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In four-dimensional gravity theory, the Barbero-Immirzi parameter has a topological origin, and can be

identified as the coefficient multiplying the Nieh-Yan topological density in the gravity Lagrangian, as

proposed by Date et al. [Phys. Rev. D 79, 044008 (2009)]. Based on this fact, a first order action

formulation for spacetimes with boundaries is introduced. The bulk Lagrangian, containing the Nieh-Yan

density, needs to be supplemented with suitable boundary terms so that it leads to a well-defined

variational principle. Within this general framework, we analyze spacetimes with and without a

cosmological constant. For locally anti–de Sitter (or de Sitter) asymptotia, the action principle has

nontrivial implications. It admits an extremum for all such solutions provided the SO(3,1) Pontryagin and

Euler topological densities are added to it with fixed coefficients. The resulting Lagrangian, while

containing all three topological densities, has only one independent topological coupling constant,

namely, the Barbero-Immirzi parameter. In the final analysis, it emerges as a coefficient of the SO(3,2)

[or SO(4,1)] Pontryagin density, and is present in the action only for manifolds for which the

corresponding topological index is nonzero.
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I. INTRODUCTION

In four spacetime dimensions, the theory of gravity has
three independent topological parameters [1,2]. In the first
order action formulation, these are associated with three
topological densities, namely, the Nieh-Yan, Euler and
Pontryagin [1–3]. Among these, the Nieh-Yan density [4]
shows up only in first order gravity where the tetrad and
spin-connection are treated as independent variables. In terms
of these basic fields, the Nieh-Yan density INY is locally
defined as

INY ¼ �����

�
ðD�ð!ÞeI�ÞðD�ð!Þe�IÞ � 1

2
eI�e

J
�R��IJð!Þ

�

¼ @�½�����eI�ðD�ð!Þe�IÞ� (1)

where we define the covariant derivative D�ð!Þ as

D�ð!ÞeI� ¼ @�e
I
� þ!�

IJe�J. It has been noted that this

topological class typically appears in the context of canonical
SU(2) formulation of gravity [5,6] with fermionic matter, for
which the corresponding effective Lagrangians, also known
as the generalized Holst Lagrangians, contain this term [7,8].
However, the real importance of the Nieh-Yan density in the
canonical theory of gravity with or without matter was first
elucidated by Date et al. [2], who developed a Hamiltonian
formulation of gravity based on a Lagrangian (density) made
up of the Hilbert-Palatini and Nieh-Yan terms:

Lðe;!Þ ¼ 1

2�
e�

��
IJ R��

IJð!Þ þ �INY: (2)

Here, �
��
IJ ¼ 1

2 ðe�I e�J � e
�
J e

�
I Þ, R��

IJð!Þ ¼ @½�!��
IJ þ

!½�
IK!��K

J, e ¼ det ðeI�Þ and� is the gravitational constant.

In the second term, the constant real coefficient� is known as
the (inverse of) Barbero-Immirzi parameter. The resulting
theory, while leading to a real SU(2) gauge theory of gravity
exactly as in the earlier formulation ofHolst [9,10], allows the
introduction of any arbitrary matter coupling without requir-
ing any furthermodifications in the Lagrangian [2,11]. This is
so because the Nieh-Yan topological density, being a total
divergence, does not affect the equations ofmotion ofHilbert-
Palatini gravitywhether or notmatter is coupled to the theory.
In addition, the Lagrangian (2) provides a clear topological
interpretation for the Barbero-Immirzi parameter � which
multiplies the Nieh-Yan density (for subsequent discussions
on the topological origin of� based on this fact, see [12,13]).
This is in contrast to the Holst formulation [9] where �
appears as a coefficient of the Holst term in the Lagrangian:

Lðe;!Þ¼ 1

2�
e���

IJ R
IJ
��ð!Þþ�

2
e�IJKL���

IJ R��KLð!Þ: (3)

Since the Holst term is not a topological density, it does not
elucidate the topological origin of�. Although there are some
special instances where the Holst term captures the same
topological information as the Nieh-Yan density, the formu-
lation with Nieh-Yan is more general, even in pure gravity.
This is because a vanishing Nieh-Yan density necessarily
implies a vanishing Holst density, although the converse is
not true. In fact, the torsional configurations in pure gravity as
studied by Chandia and Zanelli in [14] constitute an example
where the corresponding Nieh-Yan topological index is non-
trivial, even though theHolst density vanishes. In the presence
of matter coupling, the Holst term needs matter-dependent
modifications which are not universal [7,8]. Thus, the action
principle based on (2) supersedes the framework of Holst
[1,2,11].*sandipan@rri.res.in
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However, the analysis in [2] is relevant for manifolds
which are either compact without boundaries or have
boundaries where the surface terms do not contribute.
For spacetimes with general boundaries, where the surface
terms are really relevant to the analysis, the significance of
the Nieh-Yan density is yet to be understood. Such an
exercise is important from the perspective discussed above,
which suggests that all matter couplings in gravity theory
should be treated in a universal manner, and the Barbero-
Immirzi parameter should have a direct topological
interpretation, even within the action formulation for
spacetimes with nontrivial asymptotia.

In the first order gravity asymptotics [15], the role of the
Barbero-Immirzi parameter has been a topic of active
interest for a while [16]. However, all these earlier works
are based on the Holst formulation. The suggestion that �
might show up through the Nieh-Yan density in the action
principle for manifolds with boundaries was recently made
in Ref. [17]. Their analysis, which also is based on the
Holst framework and deals with closed boundaries,
proposes a surface term involving the ‘‘torsional Chern-
Simons density.’’1 The full Lagrangian in this framework
contains both the Holst and Nieh-Yan densities.

Here, in this short paper, we set up an action principle
based on a Lagrangian containing the Hilbert-Palatini and
Nieh-Yan densities for manifolds with boundaries, and
study the implications. First, we analyze the case for
Dirichlet boundaries. A standard example of such geome-
tries are asymptotically flat spacetimes. Next, we consider
spacetimes which have asymptotic boundaries with con-
stant negative (or positive) curvature (locally). When the
asymptotic boundary is the only boundary, these are known
as asymptotically locally anti–de Sitter (ALADS) geome-
tries [18]. Although the analysis of boundary terms for this
class of asymptotia has a long history, the fact that topo-
logical densities play an important role in the correspond-
ing action formulation was first demonstrated by Aros et al.
[18]. They showed that the boundary term corresponding to
the Hilbert-Palatini density for such asymptotia can be
written as the Euler topological density, multiplied by a
coefficient fixed in terms of the gravitational and cosmo-
logical constants. Thus, this theory has no independent
topological parameter. Here, we find that with the inclusion
of the Nieh-Yan density, the Lagrangian admits an extre-
mum for all ALADS solutions provided the Pontryagin
topological density is included in it with a fixed coefficient,
i.e. the Barbero-Immirzi parameter �. Thus, our analysis
demonstrates that the most general action principle for
such asymptotic geometries has � as the only topological
parameter, while containing all three independent topo-
logical densities which exist in four-dimensional gravity

theory, namely, the Nieh-Yan, Pontryagin and Euler. It is
also important to note that our analysis does not require the
introduction of the Holst term in the Lagrangian, unlike the
earlier formulations [16,17].
In the next section, we introduce the action principle

containing the Nieh-Yan density and apply it to spacetimes
with Dirichlet boundaries. Next, we extend this analysis for
locally anti–de Sitter (or de Sitter) asymptotic boundaries
and study the consequences. The last section contains a few
relevant remarks.

II. ACTION PRINCIPLE

For a four-dimensional spacetime manifold M whose
boundary is @M, we propose the following Lagrangian
density for pure gravity:

Lðe;!Þ ¼ 1

2�
e�

��
IJ R��

IJ þ �INY þ B (4)

where the Nieh-Yan density INY is defined as in (1), and B
is a surface term, depending on the fields at the boundary. B
can be fixed by demanding a well-defined variational prin-
ciple for the action.2 The above action principle can be
generalized for any arbitrary matter coupling in a straight-
forward manner, by simply adding the matter Lagrangian
as it is (along with the corresponding boundary term),
without changing the Nieh-Yan density.
Variation of (4) with respect to the independent fields eI�

and !IJ
� leads to

�Lðe;!Þ¼ 1

4�
������IJKL½eI�R��

KL�eJ�

þ2eI�ðD�e
J
�Þ�!KL

� �þ�B

þ@�

�
�����

�
1

4�
�IJKLe

I
�e

J
��!

KL
�

þ�ðeI�eJ��!�IJþ2ðD�e�IÞ�eI�Þ
��

(5)

where we have used the identity e���
IJ ¼

1
4 �

�����IJKL�
KL
��. While the first two terms in the paren-

thesis correspond to the equations of motion, the remaining
ones contribute at the boundary of the spacetime. It follows
from (5) that the Lagrangian density (4) will have an
extremum for all solutions subject to suitable boundary
conditions if the following holds:

�B ¼ ��abc
�
1

4�
�IJKLe

K
a e

L
b � �eaIebJ

�
�!IJ

c (6)

where the indices a, b, c etc. correspond to the coordinates
on the three-dimensional boundary manifold @M and �abc

is the Levi-Civita tensor density induced at the boundary.
In what follows next, we find out the explicit form of the

1The Nieh-Yan topological density can be written as a total
divergence, as in Eq. (1): INY ¼ @�J

�
NY. We define J

�
NY ¼

�����eI�ðD�ð!Þe�IÞ as the torsional Chern-Simons density.

2Issues related to the convergence of the action are not
discussed here. For relevant discussions in this regard, see
[16,18,19].
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boundary term B for spacetimes which have Dirichlet and
locally ADS asymptotia, respectively. If the spacetime has
boundaries other than the asymptotic one, a Dirichlet
condition on the spin-connection would be assumed on
such boundaries [19]:

�!IJ
a0 ¼ 0; (7)

with a0 denoting the indices corresponding to the coordi-
nates on the nonasymptotic three-boundary. As is evident
from (6), for this boundary condition, �B vanishes. Thus,
the nonasymptotic surfaces do not contribute to the bound-
ary term B. Hence, it is enough to consider only the
asymptotic boundary, as would be done in the rest of
the paper.

At this point, it is important to emphasize that the bound-
ary contribution in (6) corresponding to the Nieh-Yan
density is exactly the same as the one for the Holst
term [16], as appearing within the Holst action formulation
based on the Lagrangian density (3). This fact can be
explicitly checked by taking a variation of the Holst
density LH:

�LH ¼ 1

2
�ðe�IJKLe�I e

�
JR��KLÞ

¼ � 1

2
�ð�����eI�e

J
�R��IJÞ

¼ � 1

2
�����½eJ�R��IJ�e

I
� � 2eJ�ðD�e

I
�Þ�!�IJ�

� @�ð�����eI�e
J
��!�IJÞ:

Here, in the second line we have used the identity
e�IJKLe�I e

�
J ¼ ������eK�e

L
�. While the first two terms

above contribute to the equations of motion (these contri-
butions do not affect the Hilbert-Palatini equations of
motion), the total divergence term contains the boundary
contribution �BH corresponding to the Holst term:

�BH ¼ ��abceaIebJ�!
IJ
c : (8)

Comparing (8)with the second term in (6), we conclude that
the boundary contributions BNY and BH corresponding
to the Nieh-Yan and Holst densities, respectively, are ex-
actly the same for pure gravity up to a sign.3 Thus, in order
to introduce the Barbero-Immirzi parameter� in the theory,
the inclusion of Nieh-Yan density with the coefficient � is
sufficient. One does not need a (further) addition of the
Holst density to the Lagrangian (4). Also, as we will see
later, the boundary termBNY corresponding to theNieh-Yan
is gauge invariant as it is, when appropriate boundary con-
ditions are used. Thus, although one can still workwithin an
action principle containing both the Nieh-Yan and Holst
terms multiplied by the same coefficient � as in Ref. [17],

this is by no means necessary. Such an approach, however,
obscures the topological interpretation of �, and should be
avoided from our viewpoint.

A. Dirichlet boundary

At the boundary at infinity, we assume a Dirichlet con-
dition on the tangential components of the tetrad, keeping
�!IJ

� arbitrary:

�eIa ¼ 0: (9)

Note that the asymptotically flat spacetimes constitute an
example of such geometries [15].
From (6), it follows that for this boundary condition (9),

the surface term B can be written as

B ¼ ��abc
�
1

4�
�IJKLe

K
a e

L
b � �eaIebJ

�
!IJ

c : (10)

In the above, the first and second terms correspond to
the boundary contributions from the Hilbert-Palatini and
Nieh-Yan densities, respectively.
Notice that according to the boundary condition (9), the

tangential components of the tetrad are fixed at the boundary.
This implies that in the asymptotic region, the only consistent
(infinitesimal) gauge transformations are those which are
trivial. Thus, the boundary term B is gauge invariant.

B. Locally AdS (dS) boundary

Next, we consider a spacetime with an asymptotic
boundary which locally has constant negative or positive
curvature. For such geometries, we set up an action prin-
ciple containing the Nieh-Yan term in the Lagrangian
density. Note that the asymptotic boundary condition
used here is not equivalent to the Dirichlet condition (9)
as used in the earlier case.
For ALADS spacetimes, the curvature tensor at the

boundary at infinity locally satisfies the following relation
[18,19]:

Rab
IJ þ 1

l2
eI½ae

J
b� ¼ 0 (11)

where the AdS radius l is related to the cosmological
constant � as � ¼ � 3

l2
. Although we present the explicit

computations below for anti–de Sitter asymptotic bounda-
ries, taking � to be negative, our analysis also applies to
the de Sitter case, which corresponds to a positive �.
For pure gravity with a negative cosmological constant,

the Lagrangian density for four-dimensional manifolds
with a boundary is given by

Lðe;!Þ¼ 1

8�
������IJKL

�
eI�e

J
�R��

KLþ 1

l2
eI�e

J
�e

K
�e

L
�

�
þB

(12)

where B is a functional of the fields at the boundary.
According to the general proposal presented earlier, we

3For matter coupling leading to a nonvanishing torsion, e.g.
fermions, these two differ by BNY � BH � �abcDae

I
b�ecI [see

Eq. (5)], which is nonvanishing for boundaries for which �eIa � 0.
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introduce the Barbero-Immirzi parameter as a topological
coupling constant in this theory through the Nieh-Yan
density:

Lðe;!Þ ¼ 1

8�
������IJKL

�
eI�e

J
�R��

KL þ 1

l2
eI�e

J
�e

K
�e

L
�

�

þ �INY þ B (13)

where INY is defined in (1). Varying the Lagrangian density
abovewith respect to the independent fields eI� and!IJ

� , we

obtain

�Lðe;!Þ ¼ 1

4�
������IJKL

�
eI�

�
R��

KL þ 1

l2
eK½�e

L
��

�
�eJ�

þ 2eI�ðD�e
J
�Þ�!KL

�

�

þ @�

�
�����

�
1

4�
�IJKLe

I
�e

J
��!

KL
�

þ �ðe�Ie�J�!IJ
� þ 2ðD�e�IÞ�eI�Þ

��
þ �B:

(14)

The first line above corresponds to the equations of motion,
while the rest contains the boundary terms. The Lagrangian
density (13) admits a well-defined variational principle,
provided the total contribution at the boundary vanishes.
This implies

�B ¼ ��abc
�
1

4�
�IJKLe

K
a e

L
b � �eaIebJ

�
�!IJ

c

þ 2�ðD�e�IÞ�eI�: (15)

Using the equations of motion (at the ALADS boundary),
which are given by Eq. (11) and the vanishing of torsion,
(15) can be rewritten as

�B¼�l2

2
�abc

�
1

4�
�IJKLRab

KL�!IJ
c ��RabIJ�!

IJ
c

�
: (16)

Now notice that the two terms above are precisely
the variations of the Chern-Simons densities
CE ¼ 1

2 �
abc�IJKL!

IJ
a ð@b!KL

c þ 2
3 !

KM
b !cM

LÞ and CP ¼
�abc!aIJð@b!IJ

c þ 2
3 !

IK
b !cK

JÞ, corresponding to the

Euler and Pontryagin terms, respectively:

�CE ¼ �

�
1

2
�abc�IJKL!

IJ
a

�
@b!

KL
c þ 2

3
!KM

b !cM
L

��

¼ 1

2
�abc�IJKLR

IJ
ab�!

KL
c

�CP ¼ �

�
�abc!aIJ

�
@b!

IJ
c þ 2

3
!IK

b !cK
J

��

¼ �abcRabIJ�!
IJ
c :

These come with fixed coefficients in (16), being com-
pletely determined in terms of �, l and �. Thus, the
boundary contribution B in (13) can be written as

B ¼ � l2

2

�
1

2�
CE � �CP

�
: (17)

To study the effect of gauge transformations on these
boundary terms, we note that under a typical infinites-
imal transformation of the form �G!

IJ
� ¼ D�ð!Þ	IJ, CE

transforms as

�GCE ¼ 1

2
�abc�IJKLRab

IJDað!Þ	KL

¼ 1

2
@a½�abc�IJKLRab

IJ	KL� ¼ 0

where in the second line we have used the Bianchi identity
and have assumed that the two-dimensional boundary of
@M is such that the boundary contribution there vanishes.
The gauge invariance of CP under infinitesimal transfor-
mations can be checked similarly.
Now, addition of the Chern-Simons densitiesCE andCP at

the boundary is equivalent to the addition of the Euler and
Pontryagin topological densities IE and IP in the bulk theory.
This can be demonstrated using the following identities:

IE ¼ 1

8
������IJKLR��

IJR��
KL

¼ 1

2
@�

�
������IJKL!�

IJ

�
@�!�

KL þ 2

3
!�

KM!�M
L

��

IP ¼ 1

4
�����R��

IJR��IJ

¼ @�

�
�����!�

IJ

�
@�!�IJ þ 2

3
!�I

K!�KJ

��
:

Using these, the Lagrangian density (13) finally can be
written as

Lðe;!Þ ¼ 1

8�
������IJKL

�
eI�e

J
�R��

KL þ 1

l2
eI�e

J
�e

K
�e

L
�

�

þ l2

4�
IE þ �INY � �l2

2
IP

¼ 1

8�
������IJKL

�
eI�e

J
�R��

KL þ 1

l2
eI�e

J
�e

K
�e

L
�

�

þ l2

32�
������IJKLR��

IJR��
KL

þ ������

�
ðD�e

I
�ÞðD�e�IÞ � 1

2
eI�e

J
�R��IJ

�

� �l2

8
�����R��

IJR��IJ: (18)

By construction, this action principle has an extremum for all
ALADS solutions. The striking fact is that all three topo-
logical densities which exist in four-dimensional gravity
theory appear in the final Lagrangian density. However, not
all three coefficients are independent. While the Euler coef-
ficient is completely fixed in terms of � and�, the Nieh-Yan
and Pontryagin densities both appear with the coefficient �.
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Thus, the Barbero-Immirzi parameter � emerges as the only
independent topological coupling constant in this theory.

Emergence of SO(3,2) Pontryagin density

Let us observe that in Eq. (18), the Nieh-Yan and
Pontryagin densities come with weights such that they
can be combined into a single topological density, namely
the SO(3,2) Pontryagin [for �> 0, the corresponding
gauge group becomes SO(4,1)]. This can be understood
with the help of the following construction [14]. First, we
define the SO(3,2) spin connection WAB

� built out of the

tetrad eI� and the SO(3,1) spin connection !IJ
� , where the

SO(3,2) indices A; B; . . . run from 0 to 4 and the SO(3,1)
indices I; J; . . . run from 0 to 3:

WIJ
� ¼ !IJ

� ; WI4
� ¼ 1

l
eI�:

The components of the SO(3,2) field strength FAB
��ðWÞ ¼

@½�WAB
�� þWAC

½� W��C
B thus become

F��
IJðWÞ ¼ R��

IJð!Þ þ 1

l2
eI½�e

J
��;

F��
4IðWÞ ¼ 1

l
D½�ð!ÞeI�� ¼

2

l
T��

I

where in the last equation we have defined torsion as T��
I.

Using these, the SO(3,2) Pontryagin density can be written as

�����F��
ABðWÞF��ABðWÞ

¼ � 8

l2
�����

�
ðD�ð!ÞeI�ÞðD�ð!Þe�IÞ

� 1

2
eI�e

J
�R��IJð!Þ

�
þ �����R��

IJð!ÞR��IJð!Þ:
(19)

Evidently, this is the sumofNieh-Yan and SO(3,1) Pontryagin
densities. This identity can be used to express the Lagrangian
density (18) as

Lðe;!Þ ¼ 1

8�
������IJKL

�
eI�e

J
�R��

KLð!Þ þ 1

l2
eI�e

J
�e

K
�e

L
�

�

þ l2

32�
������IJKLR��

IJð!ÞR��
KLð!Þ

��l2

8
�����F��

ABðWÞF��ABðWÞ: (20)

Thus, the Barbero-Immirzi parameter, which was introduced
as a topological coefficient through the Nieh-Yan density in
the Lagrangian (13), manifests its topological origin through
the SO(3,2) Pontryagin density in the final expression above.
This implies that � would be present in the corresponding
action only for manifolds having a nonzero SO(3,2)
Pontryagin index. A manifold of such type has to fall into
one of the three classes as given below:

(a) Nieh-Yan number of the manifold is nonzero, but
SO(3,1) Pontryagin number is zero;

(b) SO(3,1) Pontryagin number is nonzero, but
Nieh-Yan number is zero;

(c) Both Nieh-Yan and SO(3,1) Pontryagin numbers are
nonzero.

These are nontrivial restrictions on the global topology of
the manifold. This is one of the main consequences of our
proposed action formulation for ALADS geometries.

III. CONCLUDING REMARKS

We have demonstrated that the inclusion of the
Nieh-Yan topological class in the gravity Lagrangian for
spacetimes with boundaries leads to a well-defined action
formulation. The existence of an extremum of the action is
ensured by the addition of appropriate surface terms. Our
analysis is sufficiently general in the sense that it applies to
spacetimes which can have additional boundaries other
than the asymptotic ones.
In this framework, the topological origin of the Barbero-

Immirzi parameter remains manifest throughout, and the
inclusion of any arbitrary matter coupling does not need
any additional modification in the bulk action, unlike the
earlier formulations based on the Holst action. We also
demonstrate that for pure gravity, the boundary contribu-
tion from the Nieh-Yan density can be identified exactly
with that corresponding to the Holst term. These boundary
terms are gauge invariant for both Dirichlet and ALADS
boundaries. Thus, the addition of the Nieh-Yan density
to the Hilbert-Palatini Lagrangian (along with the corre-
sponding boundary terms) ensures a gauge-invariant
Lagrangian as well as a well-defined variational principle.
To emphasize, one does not need to introduce the Holst
term at any stage of the analysis.
For asymptotic boundaries which are locally AdS

(or dS), the Lagrangian with the Nieh-Yan density admits
an extremum if the other two topological densities,
i.e. Euler and Pontryagin, are also included with fixed
coefficients. Thus, although the full Lagrangian density
contains all three topological densities which exist in
four-dimensional gravity theory [1,2], it has only one inde-
pendent topological parameter, namely, the Barbero-
Immirzi parameter �. In the final analysis, it emerges as a
coefficient of the SO(3,2) [or SO(4,1)] Pontryagin topologi-
cal density in the Lagrangian. Thus, � would be relevant in
the action principle only for thoseALADSmanifoldswhich
have a nontrivial SO(3,2) Pontryagin index. This fact also
provides a potentially interesting hint as to how the quantum
theory corresponding to gravity with a cosmological con-
stant might perceive this topological parameter.
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