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Bending elasticity of macromolecules: Analytic predictions from the wormlike chain model

Anirban Polley, Joseph Samuel, and Supurna Sinha
Raman Research Institute, Bangalore 560 080, India

(Received 16 November 2012; published 16 January 2013)

We present a study of the bend angle distribution of semiflexible polymers of short and intermediate lengths
within the wormlike chain model. This enables us to calculate the elastic response of a stiff molecule to a bending
moment. Our results go beyond the Hookean regime and explore the nonlinear elastic behavior of a single
molecule. We present analytical formulas for the bend angle distribution and for the moment-angle relation. Our
analytical study is compared against numerical Monte Carlo simulations. The functional forms derived here can
be applied to fluorescence microscopic studies on actin and DNA. Our results are relevant to recent studies of
“kinks” and cyclization in short and intermediate length DNA strands.
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I. INTRODUCTION

A classic study in elasticity is the bending of beams or
rods subject to forces and moments [1]. At the cellular level
there are many macromolecular structures, such as actin and
cytoskeletal filaments, which are like beams in giving rigidity
and structure to the cell. Unlike the beams studied by civil
engineers, these macromolecular beams are subject to thermal
fluctuations. The purpose of this study is to look at the role
of thermal fluctuations in shaping the elastic properties of
macromolecular beams.

We work within the wormlike chain model [2,3], which
has been known to describe double stranded DNA [4] as well
as actin filaments [5]. For clarity we consider an experiment
in which one end of the molecule is fixed at the origin
and its tangent vector at the same end is constrained to
lie along the ẑ direction. We wish to know the number of
configurations (counted with Boltzmann weight) that will
result in the final tangent vector t̂f . In this paper we present
an approximate analytical study of this statistical mechanical
problem.

Some earlier treatments of this problem [6,7] are restricted
to small bending angles, so that the polymer is essentially
straight. One can then replace the sphere of tangent directions
by the tangent plane to this sphere. This gives a good account
of small bending angles. However, there is considerable
experimental and theoretical interest in large bending angles
to understand cyclization of DNA [8–10]. Reference [11]
developed a new approximation technique that works even for
large bending angles, say of order π/2. The treatment of [11]
is general and includes applied forces and torques. In this
paper we apply the general theory to a special case to illustrate
its use: we treat the pure bending elasticity of a semiflexible
polymer not subject to stretching forces or twisting torques.
Two different experimental techniques are possible to probe
the elastic properties.

One can tag the ends of the molecule with fluorescent
dye [12] to determine the direction of the initial and final
tangent vectors. By fluorescence video microscopy, one finds
the angular distribution P (θ ) of the bending angle θ , where
θ is defined by cos θ = t̂i · t̂f . This experimental technique
has been used to study actin in two-dimensional studies in
Ref. [12]. The angular distribution of θ gives us the elastic
properties of the molecule, and one can compute, for instance,

the probability for a given bending angle θ and compare it with
the theoretical expectation.

A more invasive experimental technique is to tether one
end of the molecule, attach a magnetic bead to the other,
and apply bending moments to the molecule by varying the
direction of an applied magnetic field. Note that we do not
constrain the final position of the molecule x(L), only its
final tangent vector t̂f . A uniform magnetic field will result
in a pure bending moment without applying any stretching
force. Plotting the bending moment vs the bending angle gives
another experimental probe of the elastic properties. In this
paper we derive the predictions of the wormlike chain for both
these experimental situations.

We first derive an approximate analytical formula for the
free energy, allowing for thermal fluctuations of a wormlike
chain polymer. We then plot the expected theoretical dis-
tribution of bending angles and the theoretically expected
moment-angle relation. We conclude with a discussion.

II. MECHANICS AND FLUCTUATIONS

In the simplest wormlike chain model, we model the
polymer by a space curve �x(s). �x(s) describes the curve, and
t̂(s) = d �x

ds
is its tangent vector. s is the arc length parameter

along the curve ranging from 0 to L, the contour length of
the curve. �x(0) = 0 since one end is fixed at the origin. The
tangent vectors at both ends, t̂(0) and t̂(L), are fixed to t̂i and
t̂f , respectively.

The mathematical problem we face is to compute the
partition function

Q(t̂i ,t̂f ) =
∑
C

exp −
[E(C)

kBT

]
. (1)

In Eq. (1), the sum is over all allowed configurations of the
polymer, those which satisfy the boundary conditions for
the tangent vector at the two ends: t̂i = t̂(0) = ẑ,t̂f = t̂(L).
The energy functional is given by

E(C) = A

2

∫ L

0

(
dt̂

ds
· dt̂

ds

)
ds, (2)

where A is an elastic constant with dimensions of energy times
length. The quantity Lp = A/kT is the persistence length. For
example, actin has a persistence length of about 16 μm and
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FIG. 1. (Color online) Two configurations of a molecule with
fixed end tangent vectors t̂i and t̂f . (left) Minimum energy configu-
ration and (right) the same configuration shown slightly perturbed by
thermal fluctuations.

an elastic constant of 6.7 × 10−27 in units of N m2. Lengths
of actin filaments can go up to hundreds of microns, so the
molecule is of intermediate flexibility.

We will compute the partition function assuming that near
the stiff limit (L not much larger than Lp) the sum over
curves is dominated by configurations near the minimum of
the energy.

The minimum energy configurations of the polymer are
those where the tangent vector t̂(s) describes the shortest
geodesic connecting t̂i to t̂f (Fig. 1). The minimum energy
is easily computed to be

Emin = Aθ2/(2L), (3)

which is a purely mechanical contribution to the energy [1,9].
To go beyond mechanics and include the effect of thermal

fluctuations (Fig. 1), we use an approximation described in
[11]. The approximation consists of using an expansion of the
energy about the minimum energy configuration and retaining
fluctuation terms about the minimum to quadratic order. This
calculation was done in general form in Eq. (53) of Ref. [11]
for a single molecule subject to forces and twisting torques.
The determinant of the fluctuation operator O is calculated
in [11]. In the present case, this fluctuation determinant can be
calculated either by specializing Eq. (53) of [11] to the case
of zero force and torque of [11] or by the method described
in [13] in the context of Brownian motion on the sphere. As is
to be expected, both methods give the same answer:

detO = L2 sin θ/θ. (4)

Performing the Gaussian integration over the fluctuations, we
find the distribution function 1/

√
(detO) exp −Emin

kT
, and we

arrive at the approximate formula

Q(θ ) = N (L)

L

√
θ

sin θ
exp

[
− Aθ2

2LkT

]
(5)

for the partition function as a function of the final angle θ ,
where N is a normalization constant to be determined by the

normalization condition∫ π

0
Q(θ ) sin θdθ = 1, (6)

which includes the measure sin θ on the sphere.
The result (5) implies that the number of configurations

with a final tangent vector t̂f making an angle θ defined
by arccos (t̂i .t̂f ) is given by P (θ ) = Q(θ ) sin θ , leading to
the simple analytic approximate formula for the bend angle
distribution

P (θ ) = N
L

√
θ sin θ exp

[
− Aθ2

2LkT

]
(7)

for θ . Note that this is a closed analytic form rather than
an infinite series [13]. It is thus suitable and convenient for
experimental comparison.

In some earlier works [6,7] stiff polymers were considered
as perturbations about the straight line. This effectively
describes the tangent vector as varying on a plane tangent
to the unit sphere. This leads to the planar formula

P (θ ) = A

LkT
θ exp − Aθ2

2LkT
(8)

for the distribution of final angles. Such a planar approach ne-
glects the curved geometry of the sphere. One also encounters
a hybrid formula [9,14]

P (θ ) = A

LkT
sin θ exp − Aθ2

2LkT
, (9)

in which one computes Q(θ ) using the planar approximation
and includes the correct curved measure sin θdθ on the sphere.
The present treatment (unlike the earlier planar ones) deals
with geodesics on the sphere of tangents and thus takes into
account the curvature of the sphere both in the computation
of Q(θ ) and in the measure sin θ . In the limit that the bending
angle θ is small, Eq. (7) reduces to the earlier planar and hybrid
formulas (8) and (9). Our formula for the bend angle distribu-
tion has a wider range of applicability compared to the earlier
ones: it is valid for a contour length comparable to the
persistence length (stiff and the semiflexible regime) and also
correctly describes the rare events involving large bend angles.

III. DISTRIBUTION OF BEND ANGLES

We have performed Monte Carlo simulations using the
Kratky-Porod model for comparison with the analytical form
(7). We randomly generated 106 configurations of the polymer
chain, assuming it to be built of N identical short straight
segments, each of length l. Given one segment, the direction of
the next segment was assumed to be uniformly distributed on a
cone of semivertical angle �θ = 0.1 rad around the preceding
segment. In the continuum limit when the number of segments
goes to infinity N → ∞,l → 0,�θ → 0, keeping L = Nl

and Lp = 2l
(�θ)2 fixed, one recovers the wormlike chain model.

A frequency distribution of the number of configurations with
angle θ between the initial and final tangent vectors was
generated.

Figure 2 shows a comparison between our predicted
analytical form, the planar formula, and the results of computer
simulation. In the stiff regime (β = L/Lp less than 1) Eq. (7)
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FIG. 2. (Color online) Comparison with simulations of P (θ ) vs
θ for a range of flexibilities. Plotted are the simulation data (blue
dots), the planar formula (thick red line), and our analytic formula,
Eq. (7) (thin black line). Notice that our closed form formula gives
a reasonable fit to the simulation data even for β = L/Lp as large
as 5.

is virtually exact; in the semiflexible regime (β around 5) it
remains a reasonable approximation. Thus, in an experiment
which takes repeated snapshots of the angle between the final
and initial tangent vectors of a molecule, we expect to find a
distribution of angles given by Eq. (7). This is a prediction of
the wormlike chain model, and it goes beyond earlier studies
based on classical elasticity [9].

IV. MOMENT ANGLE RELATIONS

The partition function Q(θ ) can be converted into a free
energy by the formula (we drop θ independent terms as they
are additive constants in the free energy)

F(θ ) = −kT ln Q(θ ) = Aθ2

2L
− kT

2
ln

θ

sin θ
(10)

and can be used to calculate the bending moment M needed
to bend the final tangent vector through an angle θ . The
approximate closed form predicted by our theory is

M = Aθ

L
− kT

2

(
1

θ
− cot θ

)
. (11)

The first term in (11) represents the mechanical elastic
energy, and the second (proportional to kT ) is due to thermal
fluctuations.

As Fig. 2 shows, the mechanical contribution is Hookean.
Within a purely mechanical approach, when the bending angle
reaches π , the geodesic connecting t̂i to t̂f is no longer
the shortest one, and the configuration becomes unstable
and buckles to a lower energy configuration. This picture is
drastically altered by thermal fluctuations. As shown by the
red curve in Fig. 3, the buckling happens at an angle smaller
than π . The thermal fluctuations have the effect of “softening”
the linear response to external bending.
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FIG. 3. (Color online) Bending moment vs bending angle theo-
retically expected. The thin blue line shows the mechanical elastic
response, and the thick red line includes the effect of thermal
fluctuations. The moment is plotted in units of 10−21 N m. The values
of A and kT are chosen to reflect actin filaments under physiological
conditions.

V. CONCLUSION

We have analyzed the bending mechanics and fluctuations
of semiflexible polymers. Our central goal in this paper has
been to bridge the gap between mechanics and statistical me-
chanics by taking into consideration thermal fluctuation effects
to quadratic order around mechanically stable configurations.
To summarize, our main results are (1) an explicit formula for
the bend angle distribution expected from the wormlike chain
model and (2) an explicit analytical formula for the moment
angle relation.

Our calculational technique assumes that there is a unique
shortest geodesic connecting t̂i and t̂f . This assumption breaks
down at θ = π . Our analytical formula (7) should only be
used away from the point θ = π , where there is a spurious
divergence. For a classical elastic rod, such as a poker or a
ballpoint pen refill, one sees that if the bending angle exceeds
π , the configuration becomes unstable because the tangent
vector no longer traces the shortest geodesic. The poker then
buckles into a new configuration with lower energy. As shown
in Fig. 3, thermal fluctuations cause the buckling to set in at
bending angles considerably smaller than π .

For small bending angles θ , one can Taylor expand the free
energy (10) and find that the effect of thermal fluctuations
is to effectively reduce the bending elastic constant A by
kT L/6. The fluctuations effectively soften the elastic response
of the polymer. For larger bending angles, one can no longer
think of the fluctuations as simply renormalizing the bending
modulus A since the form of the moment angle relation is
non-Hookean.

While we have used actin as a typical example of a
semiflexible polymer, our study is also relevant to DNA and
efforts to understand the bending elasticity of small segments.
Experiments and all atom simulations [8,9,14] are performed
to understand the formation of “kinks” and the cyclization
of short and intermediate length DNA strands. Our present
approach is analytical and computes experimentally relevant
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quantities characterizing the bending elasticity of semiflexible
polymers within the wormlike chain model. We expect our
results to interest researchers studying actin as well as DNA
and other biopolymers.
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