that both sides vanish in this case.

2. Case (A,2): i� j

Let i ¼ 1, j ¼ 2. Other cases can be analyzed analogously. Thus our aim is to show that, given �fð1Þ
½c�ð1Þ ,

lim
�!0

�fð1Þ
½c�ð1Þ ðĤ

ð2Þ
Tð�Þ½N�j~ciÞ ¼ X

v2VðcÞ
ð��fð1Þð2Þv

½c�ð1Þ ��
��f
ð1Þð2Þ
v0

½c�ð1Þ Þj~ci (D18)

8N, j~ci, and where �fð1Þð2Þv and ��f
ð1Þð2Þ
v0

are defined in (8.9). As before we consider different cases, as follows.

a. Case (A,2,a): ~c does not have an EO vertex of type M¼ 1

In this case,8� > 0, Ĥð2Þ
Tð�Þ½N� will create states with EO vertices of typeM ¼ 2when acting on j~ci. However, as ½c�ð1Þ

has no states with EO vertices of type M ¼ 2, LHS ¼ RHS ¼ 0.

b. Case (A,2,b): ~c does have an EO vertex of type M¼ 1, j¼ 2

This condition implies that ~c ¼ ðc01 [ ��0
v0
ðhÊ2i~c2 ; n~c3Þ; ~c2; ~c3Þ for some c01. Let us also assume that this vertex is inside

the support of the lapse function N. Now both the LHS and RHS are nonzero if and only if ðc01; ~c2; ~c3Þ ¼ c. In this case we
have [using the equation for the action of the Hamiltonian constraint on charge networks involving these specific types of
EO vertices as given in (7.23)]

LHS ¼ lim
�!0

�fð1Þ
½c�ð1Þ ðĤ

ð2Þ
Tð�Þ½N�jc1 [ ��0

v0
ðhÊ2ic2ðv0Þ; nc3Þ; c2; c3iÞ

¼ lim
�!0

0
@1

�
�fð1Þ

½c�ð1Þ

2
4 X

e2EðcÞjbðeÞ¼v0

ðhÊ3ðLeð�0ÞÞi _eað0ÞðNðv0 þ � _eð0ÞÞ � Nðv0ÞÞjc1 [ ��0

v0
ðhÊ1iðv0Þ; n3Þ; c2; c3i

3
5

� 1

�
�fð1Þ

½c�ð1Þ

2
4 X

e2EðcÞjbðeÞ¼v0

ðhÊ1ðLeð�0ÞÞi _eað0ÞðNðv0 þ � _eð0ÞÞ � Nðv0ÞÞjc1 [ ��0

v0
ðhÊ3iðv0Þ; n3Þ; c2; c3i

3
5
1
A; (D19)
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where �0 ! 0 is faster than � ! 0. However note that the (net of) flux expectation values remains constant in the limit
�0 ! 0 (as they are simply equal to n1 or n3), whence hÊ3ðLeð�0ÞÞi is independent of �0 and we denote it simply as hÊ3ðLeÞi
where Le could be any surface fixed once and for all. It is easy to see that the left-handside simplifies to

LHS ¼ X
e2EðcÞjbðeÞ¼v0

hÊ3ðLeÞi _eað0Þ@aNðv0Þfð1Þð �Vðc1 [ ��0
v0
ðhÊ1iðv0Þ; n3Þ [ c2 [ c3Þ

� X
e2EðcÞjbðeÞ¼v0

hÊ1ðLeÞi _eað0Þ@aNðv0Þfð1Þð �Vðc1 [ ��0
v0
ðhÊ3ðv0Þi; n3Þ [ c2 [ c3Þ: (D20)

But upon using (8.8) we see that this precisely equals the
right-hand side.

APPENDIX E: ON THE MINUS SIGN IN EQ. (9.5)

Consider the ideal scenario in which the continuum

Hamiltonian constraint Ĥ½N�0 preserves V LMI. In that
case we would seek to prove that

½Ĥ½N�0; Ĥ½M�0�� ¼ iℏV̂½ ~!�0� (E1)

8� 2 V LMI. This would imply that 8jci,
lim

�;�0!0
ð�jðĤTð�0Þ½M�ĤTð�Þ½N� � ðN $ MÞÞjci

¼ �iℏlim
�!0

ð�jV̂Tð�Þ½ ~!�jci: (E2)

However notice that the left-hand side of the above equa-
tion is

ð½Ĥ½N�; Ĥ½M��0�Þjci
and the right-hand side is

ð�iℏÞðV̂½ ~!�0�Þjci:
Whence we are led to prove that

½Ĥ½N�; Ĥ½M��0� ¼ �iℏV̂½ ~!��: (E3)

Technically we are seeking an anitrepresentation of the
Hamiltonian constraint on V LMI.

APPENDIX F: DETAILS OF THE COMMUTATOR
COMPUTATION

In this appendix we derive Eq. (9.12). A key ingredient
in this derivation is the fact that the action of the
Hamiltonian constraint on irrelevant vertices is trivial.
Given a charge-network state jc0i, our first objective is to
evaluate X

i;j

½ĤðiÞ
Tð�0Þ½N�; ĤðjÞ

Tð�Þ½M��jc0i: (F1)

The nine terms in the commutator can be grouped in the
following way:�X

i

ðĤðiÞ
Tð�0Þ½N�ĤðiÞ

Tð�Þ½M� � ðN $ MÞÞ

þX
i�j

ðĤðiÞ
Tð�0Þ½N�ĤðjÞ

Tð�Þ½M� � ðN $ MÞÞ
�
jc0i: (F2)

It is easy to see that ½ĤðiÞ
Tð�0Þ½N�; ĤðiÞ

Tð�Þ½M�� do not con-

tribute for any i. Let us consider the action of

½Ĥð1Þ
Tð�0Þ½N�; Ĥð1Þ

Tð�Þ½M�� on jc0i. Recall that (in the case of a

single vertex in the support of N)

Ĥ ð1Þ
Tð�Þ½N�jc0i :¼ NðvÞĤð1Þ

Tð�ÞðvÞjc0i; (F3)

and let

Ĥ ð1Þ
Tð�ÞðvÞjc0i ¼

X2
j¼1

jc0v�ji: (F4)

Then we have

½Ĥð1Þ
Tð�0Þ½N�; Ĥð1Þ

Tð�Þ½M��jc0i ¼ X
v2Vðc0Þ

ðĤð1Þ
Tð�0Þ½N�MðvÞĤð1Þ

Tð�ÞðvÞ � ðN $ MÞÞjc0i

¼ X2
j¼1

X
v2Vðc0Þ

X
v02Vðc0v

�j
Þ
ðNðv0ÞMðvÞ �Mðv0ÞNðvÞÞĤð1Þ

Tð�0Þðv0ÞĤð1Þ
Tð�ÞðvÞjc0i

¼ X2
j¼1

X
v2Vðc0Þ

X
v02Vðc0Þ

ðNðv0ÞMðvÞ �Mðv0ÞNðvÞÞĤð1Þ
Tð�0Þðv0ÞĤð1Þ

Tð�ÞðvÞjc0i ¼ 0: (F5)

In the third line we have used the fact that action of Ĥð1Þ
Tð�ÞðvÞ on EO vertices of type M ¼ 1 is zero and that the action of

Ĥð1Þ
Tð�0Þ on four-valent irrelevant vertices resulting from the action of Ĥð1Þ

Tð�Þ is zero (due to the specific charge configuration

on the incident edges). This shows that the first set of terms
P

iðĤðiÞ
Tð�0Þ½N�ĤðiÞ

Tð�Þ½M� � ðN $ MÞÞ does not contribute.
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For the second set of terms with
P

i�j, we first group them as follows:

X
i�j

ðĤðiÞ
Tð�0Þ½N�ĤðjÞ

Tð�Þ½M� � ðN $ MÞÞjc0i

¼ ½ðĤð1Þ
Tð�0Þ½N�ðĤð2Þ

Tð�Þ½M� þ Ĥð3Þ
Tð�Þ½M�Þ � ðN $ MÞÞ þ ðĤð2Þ

Tð�0Þ½N�ðĤð3Þ
Tð�Þ½M� þ Ĥð1Þ

Tð�Þ½M�Þ
� ðN $ MÞÞ þ ðĤð3Þ

Tð�0Þ½N�ðĤð1Þ
Tð�Þ½M� þ Ĥð2Þ

Tð�Þ½M�Þ � ðN $ MÞÞ�jc0i: (F6)

Due to the antisymmetrization in the lapse functions, all the terms that are ultralocal (without derivatives) in the lapses
vanish. Thus, the above equation simplifies to

X
i�j

ðĤðiÞ
Tð�0Þ½N�ĤðjÞ

Tð�Þ½M� � ðN $ MÞÞjc0i

� 1

4

�
ℏ
i

�
2 1

��0 Mðv0Þð ~nc0v0
Þ2 X

e2Eðc0ÞjbðeÞ¼v0

ðNðv0 þ �0 _eð0ÞÞ � Nðv0ÞÞ½ðhÊ3ðLeÞijc01 [ ��
v0
ðhÊ1iðv0Þ; nc0

3
Þ; c02; c03i

� hÊ1ðLeÞijc01 [ ��
v0
ðhÊ3iðv0Þ; nc0

3
Þ; c02; c03iÞ � ðhÊ1ðLeÞijc01 [ ��

v0
ðhÊ2iðv0Þ; nc0

2
Þ; c02; c03i

� hÊ2ðLeÞijc01 [ ��
v0
ðhÊ2iðv0Þ; nc0

2
Þ; c02; c03iÞ þ ðhÊ1ðLeÞijc01; c02 [ ��

v0
ðhÊ2iðv0Þ; nc0

1
Þ; c03i

� hÊ2ðLeÞijc01; c02 [ ��
v0
ðhÊ1iðv0Þ; nc01Þ; c03iÞ � ðhÊ2ðLeÞijc01; c02 [ ��

v0
ðhÊ3iðv0Þ; nc03Þ; c03i

� hÊ3ðLeÞijc01; c02 [ ��
v0
ðhÊ2iðv0Þ; nc0

3
Þ; c03iÞ þ ðhÊ2ðLeÞijc01; c02; c03 [ ��

v0
ðhÊ3iðv0Þ; nc0

3
Þi

� hÊ3ðLeÞijc01; c02; c03 [ ��
v0
ðhÊ2iðv0Þ; nc03ÞiÞ � ðhÊ3ðLeÞijc01; c02; c03 [ ��

v0
ðhÊ1iðv0Þ; nc01Þi

� hÊ1ðLeÞijc01; c02; c03 [ ��
v0
ðhÊ3iðv0Þ; nc0

1
ÞiÞ� � ðN $ MÞ: (F7)

Some remarks are in order: Without loss of generality we are assuming that � is small enough such that all EO vertices that
are created in the neighborhood of v0 are in the support of both N and M. The weak equality � indicates that we have
thrown away all the terms resulting from the action of the second Hamiltonian on irrelevant vertices, as these terms will not
contribute once we ‘‘dot’’ them with a habitat state. Henceforth we will understand that these additional terms have been
thrown away and we will replace � with exact equality. Due to reasons explained above (D19), we have omitted the �0
label from the surface Le. The overall plus sign comes from the fact that we chose � ¼ 1 in (7.23).

Due to the underlying symmetry among the terms on the right-hand side, we can rewrite the above equation as

X
i�j

ðĤðiÞ
Tð�0Þ½N�ĤðjÞ

Tð�Þ½M� � ðN $ MÞÞjc0i

¼ 1

4

�
ℏ
i

�
2 1

��0 Mðv0Þð ~nc0v0
Þ2 X

e2Eðc0ÞjbðeÞ¼v0

ðNðv0 þ �0 _eð0ÞÞ � Nðv0ÞÞ½ðhÊ3ðLeÞiðjc01 [ ��
v0
ðhÊ1iðv0Þ; nc03Þ; c02; c03i � jc0iÞ

� hÊ1ðLeÞiðjc01 [ ��
v0
ðhÊ3iðv0Þ; nc0

3
Þ; c02; c03i � jc0iÞÞ � ðhÊ1ðLeÞiðjc01 [ ��

v0
ðhÊ2iðv0Þ; nc0

2
Þ; c02; c03i � jc0iÞ

� hÊ2ðLeÞiðjc01 [ ��
v0
ðhÊ2iðv0Þ; nc02Þ; c02; c03i � jc0iÞÞ þ ðhÊ1ðLeÞiðjc01; c02 [ ��

v0
ðhÊ2iðv0Þ; nc01Þ; c03i � jc0iÞ

� hÊ2ðLeÞiðjc01; c02 [ ��
v0
ðhÊ1iðv0Þ; nc0

1
Þ; c03i � jc0iÞÞ � ðhÊ2ðLeÞiðjc01; c02 [ ��

v0
ðhÊ3iðv0Þ; nc0

3
Þ; c03i � jc0iÞ

� hÊ3ðLeÞiðjc01; c02 [ ��
v0
ðhÊ2iðv0Þ; nc03Þ; c03i � jc0iÞÞ þ ðhÊ2ðLeÞiðjc01; c02; c03 [ ��

v0
ðhÊ3iðv0Þ; nc03Þi � jc0iÞ

� hÊ3ðLeÞiðjc01; c02; c03 [ ��
v0
ðhÊ2iðv0Þ; nc0

3
Þi � jc0iÞÞ � ðhÊ3ðLeÞiðjc01; c02; c03 [ ��

v0
ðhÊ1iðv0Þ; nc0

1
Þi � jc0iÞ

� hÊ1ðLeÞiðjc01; c02; c03 [ ��
v0
ðhÊ3iðv0Þ; nc01Þi � jc0iÞÞ� � ðN $ MÞ: (F8)

We have added and subtracted jc0i to ensure that the commutator has a well-defined continuum limit on the LMI habitat.
We will divide the right-hand side of (F8) into three pieces. This will aide us in analyzing the continuum limit in a rather

straightforward manner.
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jc �;�0
1 ðc0; ½M;N�Þi :¼ 1

4

�
ℏ
i

�
2 1

��0 Mðv0Þð ~nc0v0
Þ2 X

e2Eðc0ÞjbðeÞ¼v0

ðNðv0 þ �0 _eð0ÞÞ

� Nðv0ÞÞ½ðhÊ3ðLeÞiðjc01 [ ��
v0
ðhÊ1iðv0Þ; nc0

3
Þ; c02; c03i � jc0iÞ

� hÊ1ðLeÞiðjc01 [ ��
v0
ðhÊ3iðv0Þ; nc0

3
Þ; c02; c03i � jc0iÞÞ

� ðhÊ1ðLeÞiðjc01 [ ��
v0
ðhÊ2iðv0Þ; nc0

2
Þ; c02; c03i � jc0iÞ

� hÊ2ðLeÞiðjc01 [ ��
v0
ðhÊ2iðv0Þ; nc0

2
Þ; c02; c03i � jc0iÞÞ� � ðN $ MÞ: (F9)

jc �;�0
2 ðc0; ½M;N�Þi :¼ 1

4

�
ℏ
i

�
2 1

��0 Mðv0Þð ~nc0v0
Þ2 X

e2Eðc0ÞjbðeÞ¼v0

ðNðv0 þ �0 _eð0ÞÞ

� Nðv0ÞÞ½ðhÊ1ðLeÞiðjc01; c02 [ ��
v0
ðhÊ2iðv0Þ; nc0

1
Þ; c03i � jc0iÞ

� hÊ2ðLeÞiðjc01; c02 [ ��
v0
ðhÊ1iðv0Þ; nc0

1
Þ; c03i � jc0iÞÞ

� ðhÊ2ðLeÞiðjc01; c02 [ ��
v0
ðhÊ3iðv0Þ; nc0

3
Þ; c03i � jc0iÞ

� hÊ3ðLeÞiðjc01; c02 [ ��
v0
ðhÊ2iðv0Þ; nc0

3
Þ; c03i � jc0iÞÞ� � ðN $ MÞ: (F10)

jc �;�0
3 ðc0; ½M;N�Þi :¼ 1

4

�
ℏ
i

�
2 1

��0 Mðv0Þð ~nc0v0
Þ2 X

e2Eðc0ÞjbðeÞ¼v0

ðNðv0 þ �0 _eð0ÞÞ

� Nðv0ÞÞ½ðhÊ2ðLeÞiðjc01; c02; c03 [ ��
v0
ðhÊ3iðv0Þ; nc0

3
Þi � jc0iÞ

� hÊ3ðLeÞiðjc01; c02; c03 [ ��
v0
ðhÊ2iðv0Þ; nc0

3
Þi � jc0iÞÞ

� ðhÊ3ðLeÞiðjc01; c02; c03 [ ��
v0
ðhÊ1iðv0Þ; nc0

1
Þi � jc0iÞ

� hÊ1ðLeÞiðjc01; c02; c03 [ ��
v0
ðhÊ3iðv0Þ; nc0

1
Þi � jc0iÞÞ� � ðN $ MÞ: (F11)
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