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We study real space condensation in aggregation-fragmentation models where the total mass is not

conserved, as in phenomena such as cloud formation and intracellular trafficking. We study the scaling

properties of the system with influx and outflux of mass at the boundaries using numerical simulations,

supplemented by analytical results in the absence of fragmentation. The system is found to undergo a

phase transition to an unusual condensate phase, characterized by strong intermittency and giant

fluctuations of the total mass. A related phase transition also occurs for biased movement of large

masses, but with some crucial differences which we highlight.
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Condensation transitions constitute an important class of
nonequilibrium phase transitions and occur generically in
many mass transport models [1] such as the zero range
process and its variants [2] and the aggregation-chipping
model [3]. These systems are characterized by a fixed total
mass (number of particles) and stochastic rules for ex-
change of mass between sites. When the total mass of the
system exceeds a critical value, condensation sets in, with a
finite fraction of the total mass forming a macroscopic
cluster that occupies a single site. The phenomenon is
akin to Bose condensation, but in real space.

Does the condensation transition survive in a system
when the total mass is not conserved but can undergo large
fluctuations due to the exit of clusters of all sizes? This
question is important in a number of physical situations,
ranging from formation of clouds and aerosols to intra-
cellular trafficking and organelle formation in living cells
[4–6]. We address this within a simple but generic 1D
model with aggregation and fragmentation (chipping) of
masses in the bulk and influx and outflux of masses at the
boundaries. Our main finding is that the open system does
undergo a condensation transition upon increasing the
influx or decreasing the chipping rate. However, the nature
of the condensate is very different from that in the closed
model [3], in that the mass in the condensate shows giant
number fluctuations and has a broad distribution, in con-
trast to the sharply peaked distribution in the closed system
[3,7]. The condensate, however, has a well-defined, finite
mean mass for a fixed system size and is thus quite differ-
ent from the indefinitely growing aggregates in open
models which allow only single particles to exit at the
boundaries [6,8].

The intermittent and fluctuating nature of the condensate
gives rise to novel signatures: The total massM itself shows
giant fluctuations and has a distribution characterized by a
prominent non-Gaussian condensate tail whose width
scales with system size. Furthermore, the exit of the

condensate from the boundaries and the accompanying
sharp drops in M give rise to interesting ‘‘charge and
fire’’ behavior of M: The time series MðtÞ departs strongly
from self-similarity and shows quantitative features of
intermittency, which we characterize in terms of appro-
priately defined structure functions, as in turbulence phe-
nomena. Turbulence, in the sense of multiscaling of n-point
mass-mass correlation functions, has been studied earlier in
aggregation models [9], but our characterization of turbu-
lencelike behavior is quite different, being associated with
temporal fluctuations of totalmass. Our results are based on
both analytical and numerical work. In the limit of zero
chipping, we analytically calculate the moments of total
mass in the steady state and also the dynamical structure
functions, whereas for nonzero chipping, we perform nu-
merical Monte Carlo simulations.
Recently, it has been demonstrated that giant number

fluctuations are related to anomalous, non-Porod behavior
of spatial correlation functions in a wide class of systems
[10]. Our work points to a connection between giant num-
ber fluctuations and anomalous dynamical behavior,
namely, temporal intermittency, which is related to higher
order correlation functions in time [11]. It also raises the
interesting general question of whether temporal intermit-
tency is present in other systems with giant number fluc-
tuations and suggests that dynamical structure functions, as
used in this paper, provide a useful probe of intermittency
in these systems also.
We work with a general lattice model incorporating

diffusion, aggregation, fragmentation, influx, and outflux,
which goes beyond earlier studies of aggregation with input
[12–14] and aggregation and fragmentation in a closed
system [3,15]. Starting with an empty lattice of L sites at
t ¼ 0, a site i is chosen at random, and one of the following
moves occurs (see Fig. 1): (i). Influx.—A single particle of
unit mass is injected at rate a at the first site (i ¼ 1).
(ii). Diffusion and aggregation.—With rate D (or D0), the
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full stack on site i (i.e., all particles on the site collectively)
hops to site iþ 1 (or i� 1) and adds to the mass already
there. (iii). Chipping of unit mass.—With rate 2w, a unit
mass breaks off from the mass at i and hops to site i� 1 or
iþ 1 with equal probability, adding to the mass already
there. (iv). Outflux of mass from boundaries.—With rate D
(orD0), the entire mass at site L (or site 1) exits the system;
with rate w, a unit mass breaks off from site L (or site 1)
and exits.

We find that the results depend strongly on two factors:
one, whether motion of particles is biased or not, and two,
whether or not exit of masses is allowed from the boundary
where influx occurs. In this paper, we consider only the
effect of bias [16]. We find that the occurrence of the phase
transition is robust with respect to bias in the movement of
stacks, but not chipping. As in the closed periodic case, if
the forward and backward chipping rates are unequal, an
aggregate is not expected to form [17]. Thus, chipping is
taken to be unbiased in both the cases we study in this
paper: (A) unbiased stack hopping.—D ¼ D0; exit allowed
from sites 1 and L; (B) biased stack hopping.—D0 ¼ 0;
exit allowed from site L. Influx and chipping occur at rates
a and 2w, respectively, in both the above.

(A) Unbiased stack hopping (D0 ¼ D). —We discuss
both the phases and the critical point below.

Normal (large w) phase.—In this phase, a typical
configuration does not show very large fluctuations
about the average mass profile. The total mass M too

has normal fluctuations, i.e., the rms fluctuations �M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihM2i�hMi2p / ffiffiffiffi

L
p

, with the distribution for the rescaled
mass variable ðM� hMiÞ=�M, approaching a Gaussian
at large L. The mass distribution Pðm; j; LÞ at a given
site j is found to depend on j and L only through the
rescaled position variable x ¼ j=L (see Supplemental
Material [18]), implying that, for a given x, all moments
of mass are independent of L to leading order.

Condensate (small w) phase.—A typical configuration
deviates strongly from the average profile, with the largest
(local) fluctuations scaling as system size L. On monitor-
ing the largest mass m1 in the system, we find that its
average value hm1i is proportional to L [18], implying
that the system contains a macroscopic condensate. The
presence of the condensate has a strong effect on all steady
state properties of the system such as the total mass M,
mass at a site, etc. The probability distributions of all

these quantities have an exponential tail with a character-
istic massM0, whereM0 / L for a given w and a. We refer
to this exponential tail as the ‘‘condensate’’ tail and
describe, below, how it appears in various steady state
distributions: (i). The steady state distribution PðMÞ of
total mass of M in the system behaves as PðMÞ �
1=M0 expð�M=M0Þ at large M [Fig. 2]. Consequently,
the rms fluctuation �M of total mass shows non-

Gaussian behavior, scaling as L rather than
ffiffiffiffi

L
p

. We have
analytically calculated various moments of the total mass
in the limit w ¼ 0 [18]. We find that �M=L ’ 0:46ða=DÞ,
in the limit of large L, which agrees well with numerics.
(ii). The distribution Pðm1Þ of the largest mass m1 also
follows Pðm1Þ � 1=M0 expð�m1=M0Þ for large m1 [18].
(iii). The distribution of masses exiting from the left or
right boundary [18] is found to follow PexitðmÞ �
1=L2½1=M0 expð�m=M0Þ�, for large m [19]. (iv). The
single site mass distribution Pðm; j; LÞ [18] follows
1=Lfðj=LÞ½1=M0 expð�m=M0Þ� at large m [19]. The fac-
tor 1=L arises as the aggregate can be at any one of the L
sites, and fðj=LÞ reflects that the aggregate does not visit
all sites with the same probability. The rms fluctuation
�mðx; LÞ of mass at a given x ¼ j=L is thus anomalously

large as well: It increases as
ffiffiffiffi

L
p

with L rather than being
Oð1Þ, as in the normal phase.
That there is no constraint on the total number of parti-

cles per site in our model is crucial for L-dependent
fluctuations to arise. Systems such as vibrated needles
[20] and passive particles in fluctuating fields [21,22]
also display giant number fluctuations, but, in these sys-
tems, fluctuations in a region of linear size �l depend
primarily on �l rather than L [10]. This is traceable to
hard core interactions between particles in these models.
Once this constraint is removed, macroscopic stacks can
form and mass fluctuations depend on L [23].
Critical point wc.—The transition from the normal to

the condensate phase takes place at a critical chipping rate
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FIG. 2 (color online). PðMÞ vsM for L ¼ 100 and L ¼ 200 in
the normal phase (a ¼ 1, D ¼ 0:75, w ¼ 2) and condensate
phase (a ¼ 1, D ¼ 0:75, w ¼ 0:25). Inset: Scaling collapse of
tails on plotting LPðMÞ vs M=L in the condensate phase and
L2=3PðMÞ vs ðM� hMiÞ=L2=3 near the critical point (a ¼ 1,
D ¼ 0:75, w ¼ 1:5).
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FIG. 1 (color online). Model: Influx of unit masses at site 1.
Forward and backward stack movement at rates D and D0, re-
spectively. Forward and backward chipping at equal rates w.
Outfluxof full stack or unitmass (via chipping) fromsiteL (and 1).
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wc, which increases with injection rate a if D is held
constant [24]. At criticality also, large fluctuations of the
total mass are found, consistent with �M / L�c where
�c ’ 2=3. The mass distribution has a tail of the form
PðMÞ � 1=M2 exp½�ðM� hMiÞ=M2�, where hMi � L
and M2 � L�c [inset, Fig. 2]. Interestingly, we find that
there is a similar L-dependent tail in the distribution of
masses exiting from the left but not the right. This is
presumably because, although an L-dependent aggregate
forms close to the left boundary, it dissipates due to chip-
ping on diffusing through the bulk of the system and does
not survive up to the right boundary.

Contrasting signatures of the phases also appear in
dynamical properties: MðtÞ is self-similar in time in the
normal phase but exhibits breakdown of self-similarity in
the condensate phase. The breakdown of self-similarity is
captured in the behavior of the structure functions SnðtÞ ¼
h½MðtÞ �Mð0Þ�ni [25], where h:::i denotes average over
histories. Self-similar signals typically show SnðtÞ / t�n

as t=� ! 0, where � is a constant and � is a time scale
which characterizes the lifetime of the largest structures in
the system. A deviation from SnðtÞ / t�n reflects the break-
down of self-similarity and may occur, for example, if the
signal MðtÞ alternates between periods of quiescence
(small or no activity) and bursts (sudden large changes)
[11]. Such an alternation is characteristic of intermittency.
The most well-studied measures of intermittency are the
flatness, defined as �ðtÞ ¼ S4ðtÞ=S22ðtÞ, and the hyperflat-

ness hðtÞ ¼ S6ðtÞ=S32ðtÞ. For intermittent signals, both �ðtÞ
and hðtÞ diverge as t=� ! 0 [11]. Below, we present
evidence for intermittency in our model.

Normal phase.—In this phase, the structure functions
are independent of L at small t and scale as S2n � t�n

where the dependence of �n on n is close to linear [18],
indicating self-similarity of the time seriesMðtÞ [Fig. 3(a)].
The flatness �ðtÞ and hyperflatness hðtÞ approach a finite,
L-independent value as t ! 0 [Fig. 3(c) and Fig. 4 in
Ref. [18]].

Condensate phase.—In the condensate phase, MðtÞ
builds up as mass is injected and drops as masses exit,
with occasional large crashes [Fig. 3(b)] corresponding to
the exit of condensates with OðLÞ mass. The structure
functions are found to scale as Sn � Lnfnðt=L2Þ, where fn
is consistent with the form fnðyÞ � ð�1Þnygn½logðyÞ� for
small y (with gn chosen to be a polynomial) [26] and
approaches an n-dependent constant value at large y [18].
Thus, the system shows strong intermittency: At small t, all
structure functions Sn behave as�t with the n dependence
entering only through the multiplicative logt terms. It fol-
lows that �ðtÞ and hðtÞ diverge at small times in a strongly
L-dependent way [Fig. 3(c) and 4 in Ref. [18]]. In fact, they
are functions of t=L2 and diverge as t=L2 ! 0 [inset,
Fig. 3(c) and inset, Fig. 4 in Ref. [18]].We have also analyti-
cally calculated S2ðtÞ in the zero chipping limit w ¼ 0 [18]
and find that it agrees well with numerical results.

Critical point wc.—MðtÞ continues to show intermit-
tency at the critical point with flatness and hyperflatness
diverging as t ! 0 in an L-dependent manner. However,
there seems to be no simple scaling which collapses the
curves for different L.
(B) Biased stack hopping (D0 ¼ 0).—The steady state

can be obtained exactly in the limiting cases of only
chipping D ¼ 0 [8] and only aggregation w ¼ 0 [27].
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FIG. 3 (color online). (a),(b) Realizations of MðtÞ vs t for
different L in the (a) normal phase (a ¼ 1, D ¼ 0:75,
w ¼ 3:0) and (b) condensate phase (a ¼ 1, D ¼ 0:75,
w ¼ 0:25). Note that the y axis in (a) and (b) has a different
scale. (c) �ðtÞ vs t for L ¼ 100 and L ¼ 200 in the two phases.
Solid lines are fits to the form described in the text for t � L2 for
w<wc. Inset: Scaling collapse of �ðtÞ vs t for different L on
scaling time as t=L2 in the condensate phase.
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The probability distribution of the rescaled mass,

ðM� hMiÞ=�M, is Gaussian with �M / ffiffiffiffi

L
p

, in both lim-
its but for different reasons. In the pure chipping limit
D ¼ 0, this follows from the independence of masses at
different sites, implied by the product measure of the mass
distribution [8]; in the pure stack hopping limit w ¼ 0, on
the other hand, it is associated with the formation and exit

of aggregates of typical size
ffiffiffiffi

L
p

[27,28]. This essential
difference is well captured by the time series data. For
w ¼ 0, the total mass M shows intermittency on time

scales of the order of
ffiffiffiffi

L
p

, corresponding to a typical time

interval ofOð ffiffiffiffi

L
p Þ between exit events. Flatness and hyper-

flatness are functions of t=
ffiffiffiffi

L
p

and diverge as power laws as

t=
ffiffiffiffi

L
p ! 0. By contrast, for D ¼ 0, the time series MðtÞ is

not intermittent. Thus, intermittency, rather than anoma-
lous steady state fluctuations of M, is a key signature of
aggregate formation when stack hopping is driven.

As w is decreased, there is a phase transition from a
normal phase to an aggregation-dominated phase charac-
terized by intermittency. Unlike the unbiased case, how-
ever, the typical size of aggregates that exit the system is

now expected to scale as
ffiffiffiffi

L
p

rather than L. This is con-
sistent with the behavior of hm2ðxÞi vs x [Fig. 4]. For large
w, the plots of hm2ðxÞi approach a constant value at large x,
thus indicating that there are no x-dependent aggregates at
large x and no intermittency. For small w, the plots of
hm2ðxÞi vs x bend upwards, consistent with an approach

to
ffiffiffi

x
p

at large x. Exit of
ffiffiffiffi

L
p

sized aggregates leads to
intermittency [18], as for w ¼ 0. The transition takes place
at wc (corresponding to the curve with no bending on the
log-log plot), at which hm2ðxÞi behaves as �x�c with �c’
0:16. MðtÞ shows intermittency at the critical point also.

In conclusion, the principal result of this work is to
establish the existence of a condensate phase in unbiased
aggregation-chipping models where total mass is not con-
served due to influx and outflux at the boundaries. This
phase is characterized by anomalous steady state fluctua-
tions of the total mass and by intermittency in the dynam-
ics, as quantified by the divergence of the flatness. It is
likely that flatness would be a useful measure in other mass
exchange models also. The phase transition also occurs
when the movement of stacks is biased, but the intermit-
tent, aggregation-dominated phase in this case is different.
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