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Extreme mass ratio inspirals (EMRIs), the inspirals of compact objects into supermassive black holes,

are important gravitational wave sources for the Laser Interferometer Space Antenna (LISA). We study

the performance of various post-Newtonian (PN) template families relative to the waveforms that are

high-precision numerical solutions of the Teukolsky equation in the context of EMRI parameter

estimation with LISA. Expressions for the time-domain waveforms TaylorT1, TaylorT2, TaylorT3,

TaylorT4 and TaylorEt are derived up to 22 PN order, i.e. Oðv44Þ (v is the characteristic velocity of

the binary) beyond the Newtonian term, for a test particle in a circular orbit around a Schwarzschild

black hole. The phase difference between the above 22 PN waveform families and numerical waveforms

are evaluated during two-year inspirals for two prototypical EMRI systems with mass ratios 10�4 and

10�5. We find that the dephases (in radians) for TaylorT1 and TaylorT2, respectively, are about 10�9

(10�2) and 10�9 (10�3) for mass ratio 10�4 (10�5). This suggests that using 22 PN TaylorT1 or TaylorT2

waveforms for parameter estimation of EMRIs will result in accuracies comparable to numerical

waveform accuracy for most of the LISA parameter space. On the other hand, from the dephase results,

we find that TaylorT3, TaylorT4 and TaylorEt fare relatively poorly as one approaches the last stable

orbit. This implies that, as for comparable mass binaries using the 3.5 PN phase of waveforms, the

22 PN TaylorT3 and TaylorEt approximants do not perform well enough for the EMRIs. The reason

underlying the poor performance of TaylorT3, TaylorT4 and TaylorEt relative to TaylorT1 and TaylorT2 is

finally examined.
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I. INTRODUCTION

The inspiral of a stellar-mass compact object into a
supermassive black hole (SMBH) is one of the most prom-
ising gravitational wave (GW) sources for space-based
detectors such as eLISA.1 The compact object typically
has a mass of the order of a few solar masses, while the
SMBHs detectable by eLISA are in the mass range
105M�–107M�. As the mass ratio for these binaries is
typically around 105, these systems are called extreme
mass ratio inspirals (EMRIs). Gravitational waves from
EMRIs can provide information about the parameters of
the central black hole such as its spin, mass, and details of
its stellar surroundings while also facilitating strong field
tests of general relativity [1–3].

However, the gravitational wave signal is buried in a
background of noise, and the signal needs to be extracted
using data analysis techniques such as matched filtering.
Matched filtering requires accurate templates of the gravi-
tational waveform. For eLISA EMRI parameter estima-
tion, the GW phase errors of the template with respect to
the true signal should be less than 10 milliradians [4].
Considering eLISA is expected to detect 10–1000 EMRIs

during its mission [5–7], the search for accurate waveforms
for these systems is justified.
Post-Newtonian (PN) theory provides amethod to predict

the gravitational waveform for the early phase of inspiraling
compact binaries [8]. However, since the PN approximation
breaks down near the last stable orbit (LSO), numerical

relativity (NR) waveforms are required beyond this point.
Nevertheless, PN waveforms in the early inspiral phase are
required to calibrate the NRwaveforms because the compu-

tational cost for NR is very high. PN waveforms can be
matched with the NR waveforms in the late inspiral and the

subsequent merger and ringdown phases [9,10] to provide a
cheaper alternative to using NR for the complete inspiral.
PNwaveforms for nonspinning comparablemass binaries in

quasicircular orbits are known up to 3.5 PN order beyond
the Newtonian term [11–13]. Within the post-Newtonian
formalism, several nonequivalent template families such

as TaylorT1, TaylorT2, TaylorT3, TaylorT4, TaylorEt and
TaylorF2, amongothers, are possible. These 3.5 PN template
families were discussed extensively in Ref. [11]. It is found

that forM<12M�, whereM is the total mass of the binary,
these 3.5 PN template families, except for TaylorT3 and

TaylorEt, are equally good for the detection of gravita-
tional waves using ground-based detectors.
The mass ratio for EMRIs is very small, 10�4–10�7,

and one can apply black hole perturbation theory to

1evolved Laser Interferometer Space Antenna, also known as
NGO (New Gravitational-Wave Observatory).
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compute the gravitational wave emission using the mass
ratio as an expansion parameter [14]. Using black hole
perturbation theory, one can go to a much higher order of
PN iteration for gravitational waves than for comparable
masses using standard PN theory. Recently, 22 PN wave-
forms have been calculated for a test particle in a circular
orbit around a Schwarzschild black hole [15] by solving
the Teukolsky equation [16], which is a fundamental
equation of the black hole perturbation theory. It is
shown that the 22 PN gravitational waveforms achieve
data analysis accuracies comparable to waveforms result-
ing from high-precision numerical solutions of the
Teukolsky equation.2 In this paper, we extend this study
by calculating the different template families mentioned
above up to 22 PN order using the 22 PN energy flux
derived in Ref. [15]. We then investigate the performance
of these Taylor approximants by evaluating the phase
difference between these approximants and the wave-
forms that are high-precision numerical solutions of the
Teukolsky equation in Refs. [22,23] over a two-year
inspiral for two systems, one in the early inspiral phase
and the other in the late inspiral phase of the eLISA
frequency band. We find that TaylorT1 (which was also
investigated in Ref. [15]) and TaylorT2 provide the
best matches to numerical waveforms, while the phase
difference increases by a few orders of magnitude for
TaylorT3, TaylorT4 and TaylorEt. These investigations
extend the results for comparable mass binaries in
Ref. [11], that TaylorT3 and TaylorEt approximants are
considerably different from the others and perform rela-
tively poorly. We also discuss why the performance of
TaylorT3, TaylorT4 and TaylorEt in the test particle limit
becomes worse than the others. This may provide insights
which should be kept in mind when one constructs new
PN template families.

This paper is organized as follows: In Sec. II, we
discuss the various template families along with the rele-
vant initial conditions and calculate these approximants
up to 22 PN order. In Sec. III, we evaluate the dephase
between these different PN waveform approximants and
a fiducial waveform that is a high-precision numerical
solution of the Teukolsky equation during two-year
inspirals. In Sec. IV, we summarize our main conclusions.
Since the 22 PN Taylor approximants are too large to be
shown in this paper, we only show them up to 4.5 PN
order. The 22 PN expressions for the approximants will

be publicly available online [24]. Throughout this paper,
we use units c ¼ G ¼ 1.

II. THE POST-NEWTONIAN APPROXIMANTS

Post-Newtonian approximation treats the early stages of
adiabatic inspiral of compact binaries as a perturbative
model and expresses a binding energy, EðvÞ, and a flux,
F ðvÞ, associated with the gravitational wave as a power

series in v, where v ¼ ð�MFÞ1=3 is the characteristic
velocity, M is the total mass, and F is the gravitational
wave frequency of the binary. Here, adiabatic inspiral
implies that the inspiral time scale is much larger than
the orbital time scale. For restricted waveforms,3 under the
adiabatic approximation, the standard energy balance
equation dEtot=dt¼�F gives us the following pair of
coupled differential equations for the orbital phasing
formula [11–13]:

d�

dt
� v3

M
¼ 0; (2.1a)

dv

dt
þ F ðvÞ

ME0ðvÞ ¼ 0: (2.1b)

Here, E0ðvÞ is the derivative of the binding energy
with respect to the characteristic velocity, v. The
binding energy E is related to the total energy Etot by
Etot ¼ Mð1þ EÞ.
The phasing formula can also be expressed in the

following equivalent parametric form, where tref and �ref

are integration constants and vref is an arbitrary refer-
ence velocity:

tðvÞ ¼ tref þM
Z vref

v

E0ðvÞ
F ðvÞ dv; (2.2a)

�ðvÞ ¼ �ref þ
Z vref

v
v3 E

0ðvÞ
F ðvÞdv: (2.2b)

Recently, the 22 PN—order energy flux for EMRIs has
been calculated [15]. For the extreme mass ratio binaries,
EðvÞ is known exactly, see e.g. Ref. [25], and can be
expanded and truncated to any required PN order.4 We

2The Teukolsky equation is a first-order perturbation equation,
in which the particle moves on geodesics of the black hole. Over
time scales of the inverse of the mass ratio, the orbit deviates
from the geodesic because of the gravitational self-force [17,18].
Using numerical results for the full relativistic first-order gravi-
tational self-force in Ref. [19], the dephase due to the
gravitational self-force is estimated as a few radians [20,21].
Thus, the gravitational self-force should be taken into account in
the future.

3Restricted waveforms are obtained by retaining only the
leading harmonic in the GW signal. For these waveforms the
gravitational wave phase is twice the orbital phase.

4In contrast, for comparable mass binaries, EðvÞ cannot be
derived exactly and is computed as one of the conserved
quantities associated with a specified-order PN iteration of
the equation of motion. Currently, it is known up to 3 PN
for nonspinning binaries in general orbits; see e.g. Ref. [8].
The flux function FðvÞ, on the other hand, is known only as
a PN expansion in both the test particle and comparable
mass cases, albeit to a much higher PN order in the test
particle case (22 PN) relative to the comparable mass case
(3.5 PN).
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present, for the convenience of the reader, expressions for
4 PN EðvÞ and 4.5 PN F ðvÞ that are inputs needed to
derive the 4.5 PN results displayed explicitly in later sec-
tions for brevity of presentation. In these expressions,

m1 and m2 are the masses of the test particle and the
SMBH, respectively. M ¼ m1 þm2 is the total mass,
� ¼ m1m2=M

2 is the symmetric mass ratio, and
� ¼ 0:577216 . . . is the Euler constant.

E4ðvÞ¼�1

2
�v2

�
1�3v2

4
�27v4

8
�675v6

64
�3969v8

128

�
; (2.3)

F 4:5ðvÞ¼ 32

5
�2v10

�
1�1247v2

336
þ4�v3�44711v4

9072
�8191�v5

672
þv6

�
6643739519

69854400
þ16�2

3
�1712�

105
�856

105
logð16v2Þ

�

�16285�v7

504
þv8

�
�323105549467

3178375200
�1369�2

126
þ232597�

4410
þ39931

294
log ð2Þ�47385

1568
log ð3Þþ232597

4410
log ðvÞ

�

þ�v9

�
265978667519

745113600
�6848�

105
�3424

105
logð16v2Þ

��
: (2.4)

Approximate waveforms are obtained by inserting the
expressions for EðvÞ and F ðvÞ at consistent PN order into
the phasing formula—these waveforms are referred to
as Taylor approximants. There are several ways of
inserting these expressions into the phasing formula,
leading to different approximants such as TaylorT1,
TaylorT4, TaylorT2, TaylorT3, TaylorEt and TaylorF2
[11]. We have calculated these approximants up to
22 PN order for the EMRI case. We shall now discuss
these approximants while presenting our results up
to 4.5 PN. The method for calculating the phase of
the gravitational waveform is left for the next section.
The complete 22 PN expressions will be available
online [24].

A. TaylorT1

The TaylorT1 approximant is obtained by using the
expressions for binding energy, EðvÞ, and flux, F ðvÞ, as
they appear in Eqs. (2.3) and (2.4) in the phasing formula,

Eq. (2.1), and solving the resulting equations involving the
rational polynomial F ðvÞ=E0ðvÞ numerically:

d�ðT1Þ

dt
� v3

M
¼ 0; (2.5a)

dv

dt
þ F ðvÞ

ME0ðvÞ ¼ 0: (2.5b)

In the above equations, v � vðT1Þ, but for simplicity we
omit the superscript. The expressions for EðvÞ and F ðvÞ
are to be truncated to consistent PN order to obtain the
approximant of that order. This is followed for all the
approximants in this section.

B. TaylorT4

TaylorT4 goes one step further than TaylorT1 by ex-
panding the rational polynomial F ðvÞ=E0ðvÞ and truncat-
ing it to the required PN order [26]. The characteristic

velocity, vðT4ÞðtÞ � vðtÞ at 4.5 PN, is given for TaylorT4 by

dv

dt
¼ 32

5

�

M
v9

�
1� 743v2

336
þ 4�v3 þ 34103v4

18144
� 4159�v5

672
þ v6

�
16447322263

139708800
þ 16�2

3
� 1712�

105
� 856

105
log ð16v2Þ

�

� 4415�v7

4032
þ v8

�
3959271176713

25427001600
� 361�2

126
þ 124741�

4410
þ 127751

1470
log ð2Þ � 47385

1568
log ð3Þ þ 124741

4410
log ðvÞ

�

þ �v9

�
343801320119

745113600
� 6848�

105
� 3424

105
log ð16v2Þ

��
: (2.6)

Similarly to TaylorT1, Eq. (2.1a) gives the evolution of the orbital phase for TaylorT4.

C. TaylorT2

TaylorT2 uses the parametric form of the phasing formula, Eq. (2.2). The ratio E0ðvÞ=F ðvÞ is expanded and
truncated to the required PN order. Upon integration, we obtain the following equations for �ðvÞ and tðvÞ at
4.5 PN order:
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�ðT2Þ
4:5 ðvÞ ¼ �ðT2Þ

ref � 1

32�v5

�
1þ 3715v2

1008
� 10�v3 þ 15293365v4

1016064
þ 38645�

672
v5 log

�
v

vlso

�
þ v6

�
12348611926451

18776862720

� 160�2

3
� 1712�

21
� 856

21
log ð16v2Þ

�
þ 77096675�v7

2032128
þ v8

�
2550713843998885153

2214468081745920
� 45245�2

756

� 9203�

126
� 252755

2646
log ð2Þ � 78975

1568
log ð3Þ � 9203

126
log ðvÞ

�
þ �v9

�
� 93098188434443

150214901760
þ 80�2

3

þ 1712�

21
þ 856

21
log ð16v2Þ

��
; (2.7a)

tðT2Þ4:5 ðvÞ ¼ tðT2Þref � 5M

256�v8

�
1þ 743v2

252
� 32�v3

5
þ 3058673v4

508032
� 7729�v5

252
þ v6

�
� 10052469856691

23471078400
þ 128�2

3

þ 6848�

105
þ 3424

105
log ð16v2Þ

�
� 15419335�v7

127008
þ v8

��
2496799162103891233

461347517030400
� 18098�2

63
� 36812�

105

� 202204

441
log ð2Þ � 47385

196
log ð3Þ

�
log ðvÞ � 18406

105
log 2ðvÞ

�
þ �v9

�
� 102282756713483

23471078400
þ 512�2

3

þ 54784�

105
þ 27392

105
log ð16v2Þ

��
: (2.7b)

Here tref and �ref are integration constants. tref is fixed by setting t ¼ 0 when v ¼ v0, the initial velocity.

D. TaylorT3

To get the TaylorT3 approximant, the expression for tðvÞ generated in TaylorT2 is inverted to get vðtÞ. This is then used
to obtain �ðtÞ � �ðvðtÞÞ. TaylorT3 also gives the instantaneous gravitational wave frequency F by F � d�=ð�dtÞ ¼
v3=ð�MÞ. The TaylorT3 approximant at 4.5 PN order is given by

�ðT3Þ
4:5 ðtÞ ¼ �ðT3Þ

ref � 1

��5

"
1þ 3715�2

8064
� 3��3

4
þ 9275495�4

14450688
þ 38645��5

21504
log

�
�

�lso

�
þ �6

(
831032450749357

57682522275840

� 53�2

40
� 107�

56
� 107

56
log ð2�Þ

)
þ 188516689��7

173408256
þ �8

(
11715802333726918585

2073248288647151616
� 191257�2

387072

� 312247

451584
log 2ð2Þ þ 2446934992845948193

188967942975651840
log ð2Þ � 236925

401408
log ð2Þ log ð3Þ � 78975

401408
log ð3Þ

� �ð208343þ 386526 log ð2ÞÞ
451584

� 45245�2

64512
log ð2Þ þ

�
� 2583981498376602913

188967942975651840
þ 45245�2

64512

þ 9203�

10752
þ 14873

56448
log ð2Þ þ 236925

401408
log ð3Þ

�
log ð�Þ þ 9203log 2ð�Þ

21504

)
þ ��9

(
587519428177201

192275074252800

� 33�2

800
� 321�

1120
� 321

1120
log ð2�Þ

)#
; (2.8a)

FðT3Þ
4:5 ðtÞ ¼ �3

8�M

"
1þ 743�2

2688
� 3��3

10
þ 1855099�4

14450688
� 7729��5

21504
þ �6

(
� 720817631400877

288412611379200
þ 53�2

200
þ 107�

280

þ 107

280
log ð2�Þ

)
� 188516689��7

433520640
þ �8

(
� 2033421792006076349

3101012397549158400
þ 33589�2

215040
þ 312247

752640
log 2ð2Þ

� 2463531507726173473

314946571626086400
log ð2Þ þ 142155

401408
log ð2Þ log ð3Þ þ �ð79501þ 386526 log ð2ÞÞ

752640
þ 9049�2

21504
log ð2Þ

þ
 
2530066816481608993

314946571626086400
� 9049�2

21504
� 9203�

17920
� 14873

94080
log ð2Þ � 142155

401408
log ð3Þ

!
log ð�Þ � 9203

35840
log 2ð�Þ

)

þ ��9
(
� 573742575758641

240343842816000
þ 33�2

1000
þ 321�

1400
þ 321

1400
log ð2�Þ

)#
; (2.8b)
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where �ðtÞ is given by � ¼ ½�ðtref � tÞ=ð5MÞ��1=8. Given an initial velocity v0, one can find the initial frequency
F0 by F0 ¼ v3

0=ð�MÞ. To find tref , one solves Eq. (2.8b) at t ¼ 0 and F ¼ F0.

E. TaylorEt

TaylorEt is expressed as a power series of a new function, � ¼ �2E=� [27]. Equation (2.3) for EðvÞ can be expressed in
terms of x ¼ v2 to get �ðxÞ. This is then inverted to obtain xð�Þ:

xð�Þ ¼ �

�
1þ 3�

4
þ 9�2

2
þ 405�3

16
þ 2511�4

16

�
: (2.9)

From the phasing formula Eqs. (2.1a) and (2.9), we get an expression for the evolution of phase in terms of �
[cf. Eq. (2.11a)]. Under the new variable, � , Eq. (2.1b) of the phasing formula transforms to

d�

dt
¼ 2F ðvð�ÞÞ

�M
: (2.10)

The TaylorEt approximant is, essentially, the gravitational wave phasing equations expressed in terms of � . At 4.5 PN
order, it is given by

d�ðEtÞðtÞ
dt

¼ �3=2

M

�
1þ9�

8
þ891�2

128
þ41445�3

1024
þ8413875�4

32768

�
; (2.11a)

d�

dt
¼ 64��5

5M

�
1þ13�

336
þ4��3=2þ117857�2

18144
þ4913�

672
�5=2þ�3

�
37999588601

279417600
þ16�2

3
�1712�

105
�856

105
log ð16�Þ

�

þ129817�

2304
�7=2þ�4

�
3677099151569

5085400320
þ2663�2

126
�198827�

4410
�87961

1470
logð2Þ�47385

1568
log ð3Þ

�198827

8820
logð�Þ

�
þ��9=2

�
1130297606413

1490227200
�6848�

105
�3424

105
logð16�Þ

��
: (2.11b)

As in the case of TaylorT3, we can find F0, given v0. Noting that F � d�=ð�dtÞ, initial conditions for TaylorEt can be
set up by solving Eq. (2.11a) for �0 by setting the left-hand side to �F0.

F. TaylorF2

TaylorF2 is a Fourier-domain approximant based on the stationary phase approximation (SPA). Under the SPA, the
waveform in the Fourier domain is expressed as

~hspaðfÞ ¼ aðtfÞffiffiffiffiffiffiffiffiffiffiffi
_FðtfÞ

q ei½c fðtfÞ��=4�; c fðtÞ � 2�ft� 2�ðtÞ; (2.12)

where tf is the saddle point, defined by solving for t when dc fðtÞ=dt ¼ 0, i.e. the time tf when the gravitational wave
frequency FðtÞ becomes equal to the Fourier variable, f. In the adiabatic approximation [where Eqs. (2.2a) and (2.2b)
hold], the values of tf and c fðtfÞ are given by

tf ¼ tref þM
Z vref

vf

E0ðvÞ
F ðvÞdv; (2.13a)

c fðtfÞ ¼ 2�ftref ��ref þ 2
Z vref

vf

ðv3
f � v3ÞE

0ðvÞ
F ðvÞdv; (2.13b)

where vf ¼ ð�MfÞ1=3.
Using expressions of energy and flux and expanding the ratio E0ðvÞ=F ðvÞ in Eq. (2.13) to consistent PN order leads to an

expression which can be integrated explicitly, resulting in the TaylorF2 approximant. The phase of the Fourier-domain
waveform up to 4.5 PN order is given by
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c ðF2Þ
4:5 ðfÞ ¼ 2�ftc ��c � �

4
þ 3

128�v5

�
1þ 3715v2

756
� 16�v3 þ 15293365v4

508032
þ 38645�v5

252
log

�
v

vlso

�

þ v6

�
11583231236531

4694215680
� 640�2

3
� 6848�

21
� 3424

21
log ð16v2Þ

�
þ 77096675�v7

254016

þ v8

��
� 2550713843998885153

276808510218240
þ 90490�2

189
þ 36812�

63
þ 1011020

1323
log ð2Þ þ 78975

196
log ð3ÞÞ

�
log ðvÞ � 1

3

�

þ 18406

63
log 2ðvÞ

�
þ �v9

�
105344279473163

18776862720
� 640�2

3
� 13696�

21
� 6848

21
log ð16v2Þ

��
; (2.14)

where tc and �c can be chosen arbitrarily and
v ¼ ð�MfÞ1=3.

The behavior of TaylorF2 has already been investigated
up to 3.5 PN order for comparable mass binaries [11–13].
One must keep in mind that the stationary phase approxi-
mation, on which TaylorF2 is based, is valid only up to
4.5 PN order [28,29]. Thus, beyond 4.5 PN, the Fourier
transform of the waveform has correction terms for the
stationary phase approximation to the Fourier transform in
Eq. (2.12). However, as a start, in this paper, we have
obtained the TaylorF2 approximant up to 22 PN order by
assuming Eq. (2.12) is valid even beyond 4.5 PN. Further
studies, computing terms beyond the leading one [11–13],
are needed to look for a good frequency-domain
approximant at higher PN orders and will be investigated
in the future.

III. COMPARISON WITH HIGH-PRECISION
NUMERICAL SOLUTIONS OF THE

TEUKOLSKY EQUATION

To investigate the behavior of different analytical PN
families described in Sec. II, we calculate the phase of the
gravitational wave signal during a two-year quasicircular
inspiral of two systems of binaries called System I and
System II as considered in Refs. [15,30–32]. We compare
this phase with the phase calculated using waveforms that
are high-precision numerical solutions of the Teukolsky
equation; the difference between these phases is called the
dephase. System I has masses ðm1; m2Þ ¼ ð10; 105ÞM�,
with m1=m2 ¼ 10�4; it inspirals from rin ’ 29M to rfin ’
16M during a two-year period, with gravitational wave
frequencies in the range fGW 2 ½4� 10�3; 10�2� Hz.
System II has masses ðm1; m2Þ ¼ ð10; 106ÞM�, with
m1=m2 ¼ 10�5; it inspirals from rin ’ 11M to rfin ’ 6M
(LSO) during a two-year period, with gravitational wave
frequencies in the range fGW2½1:8�10�3;4:4�10�3�Hz.
In the frequency band of eLISA, System I corresponds to
the early inspiral phase of an EMRI, while System II
corresponds to the late inspiral phase. Note that the phases
shown in the figures of this section are gravitational wave
phases which are twice the orbital phases.

Matched filtering can give signal-to-noise ratios (SNRs)
of up to �� 100 [33,34] for the strongest EMRI signals
detectable by eLISA. This means eLISA can detect phases

up to an accuracy of order 1=�� 10 milliradians [4].
Therefore, while considering the dephase results of this
paper, we expect PN waveforms to have accuracies com-
parable to those provided by numerical waveforms if the
dephase is less than 10�2 radians.
The numerical waveforms we use are based on those

in Refs. [22,23], which solve the Teukolsky equation.
The truncation of the l mode limits the accuracy of the
numerical calculations. We use the same data generated for
Ref. [15], which is based on l ¼ 25 calculations and gives
relative error better than 10�14 up to the LSO.

A. Dephase between TaylorT1 and numerical results

The dephase between TaylorT1 and numerical wave-
forms (cf. Fig. 1) was shown in Ref. [15]. We present the
results here for comparison.5 For System I (II), the absolute
values of the dephasing between the TaylorT1 waveforms
and the numerical waveforms after the two-year inspiral
are about 7� 101ð8� 103Þ, 7� 10�3ð8Þ, 7� 10�6ð5�
10�1Þ, 8� 10�9ð3� 10�2Þ and 10�9ð5� 10�3Þ radians
for 5.5 PN, 10 PN, 14 PN, 18 PN and 22 PN, respectively.
It is also suggested in Ref. [15] that using 22 PN TaylorT1
waveforms for EMRIs will result in accuracy of data
analysis comparable to that resulting from high-precision
numerical waveforms, as the dephase is less than 10�2

radians for most of the parameter space of eLISA. We
also note that 10 PN TaylorT1 waveforms may be compa-
rable in accuracy of data analysis to numerical waveforms
for System I.
We now extend this study by investigating the behavior

of other PN Taylor families by evaluating their dephases
during the same inspiral.

B. Dephase between TaylorT4 and numerical results

The calculation of the phase of TaylorT4 is very similar
to that of TaylorT1 and numerical waveforms. We use the
relation

�ðtÞ ¼
Z t

0
ðd�=dt0Þdt0 ¼

Z vðtÞ

v0

ðd�=dt0Þ
ðdv0=dt0Þdv

0: (3.1)

5Figure 1 is slightly different from the dephase results of
Ref. [15]. This is because in Ref. [15] the TaylorT1 phase was
calculated without expanding dE=dv in v.
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Here, d�=dt is given by Eq. (2.1a), v0 is the velocity at the
starting of the two-year inspiral, and vðtÞ can be obtained

by solving the equation t� R
vðtÞ
v0

1=ðdv=dtÞdv ¼ 0 for a

given time t. For TaylorT4, dv=dt is given by Eq. (2.6),
while for numerical waveforms, dv=dt is obtained from
the solution of Teukolsky equation [15,22,23].

The dephase results are shown in Figs. 2(a) and 2(b). For
System I (II), the absolute values of the dephasing between
the TaylorT4 waveforms and the numerical waveforms
after the two-year inspiral are about 2� 102ð3� 104Þ, 7�
10�1ð7� 103Þ, 6� 10�3ð2� 103Þ, 5� 10�5ð8� 102Þ
and 5� 10�7ð3� 102Þ radians for 5.5 PN, 10 PN,
14 PN, 18 PN and 22 PN, respectively. This suggests that
14 PN or higher-order TaylorT4 waveforms are compa-
rable in accuracy of data analysis to numerical waveforms
for the early inspiral phase (System I), but the accuracy is
low for the late inspiral phase (System II), particularly,
near the LSO.

By comparing with Fig. 1, we see that the dephase for
TaylorT4 is a few orders of magnitude worse than that for
TaylorT1. This can be explained as follows: In the test
particle limit, dE=dv, given by

dE

dv
¼ �v

ð1� 6v2Þ
ð1� 3v2Þ3=2 ; (3.2)

goes to zero as one approaches the LSO at v ¼ 1=
ffiffiffi
6

p
.

Therefore, the series expansion of ðdE=dvÞ�1 converges
very slowly around the LSO. Noting that TaylorT1 and
TaylorT4 differ in whether or not the series expansion of
ðdE=dvÞ�1 is performed in obtaining dv=dt, one can ex-
pect that TaylorT1 will be more accurate than TaylorT4
near the LSO. This suggests that factorization to avoid a
pole at the LSO leads to improvement in the accuracy of
dv=dt. We note that in Refs. [35,36], factorization is
performed for the energy flux, F ðvÞ, to deal with a pole

at the light ring, v ¼ 1=
ffiffiffi
3

p
. Thus, one may also have to

factorize the pole at the light ring when considering the
case beyond the LSO.

C. Dephase between TaylorT2 and numerical results

TaylorT2 expresses the orbital phase, �ðvÞ, and the
time, tðvÞ, as functions of v. For a given time T, we solve
the equation T � tðvÞ ¼ 0 to get the velocity, vðTÞ. Given
the velocity, one can compute the phase as

�ðtÞ ¼ �ðvðtÞÞ: (3.3)

�ref in Eq. (2.7a) is chosen such that �ðt ¼ 0Þ ¼ 0.
The dephase results are shown in Figs. 2(c) and 2(d).

For System I (II), the absolute values of the dephasing
between the TaylorT2 waveforms and the numerical wave-
forms after the two-year inspiral are about 9� 101ð104Þ,
4� 10�2ð6� 102Þ, 5� 10�6ð5Þ, 5� 10�9ð10�2Þ and
10�9ð8� 10�4Þ radians for 5.5 PN, 10 PN, 14 PN, 18 PN
and 22 PN, respectively. Therefore, for TaylorT2, 10 PN
(18 PN) waveforms may provide accuracies comparable to
those provided by numerical waveforms for System I
(System II).
As can be seen by comparing with Fig. 1, the dephase of

TaylorT2 is comparable or lesser than TaylorT1 during the
inspirals. However, one needs to keep in mind that for
calculating the phase from the TaylorT2 approximant, a
pair of transcendental equations needs to be solved, which
can be very time consuming and expensive.

D. Dephase between TaylorEt and numerical results

TaylorEt expresses d�=dt and d�=dt as power-series
expansions of � ¼ �2E=�. For a given time T, we solve

the equation T � R�ðTÞ
�0

1=ðd�=dtÞd� ¼ 0 to get �ðTÞ,
where �0 and �ðTÞ are the values of � at t ¼ 0 and time
T, respectively.
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FIG. 1 (color online). Absolute value of the dephase between TaylorT1 PN waveforms and numerical waveforms during two-year
inspirals as a function of time in months. The left panel shows the dephase for System I having masses ðm1; m2Þ ¼ ð10; 105ÞM� for
rin ’ 29M to rfin ’ 16M sweeping GW frequencies in the range fGW 2 ½4� 10�3; 10�2� Hz. The right panel shows the dephase for
System II having masses ðm1; m2Þ ¼ ð10; 106ÞM� for rin ’ 11M to rfin ’ 6M (LSO) sweeping GW frequencies in the range fGW 2
½1:8� 10�3; 4:4� 10�3� Hz. System I (System II) corresponds to the early (late) inspiral phase of the eLISA frequency band.
Note that the dephase between 18 PN (22 PN) TaylorT1 waveforms and numerical waveforms at the end of the two-year inspiral for
System I is about 8� 10�9 (10�9) radians, which falls below the lowest value of dephase in the left panel. (a) System-I for TaylorT1.
(b) System-II for TaylorT1.
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The phase can now be evaluated as

�ðtÞ ¼
Z t

0
ðd�=dt0Þdt0 ¼

Z �ðtÞ

�0

ðd�=dt0Þ
ðd�=dt0Þ d�; (3.4)

where ðd�=dt0Þ and ðd�=dt0Þ are given in Eq. (2.11).
The dephase results are shown in Figs. 2(e) and 2(f).

For System I (II), the absolute values of the dephasing
between the TaylorEt waveforms and the numerical wave-
forms after the two-year inspiral are about 103ð6� 104Þ,
9ð2� 104Þ, 3� 10�1ð9� 103Þ, 8� 10�3ð7� 103Þ and
4� 10�4ð4� 103Þ radians for 5.5 PN, 10 PN, 14 PN,
18 PN and 22 PN, respectively. This suggests that 18 PN
and 22 PN TaylorEt waveforms are comparable in

accuracy of data analysis to numerical waveforms for the
early inspiral phase (System I) of the eLISA frequency
band, but the accuracy is low for the late inspiral phase
(System II).
As in the case of TaylorT4 in Sec. III B, the reason that

the performance of TaylorEt is much worse than that of
TaylorT1 can be related to the poor convergence of the
series expansion of ðdE=dvÞ�1 or dv=dt around the LSO.
Solving � ¼ �2E=� iteratively,6 the new variable � in
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FIG. 2 (color online). Absolute value of the dephase between different PN waveforms and numerical waveforms during two-year
inspirals as a function of time in months. The left (right) panel shows the dephase for System I (System II). Note that the dephase
between 18 PN (22 PN) TaylorT2 waveforms and numerical waveforms at the end of the two-year inspiral for System I is about
5� 10�9 (10�9) radians, which falls below the lowest value of dephase shown in (c). If the dephase is less than 10 milliradians, the PN
waveforms will provide data analysis accuracies comparable to those provided by the numerical waveforms. Therefore, we expect that
18 PN waveforms for TaylorT2 are comparable in accuracy of data analysis to numerical waveforms for most of the EMRI parameter
space of eLISA. 14 PN and 18 PN waveforms are required for TaylorT4 and TaylorEt, respectively, to be comparable to numerical
waveforms even in the early inspiral phase (System I). The accuracy of TaylorT4 and TaylorEt for System II (which goes up to the
LSO) is not comparable to numerical waveform accuracy. (a) System-I for TaylorT4. (b) System-II for TaylorT4. (c) System-I for
TaylorT2. (d) System-II for TaylorT2. (e) System-I for TaylorEt. (f) System-II for TaylorEt.

6One can solve � ¼ �2E=� to obtain the explicit expression
for vð�Þ without performing a series expansion in terms of v. But
the explicit expression for vð�Þ may not be useful to implement,
since it contains the square root of polynomial functions of � .
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TaylorEt can be related to v as in Eq. (2.9). One can also
derive the same relation using vð�Þ ¼ Rðd� 0=dvÞ�1d� 0.
Noting ðd�=dvÞ�1 ¼ ��ðdE=dvÞ�1=2, we see that the
integrand of vð�Þ contains a pole at the LSO. Then, one
may expect that v as a series expansion in terms of � does
not converge very well around the LSO. Hence, functions
of � in TaylorEt, which are computed by using a series
expansion of vð�Þ, will not converge well.

E. Dephase between TaylorT3 and numerical results

TaylorT3 gives the orbital phase, �ðtÞ, and the instanta-
neous gravitational wave frequency, FðtÞ, as functions of
�ðtÞ, which is a function of time. For any given time t, we
can find the phase as

�ðtÞ ¼ �ð�ðtÞÞ: (3.5)

As in TaylorT2, �ref is chosen such that �ðt ¼ 0Þ ¼ 0.
The dephase results for System I are shown in Fig. 3. For

System I, the absolute values of the dephasing between the
TaylorT3 waveforms and the numerical waveforms after the
two-year inspiral are about 2� 103, 9� 101, 7� 10�1, 7�
10�1 and 3� 10�2 radians for 5.5, 10, 14, 18 and 22 PN,
respectively. Therefore, we see that a 22 PN TaylorT3
waveform is required to get data analysis accuracies com-
parable to numerical waveform accuracy for System I.

The TaylorT3 approximant is not accurate in the case of

System II as it goes up to the LSO (v ¼ 1=
ffiffiffi
6

p
). Even for

System I, we find the dephase is a few orders of magnitude
higher than that for TaylorT1.One also finds that the value of

FðT3ÞðtÞ becomes very large for �ðtÞ � 0:67, and for System
II one cannot find a tref consistent with the one derived for
TaylorT2. The reason for this is again similar to the reason
for the poor behavior of TaylorT4 as compared to TaylorT1.
In the TaylorT3 approximation, one derives vðtÞ as a series
of t, i.e. �, by iteratively inverting tðvÞ in TaylorT2. vðtÞ as a
series of t can also be derived using vðtÞ ¼ Rðdv=dt0Þdt0.

Since the integrand of vðtÞ, dv=dt, has a pole at LSO, one
will expect that vðtÞ as a series of t does not converge well
around LSO. Thus, functions of � in TaylorT3, computed
using vðtÞ in a series of t, will not converge well.

IV. CONCLUSIONS

Using the 22 PN expression for flux, F ðvÞ, derived in
Ref. [15], we calculated the TaylorT1, TaylorT2, TaylorT3,
TaylorT4 and TaylorEt approximants up to 22 PN order for
a test particle in a circular orbit around a Schwarzschild
black hole. We evaluated the performance of the PN wave-
forms by calculating the gravitational wave phase pre-
dicted for two EMRI systems, System I (m1=m2 ¼ 10�4)
and System II (m1=m2 ¼ 10�5) during two-year inspirals.
System I (System II) corresponds to the early (late) inspiral
phase of the eLISA frequency band. The phase predicted
by PN waveforms is compared with the phase predicted by
waveforms resulting from high-precision numerical solu-
tions of the Teukolsky equation for the same inspirals.
For accurate eLISA EMRI parameter estimation with these
PN waveforms, we need the difference of the phases, the
dephase, to be less than 10�2 radians [4].
We found that the dephase between the 22 PN wave-

forms and numerical waveforms after a two-year inspiral
for System II is smaller than 10�2 and 10�3 radians for
TaylorT1 and TaylorT2, respectively. Therefore, we expect
that these 22 PN waveforms can be used to attain data
analysis accuracies comparable to those provided by high-
precision numerical waveforms for most of the parameter
space of EMRIs. Moreover, for the early inspiral phase,
10 PN waveforms for TaylorT1 and TaylorT2 may be used
for data analysis.
However, the dephase of TaylorT4, TaylorEt and

TaylorT3 waveforms goes to values higher than 102 radians
for System II. This suggests that these approximants
cannot be used for data analysis of late inspirals. We note
that our results reinforce investigations in Ref. [11] that
TaylorEt and TaylorT3 are recommended not to be used for
data analysis of comparable mass binaries.
For System I, we found that 14 PN or higher PN order

waveforms are required for TaylorT4, TaylorEt and
TaylorT3 to achieve comparable results in data analysis
to using high-precision numerical waveforms even in the
early inspiral phase. We also found that the reason the
dephases of TaylorT4, TaylorEt and TaylorT3 waveforms
are much larger than those of TaylorT1 and TaylorT2 may
be related to the fact that ðdE=dvÞ�1 has a pole at the LSO.
This suggests that when constructing templates for coales-
cing compact binaries, approximants avoiding the pole at
the LSO arising from the energy function by factorizing it
as in TaylorT1, or those introducing a new variable which
cancels the pole, may perform better. We hope that these
studies also provide insights to construct more efficient
templates for coalescing compact binaries in the compa-
rable mass case. Lastly, the analytical expressions for the
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FIG. 3 (color online). Absolute value of the dephase between
TaylorT3 PN waveforms and numerical waveforms during two-
year inspirals for System I as a function of time in months.
TaylorT3 is found to behave poorly for System II as it goes up to
the last stable orbit (LSO). We expect that 22 PN TaylorT3
waveforms are required to get data analysis accuracies compa-
rable to those provided by numerical waveforms for System I.
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various approximants could also be useful for studies
related to the ground-based detectors.
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