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Mean-field dynamo action in renovating shearing flows
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We study mean-field dynamo action in renovating flows with finite and nonzero correlation time (τ ) in the
presence of shear. Previous results obtained when shear was absent are generalized to the case with shear. The
question of whether the mean magnetic field can grow in the presence of shear and nonhelical turbulence, as seen
in numerical simulations, is examined. We show in a general manner that, if the motions are strictly nonhelical,
then such mean-field dynamo action is not possible. This result is not limited to low (fluid or magnetic) Reynolds
numbers nor does it use any closure approximation; it only assumes that the flow renovates itself after each time
interval τ . Specifying to a particular form of the renovating flow with helicity, we recover the standard dispersion
relation of the α2� dynamo, in the small τ or large wavelength limit. Thus mean fields grow even in the presence
of rapidly growing fluctuations, surprisingly, in a manner predicted by the standard quasilinear closure, even
though such a closure is not strictly justified. Our work also suggests the possibility of obtaining mean-field
dynamo growth in the presence of helicity fluctuations, although having a coherent helicity will be more efficient.
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I. INTRODUCTION

Understanding the origin of coherent large-scale magnetic
fields, observed in astrophysical systems from stars to galaxies,
is of fundamental importance in astrophysics. The standard
paradigm invokes the amplification of small seed magnetic
fields due to dynamo action, typically involving large-scale
shear flows combined with helical turbulence [1,3]. Recent
numerical simulations have also raised the possibility that
coherent fields can arise in nonhelical turbulent flows in the
presence of shear [4], although the mechanism of how this
happens is unclear [5,6].

The dynamics of large-scale magnetic fields is generally
described by using the equations of mean-field electrody-
namics. Here one defines the mean magnetic field B and
mean velocity field U by suitable averaging over the small
scales corresponding to the turbulent fluctuations. The mean-
field evolution is governed by the averaged version of the
induction equation, which results in an extra term, the turbulent
electromotive force E = 〈u × b〉, where u and b are the
fluctuating velocity and magnetic fields. Expressing E in terms
of the mean fields themselves is a closure problem, even for
prescribed velocity fields. If the fluctuations can be assumed
to be small, one can employ the quasilinear approximation
or what is traditionally known as the first-order smoothing
approximation (FOSA) to express the turbulent electromotive
force E in terms of a term proportional to B (the α effect)
and one proportional to the mean current density (turbulent
diffusion). The α effect, which depends on the helicity of
turbulence is crucial to amplify mean fields.

However, turbulent motions above some modest magnetic
Reynolds number lead to a fluctuation dynamo and a rapid
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growth of magnetic noise [1,7,8]. The growth rate of the
fluctuation dynamo is typically larger than the growth rates
associated with the mean-field dynamo. In the presence of this
rapidly growing magnetic noise, the validity of the quasilinear
approximation or FOSA becomes suspect. The question then
arises whether one can indeed make sense of mean-field
concepts like the alpha effect.

In this context, considering exactly solvable flow models
becomes very useful. For example, if one assumes a random
flow whose correlation time is exactly zero, dynamo action, on
both small and large scales can be studied in great analytical
detail [1,7,8]; however, such a flow is unphysical. Renovating
flows discussed by several authors [9,10] (and references
therein) provide, on the other hand, models involving flows
with a finite nonzero correlation time but which are still
analytically tractable. In renovating flows time is split into
successive intervals of length τ and the stochastic component
of the velocity in the different intervals is assumed to be
statistically independent realizations of an underlying prob-
ability distribution (PDF). As the flow loses memory between
different time intervals, the evolution of the moments of the
magnetic field over any one time interval can be calculated
by averaging over the underlying PDF. Considering random
helical renovating flows, Gilbert and Bayly (GB) [10] showed
that the magnetic field becomes increasingly intermittent with
time. Nevertheless, the mean magnetic field can still grow with
a growth rate which approaches that of a standard mean-field
α2 dynamo in the limit of small τ [9,10]. These works thus
provide explicit demonstration that the growth of magnetic
noise need not destroy the growth of the mean field even in the
case of flows (which have this periodic loss of memory) with
finite nonzero correlation times.

In the present work we generalize some of these results
to renovating flows incorporating also a large-scale shear.
Our primary motivation is to examine if the introduction of
shear can lead to a mean-field growth even if the stochastic
velocity field is nonhelical. It turns out that, once properly
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formulated in terms of renovating shearing waves, the details
of our calculation share some crucial features with those of
Gilbert and Bayly (GB) [10]. However, GB have not given
these steps; so to aid the presentation of our results, we begin
in Sec. II with a presentation of the main results of [10]
for the mean-field evolution in renovating helical flows. In
Sec. III we formulate the problem of renovating flows with a
background linear shear, and prove a general result that there is
no dynamo action when the flow is strictly nonhelical. We also
consider a particular example of renovating shearing waves
with helicity, caused by overdamped external forcing and
recover the dispersion relation for the α2� dynamo. The final
section summarizes and presents a discussion of our results.

II. RENOVATING HELICAL FLOWS WITHOUT SHEAR

We re-derive here the results of Gilbert and Bayly [10] on
mean-field evolution in a model helical renovating flow, in the
absence of background shear. Consider the induction equation
for the evolution of the magnetic field,

∂B
∂t

= ∇ × [u × B − η∇ × B]. (1)

GB assumed the velocity field u to have zero mean with only
a turbulent component. In each renovating time interval τ ,
they took

u(x) = a sin(q · x + ψ) + bh cos(q · x + ψ). (2)

with the conditions,

a · q = 0, b = q × a/q, (3)

which implies incompressibility, that is, ∇ · u = 0. The
parameter h satisfies −1 � h � 1 and determines the helicity
of the flow. This helical flow is made random by choosing
the parameters of the flow randomly and independently
from an underlying PDF, for every time interval τ . The
ensemble considered is the following: In each time interval
[(n − 1)τ,nτ ], (i) ψ is chosen uniformly random between 0
and 2π ; (ii) the propagation vector q is uniformly distributed
on a sphere of radius q ; (iii) for every fixed q, the direction of
a is uniformly distributed in a circle of radius a in the plane
perpendicular to q. The parameters (q,a,h,τ ) are nonrandom
and completely describe the renovating flow. The randomness
of ψ in condition (i) ensures statistical homogeneity, whereas
conditions (ii) and (iii) ensure statistical isotropy of the flow.

The evolution of the magnetic field from time (n − 1)τ to
nτ is given by

Bi(x,nτ ) =
∫

Gij (x,y)Bj (y,(n − 1)τ ) d3y, (4)

where Gij (x,y) is the Green’s function of the induction
equation Eq. (1). Gij is random due to the randomness of the
turbulent velocity field. We take the ensemble average of this
equation over the ensemble described above and note that the
velocity in any time interval [(n − 1)τ,nτ ] is uncorrelated with
the initial magnetic field at time (n − 1)τ . Thus the average of
the product of Gij and Bj can be written as the product of the
averages, an important simplification arising from the loss
of memory of renovating flows. The mean field B then

evolves as

Bi(x,nτ ) =
∫

Gij (x,y)Bj (y,(n − 1)τ ) d3y. (5)

Furthermore, from the statistical homogeneity of the renovat-
ing flow, one has Gij (x,y) = Gij (x − y); then Eq. (5), which is
a convolution in physical space, becomes a product in Fourier
space. Defining the spatial Fourier transform,

B̂i(k,t) =
∫

d3x Bi(x,t)e−ik·x, (6)

we have in Fourier space,

B̂i(k,nτ ) = Gij (k) × B̂j (k,(n − 1)τ ), (7)

where the response tensor, Gij (k), is defined by

Gij (k) =
∫

Gij (x − y)e−ik·(x−y) d3x. (8)

The mean magnetic field will grow exponentially if its Fourier
component is an eigenvector of the matrix Gij (k) with
eigenvalue σ , whose magnitude is greater than one. For such
an eigenvector we have

B̂i(k,nτ ) = σn B̂i(k,0) or B̂i(k,t) = σ t/τ B̂i(k,0), (9)

and so the growth rate of this eigenmode is given by

λ = ln(σ )

τ
. (10)

Hence, the response tensor Gij (k) contains all the information
about the growth or decay of the mean magnetic field. We
now proceed to calculate it for the renovating velocity field of
Eq. (2).

A. The response tensor

In order to explicitly calculate the response tensor for the
evolution of the mean field in the renovating helical flow, an im-
portant simplification was introduced by GB. The renovation
time τ was split into two equal subintervals. In the first subin-
terval (step 1) resistivity was neglected and the field was just
frozen-in and advected with the fluid, with twice the original
velocity. In the second subinterval (step 2), induction by the ve-
locity was neglected and the field was assumed to diffuse with
twice the resistivity. Although such an assumption seems plau-
sible in the limit of a short renovation time—as this would be
one way of numerically integrating the induction equation—
GB did not give any rigorous justification. For the present
purpose, we adopt the same simplification as GB. Thus we con-
sider the evolution of the magnetic field in these two steps and
then Fourier transform the resulting averaged Green function.

Step 1. During the time interval 0 to τ/2 we assume η = 0,
and double the value of the velocity field. Then Eq. (1) becomes
just the ideal induction equation,

dB
dt

≡
(

∂

∂t
+ 2u · ∇

)
B = (B · ∇)2u, (11)

with the standard Cauchy solution given by

Bi(r,t) = ∂ri

∂yj

Bj (y,t0) = Jij (r)Bj (y,t0). (12)
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Here B(y,t0) is the initial magnetic field; r(t) is the position of a
fluid element at time t , which was originally at a “Lagrangian”
position y at time t0. Note that the fluid elements follow the
integral curves of the velocity field, with

dx/dt = 2u = 2a sin(�) + 2bh cos(�), (13)

where we have substituted from Eq. (2), assumed twice the
velocity for step 1 and defined the phase � = q · x + ψ . From
the incompressibility condition, we have d�/dt = 2q · u = 0
and thus Eq. (13) can be integrated to give at time t = τ/2,

r = y + τu = y + aτ sin (q · y + ψ) + bτh cos (q · y + ψ).

(14)

Here we have used the constancy of the phase � and set it
equal to its initial value � = q · y + ψ . Thus the Jacobian is

Jij (r) ≡ ∂ri

∂yj

= δij + aiqj τ cos (q · y + ψ)

− biqjhτ sin (q · y + ψ). (15)

Step 2. During the time interval τ/2 to τ the turbulent
velocity field is zero and there is only diffusion present, with
a resistivity 2η. The induction equation then reduces to a
diffusion equation for the magnetic field as

∂B
∂t

= 2η∇2B. (16)

The solution of this equation is given in terms of the resistive
Green’s function,

Gη(x − r) = 1

(4πητ )3/2
exp

[
− (x − r)2

4ητ

]
. (17)

The total Green’s function defined in Eq. (4) is simply
the product of the two Green’s functions in the above two
steps:

Gij (x,y) = Gη(x − r(y))Jij (r(y)), (18)

where we have written explicitly r as a function of y. The
response tensor defined in Eq. (8) then becomes

Gij (k) =
∫

1

(4πητ )3/2
e
− (x−r)2

4ητ Jij (r)e−ik·(x−y) d3x

= Jij (r(y))e−ik·(r(y)−y)e−ητk2
, (19)

where in the second step we have done the integral over x.
The overhead bars in Eq. (19) denote ensemble averages, and
we will see below that due to the statistical homogeneity of
the renovating flow, this averaged quantity does not depend
on y, but only on k. Also note that in typical astrophysical
systems, the resistive time scale will be much larger than
the renovation time and the value of ηk2τ is typically much
smaller than unity, and so can safely be set to zero. A nonzero
but small η will decrease the growth rate by a negligible
amount.

We now evaluate the ensemble average in Eq. (19). Note
that GB state the final result, omitting all intermediate steps.
We give the detailed steps in Appendix A since they are
of use in the case when shear is present. Here we list the
important intermediate steps and the final expression. Let the
angle between k and q be θ ; we will treat this as a colatitude
and denote the azimuthal angle of q by φ̃. Let the component
of k perpendicular to q make an angle φ with a (see Fig. 1).

On averaging over phase ψ we get

Gij (k) = δij J0(τakχ sin θ ) − ihaqτ

χk sin θ
[εimnkmq̂nq̂j ]J1(τakχ sin θ ), (20)

where χ = (cos2 φ + h2 sin2 φ)1/2 and the overhead bars de-
note ensemble averages over the remaining random variables

FIG. 1. The different angles defined in the text. The angle between
k and q is θ . The vectors a, b, and q are mutually perpendicular to
each other. The component of k perpendicular to q makes an angle φ

with a.

θ , φ̃, and φ. Averaging over direction of q (i.e., averaging over
the angles θ and φ̃), we have

Gij (k) = δij g0(τak,h) + ihτaqεijmkm

2k
g1(τak,h) , (21)

where

g0(s,h) = sin(sχ )

sχ
; g1(s,h) = 1

χ

(
sin(sχ )

(sχ )2
− cos(sχ )

sχ

)
,

(22)

and now the overhead bars denote ensemble averages over the
random variable φ (for maximally helical flow with h = ±1,
so χ = 1, and the response tensor becomes independent of the
random variable φ. In the rest of this paper h can take any value
between −1 and +1). We recall that in step 1, we evolved the
field for a time interval τ/2, but with twice the velocity (i.e., 2a

instead of a); nevertheless the combination aτ which appears
in the above equation remains unaffected.

One of the eigenvectors of Gij is k with eigenvalue unity.
But this eigenvector can be ignored since the magnetic field
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mode must be orthogonal to k (i.e., we must have ∇ · B = 0).
The relevant eigenvectors of Gij are found to be (−i,1,0)T

and (i,1,0)T, with the corresponding eigenvalues, σ+ and σ− ,
given by

σ± = g0(τak,h) ∓ τaqh

2
g1(τak,h). (23)

The growth rates λ± are given by

λ± = 1

τ
ln(σ±) = 1

τ
ln

[
g0(τak,h) ∓ τaqh

2
g1(τak,h)

]
.

(24)

Here we have divided by the full time interval τ to get
the growth rate. Following GB it is readily verified that
both ± mean-field modes can grow for sufficiently large
renovation times. GB also demonstrated that the magnetic
field becomes increasingly intermittent, in the sense that higher
order single-point moments of the field grow faster. Therefore,
as advertised, the mean-field dynamo operates efficiently in
this case even in the presence of strongly growing magnetic
noise. It is of interest to look at the growth rate in the limit of
small renovation times such that akτ � 1 (this limit can also
be looked upon as a long wavelength, or small k, limit at a
fixed τ ), when

λ± � ∓ k
ha2τq

6
− k2 (1 + h2)a2τ

12
� ±αk − ηtk

2 , (25)

where α = −(1/3)u · (∇ × u)(τ/2) and ηt = (1/3)u · u(τ/2)
are the turbulent transport coefficients.1 Thus the growth rate
for the case of small akτ is identical to the growth rate of
the standard α2 mean-field dynamo usually obtained using the
quasilinear approximation or FOSA. We now turn to consider
the influence of shear.

III. RENOVATING SHEAR FLOWS

We now investigate the evolution of the mean magnetic field
in scenarios when there is a mean shear flow over and above
the background turbulence. Shear flows and turbulence are
ubiquitous in astrophysical systems. Recent work suggests that
the presence of shear may open new pathways to the operation
of large-scale dynamos [4–6]. For simplicity we consider
the background mean velocity to be a linear shear flow. Let

1In these expressions for α and ηt , the factor τ/2 appears instead
of τ , because the transport coefficients are really time integrals
of correlation functions; see Eqs. (6.19) and (6.20) in [1]. For
renovating flows in which the velocity field u acts over the full
interval τ [i.e., if we were dealing with Eq. (1), without the two-step
prescription of GB], this implies averaging t over the time interval
(0,τ ), which is equal to τ/2 . However, we get the same result even
for the two-step prescription of GB, because two effects contribute in
precisely opposite ways: When the velocity field is doubled in value,
the transport coefficients quadruple because they are quadratic in the
velocities; however, the doubled velocity field is ON for only the
first half of any time interval τ . Hence, averaging “t” over the time
interval (0,τ ) now implies integrating t over the time interval (0,τ/2)
and then dividing it by the full interval τ , which gives τ/8. Thus we
obtain 4 × τ/8 = τ/2 .

(e1,e2,e3) be the unit vectors of a Cartesian coordinate system
in the laboratory frame, x = (x1,x2,x3) the position vector.
Without loss of generality, we choose this mean velocity to
be in the e2 direction and varying linearly with x1. Thus the
velocity field is given by

u(x,t) = ush + uturb = Sx1e2 + uturb, (26)

where S is the constant rate of shear coefficient. The turbulent
velocity field uturb is composed of renovating shearing waves
with quite general amplitudes at this point. In particular, we
take

uturb(x,t) = A(t,q) sin[Q(t) · x + ψ]

+ C(t,q) cos[Q(t) · x + ψ], (27)

where the wave vector is a shearing wave vector of the
form Q = (Q1,Q2,Q3) ≡ (q1 − Sq2(t − ti),q2,q3), and q =
(q1,q2,q3) its initial value at the beginning of each renovation
period, that is, at t = ti . Note that q is chosen randomly from a
specified PDF (see below) for each renovating period. We will
see that such a form of uturb naturally arises when we consider
Fourier modes of the velocity which satisfy the momentum
equation in a background linear shear flow. We will also later
adopt explicit forms of A(t,q) and C(t,q); but several of the
conclusions that we arrive at are quite generally insensitive to
the functional forms of A and C. We also assume the turbulence
to be incompressible with ∇ · uturb = 0, which implies

Q(t) · A(t) = 0 ; Q(t) · C(t) = 0. (28)

Thus the amplitudes have to shear in an opposite sense to
the wave vector so as to maintain incompressibility. The
shearing wave vector can be written in a compact form as
Qj = qiγij (−(t − ti)), where γij (t) is the shearing matrix
defined by

γij (t) = δij + δi2δj1St. (29)

The helicity of the turbulent velocity field uturb(x,t) is

H = uturb · (∇ × uturb) = C · (Q × A), (30)

and this vanishes unless both C or A are nonzero.
As in the previous section we consider the turbulent

flow to be a pulsed renovating flow. The turbulent velocity
field is assumed to be ON for a time interval τ/2, with
twice its amplitude and with diffusion absent. For the next
τ/2 interval, the turbulent velocity field is OFF and only
the diffusion is present with resistivity 2η. On an average,
the turbulent velocity field is then correlated only for a
time interval τ . The mean shear flow on the other hand is
always present for the full time interval τ . The turbulent
flow is randomized by considering an ensemble similar
to that assumed for the renovating flow without shear. In
each time interval [(n − 1)τ,nτ ] (i) ψ is chosen uniformly
random between 0 and 2π ; (ii) the propagation vector
q is uniformly distributed on a sphere of radius q. The
randomness of A is decided by the explicit form of A itself,
which we fix later, when solving for the explicit form of
the response tensor. For the general analysis we will not
require it. The response tensor will be essential here, too,
to determine the growth or decay of the mean magnetic field
modes.
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A. The response tensor

We compute the response tensor for the evolution of the
mean magnetic field again in two steps.

Step 1. During the time interval t = 0 to t = τ/2, η = 0
and Eq. (1) reduces again to the ideal induction equation,
whose solution is as before the Cauchy solution:

Bi(r̃,t) = ∂r̃i

∂yj

Bj (y,0) = Jij (r̃)Bj (y,0). (31)

Here r̃ gives the location of the fluid element at time t , which
was at time t = 0 at the location y. These positions are now on
the integral curve of the sheared and turbulent velocity field,
and so the trajectory now obeys

dx/dt = ush + 2uturb = Sx1e2 + 2A(t,q) sin �̃

+ 2C(t,q) cos �̃. (32)

We have substituted here from Eq. (26), assumed twice the
turbulent velocity for step 1 and defined the phase �̃ = [Q(t) ·
x + ψ]. Note that we have not doubled the shear velocity, as we
keep the shear flow throughout the full period (0,τ ). From the
incompressibility condition, we have Q · uturb = 0. Therefore,

d�̃/dt = Q̇ · x + Q(t) · ẋ = −Sq2x1 + Sq2x1

+ 2Q · uturb = 0. (33)

The constancy of �̃ can be used to express it in terms of the
initial position of the fluid element y, and the initial wave
vector Q(t = 0) = q, that is, we can write �̃ = q · y + ψ .
Then Eq. (32) can be integrated to give

r̃i = γij (t)rj ,

rj = ãj (t,qk) sin (q · y + ψ) + c̃j (t,qk) (34)

× cos (q · y + ψ) + yj ,

where rj is a sheared position vector that will be of use later,
and the coefficients ãj and c̃j are defined by

ãj (t,qi) = γjp(−t)
∫ t

0
2Ap(t ′,qi)dt ′

+ Sδj2

∫ t

0

∫ t ′

0
2A1(t ′′,qi)dt ′′dt ′,

c̃j (t,qi) = γjp(−t)
∫ t

0
2Cp(t ′,qi)dt ′

+ Sδj2

∫ t

0

∫ t ′

0
2C1(t ′′,qi)dt ′′dt ′. (35)

Therefore the Jacobian matrix is

Jij (r̃( y),t) = ∂r̃i

∂yj

= γip(t)[δpj + ãp(t)qj cos (q · y + ψ)

− c̃p(t)qj sin (q · y + ψ)]. (36)

We need this Jacobian to be evaluated at the time t = τ/2.
Step 2. During τ/2 to τ the turbulent velocity field is zero

and there is diffusion present along with shear. The induction
equation then reduces to the following form:(

∂

∂t
+ ush · ∇

)
B = (B · ∇)ush + 2η∇2B. (37)

The sheared Green’s function for this equation is [3]

Gη

ij

(
x,r̃,

τ

2

)
= γij (τ/2)

(4πητ )3/2
(det|D|)1/2exp

(−x̃iDij x̃j

4ητ

)
,

(38)

where x̃i = γij (−τ/2)xj − r̃i , and Dij is a symmetric matrix
whose inverse is given by

D−1 =

⎡
⎢⎣

1 −Sτ/4 0

−Sτ/4 1 + (Sτ )2/12 0

0 0 1

⎤
⎥⎦ . (39)

Note that in the above computation we have taken the
initial time to be t = 0 and the final time as t = τ ; but the
same steps and calculations go through for any renovating
time interval [(n − 1)τ,nτ ], with the initial time being t =
(n − 1)τ , the final time being t = nτ , and the initial wave
vector q = Q((n − 1)τ ). Hence during any such time interval
τ , the magnetic field at time t = nτ is related to the magnetic
field at time t = (n − 1)τ by

Bi(x,nτ ) =
∫

Gη

ik

(
x,r̃,

τ

2

)
Jkj

(
r̃( y),

τ

2

)
×Bj (y,(n − 1)τ ) d3r̃ . (40)

We would like to calculate the response tensor starting from the
above evolution equation. For this we first define the Fourier
transform of Bi(x,t) by expressing it in terms of the shearing
waves,

B̂i(k,t) =
∫

Bi(x,t)e−iK(t)·xd3x, (41)

where we have defined the sheared wave vector Kj (t) =
kiγij ( − (t − ti)) ≡ (k1 − Sk2(t − ti),k2,k3) and k = K(ti) is
the initial wave vector at time ti , which for each step we
take to be the time (n − 1)τ . We will see that the evolution
of the mean magnetic field is especially transparent when
the field is expanded in terms of shearing waves in Fourier
space.

We take the Fourier transform of Eq. (40), and change
the integration variable from r̃ to y. The Jacobian for this
transformation is unity as the flow velocity which maps y to r̃
is divergence free i.e. d3r̃ = d3y. We get

B̂i(k,nτ ) =
∫

Bi(x,nτ )e−iK(nτ )·x d3x =
∫ ∫

Gη

ik

(
x,r̃,

τ

2

)
Jkj

(
r̃( y),

τ

2

)
Bj (y,(n − 1)τ )e−iK(nτ )·x d3xd3y

=
∫ ∫ ∫

Gη

ik

(
x,r̃,

τ

2

)
Jkj

(
r̃( y),

τ

2

)
B̂j (l,(n − 1)τ )eil· ye−iK(nτ )·x d3l

(2π )3
d3xd3y, (42)
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where we have also expressed the initial field at time (n − 1)τ in terms of its Fourier transform. To do the integral over x, we use
the identity γjm(t)γmp(−t) = δjp to write

exp (−iK · x) = exp (−iKjγjm(τ/2)[γmp(−τ/2)xp − r̃m] − iKjγjm(τ/2)r̃m]) = exp [−iKjγjm(τ/2)(x̃m + r̃m)], (43)

and change the integration variable from xm to x̃m = γmp(−τ/2)xp − r̃m. Since det|γ | = 1, we can write d3x = d3x̃. The
integration over x̃ now becomes a Fourier transform of the sheared resistive Greens function [3] and we get∫

Gη

ik

(
x,r̃,

τ

2

)
e−iK·xd3x =

∫
γik(τ/2)

(4πητ )3/2
(det|D|)1/2exp

(−x̃nDnmx̃m

4ητ

)
e−iKγ τ/2·x̃e−iK·[γ τ/2 r̃]d3x̃

= γik(τ/2)exp
{ − ητKnγnm(τ/2)D−1

mpγjp(τ/2)Kj

}
e−iK·[γ τ/2 r̃] = Gik(k̃)e−ik̃·r̃ , (44)

where k̃m = Kjγjm(τ/2) = kjγjm(−τ/2). Then we have

B̂i(k,nτ ) = γik(τ/2)exp
( − ητ k̃pD−1

pr k̃r

) ∫ ∫
Jkj

(
r̃( y),

τ

2

)
B̂j (l,(n − 1)τ )eil· ye−ik̃·r̃ d3l

(2π )3
d3y. (45)

Taking the ensemble average of Eq. (45), we get for the mean-field evolution,

B̂i(k,nτ ) = γik(τ/2)exp
( − ητ k̃pD−1

pr k̃r

) ∫ [ ∫
e−ik̃·r̃Jkj

(
r̃( y),

τ

2

)
eil·yd3y

]
B̂j (l,(n − 1)τ )

d3l

(2π )3
. (46)

Here we have assumed as before that the velocity field during the time interval (nτ,(n − 1)τ ) and the initial magnetic field
at time (n − 1)τ are statistically independent. Note the dependence on the stochastic parameters comes only through r̃(y). As
k̃m = kjγjm(−τ/2) and r̃m = γmj (τ/2)rj , we have k̃ · r̃ = k · r and the quantity in the square bracket can be written as∫

e−ik̃·r̃Jkj

(
r̃( y),

τ

2

)
eil·yd3y =

∫
e−ik·(r− y)Jkj

(
r̃( y),

τ

2

)
e−ik·yeil·yd3y = e−ik·(r− y)Jkj

(
r̃( y),

τ

2

)
(2π )3δ(l − k). (47)

In the last step we have used the fact that the averaged quantity is independent of yi , as can be easily seen by doing the averaging
first over the random phase ψ of the turbulent field; this also follows from the statistical homogeneity of the turbulence. The yi

independence is explicitly shown by calculation below. We then have for the evolution of the mean field,

B̂i(k,nτ ) = Gij (k)B̂j (k,(n − 1)τ ), (48)

where the response tensor Gij (k) is now

Gij (k) = γil(τ )[δlj + ãlqj cos(q · y + ψ) − c̃lqj sin(q · y + ψ)]e−ik·(r−y) exp(−ητkpMprkr ), (49)

where Mij = γim(−τ/2)D−1
mpγjp(−τ/2) and the coefficients ãl and c̃l are shorthand for ãl(τ/2,q) and c̃l(τ/2,q), given in Eq. (35).

One can see that the form of the response tensor in Eq. (49) with shear is similar to the form of the response tensor in Eq. (19)
without shear and reduces to the latter when S = 0. Similar to the case without shear, we see that the effects of resistive dissipation
appear only as a separate exponential term. Since it is small in astrophysical systems of interest, henceforth we set η = 0.

We now average over the phase ψ of the turbulent velocity field, which leads us to the following expression:

Gij (k) = γil(τ ) σlj (k), σlj (k) =
[
δlj J0(

√
(k · ã)2 + (k · c̃)2) − i

(ãlqj k · c̃ − c̃lqj k · ã)√
(k · ã)2 + (k · c̃)2

J1(
√

(k · ã)2 + (k · c̃)2)
]
, (50)

where the overhead bar now refers to the averaging over the
directions of q and over the randomness of A. One can reach
some conclusions about the decay of the mean magnetic field
at this stage of the averaging itself. The mean magnetic field
evolves as

Bi(k,nτ ) = γil(τ )σlj (k)Bj (k,0). (51)

The growth or decay of the mean-field mode is governed
by the product of the two matrices, the shearing matrix
γ (τ ) and the shear-turbulence tensor σ (k). It is known that
the field grows linearly due to the continuous shearing of the
background fluid which causes the B1(k) component of the
field to be continuously advected along the e2 direction. This
is reflected by the presence of the shearing matrix γ (τ ) in
the expression of the response tensor G(k) and is completely

natural as well as expected. The turbulent stretching of the field
lines due to the transfer of energy from the turbulent pulses
of the fluid can, too, lead to the growth of the mean field
and the shear-turbulence tensor σ (k) contains precisely this
information through its dependence on the random parameters.
Hence, it is of interest to look at the structure of the σ (k) tensor
and calculate its eigenvalues depending on which the mean
field grows or decays exponentially.

When helicity is zero, then either ã or c̃ is zero from
Eqs. (30) and (35). Then the second term in σlj (k) vanishes
and we get

σlj (k) = δlj J0(k · ã), (52)

where we have chosen c̃ = 0 without any loss of generality.
In this case, the eigenvalue of σ (k) is just σ = J0(k · ã). Note

026303-6



MEAN-FIELD DYNAMO ACTION IN RENOVATING . . . PHYSICAL REVIEW E 86, 026303 (2012)

that the maximum value of the Bessel function J0(x) is unity.
Hence after averaging over all the possible values of k · ã as per
the ensemble chosen, we must necessarily obtain J0(k · ã) <

1. This shows that in the absence of helicity the mean-field
modes eventually decay with a decay rate λ = (τ )−1 log σ [see
Eq. (10)]. Therefore, quite generally, there is no mean-field
dynamo if the turbulent velocity is strictly nonhelical, even in
the presence of shear.

B. Forced overdamped shearing wave

We now solve for the form of the σlj (k) by taking a
particular form of the uturb in Eq. (27) obeying the following

forced, damped Euler equation:(
∂

∂t
+ Sx1

∂

∂x2

)
uturb + Su1

turbe2 + (uturb · ∇)uturb

= −∇p − uturb

τd

+ f, (53)

where τd is a given damping time and f(x,t) is the exter-
nal forcing which is assumed to satisfy ∇ · f = 0. In the
approximation ∂uturb/∂t � uturb/τd , the wave is assumed to
be overdamped, saturating quickly in time τd to its terminal
velocity. In Eq. (B13) of Appendix B the following solution is
derived:

uturb(x,t) = A(t,q) sin[Q(t) · x + ψ] + C(t,q) cos[Q(t) · x + ψ], where

A1,3 = a1,3 + Sτda1

[
Q1,3Q2

Q2 − SτdQ1Q2

]
, A2 = a2 + Sta1 − Sτda1

[
Q2

1 + Q2
3

Q2 − SτdQ1Q2

]
;

C1,3 = h

{
c1,3 + Sτdc1

[
Q1,3Q2

Q2 − SτdQ1Q2

]}
, C2 = h

{
c2 + Stc1 − Sτdc1

[
Q2

1 + Q2
3

Q2 − SτdQ1Q2

]}
, (54)

where Qj = qiγij (−t), q · a = 0, c = q̂ × a, and h such that −1 � h � 1 determines the helicity of the flow. Here the forcing
function is related to the constants {a1,a2,a3} and {c1,c2,c3}. In addition, note that the vectors A(t,q), C(t,q), and Q(q,t) contain
the the effects of shear, but have been expressed in terms of a, c, and q which are statistically isotropic. In the limit of very
strong damping, that is, τd → 0, the above expressions simplify and can be written compactly as

Ai = γij (t)aj , Ci = hγij (t)cj . (55)

The turbulent velocity field now becomes

[uturb(x,t)]i = γij (t)aj sin [Q(t) · x + ψ] + hγij (t)cj cos [Q(t) · x + ψ] . (56)

Substituting Eq. (55) in Eq. (35), we find that ã = aτ and c̃ = hcτ ; hence the response tensor in Eq. (50) becomes

Gij (k) = γil(τ )

[
δlj J0(

√
(k · aτ )2 + (k · chτ )2) − i

(alqjhτk · c − clqjhτk · a)√
(k · a)2 + (k · ch)2

J1(
√

(k · aτ )2 + (k · chτ )2)

]
. (57)

As before, let the angle between k and q be θ ; we will treat this as a colatitude and denote the azimuthal angle of q by φ̃. Let the
component of k perpendicular to q make an angle φ with a. Then, on averaging over the phase ψ we can write

Gij (k) = γil(τ )

{
δlj J0(τakχ sin θ ) − ihaqτ

χk sin θ

[
εlmnkmq̂nq̂j

]
J1(τakχ sin θ )

}
, (58)

where χ = (cos2 φ + h2 sin2 φ)1/2 and the overhead bar denotes ensemble averages over the remaining random variables θ , φ̃,
and φ. Comparing with Eq. (20), we see that the form of the response tensor is identical to its form when shear is absent with
the only difference being an overall γil(τ ) factor. Since the ensemble average is done at one arbitrary instant, the final form of
Gij (k) is identical to Eq. (21) with the extra γij factor. Hence, we have

Gij (k) = γil(τ ) σlj (k), σlj (k) = δlj g0(τak,h) + ihτaqεljmkm

2k
g1(τak,h), g0(s,h) = sin(sχ )

sχ
;

(59)

g1(s,h) = 1

χ

(
sin(sχ )

(sχ )2
− cos(sχ )

sχ

)
,

and now the overhead bars denote ensembles averaging over the random variable φ (for maximally helical flow with h = ±1,
so χ = 1, and the response tensor becomes independent of the random variable φ). The shear turbulence tensor σ has the two
nontrivial eigenvectors (−i,1,0)T and (i,1,0)T, with the corresponding eigenvalues σ+ and σ− given by

σ± = g0(τak,h) ∓ τaqh

2
g1(τak,h). (60)
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For zero helicity, the second term vanishes and dynamo action
is absent, as was shown in the general case in the previous
section. Moreover, even if there were mirror-symmetric fluc-
tuations in h, this would not lead to a dynamo. This is because
g0(s,h) and g1(s,h) are even in h, while the coefficient of the
second term of the response tensor in Eq. (59) is linear (and
hence odd) in h. Thus on averaging the response tensor over
any symmetric PDF of h with zero mean only the first term
of Gij survives and there is no dynamo. This conclusion is
similar to that obtained by GB for the case without shear.

IV. α2� DYNAMO

Let us look at the expression in Eq. (59) of the response
tensor in the case of small correlation times, when akτ � 1.
Then to quadratic order in τ , we get

Gij (k) = δij

[
1 − (1 + h2)

12
(τak)2

]

+ δi2δj1Sτ + i
ha2τ 2q

6
εijmkm

= δij (1 − ηtτk2) + δi2δj1Sτ − iταεijmkm, (61)

where α = −(1/3)
[
uturb · (∇ × uturb)

]
(τ/2) and ηt = (1/3)

[u · u] (τ/2) are the turbulent transport coefficients. The mean-
field evolution equation [Eq. (48)] then becomes⎡
⎢⎣Bτ1

Bτ2

Bτ3

⎤
⎥⎦ =

⎡
⎢⎣1 − ηtτk2 −iατk3 iατk2

iατk3 + Sτ 1 − ηtτk2 −iατk1

−iατk2 iατk1 1 − ηtτk2

⎤
⎥⎦

⎡
⎢⎣B01

B02

B03

⎤
⎥⎦ ,

(62)

which is the evolution equation for the α2� dynamo [1]. We
seek solutions of the eigenvalue problem when k2 = 0. Of the
three eigenvalues, σ1 = (1 − ηtτk2) is irrelevant, because the
corresponding eigenvector does not satisfy the solenoidality
condition (∇ · B) = 0 . The remaining two eigenvalues are

σ± = 1 − τηtk
2 ± τ (α2k2 − iαk3S)1/2, (63)

corresponding to the eigenvectors,

(αk3 , ± i
√

α2k2 − iαk3S , − αk1)T. (64)

The growth rates λ± of these eigenmodes are given by

λ± = 1

τ
ln(σ±) = −ηtk

2 ± (α2k2 − iαk3S)1/2, (65)

which are the same as one would get in the case of the α2�

dynamo [1].

V. DISCUSSION AND CONCLUSIONS

This paper presents studies of dynamo action in turbulent
shear flows when the turbulence has a nonzero correlation time.
Our goal is to study the dynamics of a system which is complex
enough to be a useful model, yet tractable analytically; the
renovating flows discussed earlier by several authors [9,10]
(and references therein) provide just such a platform. Our
contribution is to consider random, helical renovating flows in
the context of a background linear shear flow.

We began with a review of the work of Gilbert and Bayly
(GB) [10] on random helical renovating flows in the absence of
a background shear flow. GB considered random flows, each
of whose realizations was a plane, sinusoidal helical wave.
The merit of choosing such simple random ensembles is that
the trajectories of fluid elements, in the flow caused by each
wave, can be integrated analytically. Thus the Green’s function
mapping the magnetic field from one time step to another can
be obtained, and averaged over the underlying PDF of the
random ensemble of flows. GB give the final result, while
skipping almost all the intermediate steps. We found it useful
not only to record these missing steps, but lay them out for the
reader so that it becomes easier for us to present our analysis
of the more complicated problem of renovating flows with
shear.

We then formulated the problem of renovating flows in
the presence of a background linear shear flow. Following
GB, we considered an ensemble of random flows, each of
whose members is a plane, sinusoidal helical wave. However,
unlike in the case considered by GB, the wave cannot be time
independent. In fact, each of these members must be a shearing
wave, one whose amplitude and wave vector are both time
dependent. Then the trajectories of fluid elements (in the flow
caused by each shearing wave) were determined analytically,
the Green’s function (mapping the magnetic field from one
time step to another) derived, and averaged over the underlying
PDF of the random ensemble of flows, to obtain a general
expression for the (averaged) response tensor. We showed that
even without fully averaging the response tensor, for which
one requires the explicit form of the time-dependent, shearing
wave amplitude, it is still possible to prove a general result:
that there is no dynamo action when the shearing waves are
strictly nonhelical. This is an important and nontrivial result
in view of the considerable current interest in the existence or
otherwise of such nonhelical shear dynamos (see [4–6]).

We then considered a particular model in which the shearing
waves were generated through external forcing of the linear
shear flow. Working in the overdamped limit, we derived an
explicit form for the response tensor. It is interesting to note
that this form is closely related to the response tensor of GB;
specifically, our response tensor is the product of the response
tensor of GB with the shearing matrix. This was then applied to
the case of α2� dynamos in the limit of small correlation times,
and we recovered the standard dispersion relation for the α2�

dynamo. Thus the growth of the mean field in sheared helical
turbulence is as expected from quasilinear closures usually
employed to derive the mean-field equations. This is obtained
in spite of the fact that magnetic fluctuations in such renovating
flows are expected to grow more rapidly (as shown explicitly
by GB) than the mean field, wherein, one may imagine, that
quasilinear closures break down. Our work therefore provides
another illustration that rapidly growing fluctuations need not
destroy the growth of the mean field.

Our result that there is no mean-field dynamo in strictly
nonhelical turbulence, even in the presence of shear, raises
the question as to what causes such growth in numerical
simulations [4]. One possibility is the incoherent α-shear dy-
namo [11]. There seems to be evidence from such simulations
for fluctuations in α (the first reference in [4]). Here the mean
fields are defined as averages over two spatial directions, and
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fluctuations in α over time are considered as meaningful. In
the present context, we can define the required fluctuations
as due to fluctuations of the parameter h from one renovation
time to another, which is easier to justify as being physically
meaningful. GB themselves considered fluctuations in h, but
argued that the PDF of h needs to be skewed for there to be
net growth.

Even in the presence of shear, if we averaged the response
tensor say in Eq. (59) over a mirror-symmetric PDF of h with
zero mean, the “helical” term would vanish and one would
not have a dynamo. However if we think of the mean field as
being defined before averaging over h, then one could study
its dynamics under such fluctuations. In the presence of shear,
we can see from Eq. (65), that both signs of h would cause

growth, but the eigenvector in Eq. (64) would get an extra
phase shift. It would be interesting to work out exactly how
such random changes to the eigenvector alters the efficiency
of the dynamo. One would expect that a coherent h would lead
to a more efficient dynamo rather than a fluctuating h.

The work here has focused on the mean-field evolution.
The same model can also be used to generalize the Kazantsev
model [8] for the fluctuation dynamo, to the case with finite
correlation time and including shear.
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APPENDIX A: CALCULATING THE AVERAGED RESPONSE TENSOR IN THE ABSENCE OF SHEAR

Below we give the details involved in going from Eq. (19) to Eq. (21).

Gij (k) = [
δij + aiqj τ cos(q · y + ψ) − biqjhτ sin(q · y + ψ)

]
e−ik·(aτ sin(q·y+ψ)+bτh cos(q·y+ψ)). (A1)

Let the angle between k and q be θ . Let the component of k perpendicular to q make an angle φ with a. Now k can be written as

k =
[

k − q(k · q)

q2

]
︸ ︷︷ ︸

perpendicular to q

+ q(k · q)

q2︸ ︷︷ ︸
along q

. (A2)

Since a and b both lie in the plane perpendicular to q, and also since a and b are perpendicular to each other,

k · a = k⊥ · a = |k⊥||a| cos φ = (k sin θ )a cos φ, k · b = ka sin θ sin φ. (A3)

Now we average Gij (k) term by term. For the first term, we have

I1 = δij e−ik·(aτ sin(q·y+ψ)+bτh cos(q·y+ψ)). (A4)

The argument of the exponential is written as

−iτka sin θ [cos φ sin(q · y + ψ) + h sin φ cos(q · y + ψ)] = −iτkaχ sin θ sin(q · y + ψ + α), (A5)

where χ = (cos2 φ + h2 sin2 φ)1/2, χ cos α = cos φ, and χ sin α = h sin φ . Hence, we have

I1 = δij e−iτkaχ sin θ sin(q·y+ψ+α). (A6)

First we average over ψ . Since ψ goes over all the possible phases, on averaging we get

I1 = δij

∫ 2π

0
e−i(τkaχ sin θ) sin ζ dζ

2π
= δij J0(τakχ sin θ ), (A7)

where we have used the following integral representation of the Bessel function of the first kind.∫ π

0
eiβ cos x cos(nx)dx = inπJn(β). (A8)

We next average over the direction of q. We keep k fixed (say, along the z direction) and vary q about k over all the solid angles.

I1 = δij

∫ π

0

∫ 2π

0
J0(τakχ sin θ )

sin θdθdφ̃

4π
= δij

2

∫ π

0
J0(τakχ sin θ ) sin θdθ

= δij

∫ π
2

0
J0(τakχ cos θ ) cos θdθ = δij

sin(τakχ )

τakχ
. (A9)

Lastly we average over the direction of a. Since a can point in any direction in the plane perpendicular to q, we average over the
angle φ. We get

I1 = δij g0(τak,h) , where g0(s,h) = sin(sχ )

sχ
, (A10)
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where the overhead bar now denotes the ensemble average over the random variable φ. We proceed to the remaining term of
Gij (k) in Eq. (A1):

I2 = [aiqj τ cos(q · y + ψ) − biqjhτ sin(q · y + ψ)]e−ik·(aτ sin(q·y+ψ)+bτh cos(q·y+ψ)). (A11)

We proceed in a similar way as above. We define slightly different parameters. The argument of the exponential is now written as

−iτka sin θ [cos φ sin(q · y + ψ) + h sin φ cos(q · y + ψ)] = iτkaχ sin θ cos(q · y + ψ − α), (A12)

where χ = (cos2 φ + h2 sin2 φ)1/2, χ sin α = − cos φ, and χ cos α = −h sin φ . Therefore we have

I2 = [aiqj τ cos(q · y + ψ) − biqjhτ sin(q · y + ψ)]eiτkaχ sin θ cos(q·y+ψ−α). (A13)

First we average over ψ . Since ψ goes over all the possible phases, we write

I2 =
∫ 2π

0
ei(τkaχ sin θ) cos ζ [aiqj τ cos(ζ + α) − biqjhτ sin(ζ + α)]

dζ

2π
. (A14)

Expanding cos(ζ + α) and sin(ζ + α), and keeping only the even terms under integration, we get

I2 =
∫ 2π

0
ei(τkaχ sin θ) cos ζ [aiqj τ cos α cos ζ − biqjhτ sin α cos ζ ]

dζ

2π
= iτ [aiqj cos α − biqjh sin α]J1(τakχ sin θ )

= − ihτqj

χak sin θ
[ai(k · b) − bi(k · a)] J1(τakχ sin θ ), (A15)

where we have used Eq. (A8) to arrive at the second expression and Eq. (A3) to obtain the last expression. This can be further
simplified as

qj [ai(k · b) − bi(k · a)] = qj [k × (a × b)]i = qj

[
k × a2q̂

]
i
= a2qεimnkmq̂nq̂j . (A16)

We next average over the direction of q. We keep k fixed along the z direction and vary q about k over all the solid angle, then
we can write q̂ = sin θ cos φ̃ î + sin θ sin φ̃ ĵ + cos θ k̂,

I2 = −
∫ π

0

∫ 2π

0

ihτ

χak sin θ
[a2qεimnkmq̂nq̂j ]J1(τakχ sin θ )

sin θdθdφ̃

4π
. (A17)

The φ̃ dependence comes only through q̂nq̂j , hence we integrate it first over φ̃. Note from Eq. (A16) that the z component of q̂n

does not contribute to the integral in Eq. (A17). Then we get for the x, y components of q̂n, q̂j ,
∫ 2π

0 q̂nq̂j
dφ̃

2π
= δnj

2 sin2 θ . Thus,

−I2 =
∫ π

0

ihτ

χak sin θ
[a2qεi3j k3] sin2 θJ1(τakχ sin θ )

sin θdθ

4
= ihτaqεi3j k3

χ2k

∫ π

0
( sin θJ1(τakχ sin θ ))

sin θdθ

2

= ihτaqεi3j k3

χ2k

∫ π

0

[
− d

d(τakχ )
J0(τakχ sin θ )

]
sin θdθ

2
= ihτaqεij3k3

χ2k

d

d(τakχ )

∫ π

0
J0(τakχ sin θ )

sin θdθ

2

= ihτaqεij3k3

χ2k

d

d(τakχ )

[
sin(τakχ )

τakχ

]
. (A18)

Lastly we average over the direction of a. Since a can point in any direction in the plane perpendicular to q, we average over the
angle φ. We then get

I2 = ihτaqεij3k3

2k
g1(τak,h) , with g1(s,h) = 1

χ

(
sin(sχ )

(sχ )2
− cos(sχ )

sχ

)
, (A19)

where the overhead bar now denotes the ensemble average over the random variable φ.
Combining the results for I1 and I2, the response tensor is obtained to be

Gij (k) = δij g0(τak,h) + ihτaqεijmkm

2k
g1(τak,h). (A20)

APPENDIX B: FORCED OVERDAMPED SHEARING WAVE

The forced, damped Euler equation with a background linear shear is (in this appendix we use v instead of uturb for brevity) as
follows: (

∂

∂t
+ Sx1

∂

∂x2

)
v + Sv1e2 + (v · ∇) v = −∇p − v

τd
+ f, (B1)

where τd is a given damping time, and f(x,t) is the external forcing which is assumed to satisfy ∇ · f = 0. The pressure,
p(x,t), is determined by requiring that Eq. (B1) preserve the incompressibility of the flow. We consider external forcing of
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the form,

f = Re {F(t) exp [iQ(t) · x]} ; Q(t) · F(t) = 0, (B2)

which excites a single plane shearing wave:

v = Re {W(t) exp [iQ(t) · x]} , p = Re {P (t) exp [iQ(t) · x]} . (B3)

Incompressibility (i.e., ∇ · v = 0) requires that

Q · W = 0, (B4)

which makes the nonlinear term, (v · ∇) v, vanish because

(W · ∇) exp [±iQ(t) · x] = ± (iQ · W) exp [iQ(t) · x] = 0. (B5)

When Eq. (B3) are substituted in Eq. (B1), we obtain
dW
dt

+ iW
(

x · dQ
dt

+ Sx1Q2

)
+ SW1e2 = −iQP − W

τd
+ F. (B6)

Requiring that the x dependent terms inside the parentheses vanish implies that Q(t) must be of the form,

Q1 = q1 − Stq2; Q2 = q2; Q3 = q3, (B7)

where q = (q1,q2,q3) is a constant wave vector. Then W(t) satisfies
dW
dt

+ SW1e2 = −iQP − W
τd

+ F, (B8)

where Q2 = Q · Q = (q1 − Stq2)2 + q2
2 + q2

3 . We consider the overdamped case when |dW/dt | � |W/τd|, so we drop the
time derivative term on the left side of Eq. (B8). P can now be eliminated by taking the dot product of Eq. (B8) with Q and using
Q · W = 0. Then W(t) satisfies

SW1e2 = SW1

(
Q2Q
Q2

)
− W

τd
+ F. (B9)

The solution is

W1 = τdF1 + Sτd

[
Q1Q2

Q2 − SτdQ1Q2

]
τdF1, W2 = τdF2 − Sτd

[
Q2

1 + Q2
3

Q2 − SτdQ1Q2

]
τdF1,

(B10)

W2 = τdF3 + Sτd

[
Q2Q3

Q2 − SτdQ1Q2

]
τdF1.

Using Q · F = 0, it can be verified that Q · W = 0. The above solution for W is valid for quite arbitrary forms of the forcing.
Now we make a specific choice for F(t):

τdF1 = G1; τdF2 = G2 + StG1; τdF3 = G3, (B11)

where G = (G1,G2,G3) is a constant complex vector that is orthogonal to q (i.e., q · G = 0 ). Then the dependence of W on
time t is given in explicit form as

W1 = G1 + Sτd

[
Q1Q2

Q2 − SτdQ1Q2

]
G1, W2 = G2 + StG1 − Sτd

[
Q2

1 + Q2
3

Q2 − SτdQ1Q2

]
G1,

(B12)

W2 = G3 + Sτd

[
Q2Q3

Q2 − SτdQ1Q2

]
G1.

We now write the velocity field in explicit real form, using arguments familiar from the discussion of the polarization of
monochromatic plane electromagnetic waves. G is a complex vector. If its square, G2 = G · G, has argument equal to 2ψ , then
we may write G = E exp [iψ] with q · E = 0 , where E is a complex vector whose square, E2 = E · E, is a real quantity. We
now express E in explicit form as E = (hc − ia) with q · a = 0 and q · c = 0 , where c and a are real vectors orthogonal to q,
and h is a real number; we can choose |c| = |a| and −1 � h � 1 . Since E2 = (

h2c2 − a2 − 2ih c · a
)

has been chosen to be a
real quantity, we must have c · a = 0. In other words, a and c are mutually orthogonal vectors lying in the plane perpendicular
to q. Then the velocity field of the sheared plane wave of Eq. (B3) is given by

v(x,t) = A(t,q) sin [Q(t) · x + ψ] + C(t,q) cos [Q(t) · x + ψ] , where

A1,3 = a1,3 + Sτda1

[
Q1,3Q2

Q2 − SτdQ1Q2

]
, A2 = a2 + Sta1 − Sτda1

[
Q2

1 + Q2
3

Q2 − SτdQ1Q2

]
;

C1,3 = h

{
c1,3 + Sτdc1

[
Q1,3Q2

Q2 − SτdQ1Q2

]}
, C2 = h

{
c2 + Stc1 − Sτdc1

[
Q2

1 + Q2
3

Q2 − SτdQ1Q2

]}
,

where Q1 = q1 − Stq2, Q2 = q2, Q3 = q3; q · a = 0, c = q̂ × a, − 1 � h � 1. (B13)
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