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First-passage time: Lattice versus continuum
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The well known approach, based on Schrödinger’s integral equation, to the problem of calculating the first-
passage probability density in time for classical diffusion on a continuum is revisited for the case of diffusion by
hopping on a discrete lattice. It turns out that a certain boundary condition central to solving the integral equation,
invoked first by Schrödinger and then by others on the basis of a physical argument, needs to be modified for the
discrete case. In fact, the required boundary condition turns out to be determined entirely by the normalization
condition for the first-passage probability density. An explicit analytical expression is derived for the first-passage
density for a three-site problem modeling escape over a barrier. The related quantum first-passage problem is
also commented upon briefly.
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For any physical event, there is necessarily a time of its
first passage past the post, i.e., a marker [1–4]. For a randomly
occurring event, therefore, one must speak of the calculable
probability density in time of its first passage. The robustness
of this elementary notion can hardly be questioned—certainly
classically, but possibly even quantum mechanically [4,5]. Its
conceptual significance in the context of time in quantum
mechanics [6] aside, the first-passage probability density is
also of considerable physical interest, e.g., for catalysis or
barrier crossing [6,7]. Thus, e.g., a chemical reaction involving
classical escape over a barrier along the reaction coordinate
should necessarily be dominated by the first passage past
the post (the barrier), rather than by the mean Kramers
rate [8].

The problem of the first-passage probability density in
time was addressed and solved by Schrödinger [1] (almost
ten years before the appearance of his wave equation) for
the special case of classical diffusion on a one-dimensional
(1D) continuum, −∞ < x < ∞. He obtained the first-passage
probability density as the solution of a physically transparent
integral equation [1,3,4],

φu(x � B,t | A,0) = φr (x � B,t � t ′ � 0 | A,0)

+
∫ t

0
− ∂

∂t ′
φr (x � B,t � t ′ � 0 | A,0)

×φu(x � B,t | B,t ′)dt ′, (1)

with φu(x � B,t | B,t ′) a function of (t − t ′). Here, φu(x �
B,t | A,0) denotes unrestricted (u) probability that the particle
initially (t = 0) at position x = A is found at the later time
(t > 0) in the interval x � B; φr (x � B,t � t ′ � 0 | A,0) is
the restricted (r) probability that the particle initially at x = A

remains confined to x � B for all times t ′ � t ; and φu(x �
B,t | B,t ′) is the unrestricted probability that the particle at
the post B at time t ′ is found to lie in the space x � B at time
t (> t ′). Then − ∂

∂t ′ φr (x � B,t � t ′ � 0 | A,0) ≡ P C
(1PT)(t

′) is
clearly the classical probability density of first-passage time
past the post (i.e., marker) x = B at time t ′. Now, the
integral equation (1) had to be supplemented by the boundary
condition

φu(x � B,t | B,t ′) → 1
2 for t − t ′ → 0+. (2)

This followed from the physical condition that the diffusing
particle arriving at the post x = B at time t is equally likely
to make the first move to the left or to the right. The
integral equation (1) can then be readily solved by taking
its time-Laplace transform (and remembering that the Laplace
transform of a convolution of two functions is the product
of their Laplace transforms). The resulting solution was in
agreement with the one obtained by using the theoretical
device of a perfect absorber and the Kelvin method of
images [2].

In this Brief Report, we have revisited the classical first-
passage problem, but now for the case of diffusion by hopping
on a discrete lattice rather than on a 1D continuum. This is
with a view to reexamining the stated boundary condition
as in Eq. (2), invoked crucially in Schrödinger’s integral
Eq. (1). The essential difference between the two cases is
the following: For the discrete case, the first-passage event
also involves a time of sojourn at the marker site (the
post) separating the instant of arrival at that site and the
instant of its departure from that site. The idea of such a
sojourn time at-a-point on a continuum is, however, physi-
cally meaningless. This finer subdivision of the first-passage
event (or rather its disambiguation with respect to arrival,
sojourn, and departure) alters the boundary condition for the
Schrödinger integral equation for the discrete lattice case in a
nontrivial manner. We demonstrate this explicitly for a three-
site problem that can model the canonical Kramers escape over
the barrier. The boundary condition turns out to be uniquely
determined by the condition of normalization of the first-
passage probability density—in fact, in the three-site problem,
Schrödinger’s half (1/2) gets replaced by unity (1). We also
comment briefly on the quantum first-passage problem in this
context.

Consider the diffusive motion of a particle by classical
nearest-neighbor hopping over a three-site finite lattice ABC

as shown schematically in Fig. 1. Here, the site B represents
the barrier (the post) separating the reaction coordinate A

(for reactants) and the reaction coordinate C (for the reaction
products).

We are interested in the first-passage probability density in
time for the particle initially at A. The diffusion by random
hoppings is described by the master equation for the site
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FIG. 1. A model three-site problem for classical diffusion by
hopping on a discrete space. The γ ’s are the hopping probability
rates.

probabilities pA(t), pB(t), and pC(t):

dpA(t)

dt
= −γABpA(t) + γBApB(t), (3a)

dpB(t)

dt
= −(γBA + γBC)pB(t) + γABpA(t) + γCBpC(t),

(3b)
dpC(t)

dt
= −γCBpC(t) + γBCpB(t). (3c)

The various unrestricted probabilities, such as φu(x � B,t |
A,0) and φu(x � B,t | B,t ′), that enter the integral equa-
tion (1) can be derived straightforwardly from the above
Eqs. (3a)–(3c), with appropriate initial/boundary conditions.
It is convenient to rewrite these equations in terms of their

Laplace transforms as⎛
⎜⎝

(s + γAB) −γBA 0

−γAB (s + γBA + γBC) −γCB

0 −γBC (s + γCB)

⎞
⎟⎠

⎛
⎜⎝

p̃A(s)

p̃B(s)

p̃C(s)

⎞
⎟⎠

=

⎛
⎜⎝

pA(0)

pB(0)

pC(0)

⎞
⎟⎠ , (4)

with p̃A(s) = ∫ ∞
0 e−stpA(t)dt , etc., and pA(0), etc., the corre-

sponding initial/boundary conditions.
Now, in order to obtain the unrestricted probability φu(x �

B,t | A,0), we must solve Eq. (4) for p̃A(s) and p̃B(s) with
the initial/boundary conditions pA(0) = 1 and pB(0) = 0 =
pC(0). And similarly, for the case of unrestricted probability
φu(x � B,t | B,t ′), we must solve Eq. (4) for p̃′

A(s) and p̃′
B(s)

with the initial/boundary conditions p′
A(0) = 0 = p′

C(0), but
p′

B(0) = X. (The prime denotes the “X” boundary conditions.)
As will be shown below, the unknown X will eventually be
determined by the normalization condition for the first-passage
probability density in time, P C

1PT(t).
After some tedious but straightforward algebra, we obtain

from Eqs. (1), (3), and (4) the classical first-passage probability
density [its Laplace transform P̃ C

1PT(s)] as

P̃ C
1PT = 1 − s[p̃A(s) + p̃B(s)]

1 − s[p̃′
A(s) + p̃′

B(s)]
(5a)

= �[γABs(γCB + s) − 1] + s[γBA(γCB + s) + s(γBC + γCB + s)]

Xs(γCB + s)[�(γAB + s) + γBA] − �
. (5b)

Here the determinant

� = s[γAB(γBC + γCB + s) + γBA(γCB + s) + s(γBC + γCB + s)]. (5c)

The unknown boundary condition parameter X is now readily
determined from the normalization condition:

P̃ C
1PT(s) → 1 as s → 0, (6a)

giving the unique solution

X = 1, (6b)

and not 1/2 as for the continuum case. [In deriving the
condition (6b), it is necessary to keep, as s → 0, the leading
nonvanishing terms in the numerator/denominator on the
right-hand side of Eq. (5b), and these turn out to be of
higher-order in s.] The P C

1PT(t) turns out to be

P C
1PT(t) = γAB exp(−γABt). (6c)

Note that P C
1PT(t) depends only on γAB for the three-site

problem. This result of ours, namely that the classical first-
passage time probability density P C

1PT(t) turns out to be
independent of γBC , is indeed somewhat puzzling—more so
in the limit of γBC → 0, when the passage past the post
B is clearly not possible. This can, however, be physically
understood in terms of the essential difference between a

spatial continuum and the discrete three-site case considered
here. Indeed, as pointed out earlier, unlike the case for spatial
continuum, where the particle arriving at the point (post) has
to necessarily move on to the right or to the left, in our discrete
case it can also have a finite sojourn time at the lattice site in
question. (For a spatial continuum, a finite sojourn-at-a spatial
point is physically inadmissible under the diffusive motion.)
Thus, for our three-site discrete case, the first-passage time
becomes effectively the time of first arrival at the site (the
post), which may be followed by a finite sojourn time at that
site without having to make an immediate passage past that
site.

In Fig. 2, we have plotted the classical first-passage
probability density in time P C

1PT(t) for the three-site problem
for a certain choice of parameters γAB , etc. We note that P C

1PT(t)
remains positive and is normalized.

Finally, some comments are in order on the related question
of quantum (Q) first-passage time problem—the possibility
of calculating the P

Q
1PT(t). The classical approach based on

the Schrödinger integral equation, or equivalently using a
theoretical device such as a perfect absorber placed at the post
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FIG. 2. Plot of the classical first-passage probability density in
time P C

1PT(t) = γAB exp(−γABt) for some typical parameter values
chosen: γAB = 1 and 2.

(the marker), does not generalize directly to the quantum case.
This can be appreciated best by considering the classical (C)
diffusion and its quantum (Q) counterpart for a 1D continuum:

∂

∂t
P C(x,t) + ∂

∂x
jC(x,t) = 0, (7a)

with the classical probability current jC(x,t) =
−D ∂

∂x
P C(x,t), and

∂

∂t
P Q(x,t) + ∂

∂x
jQ(x,t) = 0, (7b)

with the quantum probability current jQ(x,t) = − h̄
m

P Q(x,t)
∂θ
∂x

, where P Q(x,t) = ψ∗(x,t)ψ(x,t) and ψ(x,t) =
[P Q(x,t)]1/2eiθ in obvious notation. The two cases do have a
formal similarity. Also, stochastic processes underlie both of
these physical diffusions—the Weiner process for the classical
diffusion, determining random trajectories with associated
path probabilities (real), and the Feynman-Kac process for the
quantum case with the associated path-probability amplitudes
(complex). The essential difference, however, is that while
the random trajectories underlying the classical diffusion are
real and can in principle be tracked continuously without
affecting them, the quantum paths are virtual and cannot
be tracked even in principle without affecting (collapsing)
them. Thus, it is not clear how to treat the virtual excursions
past the post (B) in describing, e.g., the restricted (r)
probabilities in the Schrödinger integral equation (1)—one
has the problem of interference between these virtual paths
and the restricted paths contributing to the probability
φr (x � B,t � t ′ � 0 | A,0) in Eq. (1). One could argue,
though, in favor of envisaging a weak measurement of the
virtual excursions here (possibly through a weak coupling
to a fluctuating dissipating degree of freedom [4], or by
introducing suitable Lindblads [9]), or attempt a strictly
quantum restricted path-decomposition approach [10,11];
however, this remains to be worked out in detail. The
difference between the classical and the quantum case
is brought into sharp focus when we use the theoretical
device of a perfect absorber that instantaneously absorbs
the particle upon approaching the post (and thus removes it
from view). For classical diffusion, this simply means setting

P C(x = B,t) = 0 for all times t . The classical probability
current jC(x = B,t) may, however, remain nonzero and
positive. This leakage allows for the removal of the particle
by the perfect absorber placed at the post B. All one has to
do, therefore, is to solve the classical diffusion problem with
the boundary condition of vanishing probability density at
x = B, and obtain P C

1PT(B,t) = − ∂
∂t

∫ B

−∞ P C(x,t)dx. This
clearly fails in the quantum case. As can be seen from
Eq. (7b), a perfect absorber placed at the post, of course, does
make P Q(x = B,t) = 0 at the boundary, but concomitantly it
also makes the probability current jQ(B,t) vanish—there is
no absorption possible. Thus a perfect absorber becomes a
perfect reflector too in the quantum case.

In conclusion, the Schrödinger integral equation for cal-
culating the first-passage probability density in time on a 1D
continuum requires a modification of the original boundary
condition for the classical diffusion on a discrete lattice.
This has been explicitly demonstrated here for the three-site
problem, where Schrödinger’s 1/2 gets replaced by 1. This
has also been verified in the case of an infinite discrete lattice,
where the boundary condition determined by the normalization
condition again comes out to be unity (see the Appendix).
Straightforward generalization to the quantum case remains
essentially problematic.

The authors would like to thank the referee for very
constructive comments, and for motivating us to further
generalize our treatment for a nonuniform infinite lattice. One
of us (K.S.) would like to thank the Raman Research Institute
for support under its Visiting Student Programme (VSP) during
the course of this work.

APPENDIX

Our treatment of the classical first-passage time for the
three-site problem can be readily generalized to the case of an
infinite lattice of sites. The diffusion by random hopping is now
described by the master equation for the site (n) probability
pn(t),

ṗn(t) = −2pn(t) + pn−1(t) + pn+1(t), (A1)

where we have set the nearest-neighbor transition rate γ = 1.
Introducing the time-Laplace and the lattice-Fourier trans-

forms

p̃n(s) =
∫ ∞

0
pn(t)e−st dt, p̃(s,k) =

+∞∑
n=−∞

p̃n(s)eikn, (A2)

we obtain

sp̃(s,k) + 2p̃(s,k) − 2 cos kp̃(s,k) =
+∞∑

n=−∞
pn(t = 0)eikn.

(A3)

Here the overhead tilde and dash denote, respectively, the time-
Laplace and the lattice-Fourier transform.

To solve for the classical first-passage time probability
density P C

1PT(t), we need as before solutions of Eq. (A3) for
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the two initial/boundary conditions, B and B ′, with

B : pn(t = 0) = δn,0

⇒ initially the particle is at site n = 0,

B ′ : p′
n(t = 0) = Xδn,N

⇒ initially the particle is at site n = N (the post).

The constant X will be determined by the condition of
normalization on P C

1PT(t). Note that the “prime” distinguishes
between the two conditions B and B ′ as above. Also, we will
take N > 0 without loss of generality.

With the unprimed condition B, the solution for p̃(s,k) is

p̃(s,k) =
(

1

s + 2 − 2 cos k

)
. (A4)

Inverting the lattice Fourier transform, we obtain

p̃(s,n) = 1

2π

∫ +π

−π

1

s + 2 − 2 cos k
e−ikndk, (A5)

leading to the sum

N∑
−∞

p̃(s,n) = 1

2π

∫ +π

−π

dk
1

s + 2 − 2 cos k

(
e−ikN

1 − eik

)
dk,

(A6)

which goes into the numerator of the expression corresponding
to Eq. (5a) for P̃ C

1PT(s) based on the Schrödinger integral
equation.

Next, we consider the primed initial/boundary condition B ′.
Here we have

sp̃
′
(s,k) + 2p̃

′
(s,k) − 2 cos kp̃

′
(s,k) = XeikN , (A7)

giving

p̃
′
(s,k) = X

(
eikN

s + 2 − 2 cos k

)
. (A8)

Again, inverting the lattice Fourier transform, we obtain

N∑
n=−∞

p̃′(s,n) = X

2π

∫ +π

−π

dk
1

(s + 2 − 2 cos k)(1 − eik)
.

(A9)

This goes into the denominator of the expression corre-
sponding to Eq. (5a) for P̃ C

1PT(s) based on the Schrödinger
integral equation.

Thus, we have

P̃ C
1PT(s) = 1 − s

∑N
n=−∞ p̃(s,n)

1 − Xs
∑N

n=−∞ p̃′(s,n)

= 1 − s 1
2π

∫ +π

−π
e−ikN

s+2−2 cos k

(
1

1−eik

)
dk

1 − Xs
2π

∫ +π

−π
dk

s+2−2 cos k
1

(1−eik )

. (A10)

Now, the integral over k can be converted into a contour
integral in the complex z plane using z = eik , dz = eikidk,
and −π � k � +π . Finally, we obtain the desired expression

P̃ C
1PT(s) =

1 − s
2πi

∮
e−i(1+N)zdz

s+2−
(
z+ 1

z

)(
1

1−z

)
1 − X s

2πi

∮
dz

z

[
s+2−

(
z+ 1

z

)]
(1−z)

. (A11)

The singularities relevant to the above contour integrals are
the three simple poles z0,z± with

z0 = 1, z± = 1 + s

2
±

√
s2 + 4s

2
. (A12)

Clearly, only the pole z− lying within the contour contributes
to the integral. With this, we obtain

P̃ C
1PT(s) =

1 + s

(
1+ s

2 − 1
2

√
s2+4s

)−(1+N)

(z−−z+)(1−z)

1 − X s(1−s1/2)
(−2

√
s)(s1/2)

. (A13)

Now, for the normalization of the first-passage time probability
density P C

1PT(t), we require that the limit P̃ C
1PT(s → 0) = 1.

Thus, we need the expression in (A13) for small s(→ 0). This
gives ∫ ∞

0
P C

1PT(t)dt = lim s → 0P̃ C
1PT(s)

=
1 + 1 + higher order in s

2 + higher order in s

1 + X
2

(1 + higher order in s)
(1 + higher order in s)

. (A14)

This fixes the constant X = 1. This is exactly what we had
obtained earlier for the three-site problem.
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