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Abstract-An empirical approach is attempted to make the repulsion potential of ions in an ionic crystal structure 
independent and crystal independent so that once the repulsion parameters for an ion are evaluated in one compound, 
in one structure, they could be used for that ion in any crystal. The repulsion between ions is postulated to be due to 
the increase in the internal energy of the ions arising from the distortion and the compression at the points of contact 
with their neighbours. Using an exponential form for the compression energy involving two parameters per ion, a 
repulsion potential for ionic crystals is proposed which includes the repulsion between nearest and next nearest 
neighbours. The repulsion parameters for the alkali and halogen ions have been determined to fit the behaviour of 20 
alkali halides over the pressure range O-45 kbars. The r.m.s. percentage deviations from experiment, of the calculated 
values of lattice spacing and compressibility are respectively 0.997% and 6.76%. The calculated radii of the ions in 
the various compounds compare well with the experimental values deduced from electron density maps. The 
advantages of the present form of the repulsion potential over earlier forms are discussed. 

1. INTRODUCTION 

Properties like ionic radius, ionic polarizability etc., have 
proved useful in the study of ionic solids. Extending these 
ideas, one could ask whether the concept of ionic 
compressibility is meaningful. An ion may be considered 
to be a soft sphere whose radius is a function of the 
compressing force acting on it. The ion then has an 
internal energy which is a function of its size and the 
repulsion between ions would arise from the increase in 
their internal energy when compressed together. In this 
picture, an ion is like a balloon, with an impenetrable 
surface skin and a compressible interior. This picture is 
not really defensible from the quantum mechanical point 
of view according to which the repulsion is caused by the 
overlap of neighbouring electron clouds. But, the com- 
plete quantum mechanical treatment leads to very 
complicated numerical computation[4] and even in the 
few cases where this has been carried out, no physical 
insight seems to be obtained. On the other hand, we know 
that ions are an experimental fact. Detailed electron 
density maps of ionic solids [l-3] clearly show that the 
electrons belonging to different ions are well separated 
with a region of near zero electron density between them. 
Further, the Pauli exclusion principle requires that the 
closed shells of electrons of neighbouring ions resist 
interpenetration. This lends substance to our empirical 
approach to the origin of the repulsion between ions. 

With the reservations stated above, we propose that the 
repulsion energy between ions in a binary ionic solid can 
be written as 

W&r+, r-) = W+(r+) + W-(r-) (1) 

where W+ and W- are functions of r+ and r-, the radii of 
the two ions. Further, since nearest neighbours are in 
contact, we get 

r = r+ + r- C-4 

where r is the nearest neighbour distance. For a given r, 
there is according to (2) still one internal degree of 
freedom viz., the radius of one of the ions. This is taken 
care of by a relation for the internal equilibrium of the 
lattice obtained by minimising the energy of the crystal 
with respect to its internal coordinates r+ and r-. This 
gives us the condition 

d W+(r+) d W-(r-) -=- 
dr+ dr- (3) 

Thus, r+ and r- are functions of r, W,., is also a function 
of r and so total derivatives of the form 

-$ W&r), -$ W&r), 

etc. have a meaning. 
From the functional form of the repulsion potential (l), 

two identities can be derived[S], one connecting the 
lattice spacings of a family of ionic crystals and the other 
their compressibilities. 

Introducing the new repulsion potential (1) into the 
expression for the total lattice energy per molecule of a 
binary ionic crystal as given in Born’s theory[6], we get 

WL(r, r+, r-) = -$-S-s+ W+(r+)+ W-(r-l (4) 

The first three terms on the right hand side of (4) give 
respectively the Madelung electrostatic energy, the van 
der Waals dipole-dipole interaction energy and the van 
der Waals dipole-quadrupole interaction energy. Using 
relations (2) and (3), it can be shown that 

dW,o=dW-(r-) dWL(r) ae’ 6C 8D -=-- 
dr+ dr- dr 7-7-7 r 

=f(r) (say). (5) 
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Consider four ions A’, B’, C, D- and the four crystals 
they could form 

A’C- A’D- B’C- B’D- 
I II III IV . (6) 

If these four crystals are subjected to hydrostatic 
pressures such that the value of f(r) is the same for all 
four, then postulate (1) for the repulsion potential leads [5] 
to the identity 

borne out and the small deviations could again be traced 
to the effect of second neighbour repulsion. This indicated 
that the postulate (10) is also reasonable. 

Encouraged by these favourable indications, we here 
propose an explicit functional form for the repulsion 
potential in ionic crystals and fit numerical parameters for 
the alkali halides. We make an extension of our earlier 
work[5] by including contributions from second nearest 
neighbours also. 

(rr + r~) -(h + rd = 0. (7) 2. THE REPULSION FUNCTION 

Implicit in our description of the origin of repulsion 
Differentiating (4) twice with respect to r, we get between ions is the assumption that the actual manner of 

causing the distortion on any ion is immaterial. Thus, the 
1 1 1 

~W,0d2W_(r_)=dZW~(r) 2ae’ 42C 720 
same compression function can be used for nearest as 

drt2 dr_2 2+7+7+y10 dr 
well as next nearest neighbours. The only difference is 
that the “radius” for the two cases will be different. In 

= g(r) (say). (8) fact, for binary ionic crystals of the NaCl or CsCl type 
structure, next nearest neighbours are identical ions and 

Once again, for the four crystals of the type mentioned so, by symmetry, the boundary between them lies at the 

in (6) under conditions of equal values of f(r), we get the midpoint between their centres. Thus, the modified 

identity repulsion potential in such ionic crystals will be, by (1) 
and (10) 

(9) 
Wdr, r+, r-) = n,{h+(r+) t h-(r-)}+ n*{h+(fbr) t h-(fbr)} 

The identities (7) and (9) were tested using the 
experimental data on the alkali halides [5]. The agreement 
was quite satisfactory. In fact, even the small deviations 
of the experimental values from the exact identities could 
be traced to the fact that the repulsion potential (1) does 
not take second neighbour repulsions into account. The 
good agreement was considered to be strong evidence on 
the validity of the postulate (1). 

The repulsion potential (1) does not specify what 
changes are to be made when an ion occurs in different 
structures. For this, an additional postulate was 
proposed[5]. It was suggested that the energy of 
compression of an ion was local to the points of contact 
with its neighbours and originated essentially from the 
local compression and distortion. Thus, the repulsion 
energy caused by nearest neighbours for a given radius of 
the ion is directly proportional to the number of nearest 
neighbours, i.e. 

Wf(rf) = n,h,(r+) (10) 

(12) 

where nz is the number of next nearest neighbours and br 
is the distance between next nearest neighbours. 

Our approach of using the same function for nearest 
and next nearest neighbour repulsion is at variance with 
that of most earlier workers who give different weights to 
tt, t- and -- interactions. This is done through some 
“/I” factors, fnst introduced by Pauling[7]. However, 
since our picture makes no distinction between t+, t- 
and -- interactions, we do not introduce any such 
weighting parameters. 

As has been shown in the last section, the repulsion 
potential W&r, r+, r-) is ultimately a function of only r. 
Also, r+ and r- can no longer be thought of as the radii of 
spherical ions. They are only the extension of the ion in 
the direction of its nearest neighbour. In the direction of 
the next nearest neighbour, the “radius” is fbr. However, 
in all later discussion, when we mention the radius of an 
ion, we mean the quantity r+ 

where n, is the number of nearest neighbours and hf( r+) is 
It is not possible to obtain from experiment the 

a unique function for a given ion, independent of the 
functions h in (12). The best we can do is to propose some 

crystal structure. If a substance exists in two different 
simple functional form for h and fit parameters for the 

crystal structures (at different pressures) having the same 
ions. Various functional forms (the inverse power law [8], 

nearest neighbour distance, then (10) implies that 
the exponential [9] and a logarithmic [ lo] form) have been 
tried for the repulsion notential in the Born theorv of ionic 

6 _ f(r) = g’(r) 
nl f’(r) g(r) 

solids. In this paper, we try the exponential form for the 
(11) repulsion function. To be in conformity with (12), we 

require two different exponentials for the two ions. The 

where the primes describe quantities in the second phase. 
specific form we propose for the repulsion potential per 

The identities in (11) were tested using the experimental 
molecule in a binary ionic solid is hence 

data on the potassium and rubidium halides which 
transform from the NaCl type to the CsCl type structure 

W&r, r+, r-) = n,{A+em*+‘p+ + A-e-‘-“-} 
(13) 

at higher pressures. The predictions were reasonably well + n2{A+e-hr’*P+ t A_e-hr’Zp-} 
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where A+, A- are the pre-exponential factors for the two 
ions and p+, p- are their ‘hardness’ parameters. 

It should be emphasized once again that our repulsion 
potential (13) is valid for all structure modifications. The 
parameters A+, A-, p+, p- are considered unique and 
entirely structure independent. This we feel is an 
improvement on the structure dependent parameters 
introduced by Tosi and Fumi[ll, 121. Also, once the 
parameters of an ion have been refined in any one crystal 
or a set of crystals, the same parameters can be used in 
any other crystal in which it occurs. This versatility of our 
repulsion potential and some of its advantages will be 
discussed in Section 5. 

3. DATA USED IN THE EVALUATION 
OF THE REPULSION PARAMETERS 

The repulsion parameters for the alkali halides were 
determined so as to best fit the lattice spacing and the 
compressibility over a range of pressures. The various 
data required were obtained as follows. The PV data of 
Vaidya and Kennedy [ 131 on the alkali halides were used. 
The data on each crystal were fitted with the Murnaghan 
equation of state[l4] viz., 

PS[(+!)‘_l] (14) 

where V, and B. are the volume and the bulk modulus at 
zero pressure and J36 is the pressure derivative of the bulk 
modulus. Wherever B, was available, B; alone was 
refined. However, for the high pressure phases, both B. 
and Bh had to be refined simultaneously. V0 was 
calculated using the room temperature, atmospheric 
pressure values of the lattice spacings listed in reference 
15. Thus, by equation (14), the nearest neighbour distance 
r and the compressibility K were obtained over the whole 
pressure range from 0 to 45 kbars. The PV data for the 
alkali fluorides appeared to be unreliable and for these 
compounds, only the atmospheric pressure data were 
used in the refinement of the repulsion parameters. 

The quantity [dWr(r)]/dr (where WL(r) is the lattice 
energy per molecule) was calculated using the Hildebrand 
equation of state [ 161 

!!!$ -p+g 

which is easily seen to give 

(15) 

(16) 

Here /3 is the volume expansivity, T is the temperature 
and XT’ is the volume per molecule. The quantity 
[d’ WL (r)]/dr’ was calculated from the second Hildebrand 
equation [16] 

$$=&[l+f[(~)&,+{($)r]] (17) 

~=~~+~[1+f((~),+~(~),)]_ (18) 

In relations (16) and (18), we need the values of some 
thermodynamic quantities at high pressures. Since no 
experimental data are available, these quantities were 
calculated from the corresponding room temperature 
atmospheric pressure values by 

(19) 

Relations (19) and (20) are derived assuming that the 
Gruneisen’s constant y(= VP/&K) is independent of 
pressure. The room temperature, atmospheric pressure 
values of the above thermodynamic quantities were taken 
from Cubicciotti[l7]. For evaluating the van der Waals 
interaction energy, the van der Waals coefficients C and D 
for all the alkali halides were obtained respectively from 
Hajj [ 181 and Mayer [ 191. 

4. CALCULATION OF THE REPULSION 
PARAMETERS FOR THE ALKALI HALIDES 

The alkali halides family consists of five alkali ions viz., 
Li’, Na+, K’, Rb’, Cs’ and four halogen ions viz., F-, Cl-, 
Br-, I-, these ions forming 20 compounds. We have to fit 
18 parameters to describe the behaviour of these 20 
compounds. A first, rough estimate of the parameters was 
obtained as follows. In each compound, there are four 
unknown parameters viz., A+, A-, p+ and p-. By using the 
experimental values of r and [d*WL(r)]/dr* at two 
pressures, one could solve for these four parameters. This 
turned out to be a highly ill-conditioned problem. 
However, since any ion occurs in more than one 
compound, one could search for a set of parameters 
which give reasonably good overall agreement. The 
details of these calculation are not being presented here. 
We finally obtained the set of repulsion parameters listed 
in Table 1. These parameters served as initial values in the 
refinement procedures discussed below. Since we did not 
have high pressure data for the fluorides, these were not 
included in the above rough estimation of repulsion 
parameters. As a result we had no initial values for the 
parameters of the F- ion. 

The repulsion parameters listed in Table 1 were further 
refined by a least squares procedure. A misfit factor R 
was defined as 

+ w 
c 

(21) 

which leads to Here r. and (d* W,/dr*), are the experimental values. r, 
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and (d* WL /dr*), are the values calculated with our set of 
repulsion parameters using the Born theory of ionic 
crystals [6]. In this theory, the lattice energy per molecule 
is given by (see eqn (4)) 

w (r) = _ae2_c__o+ w 
l. r p f3 rep 

(r) (22) 

W&r) is the repulsion energy which in our theory is 
given by (13). Now, the condition (3) when applied to our 
repulsion potential gives 

This can be solved along with (2) to give 

L-1, A-p, 
( > 

r+= P- 1 ?+P- 

-+- 
P+ P 

Itln $-$ 
P+ ( > r- = + . 

L+L 
P+ P- 

Using (23) and differentiating (22) we have 

d W,(r) a2 +6C+ 8D nlA+ Cmr+~P+ -_ 
dr r2 r’ r9 p+ 

A brlfp, + z e-br/ZP_ 
P- I 

d2WL(r) -= 
dr2 

2Cye’ 42C 720 I XY 
r’ r8 r” X+ Y 

A br/%+ +; e-br/2L 
p_2 1 

where 

n,A+ X = p+2 emr+'p+ 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) . 

(29) . 

(30) 

At each pressure of each crystal, r, was calculated by 
solving eqn (27) with the help of eqn (25), using the 
experimental value of [dW,(r)]/dr (calculated as de- 
scribed in Section 3). Then {[d2WL(r)]/dr2}c was calcu- 
lated at r, by eqn (28) making use of eqns (25), (26), (29) 
and (30). These are the quantities that are involved in the 
misfit factor R in (21). W, and WC are certain weights. W, 
was taken as 400 for atmospheric pressure values and 100 
for higher pressure values, while the corresponding values 
of WC were taken as 4 and 1 respectively. This was to 
allow for the fact that in our opinion the experimental data 
at atmospheric pressure are twice as reliable as the data at 
higher pressures and also that r,-values are ten times as 

Table 1. Initial estimate of the repulsion parameters for the alkali 
halides 

1C.n 

Ll+ 

Na+ 

K+ 

Rb+ 

CS+ 

cl- 

Elr- 

I- 

A(er#d pbd 

1.5 xio-~l 1.5 x10-Q 

2.0 I 10-10 1.6 x IO-' 

1.0 x 1o-Q 1.65 I 10-Q 

1.0 I 10 -9 1.7 x 10-Q 

3.0 I 10-Q 1.63 x 10 
-9 

3.9 I lo-’ 1.6 x 10 -9 

3.6 x 10 
-0 

1.16 I 10-Q 

3.6 x lo-’ 1.91 I IO-’ 

reliable as the values of {[d2WL(r)]/dr2}0. It should be 
noted that by eqn (18), [d* W,(r)]/dr’ is approximately 
proportional to l/K so that in (21) we are essentially 
comparing calculated and observed values of lattice 
spacing and compressibility. In the summations for R, 
only two pressures were considered for each phase. This 
was because we felt that any repulsion potential which 
fitted the experimental data at two sufficiently separated 
pressures would be equally good in the whole intervening 
range. 

Our aim was to vary the repulsion parameters so as to 
reduce R to its minimum value. Various non-linear least 
squares procedures which use the gradient method were 
tried. But none of these was successful. The reason is that 
the parameters are coupled to one another to varying 
degrees. The parameters of two like ions are not coupled 
at all; the parameters of unlike ions are moderately 
coupled; whereas the A and p of the same ion are very 
strongly coupled to each other. In the A-p space of any 
ion, the contours of constant R are highly elongated 
quasi-ellipses. The R-surface is a long valley with very 
steep walls and a very gentle slope along the valley. In 
such a case, the usual minimisation procedures which use 
the gradient method immediately reach the minimum 
along the local gradient but are extremely inefficient for 
locating the minimum along the floor of the valley since 
the gradient in this direction is very small. 

The following alternate strategy was therefore used. At 
each stage, the parameters of one ion alone were refined. 
R was calculated for various values of A and p of the 
particular ion and the best set was obtained by a graphical 
method. For a given set of parameters for the positive 
ions, the negative ion parameters were successively 
refined. Then, keeping these fixed, the positive ion 
parameters were refined. This procedure generally con- 
verged after two cycles. 

The actual details of the procedure adopted were 
slightly different. The lithium compounds were uniformly 
very difficult to fit. Hence, in the early stages, only Na’, 
K’, Rb’, Cs+, Cl-, Br-, I- were considered. The 
parameters of these were refined, positives and negatives 
alternately as mentioned above. At this stage, it was 
decided to include the fluorides also in the refinement. But 
we had no estimate for the parameters of F- for the 
reason mentioned earlier. However, the values of the 
parameters of Cl-, BY, I- suggested the following 
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approximate values 

A,-=5.0x10e9erg 

pF- = 1.4 X 10m9 cm. 

Starting off with these values, a thorough grid search was 
made in the A-p space of F- and finally, the following 
were seen to be the best values 

AF- = 7.5 x lo-” erg 

pF. = 1.495 X 10m9 cm. 

At this stage, the lithium compounds were also included 
and the complete set of parameters was refined as before. 
The final “best set” of parameters obtained at the end of 
the above calculations is listed in Table 2. 

Table 2. Final refined values of the repulsion parameters for the 
alkali halides 

IOII A (em) pw 

Li* 7.6 x lo-la 1.90 x10-9 

N.* 6.4 x1o-ll 1.811 I 10-9 

n+ 3.4 J lo-i0 1.848 I 10-g 

ml* 2.7 x io-g I.574 x 10-9 

I%+ 6.5 x10-9 1.646 I IO-' 

F- 6.0 I lo-iO 1.545 I 10-9 

cl- 3.0 x 10-9 1.67 x10-g 

nr- 3.0 x 10-9 1.81 I 10-9 

I- 3.0 I 1o-g 2.00 I 10-9 

5. DISCUSSION OF THE RESULTS 

The calculated values of r (nearest neighbour distance) 
and d2 W, /dr* (which is proportional to the bulk modulus 
as shown by eqn (18)) are listed in Table 3. The values of r 
were obtained by numerically solving the transcendental 
eqn (27) where [d W,(r)]/dr was obtained from eqn (16). 
Then, using this value of r, d* W,/dr’ was calculated 
through eqn (28). Also listed for comparison in Table 4 are 
the true experimental values of r and d* W,/dr’. The 
percentage errors are also listed. The root mean square 
percentage error in r, calculated for all the compounds at all 
the pressures listed, is 0997%. The corresponding value 
for d* W,/dr’ is 6.755%. 

To get an idea of the significance of the above results, 
we shall compare them with those obtained by earlier 
workers. The latest and most extensive calculations are 
those made by Tosi and Fumi[20]. In Table 3, we have 
listed the values of r and dZWr/dr2 calculated for 
seventeen compounds at atmospheric pressure on the 
basis of their repulsion potential. The r.m.s. percentage 
errors in r and d2WL/dr2 are respectively 144% and 
15.4% both higher than the corresponding values from the 
present theory. A detailed comparison of these seventeen 
cases with the results based on the present theory results 
in the following. Tosi and Fumi have better agreement 
with experimental lattice spacings in ten cases and with 
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experimental compressibilities (d’ W, /dr*) in eight cases. 
Hence, on this criterion, the fit with experiment of the two 
theories is comparable. The significant improvement of 
the present theory in terms of r.m.s. deviations from 
experiment is due to the following. Whereas the results of 
Tosi and Fumi are extremely good for the chlorides, 
bromides and iodides of sodium, potassium and rubidium, 
their results are very unsatisfactory in the case of the 
lithium compounds and the alkali fluorides. 

Apart from the improvement of our results over those 
of Tosi and Fumi, we should note the following further 
points which make our repulsion potential attractive. 

(1) Tosi and Fumi employed 26 parameters viz., 17~‘s 
and 9 basic radii to describe 17 compounds. On the other 
hand, in our formulation of the repulsion potential, we 
have employed only 18 parameters, viz. 9 A’s and 9 p’s to 
describe 20 compounds. 

(2) Tosi and Fumi attempted only the fitting of 
atmospheric pressure data. Our repulsion parameters fit 
the alkali halides in the whole pressure range from 0 to 
45 kbars. To our knowledge, no attempt has so far been 
made to fit data over a range of pressures. 

(3) When a compound undergoes a phase transition, the 
procedure of Tosi and Fumi required the refinement of a 
new set of parameters[ll]. We have eliminated this 
concept of structure dependent parameters and use the 
same set of parameters in all phases, making only obvious 
changes in the number of nearest and next nearest 
neighbours, as explained in Section 2. 

(4) The repulsion potential of earlier workers do not 
have much predictive power. Every time a new compound 
is encountered, new parameters have to be refined. This is 
because in their potentials, some of the parameters are 
crystal dependent. In our formulation of the repulsion 
potential, the ions are given complete individuality. The 
repulsion potential in a compound depends only on the 
ions. So, when a new compound is encountered, if the 
parameters of the individual ions have already been refined 
from other compounds, the repulsion potential for the new 
compound is completely defined. This potential would be 
valid over a range of pressure. Hence, in theory, all the 
properties can be calculated. 

6. IONIC RADII 

The ionic radius is a vital concept in our treatment of 
ionic solids. It is a variable which varies for an ion from 
one crystal to the other and with pressure in the same 
crystal. The repulsion between ions is thought to arise 
from the increased energy of an ion when constrained to a 
smaller radius. This dynamic concept of the ionic radius is 
far removed from the simple pictures of earlier workers 
where certain constant radii were associated with ions 
and it was shown that the sum of two such constant radii 
approximately gave the nearest neighbour distance in the 
corresponding compound. These (constant) ionic radii are 
further arbitrary to a constant which has to be fixed by 
some extra relation such as for instance relating the size of 
an ion to its polarizability. 

Table 4 lists the ionic radii of the ions in the various 
compounds at atmospheric pressure as calculated from 
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Table 3. Comparison with experiment of the values of r and 6 W,, /dr’ cakulated with the present repulsion 
potential (13). The values predicted by the potential of Tosi and Fumi[20] are also listed. All deviations are given as 

percentages of the corresponding experimental values 

da’& 
orys- Pressure struc- 

(kbsr.) 
Nearest Nwighbour Di*ta!lce(**) 

ta1 t”l* 
;i;; (12 .Ji .,*I) 

r, 
Prasent Theory 

r, Dsvia- r, tion 
T.P. ;; i:‘a p;’ ::: 

tion 
: q‘ :z: 

\,;L*’ i t*on 

LiF 0 tee 2.0087 1.9743 -1.715 1.985 -1.179 3.393 3.4681 3.i60 2.843 6.313 

LiCl 0 IO.2 3.670 2.6706 0.024 3.633 2.412 1.3993 1.6142 6.309 1.74 34.346 

LiCl 45 ICQ 2.**2* 2.4697 0.292 2.0608 2.1515 3.396 

Lier 0 ice 2.7506 2.7161 1.003 2.812 2.236 I.2118 1.2354 1.949 1.65 27,QOQ 

LiRB. 43 foe 2.6339 2.6697 1.360 1.7566 1.9290 9.396 

LiI 0 ICC 3.003 3.0617 2.621 3.059 1.866 0.80052 0.9205 14.993 1.18 47.404 

LiI 46 fac 2.8433 2.9221 2.710 1.4341 1.678, 17.059 

NaF 0 io. 2.310 2.3236 0.589 2.335 1.092 1.6120 1.694 -1.096 I.689 -1.427 

m&l 0 fco 2.620 2.8099 -0.360 2.609 -0.390 1.261, l.i60 -6.603 1.20 -5.340 

N&l 46 ioo 2.7048 2.6925 -0.456 1.9478 1.624 -6.342 

N&RX 0 ice 2.989 2.9664 -1.022 2.967 -0.067 1.0377 1.055 t.626 1.06 1.165 

wale 45 ioo 2.6494 2.8214 -0.962 1.7596 1.16% 0.093 

MI 0 rot 3.236 3.2613 0.763 3.243 0.216 0.76033 0.305 1.579 0.75 -2.513 

NaI 45 ioc 3.0483 3.0619 0.640 1.4649 1.565 6.168 

KF 0 foe 2.6736 2.6966 0.666 2.669 -0.542 I.3780 i.iQl -5.660 i.260 -1.730 

1. 2 3 4 5 6 7 6 9 10 li 12 13 

xc1 0 

xc1 15 

KC1 20 

Kc1 46 

KRr 0 

XRr 16 

ItBra 

T-a* 45 

KI 0 

KI 15 

M 20 

M 45 

RbP 0 

EbCl 0 

RbCl 10 

RbCl 46 

RbRx 0 

RbRr 5 

1.141 3.1363 -0.666 3.160 0.095 

3.0797 3.0464 -0.792 

3.169 3.a144 0.196 

3.1167s 3.1356 0.603 

3.300 3.261 -1.178 3.306 0.i5.2 

3.2123 3.1709 -1.287 

3.346 3.3501 0.122 

3.2666 3.2620 0.165 

3.638 3.4953 -1.067 3.632 -0.026 

3.*x!* 3.3763 -1.230 

3.5T9 3.579 o.iw* 

3.1761 3.47'116 -0.103 

2.820 2.6126 -0.262 2.768 -1.841 

3.a91 3.2735 -0.531 9.293 0.061 

3.349 3.3664 0.699 

3.233 3.2466 0.633 

3.444 3.4392 -0.140 3.451 0.203 

3.527 3.6611 0.967 

0.96517 

i.a933 

1.2106 

1.7436 

0.8325 

I.2145 

0.9794 

b.696~ 

0.7389 

i.iS28 

1,041s 

1.5273 

I.266 

0.989 

1.094i 

1.7977 

0.6460 

O.SRbli 

0.922 -3.494 0.84 -1.588 

1.2186 -6.043 

I.1960 -1.291 

1.5660 -10.165 

0.6456 1.587 0.909 9.169 

l.l665 -4.611 

1.1389 16.282 

1.533e -4.52a 

0.7099 -3.a71 0.74 0.631 

1.0493 -8.965 

1.0246 -1.658 

1.4308 -6,316 

1.3440 5.996 1.303 2.760 

0.95174 -2.608 0.97 a.222 

1.1232 2.664 

1.1328 -3.613 

0.8316 -1.7ia 0.62 -3.073 

0.9023 -a.*69 

1 2 3 * 6 6 7 8 Q 10 t1 12 13 

3.3689 3.4079 1.178 I.4660 1.5466 4.006 

3.671 3.6116 -1.G19 3.673 n.064 0.7560 0.7581 0.414 0.74 -1.987 

3.769 3.771 0,059 0.6167 0.7991 -2.4001 

3.5806 3.5613 O.l67 1.5686 1.4724 -5.532 

3.00* 2.Q946 -0.316 2.901 -3.162 1.444 1.3416 -7.068 1.F60 14.358 

3.671 3.6844 0.655 0.6070 u.9933 -0.5t6 

3.3021 3.4241 0.943 1.6BB1 1.6948 6.033 

3.720 3.7226 0.066 O.SO36 0.8282 -9.233 

3.6113 3.5322 0.6Q6 1.5664 1.5401 6.021 

3.956 3.3958 -1,622 0.7369 0.76*1 3.6SO 

3.7026 3.6'195 -0.63UC i.4428 f.6066 11.367 

ma @.!lQ?tb 1.436$ 6.755% 16.404% 

neon absolute 0.7E8" 0.952% 6.409:: S.O46% 
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our repulsion potential (3). As can be seen, the radius of 

any ion varies from one compound lo the other. 
Particularly remarkable is the variation in the case of the 

lithium ion. Also noteworthy is the large change in radius 
of the Cs’ ion from CsF of fee lattice to CsCl of SC 
lattice. 

Table 6 lists the classical ionic radii obtained by 
Goldschmidt[21], Pauling[ZZ] and Zachariasen[23]. It is 
difficult to compare them with our radii which are 
variables. However, we have listed in Table 5, the average 
radii of our ions in their respective compounds at 
atmospheric pressure. 11 is noted that our positive ion 
radii are larger than the classical values while our negative 
ion radii are smaller. Experimentally, one can get ionic 
radii from the detailed electron density maps of ionic 
solids. From the work of Witte et al. [ I] we get the radii of 
Na’ and Cl in NaCl to be I.17 and l.65A 

respectively. Schoknecht[Z] gives almost the same 
values-l.18 and I64 A. Our ionic radii in NaCl are I.12 
and I.69 A which agree much better than the classical 
values listed in Table 6. Our ionic radii are numbers that 
have evolved out of the theory without any related 
information being put in. We consider the close agreement 
of our radii with the experimental values a strong point 
in favour of our whole approach. Krug et al. [3] have given 
the electron density map for LiF. Here the overlap is 
much more and it is difficult to obtain ionic radii. We can, 
however, approximately estimate the radius of Li’ to be 
0.92 w and F to be I49 A. In comparison, our values of 
0.70 and I.28 A are not too bad. These results are 
summarized in Table 6. 

In addition to the classical ionic radii listed in Table 6, 

various other attempts have been made to obtain ionic 
radii from the Born model itself. The ionic radii in the 

Table 4. Ionic radii (in Angstroms) of the alkali and halogen ions at atmospheric pressure calculated from the 
present theory 

F- Cl- Br- I- 

ti* 0.698 0.824 0.663 0.923 

1.276 1.746 1.916 2.159 

N.* 1.065 1.122 I.132 1.195 

i.aae I.666 I.626 2.061 

I(+ 1.406 1.442 1.441 1.471 

1.291 I.664 1.616 2.016 

lib* 1.536 I.665 1.603 1.602 

1.2ll 1.669 1.637 2.009 

c.+ I.729 1.649 1.641 I.646 

1.266 1.745 1.615 2.050 

Table 5. Comparison of the classical ionic radii of Goldschmidt(ZI], Paulin8[22] and Zxhariasen[23] with those 
predicted by the present theory. All values are in Angstroms 

with pre- 
mat poten- 
tial 

Id+ 0.78 
Na* 0.96 

K* 1.33 

Rb* I.49 

CO* 1.65 

F- 1.33 

cl- 1.61 

Br- 1.96 

I- 2.20 

0.60 0.68 

0.96 0.96 

1.33 I.33 

1.46 1.46 

1.69 1.61 

1.36 1.33 

1.61 I.61 

I.96 I.36 

2.16 2.19 
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Table 6. Comparison of various theoretical ionic radii with the experimental values. All values are in Angstroms 

Crystal IOIl Experl- Goldschmtit Pauling Zacha- ?*e- TOSi 
mental 
radius 
p.g 

NaCl Nfl+ 1.17 0.36 0.95 0.96 1.122 i.2C 

NaCl cl- 1.65 1.61 1.61 1.61 1.666 1.62 

LIF Li+ 0.92 0.76 0.60 0.66 0.696 0.83 

LiF 7 1.09 1.33 1.36 1.33 1.276 1.19 

Huggins-Mayer form of the repulsion potential[24] are 
indeterminate to a constant which has to be arbitrarily 
fixed. In the approach of Tosi and Fumi[20], this 
arbitrariness is apparently removed. But this arises from a 
weak contribution from second neighbour repulsion. As 
Douglas [25] has shown, it is possible to get different sets 
of “basic radii” which would be far different from one 
another but all of which would describe the family of 
crystals to the same tolerance. Further, the “basic radii” 
again suffer from the defect that they are constants. Tosi 
and Fumi seek to remove this by defining “crystal radii” 
where the difference between the nearest neighbour 
distance and the sum of the basic radii is distributed 
equally between the two ions. But this seems ad hoc and 
would require some justification. It should be mentioned 
that the crystal radii of Tosi and Fumi agree very well 
with the experimental values quoted above (see Table 6). 

I. CONCLUSION 

To summarize, we have postulated that the repulsion 
between ions in ionic crystals occurs essentially from the 
distortion and compression of the ions which are 
considered to be distinct entities. At this stage, there is no 
theoretical justification for this. By explicitly putting an 
exponential functional form for the compression energy 
of individual ions, we have calculated parameters for the 
ions in the alkali halide family. The resulting repulsion 
functions describe the alkali halides somewhat better than 
earlier potentials proposed by other workers. However, 
the main attraction in the approach lies in the fact that 
with minor alterations, the same repulsion parameters can 
be used for an ion in different structures and in different 
crystals. This makes the present formulation of the 
repulsion potential very useful. Finally, our approach to 
repulsion introduces the idea of ionic radius in a very 
natural way and is capable of predicting the variation in 
the radius of an ion from one crystal to another and also 
with pressure in the same crystal. 

It should be pointed out that the present empirical 
approach to repulsion in ionic crystals involves two levels 
of approximation. In the first level we postulate a specific 
functional form for the repulsion potential (eqns (1) and 

(10)). Comparison with experimental results [5] have most 
favourably verified this level of approximation. In this 
paper, we have chosen a specific exponential form (eqn 
(13)) for the repulsion potential. The results are reasonably 
good. It is quite possible that some other specific function 
might lead to better agreement with experiment. But this 
will not basically invalidate our picture of the origin of 
repulsion between ions. 
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