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Abstract. The possibility of hrlrlng the repulsive energy in the Born model of 
binary ionic crystals as a sum of two separate contributions from the two ions has 
been investigated. Such an approach leads to two identities, one connecting the 
lattice spacings of a family of ionic ctystals and the other conncctii~g thcir comprcs- 
sibilities. These identities harc heen tested on the alkali halidc crystals over a range 
of pressures. The agreement 1s found to be quite satisfactory. Some fu~thcr pie- 
dictions with respect to crystals which exist as two polymo~phs have also been ~cstcd. 
In all cases, the deviations o i  the experimental valucs from the cxact identities can 
be traccdto the fact that brcond neighbour repulsions in the crystals have been 
neglected. It is henc: concluded that individual co~npressive energies for ions in 
ionic crystals is a very attractive possibility. 

Keywords. Alkali halides; atomic compression ; Born model ; ionic crystals ; 
repulsive energy. 

Introduction 

The introduction of concepts like ionic radius, ionic polarisability, etc., that are 
cicpclldent on individual ions has proved of immense value in the developlnent 
of the theory of ionic crystals. In this context it seems relevant to ask whether 
o~ i e  could extend these ideas to more complicated properties like compressibility. 
'Cl~e concept of ionic compressibility would' require two postulates: (a) the inter- 
I]:.! c>rrtrgy of an ion is a function of its size, and (6) the repirlsive encrgy 
In ; t n  ionic crystal arises from the increase in the internal energy of the 
ions when they are compressed.. The repulsive energy would then have to be 
written as the sum of contributions from the two ions as in eq. (1) below. This 
is a classical picture which would not get theoretical support from the quantum 
mechanical approach where repulsion is caused by the overlap of ncighbouring 
electron clouds. But then one must note that even the concept of the ionic. radius 
for which there is definite experimental evidence cannot really be justified from 
the overlap theory. The full quantum mechanical treatment, in fact, Ixds to 
very messy numerical computation which has only been carried out approximately 
for a few compounds, and does not appear to lead to any physical insight. There 
seems therefore to be some need for postulating empirical functions for the form 
of the repulsive energy. Almost all earlier workers have tried either the function 

01. b exp (- r/p) where r is the interionic distance and have succeeded Lo some 
extent in explaining the behaviour of ionic crystals. In this paper, wc investigate 
the consequence of postulating a function of the type in eq. (1). All functiocs 

143 



1 44 Ramesll Narayan and S Ramaseshan 

pro osdpe are only attempted approximations to the true repulsive function. How 
ever, the function we have proposed, if found acceptable, has some advantages.- 
Firstly, this would directly lead to a kind of inverse additivity rule for the com- 
prtssibilities of ions. Further, if we consider a family of binary ionic crystals 
made up of all combinations of m positive ions and n negative ions, whereas all the 
earlier approaches mentioned above would require mn functions to be determined, 
the present alternative would require only (m + n) functions. 

In  this paper, we test this postulate [(eq. (I)] on the alkali halides. The various 
attractive forces between the ions have been treated as in the Born model [for a 
good review of the Born model, see Tosi (1964)l. 

Just from the functional form of the repulsive potential assumed, we are able 
10 derive two identities which have to be satisfied by ccrtain experimentally dckr- 
minable quantities in sets of crystals. These identitie!, have been tested on ~ h c  
alkali halides. The agreement appears to be satisfactory implying that the concept 
of individual compressive energy for ions is an attractive possibility worthy of 
further investigation and evaluation. 

Thuory 

111 this paper we investigate the possibility of the repulsive energy being col~ipletely 
separated out into the sum of contributions from the two ions. Thus 

w r a p  = w+ (r+) + w- (r-) (1) 
where, W+ and W- are functions of r+ and r-, the radii of the two ions. The func- 
tions kV+ and W- are presumed to be unique for a given ion and hence transfcriible 
from one crystal to another. Geometrically, we can visualize an ion as a soh 
jluil'y sphere, the repulsive energy being produced by compression and distortion 

the points of contact with its neighbours. The repulsive energy in this /;lr,,ru- 
Iuliorr does not depend on the agency causing the distortion. It should bc notcd 
~ h , ~ t  in the present formulation r+ and r- are variables which can vary for a given 
ion from crystal to crystal and also with pressure in the same crystal. 

L O  keep the d~scussion as general as possible, we do no1 bpec~ly iuly I , ; L ~ L ~ -  
cular functional form for tV+ and W-. We thus write the total lattice energy per 
molecule of a binary ionic crystal as 

where the first three terms on the right hand side give respectively the Madelung 
electrostatic energy, the van der Waals dipole-dipole interaction energy and the 
van der Waals dipole-quadrupole interaction energy. As it stands, W is a function 
of three variables-r, the nearest neighbour distance, r+, the radius of the positive 
ion, and r-, the radius of the negative ion. 

NOW, in our geometrical picture of the crystal, the nearest neighbours arc in 
colliact with one another, so that we immediately have the relation 

In addition, we have one further relation expressing the internal equilibriulll 
of the lattice. This arises from the minimisation of the energy of the crystal with 
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respect to its internal co-ordinates r,. and r-. Physically we can picture this as 
the two ions pushing against each other and so adjusting their radii [subject always 
to equation (3)] that the forces they exert on each other a r e  balanced. This 
requires the condition 

Relation (4) like relation (3) is always valid. 

Because of relations (3) and (4), r, and r- are functions of r. Thus, in equation 
(2), W becomes a jimction of only r and we are justified in talking of total deriva- ' 

tives of the type d W(r)/dr, d2W(r)/dr" etc. Differentiating (2) with respect to 
r and using relations (3) and (4), we then have 

whcrc for convenience in later discussion, we have called the function on the right 
l ' ( r ) .  f (r) is a unique function of r for ct given crystal though it is, in general, 
tlilfirent for different crystals. In the present picture of the crystal, r ,  and r +  arc 
pcrI'ccUy meaningful physical parameters. The reason why it is neccbsnry to con- 
vert back into a description in terms of r is that the various quantities of interest 
are cxperirnentally determined only as functions of r. All the quantities in f (r) 
can be calculated from experimental data as will be shown in the next section. 
tlcnce, one can calculate the derivative of the two ionic repulsive functions. This 
derivative varies with the lattice spacing as can be seen from (S), and hence for a 
rdnp  of pressures, one gets a range of values for W+' (r+) and [V-' (r-). 

Now suppose we consider the same ion occurring in two different crystals. To 
fix ideas, let us say the positive ion is common to two crystals. In general, W,' 
(r,.) will not be the same for both the crystals. However, it is possible to find two 
pressures P, and P, such that the value of f  (r) is the same in both the crystals. 
The function W+' (r,), we have assumed, is a property of the ion alone and so is 
the same in both crystals. Thus, if W+' (r,) is a monotonic function of r+, wc can 
:.,y illat the ion has the same radius r+ in crystal 1 at pressure P, and crystal 2 at 
pressure P,. This is somewhat similar to the original idea of Goldschmidt (1926) 
and Pauiing (1927) of assigning ionic radii except that in the present treatment. 
Llle ionic radii are variables and so are equal in two crystals only when f (r) is the 
same. 

Now consider four ions A+, B+, C-, D- and the four crystals they form 

Suppose we consider these four crystals under such pressures that the value of 
f (r) defined in (5) is the same for all four. Then by the above arguments, ion A+ 
has the same radius in crystals 1 and 11, ion B+ the same radius in crystals 111 and 
lV ,  etc., and it is easily shown that 

Equation (7) is an identity among the lattice spacing of any four crystals of the 
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type (6) considered under conditions of equal f (r). Eq. (7) follows froin the 
original assumption of additivity of separate ionic repulsive energies which we have 
seen leads to the concept of uniqueness of ionic radius under identical forces, 
rcgardlcss of the actual crystal considered. Hence a verification of.(7) may bc 
considered a justification of the assumption. 

Now, differentiating (5) with respect to r once again, we have 

[>ilYcrcntiating (3) with respect to r and solving with the help of (8), we have 

:\nd it similar expression for dr-ldr. Substituting back in (8) a d  invorling 111c 
wllole cqu:ition, we have 

\~hcre, for convenience, wc have called the function on the right g ( r ) .  Tlie left 
hatld side of (10) is again the sum of two terms each of which is exclusively thc 
function of one of the ions. Hence, exactly as before, if we consider four crystrils 
of the type (6) under conditions of equal values of f  (r), we have 

ig b-11 + @)I.l - ig (r)1, + g (r)1,11 = 0 (1 1) 
g (r)ls related 10. the co~npressibility through dP W/dr"eqs (10) and (I j)] and licnce 
( 1  1 )  15 essentially an identi~y among the conipressibilities of the crystuls 1 to IV. 
lhc vcrtfication of (I I) may be considered another justification for the addilivity 
ol iotilc repulsive energies assumed in (I). 

I t  bhould be noted that in eqs (7) and ( I  I), the four crystals compared have 
to bc of the same crystal structure. This is an obvious precaution since the repul- 

i ,)tc.nti,~l is a f~inction of the co-ordination number. However, we coul~l cor- 
rcct for tlic change in crystal structure by postulating that the repulsive potential 
l b  d~rcctly proportional to the number of nearest neighbours n, i.e., 

I.v* (r*) = nk* (r*) (12) 
\ \ I I C T ~  I,* ( r 3  is a unique function for a given ion, independent of the crystal 
structure. This seems reasonable in our geometrical picture of the repulsive 
pc,tcilti;il arising from the distortion and compression of the spherical ion at the 

of contact with its neighbours. Thus, if a crystal exists in two dilrercnt 
structure:, (at dinerent pressures, of course) having the same nearest neighbout 
,ji5tance, then (12) implies that 

This is yet another result that can be tested. , 

11 should be mentioned that the results (7), (1 1) and (13) cannot be exact il' 
sccond neighbour repulsions are also present.  his' is because second ncighbour 
repulsion cannot be separated into two functions of r+ and r- alone, but depends 
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on the inter-ionic spacing r (= r+ f r-). Thus, the expression (2) for the lattice 
energy does not include the contribution from second neighbour repulsion. 

The above identities, eqs (7), (1 1) and (13), have been tested for the alkali halides. 
The experimental values for the calculations were taken from the following 
sources. The room temperature atmospheric pressure lattice spacings were taken 
from NBS (1953-1957). For variations of r with pressure, the compressibility 
data of Vaidya and Kennedy (1971) were used. The van der Waals coefficients 
C and D were taken from Mayer (1933). For d W/dr and d2CV/drz, the Hildebrand 
(1931) equations of state were used 

where P is the pressure, V is the volume per molecule, T is the temperature, is 
the isobaric volume expansivity I i V  (bV/3T), and K is thc isothermal com- 
pressibility - 1/V (3V/3P),. The room temperature, atmospheric pressure 
values of the thermodynamic quantities were taken from Cubicciotti (1959, 1960, 
1961). Since there are no experimental data at high pressures, the following 
approximate relations were used: 

where Kp, the compressibility at pressure P was obtained from the PV data of 
Vaidya and Kennedy (1971). Relations (16) and (17) were derived assuming that 
the Griineisen's constant 7 ( -= V.f?/C,K) is independent of pressure. It should 
be mentioned that the approximations (16) and (17) are not very important since 
the corresponding terms in (14) and (15) are only in the nature of small correc- 
tions. 

Using the above values. the quantity f (r) was calculated as a function of pres- 
sure for 15 alkali halides, viz., the chlorides, bromides and iodides of lithium, 
sodium, potassium, rubidium and caesium. The fluorides were not included because, 
in many cases, sufficiently reliable high pressure data were not available. Taking 
the crystals in groups of four as in (6), the quantity 

was calculated for a range of common value off (r). The mean results are tabu- 
lated in table 1 .  It is seen that ( Ar ) is not exactly zero as expected by eq. (7) but 
is invariably a small negative quantity. The significance of this is discussed in 
the next section. The r.m.s. deviations of Ar, also given in table I ,  are seen 
lo be of the order of 0.0020 A (r is of the order of 3 A). 
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Table 1. Testing relation (7) among lattice spacings and relation (11) among com- 
prcssibilities for sets of alkali halides ' 

Type of Combination of Alkali 
~r (A) A# (lo-. cmz/erg) 

structure Halides ( Ar ) r.m.s. ( A # )  r.ms. 
deviation dewatton 

NaCl LiCI, LiBr, NaCl, NaBr -0.0048 0.0010 +0.134 0.002 
LiCI, LiI, NaCl, NaI -0.0116 0.0012 +0.133 0.12 
LiBr, Lil, NaBr, NaI -0.0064 0.0010 -0.121 0.15 
NaCl NaBr, KC], KBr -0.0147 0.0005 -0.310 0.021 
NaBr, NaI, KBr, KI -000128 0.0008 -0.718 0.013 ...................................................................................... 

CsCl KCI, KBr, RbCI, RbBr -0.0065 0.0007 $0.180 0.13 
KCl, KI, RbCI, RbI -0.0123 0.0010 -0.080 0.07 
KBr, KI, RbBr, Rbl -0.0060 0.0003 -0.190 0.065 
KCI, KBr, CsCI, CsBr -0.0121 0.0009 -0.169 0.204 
KCI, KI, CSCI, Csl -0.0344 0.0019 +0.160 0.171 
KBr, KI. CsBr, Csl -0.0213 0.0030 3.0.329 0.083 
RbCl, RbBr, CsCI, CsBr -0-0071 0.0023 -0.353 0.11 
KbCI, Rbl, CsCl, Csl -0.0208 0.0024 +0.180 0.084 
RbBr. RbI, CsBr, CsI -0.0131 0.0041 -k0.505 0.058 

In a similar manner, at constant f (r), the quantity @.g given by 

Ag = {g (f-11 4- g (r)sv} - {g (r),1 + g (r),s,l (19) 
was also calculated .for the same groups of crystals. The mean results are tabu- 
lated in table I .  The r.m.s. deviations of Ag are seen to be of the order of 0. I5 
X 10-ucm2/erg. (g is of the order of 5 x 10-ocm2/erg). 

To get a better idea of the quantities entering in the calculations above, il few 
sample tables and graphs are shown in Appendix 1. 

Equation (13) was tested in the case of potassium and rubidium halides which 
exist in a NaCl type structure (n, = 6) at low pressures and a CsCl type structure 

Table 2. Testing relation (13) (ligancy effect) for potassium and 
rubidium halides 

Crystal - 
f \ r.m.s. 

j/ deviation , 
/n&, (r)\ r.m.s. 
\ n i i ) /  deviation 

KC1 0.026 0.002 
KBr 0.894 0.003 
KI 0.830 0.002 

RbCl 0.974 0-001 
RbBr 0.948 . . 
RbI 0.897 .. 
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(n, = 8) at high pressuses. The quantities n,f, (r)/nlf, (r) and noge (r)/nlgl (r) 
have been calculated for these crystals for a range of common values of r and the 
mean values are tabulated in table 2. The deviations of these quantities from the 
expected value of 1.0 are discussed in next section. 

Discussion of the results and effect of second neighbour repulsion 

Tables 1 and 2 show that the relations (l),  (11) and (13) are not exactly satisfied. 
It is. possible to explain the deviations as due to the effect ~f second neighbour 
repulsions which have been neglected in the above theory. The effect of second 
neighbour repulsion is to increase the total repulsive potential and thus to shift 
the equilibrium to larger inter-ionic distances. Whereas this effect is present in 
all the crystals, the effect can be expected to be much larger in those cases where 
the ions are of widely differing sizes. In table 1, the crystals have been arranged 
so that crystal I1 has the largest disparity in the sues of the ions. Thus, the 
increase in r,, would be expected to be much larger than the increase in r,, r,,, 
or r , ,  and hence Ar is expected to be always negative, as indeed it is in table 1. 
There are some further trends which strengthen the belief that second neighbour 
repulsions might be responsible for the deviations. The deviations in Ar would 
be expected to be greater where there is greater disparity in size between the lar- 
gest and smallest ion in a group. This is verified in table 1 where Ar is larger 
whenever C1- and I- are compared than when C1- and B r  or B r  and I- are com- 
pared ; so too, Ar is larger whenever K+ and Cs+ are compared than when K+ and 
Rb+ or Rb+ and Cs+ are compared. Further, Ar is in general larger in CsCl type 
structures than in'NaC1 type structures which is explained by the fact that second 
neighbour distances are much smaller in the former type (r' = 1.154r) than in 
the latter (r' = 1 -414r). 

The values of Ag in table 1, however, do not show any systematic deviations. 
The agreement with eq. (15) is fairly good - Ag which is the difference of two 

-- quantities of the order of 10 is of the order of 0.2. It is not very obvious how 
secoiad neighbour repulsion will affect the function Ag (r) and so no explanation 
of the deviations is attempted. 

Considering the values calculated in table 2, it is seen that they deviate from the 
theoretically expected value of 1.0. Again the deviations can be traced to second 
neighbour repulsion which increases f (r) and decreases g (r), the changes being 
more in CsCl type structures than in NaCl type structures (due to the reason dis- 
cussed above). Thus, we expect all the quantities to be less than 1.0 and this is 
so. Also, the deviations are proportional to the disparity in the sizes of the ions 
as expected, being largest for KI and smallest for RbCl. 

As regards the sensitivity of the above tests, we can make the following remark. 
In calculating Ar, we take crystals I to IV at four pressures. The maximum dse -  
rence in pressure, viz., (PI,- PI) is about 10-25 kbar. We could determine the 
A P  which has to be made on any of the pressures, say P,,, which will bring n r  
to the expected value of 0. Such a check is meaningful only where the second 
neighbour repulsion is minimum since the major deviations have any way been 
traced to it. Thus, if we consider the most favourable case of LiCI, LiBr, NaCI, 
NaBr, (PI, - P,) is about 25 kbar whereas a change in P,, of - 1.5 kbar causes 
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Ar to become 0. But, apart from this, the very fact that the deviutions are so 
systematic and are amenable to a consistent explanation is itself a pointer to the 
plausibility of the approach taken in this paper. 

Corrections for second neighbour repulsion 

I t  is not possible to develop a theory with a general repulsive function with second 
neighbour repulsions also included. However, an ~lpproximate correction has 
been attempted as follows. In the repulsive potential of Tosi and Fumi (1964), 
we note that there are two terms, one for nearest neighbour repulsion and the other 
for next nearest neighbour repulsion. It is assumed here that this potential func- 
tion does indeed describe how the two contributions nrc split up [there is no justi- 
fication for this, since in the procedure of Tosi and Fumi (1964) it is only the 
total function that has been made to fit the experimental data]. Then eq. (5 )  
i s  modified to 

Table 3. Tosting relation (7) among lattice spacings md relation ' (I 1) 
among compressibilities for sets of alkali halides after applying correction 
for second neighbour repulsion. , 

TY ~e Combination of Alkali ~r (A) 
of Halides 

structure ( A r )  r.m.s. 
deviation 

. NaCl LiCl, LiBr, NaCI, NaBr 
LiCI, LiI. NaCI, NaI 
LiBr. LiI, NaBr, NaI 
NaCI, NaBr. KCI. KBr 
NaCI, NaI. KCI, KI 
NaBr, NaI, KBr. KI ......................................... 

CsCl KC!, KBr, RbCI, RbBr 
KCI, Kt, RbCI, RbI 
KBr, KI. RbBr, RbI 

Table 4. Testing relation (13) (ligancy etTect) for potassiu~n and rubidiun. 
halides after applying correction for second neighbour repulsion. 

KBr 1.03 0.006 RbBr 1 -08 . . 
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where dlV,,,,/dr, the derivative of the second neighbour repulsive energy, is calcu- 
lated froin the potential of Tosi and Fumi (1964). 

Table 3 shows the mean values of Ar  calculated after applying this correction. 
All the combinations in table 1 could not be corrected since Tosi and Fumi (1964) 
have not given their repulsive potential for the caesium halides. It is seen that 
Ar in hble 3 has become positive in most cases showing that the correction for 
second neighbour repulsion is in the right direction, There is, however, an over- 
correction in most cases which is probably due to our questionable procedure of 
splitting the potential of Tosi and Fumi (1964) into two parts and attaching a physi- 
cal significance to each. 

Table 4 shows the values of n& (r)/ndz(r) calculated after applying the correc- 
tion (20). Again it is seen that the values are pulled towards the expected value 
of 1.0, although over corrected in some cases. 

The above corrections for second neighbour repulsion are not meant as any 
quantitative checks. Their chief function is to illustrate that corrections for second 
ncighbour rcpulsio~i do alter the values in tables 1 and 2 in the required direction. 

Conclusion 

Starting from the physically pleasing postulate [equation (I)]  that the repulsive 
potential is the sum of two contributions, one from each ion, we have derived 
certain results which have been verified numerically for the family of alkali halides. 
It has been possible to explain the deviations consistently in terms of second neigh- 
bour repulsions. By putting in an explicit functional form for the individual ionic 
repulsive potentials, it would then be possible to include second neighbour repul- 
sions directly in the theory. 

If we introduce two parameters for each repulsive function (as has been done 
- by most earlier workers) then, in the above approach, we would require sixteen 

parameters to describe the set of alkali halides considered. For the same alkali 
halides, the original approach of Born requires thirty parameters whereas the Tosi 
and Fumi approach requires twenty-three. Also, some of the above tests seem 
to indicate that we might expect the same parameters to describe a crystal over 
a range of pressures and even in two different structures. This means we could 
do away with the idea of structure-dependent parameters introduced by Tosi and 
Fumi (1962). 

We should mention that recently Smith (1972) has postulated atom dependent 
potentials to account for the repulsive potential of rare-gas atonts in binary colli- 
sions. His approach seems to lead to better results in that problem. 

To facilitate a better appreciation of the quantities entering in the analysis, we 
present here a few sample calculations and results. Table 5 shows the quantities 
entering in the calculation off(r) and g (r) for the crystal LiCl at various pressures 
from 0 to 45 kbar. Figure 1 shows f ( r )  plotted as a function of r for the four 
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Table 5. Details of calculations off ( r )  and g ( r )  for the crystal LiCI. 

K @ d W/dr  .ae2/r2 6Clr' 8D/ra f ( r )  (X) (IO-L2crna. (lo-* d c g l )  -- _--- --- 
d yne-I) (1 0-6 erg cm-I) 

d2 W/dr2 2 a 8 / r V 2 C / r "  72D/r1" -- -- s (r) 
(k bar) B g (10-6 cmY. +T(~P).I 10. erg cm-a e r r 3  
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I, A * 

' I:i~urc 1. Curves of / ( r )  vs r  for LiCI. LiBr, NaCl and NaBr 
(7) .illlong their lattice spacings. 

to test 

~ igurc 2. Curves of f ( r )  vs g ( r )  for LiCI, LiBr, NaCl and NaBr to test relation 
(1 1) among thcir compressibilities, 



Table 6. Testing relation (7) among lattice spacings an5 relation (11) among compressibilities for the set of alkali halides: LiCl, LiBr, NaCl, NaBr. 
P 

AU values in 1 0-8 cm 

2.892 -0.007 

2.888 -0.005 

2.883 -0.005 

2.879 -0.004 

All values in IW cm2/erg 
cC 

0.12 0.014 S 
0.12 0.014 3 
0.12 0.014 

i: 
L 

0.12 0.014 
9 
3 a 

0-11 0.024 @J 



crystals LiCI, LiBr, NaCI, NaBr, With respect to this figure we can distinguish 
between our additivity of ionic radii and the classical approach of Pauling (1927) 
iind Goldschmidt (1926). In the classical approach, the comparison is made among 
the lattice spacings corresponding to the circled points in figure 1 (which are the 
atmosplieric pressure values). In our approach on the other hand we are comparing 
r-values at  constant f (r) as for instance the set of points marked with a cross in 
ligure 1. Figure 2 similarly shows g(r) against f (r). Again, the additivity bet- 
ween the four values of g (r) occurs at constant f (r), for instance at the points 
marked with a cross. The above comparisons are made at various constant values 
off (r). Table 6 gives the results for the set of crystals LiCI, LiBr, NaCI, NaBr. 
The mean values ( Ar ), ( Ag ) and their root mean square deviations have been 
calculated as shown. It is these quantities for various sets of crystals that are 
tabulated in table 1. 
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