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Aharon-Vaidman quantum game with a Young-type photonic qutrit

Piotr Kolenderski,1,2,* Urbasi Sinha,1,3 Li Youning,4 Tong Zhao,1 Matthew Volpini,1 Adán Cabello,5,6

Raymond Laflamme,1 and Thomas Jennewein1

1Institute for Quantum Computing, University of Waterloo, 200 University Ave. West, Waterloo, Ontario, Canada N2L 3G1
2Institute of Physics, Nicolaus Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland
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The Aharon-Vaidman (AV) game exemplifies the advantage of using simple quantum systems to outperform
classical strategies. We present an experimental test of this advantage by using a three-state quantum system
(qutrit) encoded in a spatial mode of a single photon passing through three slits. The preparation of a particular
state is controlled as the photon propagates through the slits by varying the number of open slits and their
respective phases. The measurements are achieved by placing detectors in the specific positions in the near
and far fields after the slits. This set of tools allowed us to perform tomographic reconstructions of generalized
qutrit states, and to implement the quantum version of the AV game with compelling evidence of the quantum
advantage.
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The Aharon-Vaidman (AV) game [1] is a conceptually
simple example of how quantum mechanics can be both
beneficial and counterintuitive. In the classical analog, Alice
puts a particle in one of three boxes such that when Bob,
who in next turn is allowed to check only two of them, is
most likely to find it. Alice, who can either accept or not
accept a particular game trial, wins whenever she accepts a
trial in which Bob has also discovered the particle. Hence, it is
obvious that Alice will not use the box that Bob does not have
access to and therefore her chance to win is 50%. However, the
result of the game can be totally different when the particle is
described by laws of quantum mechanics and Alice prepares it
in equal superposition of being in each of the boxes. Then, her
chance to win can reach 100% if she takes a specific projective
measurement after Bob’s turn.

In this article, we present an experimental realization of
the AV quantum game using a single photon as the incident
particle and a system of three slits in lieu of the boxes. The
original three-box paradox was proposed by Aharonov and
Vaidman in Ref. [2]. The quantum game [1] was conceived
much later and exhibits a clear quantum advantage if the game
rules are followed with care. The setup comprising of a single-
photon source (heralded parametric downconversion source or
attenuated laser), triple slit [3], and single-photon detectors
allowed us to perform optimized quantum tomography to
characterize the qutrit states and to play the game correctly
in the next step. Some quantum communication protocols that
can be considered as quantum games such as coin tossing [4]
and the Byzantine Agreement [5–7] have been demonstrated
previously. However, the AV game is a specific example of
a quantum game where one can demonstrate the quantum
advantage playing the game with a single particle at a time
in contrast to the entanglement-based games [4,5].
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We will begin with the introduction of the concept of
the qutrit encoded in spatial degrees of freedom of a single
photon [8–10]. In the next step, we discuss the AV quantum
game [1] and its experimental implementation. Presented
implementation of the game is conceptually similar to the
Young experiment, where multilevel quantum systems can
be encoded in paths related to a photon passing through
the slits. Recently, this type of quantum state encoding has
drawn much interest. In particular, Taguchi et al. used the
parametric downconversion source to prepare two qubit [9]
and two qutrit [10] states. In turn, Lima et al. in Ref. [11]
demonstrated the seven- and eight-dimensional state encoding.
Alternative approaches resort to state encoding in various
hybrid ways such as energy time [12] or polarization-orbital
angular momentum [13]. Those implementations were useful
to perform a Bell test for energy-time entangled qutrits [12] and
to demonstrate the optimal cloning strategy [14], respectively.
More recently, the noncontextuality of quantum mechanics
was tested based on a similar scheme [15,16].

The Young-type qutrit is realized using triple slits and
a single-photon source (SPS). The photon’s initial spatial
mode is Gaussian with the characteristic diameter much
larger than the size of the slits and with the peak intensity
coincident with the slit area (see inset in Fig. 1). Under
these conditions, one can consider the state of a photon of
wavelength λ in the position r = (x,z) to be a plane wave
exp(ikr) propagating the in direction given by the wave
vector k = (kx,kz) of length k = 2π/λ. Moreover, the photon’s
initial propagation direction is assumed to be paraxial and
the distance between the slits larger than their characteristics
widths. This allows us to approximate the phase to be constant
at each of the slits. Hence, the spatial wave function of
the photon passing through the nth slit can be written as
|n〉 = ∫ ∞

−∞ dx Sn(x) exp(ikr) |x〉, where n = 0,1,2 and Sn(x)
stands for the transmission probability amplitude, which we
assume is constant on the slit and 0 elsewhere. This means
that the total wave function of the photon passing through
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FIG. 1. (Color online) Experimental setup. The AL-SPS com-
prises the HeNe laser (λ = 632 nm), laser power controller (LPC),
and neutral filter (NF). The PDC-SPS (λ = 810 nm) is based on the
PPKTP crystal pumped by the blue continuous-wave laser. Heralding
photon is detected by detector D3. The single photons from both
sources are coupled to single-mode fibers (SMF). A qutrit is prepared
using the blocking mask and three slits. Next, the measurement
part of the setup comprises a 2-in-diameter f = 150 mm lens (L3),
2-in-diameter pellicle beamsplitter (BS), color filters (F), and two
detection systems for far (D1) and near field (D2), each comprised
of multimode fiber mounted on a precise motorized stage (Thorlabs
ZST13) and a Perkin Elemer avalanche photodiode.

three slits comprises three orthogonal contributions. Each of
them can be written in momentum representation as [10]
|n〉 = ∫

dkxS̃n(x)|kx〉, where S̃n(x) = √
a

2π
sinc( kxa

2 )e−inkxd , a

is the slit width, and d is the distance between the slits. These
definitions allow us to write the state of the transmitted photon
as |ψ〉 = 1√

3
(s1 |0〉 + s2 |1〉 + s3 |2〉), which accounts for the

basic definition of a Young-type qutrit. Here, amplitudes s1,
s2, and s3 depend on the transmission functions Sn(x).

The projective measurements are determined by the laws
of propagation and the geometry of the setup. For simplicity,
we chose to detect in the positions corresponding to near and
far fields. This can be done using a lens and placing a detector
in the focal plane (far field) and in the plane where the image
of the slits is formed (near field). In the near field, if the active
area of the detector is larger than the image of each slit, the
probability to detect a photon prepared in the state |ψ〉 as
defined above in the position corresponding to the nth slit
image is proportional to |sn|2. Hence, it is easy to see that each
of the three positions can be associated with the measurement
operator defined as Mnf(n) = μnf |n〉 〈n| , where μnf is the
normalization factor to be specified later and the subscript nf
stands for near field.

The interpretation of measurements in the far field needs
more attention. A detection in the position x in the focal
plane corresponds to the projector onto |kx〉, which is related
to the plane wave propagating in the direction given by the
transverse wave vector kx = xk/f . Hence, the probability
to detect a photon | 〈ψ |kx〉 |2 can be seen as proportional to
|√ a

2π
sinc( 1

2kxa) 〈φ(kxd)|ψ〉 |2, where we introduced |φ(θ )〉 =
|0〉 + exp(iθ ) |1〉 + exp(i2θ ) |2〉. Based on this observation,
we can define the measurement operator in the far field as
Mff(θ ) = μff(θ ) |φ(θ )〉 〈φ(θ )| , where μff(θ ) is the normaliza-
tion factor, the phase parameter reads as θ = 2πxd/λf , and
the subscript ff stands for far field.

The measurement operators Mnf and Mff can be used to
construct rank-7 positive operator value measure (POVM) set
allowing one for reconstruction of arbitrary pure state. For
this reason, we take three near-field measurements Mnf(n),
n = 0,1,2, and six far-field operators Mff(θ ) corresponding
to θ = {0,π,2π/3,−2π/3,5π/3,−5π/3}. This specific choice
requires renormalization, which can be done when 6μff (θ ) =
μnf = 1/2.

The ability to encode and measure qutrit states can be
utilized to demonstrate Aharon and Vaidman’s quantum game
[1]. A classical strategy allows Alice for at most 50% chance to
win. On the other hand, when she uses quantum particles, her
chance rises above this limit and ideally reaches 100%, when
she chooses her initial state to be |ψA〉 = 1√

3
(|0〉 + |1〉 + |2〉)

in the first turn of the game. In the second turn, assuming Bob
has access to slits (boxes) 0 and 2, if he decides to check if the
photon is passing though slit number 0, he does a projective
measurement on the state |0〉. If he finds the particle, then his
state becomes |ψ (p)

B 〉 = |0〉, otherwise |ψ (n)
B 〉 = 1√

2
(|1〉 + |2〉).

The photon detection results in losing the photon from the
system, otherwise the photon goes through opened slits. This
can be simulated by blocking slit number 0, which will allow
us to simulate all those cases when Bob’s detector did not click.
On the other hand, the case of finding a photon in slit number
0 can be simulated by closing all others. Next, in the third
turn of the game, Alice makes a projective measurement on
|ψAm〉 = 1√

3
(|0〉 − |1〉 + |2〉). This can be done by placing the

detector D1 in the far-field plane in the position corresponding
to POVM element Mff(θ = π ). If Alice detects a particle, she
accepts the game trial, and if she does not, she cancels it. Now,
it is clear that Alice can not lose as whenever Bob does not
detect a photon, the state after the second turn is |ψ (n)

B 〉 and
Alice’s detector never clicks as | 〈ψ (n)

B |ψAm〉 |2 = 0. If Bob
found the particle in a slit 0 and tried to leave no trace of that,
Alice has | 〈ψ (p)

B |ψAm〉 |2 = 1/3 chance to detect it after that.
The same reasoning holds if Bob chooses the slit number 2.

The experimental setup is depicted in Fig. 1. We used two
single-photon sources: heralded parametric downconversion
(PDC) source based on periodically polled potassium titanyl
phosphate (PPKTP) crystal (PDC-SPS) and attenuated HeNe
laser (AL-SPS). In order to fulfill the assumption of the
plane-wave incidence at the slits, we used single-mode fibers
(SMFs) and optics to set the characteristic spatial mode
diameter to approximately 3 mm. We control the state of the
qutrit using blocking mask (B) to change the configuration
of opened slits and tilting slightly the mirror (M) to change
the incidence angle α. Under these simplifying assumptions,
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TABLE I. Photon-count probabilities were measured in the
positions related to projective measurements Mff and Mnf for three
typical states: |ψ1〉 = |0〉 + |1〉 + |2〉, |ψ2〉 = |1〉 + |2〉, |ψ3〉 = |1〉 +
|2〉 exp(1.6i).

Meas. setting/Input state |ψ1〉 |ψ2〉 |ψ3〉
Mff (−5π/3) 0.097(1) 0.107(1) 0.028(1)
Mff (−2π/3) 0.0017(1) 0.056(1) 0.034(1)
Mff (0) 0.259(1) 0.177(1) 0.176(1)
Mff (2π/3) 0.0014(1) 0.040(1) 0.049(1)
Mff (π ) 0.031(1) 0.0010(1) 0.178 (1)
Mff (5π/3) 0.108(2) 0.117(2) 0.040(1)
Mnf(0) 0.167(1) 0.0027(1) 0.0030(1)
Mnf(1) 0.167(1) 0.260(1) 0.258(1)
Mnf(2) 0.165(1) 0.237(1) 0.240(1)

the experimentally possible states are in the following
form: |ψ〉 = (|0〉 + eikd sin α |1〉 + e2ikd sin α |2〉)/√3. The far-
and near-field measurements were implemented by photon
counting in the transverse planes at distances of 150 and
326 mm, respectively. Large 2-in pellicle beamsplitter (BS)
was introduced to reduce the disturbance of the setup while
changing the planes of detection. Each detector system (D1,
D2) was comprised of a multimode fiber mounted on precise
motorized stage and Perkin Elemer avalanche photodiode.
Step motors were used to control the transverse position of
the fiber with an accuracy of 1 μm. Counts were registered
by the field programmable gate array (FPGA) logic system.

Before simulating the AV game and characterizing prepared
states, the setup was calibrated. It was done by opening all
slits and setting the initial direction of photon propagation
to α = 0, which corresponded to preparing the state (|0〉 +
|1〉 + |2〉)/√3. Next, we measured the photon count rates
as a function of the detector position in far- and near-field
planes. The results together with the best fits are presented
as insets in Fig. 1. Blue (online) dots represent experimental
data, while the continuous line is a theoretical fit. The positions
corresponding to the far- (near-) field part of POVM are marked
with bigger red dots on inset next to detector D1 (D2). Note that
the smoothed shape of the slits image (near field) is attributed
to the finite size of a detector.

We characterized the prepared qutrit, which has been done
resorting to the POVM set described earlier and quantum-state
tomography methods. For this reason, the photon counts
were measured by placing detectors in positions related to
measurement operators Mff and Mnf . Those positions are
marked with red dots on inset plots in Fig. 1. In order to
justify the results of the quantum game, we took three typical
states: |ψ1〉 = (|0〉 + |1〉 + |2〉)/√3, |ψ2〉 = (|1〉 + |2〉)/√2,
|ψ3〉 = [|1〉 + |2〉 exp(iβ)]/

√
2. For the first state, all slits were

open, for the second one a slit number 0 was closed, and
for the last state the propagation direction of the photon was
modified in order to introduce a phase β. These measurements
were done using AL-SPS; its outcomes are gathered in
Table I and the results of tomographic reconstruction using
the maximal likelihood method are depicted in Fig. 2. It is
seen in Figs. 2(a) and 2(b) that for the states |ψ1〉 and |ψ2〉,
the real part dominates as there is no phase present. On the
other hand, by changing the initial photon direction α, it was

FIG. 2. (Color online) States reconstructed based on experimental
data shown in Table I. Left (right) column depicts real (imaginary)
part of the reconstructed density matrix. The reconstructed phase
related to state |ψ3〉 was β = 1.6.

possible to introduce the phase as is apparent in Fig. 2(c) as
the imaginary bars are significant. Ideally, the imaginary part
of the density matrix for states |ψ1〉 and |ψ2〉 is zero. Here, the
nonzero height is attributed to the noise originating from dark
counts, stray light, and imperfect positioning.

For the quantum game, the qutrit was prepared in |ψA〉 =
|ψ1〉, which was characterized before [see Fig. 2(a)]. We
simulated all possible scenarios of Bob’s measurement using
PDC-SPS and AL-SPS. The measured photon counts are
presented in the table as an inset of Fig. 3. In the perfect
case, one expects no counts when two slits are open and Alice
sets her detector in the far-field plane in the position related
to Mff(θ = π ). This corresponds to the first local maximum
marked with red dot on plot related to far field inserted in Fig. 1.
Here, the measured counts are attributed to the finite size of the
multimode fiber core, dark counts, and stray light. We estimate
that the former two contribute approximately 3 coincidence
counts per 2 s. Despite the background noise from stray light
and dark counts, and the slight nonideal properties of Alice’s
measurements, she won in 87% of the accepted trials using
PDC-SPS and in 82% of the accepted trials using AL-SPS.
Note that the overall efficiency of the game, which is due to
experimental deficiencies including the photon collection, the
detection efficiencies, and number of Alice’s detectors, will
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FIG. 3. (Color online) Experimental and theoretical, best clas-
sical and best quantum winning trials in the quantum game. The
simulation shows the quantum advantage over classical limit of 50%
as Alice wins in 82% (87%) of accepted game trials when using
AL-SPS (PDC-SPS). The inset table shows the number of photon
counts measured by Alice for each of the possible actions by Bob and
his measurement outcome. For AL-SPS (PDC-SPS) photons were
collected for 2 s (1 min, coincidence window 1 ns).

only limit the number of accepted trials, but not the percentage
of winning trials.

In conclusion, we experimentally presented a simple way to
implement a qutrit system into a single photon’s spatial degree

of freedom, which allowed us to perform state tomography and
simulate the AV quantum game. The encoding part resorted
to the Young-type experiment, where a photon passes through
three slits, which defined its state. By controlling an initial
propagation direction of a photon and configuration of the
slits, it was possible to encode a certain class of states. Our
state reconstruction technique was based on a small number
of measurements over a short period of time, which makes our
method stable and time efficient in contrast to Ref. [10].
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