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The loss rate of linear momentum from a binary system composed of compact objects (radially falling

towards each other under mutual gravitational influence) has been investigated using the multipolar post-

Minkowskian approach. The 2.5PN accurate analytical formula for the linear momentum flux is provided,

in terms of the separation of the two objects, in harmonic coordinates, both for a finite and an infinite

initial separation. The 2.5PN formulas for the linear momentum flux are finally used to estimate the recoil

velocity accumulated during a premerger phase of the binary evolution.
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I. INTRODUCTION

Gravitational waves from coalescing binary systems
carry away energy and angular momentum of the source.
For asymmetric binaries (composed of objects of unequal
masses and/or with nonzero spins), there will also be a net
loss of the linear momentum from the source. As a con-
sequence, the center of mass of the source will receive a
recoil in the opposite direction. This recoil accumulates
until the two objects of the binary merge to form a single
object and the source stops losing linear momentum. At
this juncture, the remnant of the coalesced binary moves
with a nonzero kick speed along a straight line path in
space. For a more detailed discussion on the phenomenon
of gravitational wave recoil, see Ref. [1]. The phenomenon
of gravitational wave recoil is extremely important in
various astrophysical contexts such as the formation and
growth of supermassive black holes at the centers of gal-
axies. If the recoil velocity of the remnant of the coalesced
binary is more than its escape velocity from the host, then
the host will not be able to retain the remnant and models
that grow the super massive black holes via successive
mergers from other black holes will not be favored [2].
An accurate estimate for the recoil velocities associated
with compact binary mergers can be used to address issues
like observations of supermassive black holes at the centers
of most of the galaxies in the local universe [3] or their
apparent absence in globular clusters and dwarf galaxies or
to predict the population of compact binary systems in
globular clusters.

The importance of this phenomenon has been realized
widely in the astrophysics community, and there have been
numerous analytical or semianalytical [4–16] and numeri-
cal studies [17–24] to compute this effect. All these studies
compute the recoil effects due to the loss of linear momen-
tum from compact binary systems (which either have
mass asymmetry and/or have nonzero spin) moving in

quasi-Keplerian or in quasicircular orbits. Numerical simu-
lations for nonspinning black hole binaries moving in
quasicircular orbit [17–20] have shown that the recoil
velocity can be of the order of a few hundred km s�1 while
for the spinning case [21–24] the recoil velocity estimates
can reach up to a few thousand km s�1.
Although head-on infall and the subsequent merger of

two compact objects due to gravitational wave radiation
reaction effects would be an insignificant astrophysical
possibility, it has been studied extensively using various
analytical and numerical approaches. The motivation be-
hind such a study is manyfold. To start with, due to the
axial symmetry of the system, the two-dimensional prob-
lem of compact binary motion becomes one dimensional
and hence the treatment becomes simple. This also can act
as a toy problem for comparing various analytical and
numerical approaches in their most simplified versions.
In addition to this, head-on collision can be considered
an approximation to the merger phase of the inspiralling
compact binary evolution. Finally, as pointed out in [25],
head-on collision studies can be used to remove the un-
certainties in the direction of the recoil of the remnant.
One of the earliest attempts to compute recoil effects due

to the radial plunge of a test particle into a Schwarzschild
black hole is due to Nakamura and Haugan [26] using the
black hole perturbation theory. Using a close limit approxi-
mation method, Andrade and Price [27] first computed the
recoil effects due to a head-on collision of two black holes.
On the numerical relativity front, Anninos and Brandt [28]
computed the recoil velocity due to a head-on collision of
two unequal mass black holes. Some other (relatively
recent) analytical and numerical works [25,29,30] compute
the recoil effects taking into account the asymmetry in
mass and/or in the spin. As far as post-Newtonian (PN)
calculations are concerned, although, the recoil effects in
a head-on collision case have not been investigated explic-
itly, one can use expressions for the linear momentum flux
from nonspinning inspiralling compact binary systems
moving in general orbits [4,5,8] to write equivalent*chandra@rri.res.in
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expressions for the head-on case by using the following
transformations1 (as suggested in [31,32]):

x ¼ z n̂; v¼ _z n̂; r¼ z; v¼ _r¼ _z: (1.1)

Here, z is the separation between the two objects (under
radial infall) at a given instant and _z is the first time
derivative of z, giving the relative speed of objects at that
instant. The most recent related PN work [8] gives 2PN
accurate expressions for the instantaneous part of the linear
momentum flux and hence one can use the above trans-
formations to write the 2PN expression for the instanta-
neous part of the linear momentum flux in terms of z and _z.
In the present work, we not only calculate the instanta-
neous part of the flux explicitly for the head-on case to a
higher order (2.5PN as compared to previous 2PN calcu-
lations) but also compute additional terms contributing at
the 1.5PN order and 2.5PN order (tail contribution) whose
nature will be discussed in more detail in the next section.

In the present work, we compute the 2.5PN accurate
analytical expressions for the linear momentum flux, in
harmonic coordinates, emitted during the radial infall of
two nonspinning compact objects under mutual gravita-
tional influence. We study the problem for two different
situations based on the initial separation between the two
objects. In the first case we assume that initially the objects
are separated by some finite distance [we call it case (a)]
and in the other case we assume that the initial separation
between them is infinite [we call it case (b)]. Linear
momentum flux as a function of the separation between
the two objects at any instant of time for the two situations,
case (a) and case (b), are given by Eqs. (4.11) and (4.12),
respectively. We use these results to estimate the associated
recoil velocity for the two situations. Since linear momen-
tum flux expression [Eq. (4.11)] involves some integrals
[Eq. (4.6)], which can only be evaluated numerically, it is
not possible to give analytical PN expressions for the
accumulated recoil velocity for case (a) and thus it has
been computed numerically. However, for case (b), a
2.5PN accurate expression for the recoil velocity is given
by Eq. (5.6). A graphical representation of our results has
been given in Figs. 1 and 2. We find that the recoil velocity
is maximum for a binary with �� 0:19 and is of the order
of �1:6 km s�1 if we terminate our calculations when the
two objects are 5 Gm=c2 apart.

This paper is organized in the following manner. In
Sec. II, we first write the general formula for the linear
momentum flux in terms of the radiative multipole mo-
ments of an isolated post-Newtonian source. Next, we use
relations connecting the radiative multipole moments to
the source multipole moments, to express the linear mo-
mentum flux in terms of the source multipole moments.
Section III lists all the inputs that will be required for
computing the 2.5PN accurate analytical expression for

the linear momentum flux. In Sec. IV, we present the
2.5PN accurate analytical results for the linear momentum
flux, in harmonic coordinates, for two situations [case (a)
and case (b)]. In Sec. V, we show how the expressions for
the linear momentum flux can be used to compute the
associated recoil velocity accumulated until any epoch of
the binary’s evolution (within the validity of PN approx-
imations). Finally, in Sec. VI, we summarize our findings
and discuss the numerical estimates for the recoil velocity
in the head-on case.

II. THE POST-NEWTONIAN STRUCTURE
FOR THE FLUX OF LINEAR MOMENTUM:

HEAD-ON CASE

The general formula for linear momentum flux, in the far-
zone of an isolated source, in terms of two sets of symmetric
trace-free radiativemultipole moments (UL, VL) is given in
[33] [see Eq. (4.200) there]. The radiative moments, ULðUÞ
and VLðUÞ, are referred to as mass-type and current-type
radiativemultipolemoments, respectively, and are functions
of the retarded time U in radiative coordinates. Here, L ¼
i1i2 � � � il represents a multi-index comprised of l spatial
indices and U is given by U ¼ T � R=c, where T and R
denote time of observation and the distance to the source in
radiative coordinates, respectively. At 2.5PN order, the ex-
pression for linear momentum flux, in terms of radiative
multipole moments (UL, VL), reads
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(2.1)

In the above, fUð1Þ
L ; Vð1Þ

L g denote the first time derivative
of fUL; VLg, �ijk denotes the Levi-Civita tensor with �123 ¼
þ1, andOð1=c6Þ indicates that corrections of the order 3PN
and above have been neglected in the present analysis. The
expression for linear momentum flux, in terms of radiative
multipole moments (UL, VL), is not very useful unless we
show how these moments are connected to the actual pa-
rameters of the source. Fortunately, the formalism for con-
necting radiative multipole moments to the source-rooted
moments, with the PN accuracy desired in this work, has
already been developed [34] using the multipolar post-
Minkowskian approach [35–40]. In the multipolar post-
Minkowskian formalism, UL and VL are first written in
terms of two sets of multipole moments, ML and SL,
referred to as mass-type and current-type canonical multi-
pole moments, respectively. Next, these canonicalmultipole1These transformations assume the motion along the z axis.
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moments, ML and SL, are written in terms of six sets of
multipole moments, IL, JL, WL, XL, YL, ZL, referred to as
source multipole moments. The multipole moments IL and
JL thoroughly describe the source and are referred to as
mass-type and current-type source multipole moments. The
other four, WL, XL, YL, and ZL are referred to as
gauge moments as they do not play any role in a linearized
theory and only become important at nonlinear level.
Reference [34] explicitly lists all the relations connecting
ðUL; VLÞ to ðML; SLÞ [see Eqs. (5.4)–(5.8) there] and those
connecting ðML; SLÞ to ðIL; � � � ; ZLÞ [see Eqs. (5.9)–(5.11)
there]. Using these relations one can explicitly write expres-
sions for radiative multipole moments ðUL; VLÞ [and hence
the linear momentum flux at 2.5PN order given by Eq. (2.1)]
in terms of source multipole moments ðIL � � �ZLÞ. Before
we express radiative multipole moments in terms of source
multipole moments, we would like to point out the fact that,
for the head-on case, current-type moments (VL or SL or JL)
would not contribute as they are proportional to the angular
momentum, J , which vanishes for the head-on case. This

allows us to rewrite Eq. (2.1), in a form specific to a head-on
case, and it reads

F i
PðUÞ ¼ G
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It is evident from the above that moments appearing at the
lowest order in the PN series need to be known with the
highest PN accuracy, whereas those appearing at a higher
PN order need to be known with smaller PN accuracy, e.g. in
the present case we need Uij and Uijk to 2.5PN accuracy

whereas Uijkl and Uijklm need to be known with 1.5PN and

Newtonian accuracy, respectively. Now, making use of
Eqs. (5.4)–(5.7) and Eqs. (5.9)–(5.11) of [34] and keeping
in mind that current-type moments vanish for the head-on
case, wewriteUL in terms of source multipole moments in a
form specific to the head-on case,
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In the above, angular brackets h i surrounding indices
denote symmetric trace-free projections. Here, M is the
total Arnowitt-Deser-Misner (ADM) mass of the source
and r0 is an arbitrary length scale and provides a scale for
the logarithms in tail integrals. This length scale was first
introduced in the multipolar post-Minkowskian formalism
and enters the relation connecting the retarded time U in
radiative coordinate to the retarded time u ¼ t-r=c in
harmonic coordinates,

U ¼ t� r

c
� 2GM

c3
ln

�
r

r0

�
: (2.4)

In addition, note the presence of two types of terms in the
above expressions: the first kind involves multipole mo-
ments at any given retarded time U and are referred to as
instantaneous terms and the other kind involves integrals

over time, referred to as hereditary terms that require the
knowledge of multipole moments at any time U0 ¼ U�
� before U. Further, the hereditary terms can be split into
two parts: terms with and without logarithmic factors
inside the integrals. Integrals with logarithmic factor are
called tail integrals and those without logarithmic factor
are called memory integrals.
Since the linear momentum flux involves a first time

derivative of mass-type radiative multipole moments

[Eq. (2.2)], first we need to write Uð1Þ
L in terms of source

multipole moments.2 In terms of source multipole

moments, Uð1Þ
L takes the following form:

2The memory integral is a time antiderivative and thus be-
comes instantaneous when we take the time derivative of UL.
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It was argued and then shown in [32] (see Sec. II there for a detailed discussion) that the presence of r0 in the tail integrals
at 1.5PN order is due to our use of the radiative coordinates and will disappear if we insert U [given by Eq. (2.4)] back in
expressions for UL [the same would be true for Uð1Þ

L ]. Upon doing so we can write expressions for Uð1Þ
L in harmonic

coordinates, which now will be free from the arbitrary length scale, r0,
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Equation (2.6) along with Eq. (2.2) gives 2.5PN accurate expression for the linear momentum flux in terms of the source
multipole moments in harmonic coordinates, in a form specific to the head-on case. Next, the resulting expression can be
decomposed into two distinct pieces, namely, the instantaneous contribution and the hereditary contribution, whose nature
has already been discussed above. The total linear momentum flux reads

F i
P ¼ ðF i

PÞinst þ ðF i
PÞhered; (2.7)

where the instantaneous part is given by
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½Wð2ÞIij �Wð1ÞIð1Þij �ð3Þ ¼ ½2Wð4ÞIð1Þij þWð5ÞIij �Wð1ÞIð4Þij � 2Wð2ÞIð3Þij �; (2.9a)
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and the hereditary contribution reads
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Now, if we know how the source multipole moments are
related to the actual source parameters, with PN accuracy
desired in the present work, and we have a suitable
machinery to compute the time derivatives of the source
multipole moments, we can express the linear momentum
flux in terms of actual source parameters. With this
motivation we move to our next section where we shall
provide all necessary inputs that will be needed for com-
puting the 2.5PN linear momentum flux in terms of the
source parameters.

III. INPUTS FOR COMPUTING
THE LINEAR MOMENTUM FLUX:

RADIAL INFALL OF TWO
COMPACT OBJECTS

As discussed in Sec. I, in this paper we aim to study
the loss rate of linear momentum (through outgoing

gravitational waves) during the radial infall of two

compact objects under mutual gravitational influence.

Unlike the case of inspiralling compact binaries in

eccentric or circular orbits (where the motion takes

place in a plane), for the head-on case the problem be-

comes one dimensional and thus the treatment becomes

relatively simpler. For such sources, expressions connect-

ing source multipole moments to the source parameters,

with the PN accuracy desired in the present work,

have been given in Ref. [32].3 Below we list all

source multipole moments (in harmonic coordinates)

needed for computing 2.5PN linear momentum flux in

terms of the separation between the two objects at a given

instant (z) and the first time derivative of z ( _z), giving the

relative speed of objects at that instant (assuming the

motion takes place along the z axis).4 The mass-type

source multipole moments read

Iij ¼ �mz2
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�
; (3.1a)
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Iijkl ¼ �mz4
�
1� 3�þ�
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Iijklm ¼��mz5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p ð1� 2�Þnhijklmi þO
�
1

c2

�
: (3.1d)

3Reference [32] provides a 2PN expression for the mass octupole moment (Iijk); however, for the present purpose we need it with
2.5PN accuracy and this additional 2.5PN correction is new to this paper [see Eq. (3.1b)]. In addition, the moment, Yi, was not needed
for the energy flux calculations at 3PN order but is needed here with Newtonian accuracy and is also new to this work [see Eq. (3.2c)].

4Unlike Ref. [32], where expressions for energy flux are given in standard harmonic (SH), modified harmonic (MH), and ADM
coordinates, here we only make use of harmonic coordinates for all relevant formulas. However, in the appendix we show how one can
obtain equivalent analytical expressions for the linear momentum flux and recoil velocity in ADM coordinates.
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Here, ni is the component of the unit vector n̂ along the
direction of motion and � is our PN parameter and is
related to the separation (z), between the objects at any
instant of time, by � ¼ ðGm=c2zÞ. In addition to this, one
would also need a 1PN accurate expression for mass
monopole (while computing hereditary terms), which can
be identified with the ADM mass (M) of the system and
Newtonian order expressions for gauge moments such as
the one related to monopolar moment W and dipolar
moment Yi and are given as

M ¼ m

�
1� �

2
�

�
þO

�
1

c4

�
; (3.2a)

W ¼ 1

3
�mz _zþO

�
1

c2

�
; (3.2b)

Yi ¼ 1

5
�mz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p �
1

2

Gm

z
� _z2

�
ni þO

�
1

c2

�
: (3.2c)

Having expressed the source multipole moments in terms
of the parameters of the source, now we need to compute
relevant time derivatives of the source multipole moments.
With mass-type source multipole moments and other re-
quired moments given in terms of z and _z, whenever a time
derivative is taken, terms involving €z appear and thus one
would need an expression for €z in terms of z and _z in order
to write the linear momentum flux in terms of just z and _z.
Reference [32] lists a somewhat general 3PN expression
for €z (in terms of z and _z) that can be used to write related
expressions in SH, MH, and ADM coordinates by choosing
appropriate values for the parameters, � and � (see
Sec. IIIA of [32] for details). However, for our present
purpose we just need 2.5PN accurate expressions for the
€z in harmonic coordinates that can be obtained using
� ¼ �1 and � ¼ 0 in Eq. (3.5) of [32], which reads5

€z¼�Gm
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�
: (3.3)

With source multipole moments and €z expressed in terms
of z and _z, we can compute all relevant time derivatives of
source multipole moments appearing in flux formulas
[Eqs. (2.8), (2.9), and (2.10)] and then can use them to
write the linear momentum flux (at least the instantaneous
part of the flux since hereditary contribution shall involve
computing the integrals) in terms of z and _z. However,
following [31,32], wewould like to write the expression for
the linear momentum flux as a function of the separation of
the two objects, alone. Also, we would like to compute the
flux of linear momentum for two different situations: case

(a) the two objects in the problem, initially separated by
some finite distance, start falling radially from the rest,
under mutual gravitational attraction, and case (b) a similar
situation of radial infall but one that assumes infall from
infinity. In order to write the linear momentum flux as a
function of the separation of the two objects, we need an
expression for _z in terms of z, with a certain PN accuracy
(here it should be 2.5PN accurate). In addition to this, _zðzÞ is
also sensitive to the initial conditions [case (a) and case (b)].
At 3PN order, _zðzÞ has been computed in [32] for the two
different situations we want to explore in the present work
and will not be reproduced here. We directly quote the
result. In harmonic coordinates, 2.5PN expression for _z in
case of infall from a finite initial separation (zi) is given as

_z¼� ffiffiffi
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��
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(3.4)

where, s ¼ z=zi < 1.6 A related expression for the case of
infall from infinity can be obtained by setting s ¼ z=zi in
the above and then taking the limit as zi ! 1,

_z ¼ � ffiffiffi
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p
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ffiffiffiffi
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1
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��
: (3.5)

With these inputs we now are in a position to write the
instantaneous part of the linear momentum flux in terms of
the separation between the two objects under radial infall.
However, the computation of hereditary contribution shall
require 1PN expression for the trajectory of the problem.7

The 1PN trajectory for the two situations [case (a) and case
(b)] have been given in [32] [see Eqs. (3.23)–(3.24) and
Eq. (3.26) there] and we simply recall it here (with slight
change in presentation). For case (a),

u ¼ z3=2iffiffiffi
2

p ffiffiffiffi
G

p ffiffiffiffi
m

p
�
gðsÞ � 1

2

Gm

c2zi

�
h0ðsÞ � �

2
h1ðsÞ

��
; (3.6)

where gðsÞ ¼ f1ðsÞ � f2ðsÞ, h0ðsÞ ¼ f1ðsÞ þ 9f2ðsÞ, and
h1ðsÞ ¼ 9f1ðsÞ þ f2ðsÞ with f1ðsÞ ¼

ffiffiffi
s

p ffiffiffiffiffiffiffiffiffiffiffiffi
1� s

p
and

f2ðsÞ ¼ arcsin
ffiffiffi
s

p
. For case (b), the above expression

reduces to

5Note that at 2.5 PN order SH coordinates and MH coordinates
are equivalent.

6Note that, the 2.5PN expression for _z has been obtained by
adding Eqs. (3.8) and (5.3) of [32] (as was suggested there) and
then truncating the resulting expression at the 2.5PN order.

7Note that the leading order hereditary contribution occurs at
1.5PN order and thus computation of hereditary contribution at
2.5PN order shall only require 1PN inputs.
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u ¼ �
ffiffiffi
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z3=2

3
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p ffiffiffiffi
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2

��
: (3.7)

We now have all the inputs to compute both the instanta-
neous and the hereditary contributions to the linear momen-
tum flux, given by Eqs. (2.8), (2.9), and (2.10); these will be
computed in the following section.

IV. THE 2.5PN LINEAR MOMENTUM FLUX

A. The instantaneous contribution

The instantaneous part of the linear momentum flux, in
terms of the source multipole moments and their time
derivatives, is given by Eqs. (2.8) and (2.9). Expressions
for the source multipole moments [Eqs. (3.1) and (3.2)]
and the one for €z [Eq. (3.3)], in terms of z and _z, can be
used to compute the relevant time derivatives of source
multipole moments algebraically as functions of z and _z.

Next, in order to express the source multipole moments
and their relevant time derivatives, solely as functions of
z, we need to make use of the expression for _z given in
Eqs. (3.4) and (3.5), depending upon the case we want to
explore [case (a) or case (b)]. Using source multipole
moments and their relevant time derivatives, solely
expressed as functions of z in Eqs. (2.8) and (2.9), per-
forming contraction of indices, and truncating the result-
ing expression at 2.5PN order, we can write a 2.5PN
accurate expression for the instantaneous part of the linear
momentum flux as a function of separation of the two
objects (z).

1. Case (a): Infall from a finite distance

The 2.5PN accurate expression for the linear momen-
tum flux, for the situation that assumes the radial infall
of two compact objects (initially separated by some finite
distance zi), in terms of our post-Newtonian parameter �,
reads

ðF i
PÞinst¼�32

ffiffiffi
2

p
105

c4

G

ffiffiffiffiffiffiffiffiffiffiffi
1�s

p
�11=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4�

p
�2

�
sþ�

�
�425

36
þ25

9
�þs

�
�71

18
þ277

36
�

�
þs2

�
61

6
�113

12
�

��

þ�2

�
363379

2376
�315163

1584
�þ14635

396
�2þs

�
�99647

594
þ278611

1584
�þ12965

3168
�2

�
þs2

�
�4801

132
þ125819

792
�

�129959

1584
�2

�
þs3

�
7399

264
�12527

132
�þ13873

352
�2

��
þ �5=2�ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffi

1�s
p

�
844

45
�536

15
sþ1252

45
s2�464

45
s3
�
þO

�
1

c6

��
ni;

(4.1)

where � ¼ ðGm=c2zÞ and s ¼ z=zi < 1. In the above,
note that the leading order contribution to the linear
momentum flux is proportional to the parameter s and
hence will vanish for the case where initial separation is
assumed to be infinite (zi ! 1 i.e. s ! 0). This is expected
since the Newtonian order linear momentum flux is pro-
portional to the fourth time derivative of the octupole
moment (Iijk), which vanishes for the case of infall from
infinity.8 However, for the case of infall from some finite
separation, the Ið4Þijk survives [32], and hence we see a
finite Newtonian order contribution to the linear momen-
tum flux.

2. Case (b): Infall from infinity

For the case of infall from infinity the related expression
can be obtained by setting s ¼ z=zi and then taking the
limit as zi ! 1 we obtain
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ffiffiffi
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B. The hereditary contribution

The hereditary contribution to the linear momentum
flux, in terms of time derivatives of the source multipole
moments, is given by Eq. (2.10). Computing hereditary
terms is relatively less easy compared to computing
instantaneous terms since it requires one to compute
integrals over retarded time spanning over the entire
dynamical history of the source. Now, since the leading
order contribution to the linear momentum flux occurs at
relative 1.5PN order, we need to compute the hereditary
effects only with relative 1PN accuracy in order to
achieve relative 2.5PN accuracy for the present purpose.
Moreover, only the first two terms of Eq. (2.10) need to

8This was first noted and discussed in [26] and can be verified
easily.
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be 1PN accurate as the last two already contribute at
2.5PN order. In addition to this, in order to compute
hereditary terms with the accuracy desired in the present
work, essentially we need to evaluate only three inte-
grals, since integrals appearing in the second and
third term of Eq. (2.10) are essentially the same.
Below, we list the three integrals we need to evaluate
(note r ! z)

I1 ¼
Z 1
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d�

�
ln
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Ið7Þijklðu� �Þ: (4.3c)

As discussed above, I1 and I2 need to be 1PN accurate
whereas we need I3 to be only Newtonian accurate.

1. Case (a): Infall from a finite distance

In this case, the integrals listed above can take the
following form [32]:
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Note that for the infall from infinity case, when zi ! 1,
uðziÞ ¼ uð1Þ ¼ �1. With required derivatives of the
source multipole moments expressed in terms of z, and
the 1PN trajectory [given by Eq. (3.6)], we can evaluate
these integrals and they read
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where, Int1ðsÞ, Int20ðsÞ, Int21ðsÞ, Int30ðsÞ, Int31ðsÞ, Int4ðsÞ, Int5ðsÞ, Int6ðsÞ, Int70ðsÞ, Int71ðsÞ, Int80ðsÞ, Int81ðsÞ, Int9ðsÞ,
Int10ðsÞ, and Int11ðsÞ read
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Z 1

s
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�
175� 72y2

y6

�
ln½s�3=2ðgðsÞ � gðyÞÞ�: (4.6o)

Using the above in Eq. (2.10), performing contraction of indices, and truncating the resulting expression at the 2.5PN order,
we can now write the total hereditary contribution at 2.5PN order, solely expressed as a function of our PN parameter �,
and it reads
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Note again that the leading order hereditary contribution
(1.5PN tail) is proportional to various powers of s and
hence would be absent when we specialize our result to
case (b). The reason is similar to the one given at the end
of Sec. IVA 1 to explain the absence of the Newtonian
terms in the instantaneous part for case (b). Observe that
the first two terms of Eq. (2.10) are proportional to the Ið4Þijk

and Ið6Þijk, and these are the ones that should contribute at
the 1.5PN order. But, since the Newtonian order expres-
sion for IðnÞijk vanishes for n > 2, for the case of infall from
infinity, there would be no contribution at the 1.5PN order
for case (b).

2. Case (b): Infall from infinity

Using the argument that the Newtonian order expression

for IðnÞijk vanishes for n > 2 in the case of infall from infinity,

in Eq. (2.10) we can immediately see that only the first two
terms of Eq. (2.10) are going to contribute to the linear
momentum flux. And thus we need to evaluate only the
integrals appearing in these two terms. In this case, the
relevant integrals take the following form:

I1 ¼
Z u
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60
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Ið6Þijkð�Þ: (4.8b)

With required derivatives of the source multipole mo-
ments, expressed in terms of z, and the 1PN trajectory
[given by Eq. (3.7)] we can evaluate these integrals,
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Using the above result in Eq. (2.10), we can write the
complete hereditary contribution at 2.5PN order, as a func-
tion of our PN parameter �,
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C. Total linear momentum flux

1. Case (a): Infall from a finite distance

For this case, Eqs. (4.1) and (4.7) can be added to write the complete 2.5PN accurate expression for the linear momentum
flux, expressed as a function of the parameter �,
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2. Case (b): Infall from infinity

For this case, Eqs. (4.2) and (4.10) can be added to get the complete 2.5PN accurate expression for the linear momentum
flux, in harmonic coordinates, expressed as a function of the parameter �,
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V. RECOIL VELOCITY

With the 2.5PN expression for linear momentum flux
emitted during the radial infall of two compact objects for
two different situations [case (a) and case (b)] in harmonic
coordinates, we can now use the momentum balance argu-
ment to write the loss rate of linear momentum from the
source (through outgoing gravitational waves),

dPi

du
¼ �F i

PðuÞ: (5.1)

The net loss of linear momentum can be obtained by
integrating the balance equation, i.e.

�Pi ¼ �
Z u

�1
du0F i

Pðu0Þ: (5.2)
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A. Case (a): Infall from a finite distance

In this case, Eq. (5.2) can be written as

�Pi ¼ �
Z uðzfÞ

uðziÞ
duF i

PðuÞ ¼ �
Z zf

zi

dz

_zðzÞF
i
PðzÞ

¼ Gm

c2

Z �f

�i

d�

�2 _zð�ÞF
i
Pð�Þ; (5.3)

as � ¼ ðGm=c2zÞ and dz ¼ �ðGm=c2�2Þd�. Here, zf
denotes some final separation where we would like to
terminate our integral. Also, two limiting values of the
parameter, �, are �i ¼ ðGm=c2ziÞ and �f ¼ ðGm=c2zfÞ.

We can use the 2.5PN expressions for the linear momen-
tum flux [Eq. (4.11)] and for _z [Eq. (3.4)] in the above
integral to compute the total loss of linear momentum from
the source during the radial infall from an initial separation
of zi (�i) to a final separation of zf (�f). Because linear

momentum flux given by Eq. (4.11) involves some inte-
grals [Eq. (4.6)] that have to be computed numerically, we
cannot have an analytical expression for the total loss of the
linear momentum from the source and this needs to be
computed numerically. The corresponding recoil velocity
can be computed as

�Vi ¼ �Pi=m; (5.4)

where m is the total mass of the system. We shall present
our estimates for the recoil velocity for the case of infall
from a finite distance in the next section where we will
discuss all our findings.

B. Case (b): Infall from infinity

In this case, the loss of linear momentum can be given by
the integral

�Pi ¼ �
Z uðzfÞ
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The 2.5PN expressions for the linear momentum flux
[Eq. (4.12)] and for _z [Eq. (3.5)] can be used in the above
to compute the total loss in the linear momentum during
the radial infall of the two objects for the case of infall from
infinity. Next, Eq. (5.4) can be used to compute the corre-
sponding expression for the recoil velocity. We find for the
2.5PN recoil velocity, in harmonic coordinates, expressed
in terms of � as

�Vi ¼ 16
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VI. DISCUSSIONS AND CONCLUSIONS

The 2.5PN accurate expressions for the linear momen-
tum flux emitted during the radial infall of two compact
objects for two different situations (infall from some finite
initial separation and infall from infinity), in harmonic
coordinates, expressed in terms of the post-Newtonian
parameter � (related to the separation of the two objects),
has been given by Eqs. (4.11) and (4.12). Next, we use
these expressions to compute the associated recoil velocity
of the source. Equation (5.6) gives the 2.5PN accurate
analytical formula for the recoil velocity accumulated until
any epoch during the binary’s evolution (within the validity
of PN approximations), for the case of infall from infinity,
and can be used to compute related numerical estimates for
the recoil velocity. Because the linear momentum flux
formula [Eq. (4.11)], for the case which assumes the infall
from some finite initial separation, involves some integrals
[Eq. (4.6)] that can only be evaluated numerically, it is not
possible to give analytical PN expressions for the accumu-
lated recoil velocity for this case. Figures 1 and 2 show the
numerical estimates for the recoil velocity accumulated
during the radial infall of two compact objects and we
shall discuss them one by one.
Figure 1 plots recoil velocity as a function of � (left) and

as a function of the parameter �f (right). Here, �f is our

post-Newtonian parameter given by �f ¼ ðGm=c2zfÞ. For
the plots in the left panel of Fig. 1 the value of the
parameter �f has been fixed to 0.2 and then the recoil

velocity has been plotted as a function of � for the range
of � ¼ 0:01 (nearly test particle limit) to � ¼ 0:24 (nearly
symmetric binary). The right panel shows the variations in
recoil velocity estimates as a function of the parameter �f

for a range of values between �f ¼ 0:01 to �f ¼ 0:2, for a

binary with � ¼ 0:2. These plots (both right and left) also
compare the recoil velocity estimates for four different
situations related to the initial separation of the two objects
under the radial infall. The recoil velocity estimates have
been plotted for four different values of the parameter
�i ¼ ðGm=c2ziÞ: �i ¼ 0:01, 0.02, 0.05 and 0.0, which
correspond to the initial separation of 100 Gm=c2,
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50 Gm=c2, 20 Gm=c2, and 1 (infinite initial separation
case), respectively.

Based on the estimates shown in the left panel of Fig. 1,
we find that the recoil velocity is maximum for a binary
with �� 0:19 and is of the order of�1:6 km s�1. Also, the
behavior of the plots is as one would expect: recoil velocity
is maximum for the infinite initial separation case and
estimates become smaller for situations that assume that
infall shall proceed from smaller separations.9 However,
we observe that estimates for the recoil velocity for all four
situations (�i ¼ 0:01, 0.02, 0.05 and 0.0) are of the same
order, indicating that most of the contribution comes from
late stages of the infall.

Although we are not aware of a study that provides
recoil velocity accumulated only during the premerger
phase of a binary under the radial infall, a comparison
with some other analytical or numerical work (which
also involves contributions from the merger phase of the
binary evolution) will be useful. For our purpose (head-on
collision of two nonspinning compact objects), closest
comparisons can be made using the results of [25] (nu-
merical relativity) and of [26] (black hole perturbation
theory). As compared to the recoil velocity estimates of

about 2–5 km s�1 of [25] for a black hole binary (with � ¼
0:24) under radial infall, our estimates using Eq. (5.6)
suggest a recoil velocity of the order of 0:95 km s�1 for
the same system (i.e. with � ¼ 0:24). Reference [26] sug-
gests that the recoil velocity accumulated during the head-
on infall and plunge of a test particle in to a Schwarzschild
black hole is given by �V ¼ 8:73� 10�4�c, which, com-
pared to our estimates of the recoil velocity using the test
particle limit of Eq. (5.6) (�V ¼ 4:06� 10�4�c), is larger
by a factor of 2. The difference between our estimates and
other related estimates is possibly due to the fact that we do
not evolve our system until it merges.
Figure 2 plots the recoil velocity as a function of �. For

all the plots, the value of the parameter �f has been fixed to

0.2. Four panels correspond to the four initial separations
that have been discussed above while describing Fig. 2.
Each panel compares the recoil velocity estimates using
results with different PN accuracy (Newtonian, � � � ,
2.5PN). It should be noted that we are terminating all our
computations at �f ¼ 0:2 (i.e., when the distance between

the two objects is 5 Gm=c2). The reason for this is related
to the validity of our formulas beyond this final separation.
Generally, it is believed that when higher order PN correc-
tions start becoming comparable to the leading order con-
tribution in the series, such a series becomes less reliable.
A few checks with our analytical expressions indicate that
these estimates are reliable for separations larger than
5 Gm=c2 (� ¼ 0:2), and this is why we terminate all our
computations at this value (� ¼ 0:2).
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FIG. 1 (color online). Recoil velocity as a function of the mass parameter � (left) and as a function of the post-Newtonian parameter
�f (right). The parameter, �, is known as symmetric mass ratio of the binary; the parameters �f ¼ ðGm=c2zfÞ and �i ¼ ðGm=c2ziÞ are
the post-Newtonian parameters characterizing the final and initial separation of the two objects, respectively. (Left) Value of the
parameter �f fixed to 0.2, which corresponds to the final separation of 5 Gm=c2 between the two objects, then the recoil velocity as a

function of the parameter �. (Right) Value of the parameter � fixed to 0.2 and recoil velocity as a function of the parameter �f . Both

plots also compare recoil velocity estimates for four different situations based on the binary’s initial separation: �i ¼ 0:01, 0.02, 0.05,
and 0.0 that correspond to the initial separation of the two objects of 100 Gm=c2, 50 Gm=c2, 20 Gm=c2, and 1 (infinite initial
separation case), respectively.

9Note that for finite separation cases (�i ¼ 0:01, 0.02, 0.05),
initially the contribution exceeds as compared to the case of
infinite initial separation (�i ¼ 0:0): this is not surprising since
this contribution comes from the Newtonian terms that are
absent in the infinite initial separation case.
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APPENDIX A: THE 2.5PN LINEAR MOMENTUM
FLUX AND RECOIL VELOCITY IN ADM

COORDINATES

In the above, we have given the 2.5PN accurate analyti-
cal expression for the linear momentum flux due to radial
infall of two compact objects under mutual gravitational
influence, in harmonic coordinates. In this section we shall
provide equivalent formulas in ADM coordinates.

1. Case (a): Infall from a finite distance

The 2.5PN accurate analytical expression for the linear
momentum flux in ADM coordinates can be obtained using
the following relation:

ðF i
PÞADM ¼ F i

P þ �ðHar!ADMÞF i
P: (A1)

Here, F i
P is given by Eq. (4.11) and �ðHar!ADMÞF i

P

reads

�ðHar!ADMÞF i
P ¼ � 32
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2. Case (b): Infall from infinity

In this case, the expression for the linear momentum flux
in ADM coordinates can be obtained using Eq. (A1), with
F i

P given by Eq. (4.12) and �ðHar!ADMÞF i
P as
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FIG. 2 (color online). Recoil velocity as a function of the parameter �. For all plots, the value of the parameter �f has been fixed to 0.2
(which corresponds to the final separation of 5 Gm=c2 between the two objects under the radial infall). Plots in different panels also
compare the results with different PN accuracy for four different situations: �i ¼ 0:01, 0.02, 0.05, and 0.0 that correspond to the initial
separation (of the two objects in the problem) of 100 Gm=c2, 50 Gm=c2, 20 Gm=c2, and1 (infinite initial separation case), respectively.
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In this case we can also write the recoil velocity expression
in ADM coordinates by using the following relation:

ð�ViÞADM ¼ �Vi þ �ðHar!ADMÞ�Vi: (A4)

Here, �Vi is given by Eq. (5.6) and �ðHar!ADMÞ�Vi is

given by
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Rev. D 69, 124007 (2004).
[40] L. Blanchet, T. Damour, G. Esposito-Farèse, and B. R.
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