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We formulate entropic Leggett-Garg inequalities, which place constraints on the statistical outcomes of
temporal correlations of observables. The information theoretic inequalities are satisfied if macrorealism holds.
We show that the quantum statistics underlying correlations between time-separated spin component of a quantum
rotor mimics that of spin correlations in two spatially separated spin-s particles sharing a state of zero total spin.
This brings forth the violation of the entropic Leggett-Garg inequality by a rotating quantum spin-s system in a
similar manner as does the entropic Bell inequality [S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 61, 662
(1988)] by a pair of spin-s particles forming a composite spin singlet state.
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I. INTRODUCTION

Conflicting foundational features like nonlocality [1] and
contextuality [2] mark how the quantum universe differs from
classical one. Nonlocality rules out that spatially separated sys-
tems have their own objective properties prior to measurements
and they do not get influenced by any local operations by the
other parties. Violation of the Clauser-Horne-Shimony-Holt
(CHSH) - Bell correlation inequality [3] by entangled states
reveals that local realism is untenable in the quantum scenario.
On the other hand, quantum contextuality states that the
measurement outcome of an observable depends on the set of
compatible observables that are measured alongside it. In this
sense, nonlocality turns out to be a reflection of contextuality
in spatially separated systems.

Yet another foundational concept of the classical world that
is at variance with the quantum description is macrorealism
[4]. The notion of macrorealism rests on the classical world
view that (i) physical properties of a macroscopic object exist
independent of the act of observation and (ii) measurements
are noninvasive, i.e., the measurement of an observable at any
instant of time does not influence its subsequent evolution.
Quantum predictions differ at a foundational level from these
two contentions. In 1985, Leggett and Garg (LG) [4] designed
an inequality (which places bounds on certain linear combi-
nations of temporal correlations of a dynamical observable) to
test whether a single macroscopic object exhibits macrorealism
or not. The Leggett-Garg correlation inequality is satisfied
by all macrorealistic theories and is violated if quantum law
governs. Debates on the emergence of macroscopic classical
realm from the corresponding quantum domain continue and
it is a topic of current experimental and theoretical research
[5–9].

Probabilities associated with measurement outcomes in the
quantum framework are fundamentally different from those
arising in the classical statistical scenario—and this is pivotal
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in initiating a multitude of debates on various contrasting
implications in the two worlds [10–12]. A deeper understand-
ing of these foundational conflicts requires it to be investigated
from as many independent ways as possible. The CHSH-Bell
(LG) inequalities were originally formulated for dichotomic
observables and they constrain certain linear combinations
of correlation functions of spatially (temporally) separated
states. However, there have been extensions of correlation
Bell inequalities to arbitrary measurement outcomes [13].
Information entropy too offers itself as a natural candidate
to capture the puzzling features of quantum probabilities,
and it offers operational tests demarcating the two domains
in an elegant, illustrative fashion [14–16]. The information
entropic formulation is applicable to observables with any
number of outcomes of measurements. Moreover, while the
correlation inequalities define a convex polytope [12], the
entropic inequalities form a convex cone [17], bringing
out their geometrically distinct features. Entropic tests thus
generalize and strengthen the platform to understand the basic
differences between quantum and classical world view.

It was noticed quite early by Braunstein and Caves (BC) that
interpreting correlations between spatially separated Einstein-
Podolsky-Rosen (EPR) entangled pair of particles based on
Shannon information entropy results in a contradiction with
local realism [14]. They developed an information theoretic
Bell inequality applicable to any pair of spatially separated
systems and showed that the inequality is violated by two
spatially separated spin-s particles sharing a state of zero
total angular momentum. More recently, Kurzyński et al. [16]
constructed an entropic inequality to investigate the failure of
noncontextuality in a single quantum three level system and
they identified optimal measurements revealing a violation of
the inequality. Chaves and Fritz [18] framed a more general
entropic framework [15] to analyze local realism and contex-
tuality in quantum as well as postquantum scenarios. Entropic
inequalities provide, in general, a necessary but not sufficient
criterion for local realism and noncontextuality [16,18]. It is
shown that for the n-cycle scenario with dichotomic outcomes,
entropic inequalities are also sufficient, i.e., the violations
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of entropic inequalities completely characterize nonlocal and
contextual probabilities in this case [19,20]. Application of
entropic inequality to test contextuality in a four level quantum
system has been proposed in Ref. [21].

It is highly relevant to address the question “Does the
macrorealistic tenet encrypted in the form of classical entropic
inequality get defeated in the quantum realm?” This issue gains
increasing importance as questions on the role of quantum
theory in biological molecular processes are being addressed in
a rigorous manner and LG type tests are significant in recogniz-
ing quantum effects in evolutionary biological processes [22].
Entropic formulation of macrorealism generalizes the scope
and applicability of such benchmark investigations. In this
paper we formulate entropic LG inequalities to investigate
the notion of macrorealism of a single system. We show
that the entropic inequality is violated by a spin-s quantum
rotor (prepared in a completely random state) in a manner
similar to the information theoretic BC inequality for a
counterpropagating entangled pair of spin-s particles in a
spin-singlet state.

II. ENTROPIC INEQUALITIES TO
TEST MACROREALISM

We begin with some basic elements of probabilities and
the associated information content in order to develop the
entropic LG inequality in a similar spirit as it was formulated
by BC [14]. Consider a macrorealistic system in which Q(ti)
is a dynamical observable at time ti . Let the outcomes of
measurements of the observable Q(ti) be denoted by qi and the
corresponding probabilities P (qi). In a macrorealistic theory,
the outcomes qi of the observables Q(ti) at all instants of
time pre-exist irrespective of their measurement; this feature
is mathematically validated in terms of a joint probability
distribution P (q1,q2, . . .) characterizing the statistics of the
outcomes; the joint probabilities yield the marginals P (qi)
of individual observations at time ti . Further, measurement
invasiveness implies that the act of observation of Q(ti)
at an earlier time ti has no influence on its subsequent
value at a later time tj > ti . This demands that the joint
probabilities are expressed as a convex combination of the
product of probabilities P (qi |λ), averaged over a hidden
variable probability distribution ρ(λ) [9,10]:

P (q1,q2, . . . ,qn) =
∑

λ

ρ(λ) P (q1|λ)P (q2|λ) · · ·P (qn|λ),

0 � ρ(λ) � 1,
∑

λ

ρ(λ) = 1; (1)

0 � P (qi |λ) � 1,
∑

qi

P (qi |λ) = 1.

Joint Shannon information entropy associated with
the measurement statistics of the observable at two
different times tk,tk+l is defined as H (Qk,Qk+l) =
−∑

qk,qk+l
P (qk,qk+l) log2 P (qk,qk+l). The conditional in-

formation carried by the observable Qk+l at time
tk+l , given that it had assumed the values Qk = qk

at an earlier time, is given by H (Qk+l|Qk = qk) =
−∑

qk+l
P (qk+l|qk) log2 P (qk+l|qk), where P (qk+l|qk) =

P (qk,qk+l)/P (qk) denotes the conditional probability. The
mean conditional information entropy is given by

H (Qk+l|Qk) =
∑

qk

P (qk) H (Qk+l|Qk = qk)

= H (Qk,Qk+l) − H (Qk). (2)

The classical Shannon information entropies obey the inequal-
ity [14]

H (Qk+l|Qk) � H (Qk+l) � H (Qk,Qk+l), (3)

the left side of which implies that removing a condition never
decreases the information—while the right side inequality
means that two variables never carry less information than
that carried by one of them. Extending (3) to three variables,
and also using the relation H (Qk,Qk+l) = H (Qk+l|Qk) +
H (Qk), we obtain

H (Qk,Qk+m)

� H (Qk,Qk+l ,Qk+m)

= H (Qk+m|Qk+l ,Qk) + H (Qk+l|Qk) + H (Qk)

=⇒ H (Qk+m|Qk)�H (Qk+m|Qk+l)+H (Qk+l|Qk). (4)

Here, the first line follows from the chaining rule for entropies
and the derivation is analogous to that given by BC [14].

The entropic inequality (4) is a reflection of the fact that
knowing the value of the observable at three different times
tk < tk+l < tk+m (via its information content) can never be
smaller than the information about it at two time instants.
Moreover, existence of a grand joint probability distribution
P (q1,q2,q3) of the variables Q1,Q2,Q3, consistent with
a given set of marginal probability distributions P (q1,q2),
P (q2,q3), P (q1,q3) of pairs of observables, imposes nontrivial
conditions on the associated Shannon information entropies.
Violation of the inequality points towards the lack of a
legitimate grand joint probability distribution for all the
measured observables, such that the family of probability
distributions associated with measurement outcomes of pairs
of observables belong to it as marginals [15,23].

The same reasoning, which led to a three term entropic
inequality (4), could be extended to construct an entropic
inequality for n consecutive measurements Q1,Q2, . . . ,Qn at
time instants t1 < t2 < · · · < tn:

H (Qn|Q1) � H (Qn|Qn−1) + H (Qn−1|Qn−2)

+ · · · + H (Q2|Q1). (5)

The macrorealistic information underlying the statistical out-
comes of the observable at n different times must be consistent
with the information associated with pairwise noninvasive
measurements as given in (5).

Note that for even values of n, there is a one-to-one
correspondence between the entropic inequality (5) of a single
system and the information theoretic BC inequality [14]
for two spatially separated parties (Alice and Bob). More
specifically, let us consider n = 4 in (5) and associate temporal
observable Qi with Alice’s (Bob’s) observables A′, A (B ′, B)
as Q1 ↔ B, Q2 ↔ A′, Q3 ↔ B ′, Q4 ↔ A to obtain the
BC inequality [14] for a set of four correlations: H (A|B) �
H (A|B ′) + H (B ′|A′) + H (A′|B), which is satisfied by any
local realistic model of spatially separated pairs. It may be
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identified that Eq. (1) is essentially analogous to a local hidden
variable model (Bell scenario for spatially separated systems)
as well as a noncontextual model, while the interpretation here
is towards macrorealism. Moreover, we emphasize that the
logical reasoning in formulating the entropic LG inequalities
(5) is synonymous to that of BC [14], which indeed offers a
unified approach to address nonlocality, contextuality, and also
nonmacrorealism.

III. VIOLATION OF ENTROPIC LEGGETT-GARG
INEQUALITIES BY A QUANTUM ROTOR

We proceed to show that the LG entropic inequality is
violated by a quantum spin-s system. Consider a quantum
rotor prepared initially in a maximally mixed state

ρ = 1

2s + 1

s∑

m=−s

|s,m〉〈s,m| = I

2s + 1
, (6)

where |s,m〉 are the simultaneous eigenstates of the squared
spin operator S2 = S2

x + S2
y + S2

z and the z component of
spin Sz [with respective eigenvalues s(s + 1) h̄2 and mh̄]; I

denotes the (2s + 1) × (2s + 1) identity matrix. We consider
the Hamiltonian

H = ω Sy, (7)

resulting in the unitary evolution U (t) = e−iωt Sy/h̄ of the
system (which corresponds to a rotation about the y axis by an
angle ω t). We choose the z component of spin Q(t) = Sz(t) =
U †(t) Sz U (t) as the dynamical observable for our investigation
of macrorealism. Let us suppose that the observable Qk =
Sz(tk) takes the value mk at time tk . Correspondingly, at a later
instant of time tk+l if the spin component Sz(tk+l) assumes the
value mk+l , the quantum mechanical joint probability is given
by [9]

P (mk,mk+l) = Pmk
(tk) P (mk+l ,tk+l | mk,tk). (8)

Here, Pmk
(tk) = Tr[ρ �mk

(tk)] is the probability of obtain-
ing the outcome mk at time tk , P (mk+l ,tk+l | mk,tk) =
Tr[�mk

(tk)ρ�mk
(tk) �mk+l

(tk+l)]/Pmk
(tk) denotes the condi-

tional probability of obtaining the outcome mk+l for the
spin component Sz at time tk+l , given that it had taken the
value mk at an earlier time tk; �m(t) = U †(t) | s,m〉〈s,m | U (t)
is the projection operator measuring the outcome m for
the spin component at time t . For the maximally mixed
initial state (6), we obtain the quantum mechanical joint
probabilities as

P (mk,mk+l) = 1

2s + 1
Tr[�mk

(tk) �mk+l
(tk+l)]

= 1

2s + 1
|〈 s,mk+l|e−iω(tk+l−tk ) Sy/h̄ |s,mk〉|2

= 1

2s + 1

∣∣ds
mk+l mk

(θkl)
∣∣2

, (9)

where ds
m′m(θkl) = 〈s,m′|e−iθkl Sy/h̄|s,m〉 are the matrix ele-

ments of the 2s + 1 dimensional irreducible representation
of rotation [24] about the y axis by an angle θkl = ω(tk+l −
tk). The marginal probability of the outcome mk for the

observable Qk is readily obtained by making use of the uni-
tarity property of d matrices: P (mk) = ∑

mk+l
P (mk,mk+l) =

1
2s+1

∑
mk+l

| ds
mk+l mk

(θkl)|2 = 1
2s+1 .

Clearly, the temporal correlation probability (9) of the
quantum rotor is similar to the quantum mechanical pair
probability [14]

P (ma,mb) = [â〈s,ma| ⊗b̂ 〈s,mb|] |�AB〉
= 1

2s + 1

∣∣ds
ma,−mb

(θab)
∣∣2

(10)

that Alice’s measurement of spin component �S · â yields
the value ma and Bob’s measurement of �S · b̂ results
in the outcome mb in a spin singlet state |�AB〉 =

1√
2s+1

∑s
m=−s (−1)s−m |s,m〉 ⊗ |s, −m〉 of a spatially sepa-

rated pair of spin-s particles. (Here θab is the angle between
the unit vectors â and b̂.) In other words, quantum statistics
of temporal correlations in a single spin-s rotor mimics that of
spatial correlations in an entangled counterpropagating pair of
spin-s particles.

Let us consider measurements at equidistant time intervals
�t = tk+1 − tk, k = 1,2, . . . ,n and denote θ = (n − 1)ω �t .
The quantum mechanical information entropy depends only
on the time separation, specified by the angle θ and is given
by

H (Qk|Qk+1) ≡ H [θ/(n − 1)]

= − 1

2s + 1

∑

mk,mk+1

∣∣ds
mk+1,mk

[θ/(n − 1)]
∣∣2

× log2

∣∣ds
mk+1,mk

[θ/(n − 1)]
∣∣2

. (11)

The n-term entropic inequality (5) for observations at equidis-
tant time steps assumes the form

(n − 1) H [θ/(n − 1)] − H (θ )

= − 1

2s + 1

∑

mk,mk+1

{
(n − 1)

∣∣ds
mk+1,mk

[θ/(n − 1)]
∣∣2

× log2

∣∣ds
mk+1,mk

[θ/(n − 1)]
∣∣2

− ∣∣ds
mk+1,mk

(θ )
∣∣2

log2

∣∣ds
mk+1,mk

(θ )
∣∣2} � 0. (12)

We introduce the information deficit, measured in units of
log2(2s + 1) bits, as

Dn(θ ) = (n − 1) H [θ/(n − 1)] − H (θ )

log2(2s + 1)
(13)

so that the violation of the LG entropic inequality (12) is
implied by negative values of Dn(θ ). The units log2(2s + 1)
for the quantity Dn(θ ) imply that the base of the logarithm
for evaluating the entropies of a spin s system is chosen
appropriately to be (2s + 1). For a spin-1/2 rotor, it is
in bits.

In Fig. 1, we have plotted the information deficit Dn(θ )
for n = 3 [Fig. 1(a)] and n = 6 [Fig. 1(b)] as a function
of θ = (n − 1) ω �t for spin values s = 1/2,1,3/2, and 2.
The results illustrate that the information deficit assumes
negative values, though the range of violation (i.e., the value
of the angle θ for which the violation occurs) and also the
strength [maximum negative value of Dn(θ )] of the entropic
violation reduce [25] with the increase of spin s. This implies
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FIG. 1. (Color online) LG information deficit Dn(θ ) of (13) [in
units of log2(2s + 1) bits] corresponding to the measurement of the
spin component Sz(t) of a quantum rotor, at equidistant time steps
�t = θ

(n−1) ω
, number of observations being (a) n = 3 and (b) n = 6

during the total time interval specified by the angle θ = (n − 1) ω �t .
Conflict with macrorealism is recorded by the negative values of
Dn(θ ). Maximum negative value and also the range, i.e., the value of θ

over which the information deficit is negative, grow with the increase
in the number n of observations. However, for a given n, both the
strength and the range of violation reduce with the increase of spin
value (spin 1/2: dotted; spin 1: dashed; spin 3/2: dot-dashed; spin 2:
solid curve). The strength of violation may be related to how much
inconsistent Shannon information entropies could be—when the as-
sociated probabilities of outcomes of pairs of dynamical observables
have their origin in noisy quantum measurements—compared to those
arising within a classical macrorealistic premise. All quantities are
dimensionless.

the emergence of macrorealism for the dynamical evolution
of a quantum rotor in the limit of large spin s. It may be
noted that Kofler and Brukner [7] had shown, violation of the
correlation LG inequality—corresponding to the measurement
outcomes of a dichotomic parity observable in the example of
a quantum rotor—persists even for large values of the spin if
the eigenvalues of the spin can be experimentally resolved by
sharp quantum measurements. However, under the restriction
of coarse-grained measurements, the classical realm emerges
in the large spin limit.

Macrorealism requires that a consistently larger informa-
tion content H [θ/(n − 1)] has to be carried by the system,
when the number of observations n is increased and small steps
of time interval are employed; however, a quantum situation
does not comply with this constraint. More specifically, in
the classical premise, knowing the observable at almost all
time instants provides more information content, whereas
the quantum realm results in less information with a large
number of observations. To see this explicitly, consider the
limit of n → ∞ and infinitesimal time steps ω �t → 0.
Quantum statistics leads to vanishingly small information,

i.e., H ( θ
n−1 ) → 0 (a signature of the quantum Zeno effect). In

this limit, the information deficit [see (13)] Dn(θ ) → −H (θ)
log2(2s+1)

is negative—thus violating the entropic LG inequality. The
entropic test clearly brings forth the severity of macrorealistic
demands towards knowing the observable in a noninvasive
manner under such minuscule time scale observations.

IV. CONCLUSIONS

In conclusion, we have formulated an entropic LG
inequality, which places bounds on the amount of information
associated with the noninvasive measurement of a macroscopic
observable. The entropic formulation can be applied to any
observables—not necessarily dichotomic ones—and it puts
to test macrorealism, i.e., a combined demand of the pre-
existence of definite values of the measurement outcomes of
a given dynamical observable at different instants of time—
together with the assumption that the act of observation at an
earlier instant does not influence the subsequent evolution. The
information entropic approach provides a unified approach to
test local realism, noncontextuality, and macrorealism.

The classical notion of macrorealism demands that sta-
tistical outcomes of the measurement of an observable at
consecutive time intervals originate from a valid grand joint
probability, presumably of the form (1). The nonexistence of a
legitimate joint probability, such that the family of probability
distributions associated with the measurement outcomes of
every pair of observables belong to it as marginals, reflects
through the violation of the entropic test. The violation also
brings forth the fact that more information is associated with
the knowledge of the observable at more instants of time in the
classical macrorealistic realm—however, a greater number of
observations corresponds to less information in the quantum
case.

In order to demonstrate violation of the entropic inequality,
we considered the dynamical evolution of a quantum spin
system prepared initially in a maximally mixed state. We have
demonstrated that the entropic violation in a quantum rotor
system is similar to that of a spatially separated pair of spin-s
particles sharing a state of total spin zero [14]. Further, we
have illustrated that the information content of a rotor grows
with the increase of spin s such that it is consistent with the
requirements of macrorealism.

Note added: Recently, Katiyar et al. [26] have reported
experimental violation of entropic LG inequalities in an
ensemble of spin 1/2 nuclei using nuclear magnetic reso-
nance (NMR) techniques, by recording negative values of
the information deficit D3 (in striking agreement with our
theoretical prediction). Further, they have demonstrated that
the experimentally extracted three-time joint probabilities do
not contain all the pairwise probabilities as marginals—which
reflects the failure of the entropic test (see [23]).
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