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A novel approach to the formulation of the repulsion potent' | of ions in jonic’ crystals
has been attempted. The repulsion potential is- postulated to be the sum of contributions from the
individual ions, these contributions being proportional to the coordination numbers of the ions.
For the specific - xponential form of the jonic compression energy [A exp (—r/p)] the two parameters
A and p have been evaluated for 5 alkali and 4 halogen ions to fit the behaviour of 20 alkali halides. .
Not only is the number of parameters (18) used in'this theory less than that (26) in comparable
existing ones but the fit also is better. The same parameters fit the data of the alkali halides, o
(a) at atmospheric pressure, (b) in the prescure range 045 kb wherever data is availabie and also (c) ~.
for both the low pressure NaCj and the high pressure CsCl forms when such transformations_occur.
The important. feature in this approach is that the parameters evaluated for an ion in one

compound in one crystal structure can be used dlrect]y for the vame ion m any other crystal of

any structure at any pressure .

INTRODUCT[ON

. THE concept of an ion as an mcompresslble sphere
with a specxﬁc radius has proved very useful in

many fields, particularly- $0 in the crystallography of
One is therefore tempted

inorganic substances'~®,
to enquire whether more complex properties hke
compressibility could also be jon-dependent. - .

Any crystal is stable because of the balance between
attractive and repulsive forces in it. The attractive
forces in an ionic crystal mainly consist of electro-
static cculomb forces and dispersion forces arising
from van der Waals’ dipole-dipole and dipole-quadru-
pole interactions. The attractive interactions can be
calculated fairly accurately. They involve lattice
sums for which powerful methods have been evolved
(e.g., Ewald®), The repuision forces between ions
are known to arise from the overlap of “electronic
cleuds of the neighbouring ions. However, the actual
evaluation of these from first principles is extremely
difficult and has been rarely attempted”.
customary to use empirical functions to represent
the repulsion interaction (see Tosi® for a review). We
can write the lattice energy per molecule of say a binary
ionic crystal in terms of the nearest nelghbour dnstance
r as

We(r) = 7 "T.—g+wren(’)

where the first three terms constitute the attractive
energy and describe respectively the Madeiung electro.
static, the dipole-dipole and the dipole-quadrupole
interaction energxes, and W;ep (r) is the repulsnon
energy.

The idea of an 1on as'a separate entity in -an ionic
crystal cannot be rigorously justified on the basis
of quantum mechamcs But accurate electron densxty

* Based on an invited ta k delivered (by S. R)
at the National Conference i 1\ Crystallography, New
Delhi, December 4-6, 1975
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It is therefore
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maps of ionic crystals’““ clearly show that the elec- .

trons of each ion are well separated with regions of
near zero electron denslty between the jons giving a

physical substance, to the concept of the ionic radius,
. However, consldenng the jons as hard incompressible

spheres, with fixed’ radii, s too restrictive. We
present here an attempt to Wwiden our concept of the

*ion and trent lt as a compressxble sphere.

_Rrsur.'r or Iomc CounsssroN

The fundamental postulate we make is that the
repulsion energy Weop (#) in eqn. (1) can be written
as ‘the sum of the contnbuuons from the two ions
in the form ~ -

wup (f ) w+ ("+) + W- @)
where r, and r- are the radii of the two ions.
implications of eqn. (2) are : ;
(@) The ion has an internal energy [viz., W, (re)

@
The

‘or W_ (r_)] which is a function of its size, the ion

having less energy at large volumes. Figure 1 (full
line) shows the type of function that is envnsaged for
this energy. - .o

(6) When the ion is compmsed by a preesnre a

. reaction is set up and the jon reaches an equilibrium

size (r,° in Fig. 1) at which its total energy is minimum,
© The internal energy of the ion does not depend
on the agency that compresses it. For instance, the
neighbouring ions of the crystal could be ee_qs,nm ‘the
compression. The internal energy of an ion is hence
described by the same function in the different crystals
in which it occurs [subject to some modifications
(discussed later) when the structure type "changes).
‘(d) We see.from Fig. 1thata compxused ion feaches
an - ethbnum size because it resists’ eompremon
The basic postulate used in writing 'down eqﬁ Q@)
is that the repulsion between iops arises solely from

- their reactnon to compremon
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If the repulsion potential (2) is substituted in the
expression (1), the lattice energy of a binary ionic
crystal is seen to be a function of three variables, viz.,
r, r+ and r.. However, there are two further rela-
tions : . )
~ (a) Since nearest neighbours are assumed to be in
contact
’ r=r.+r. 3

(&) For ahy given r, the two ions adjust their sizes
s0 as to minimise their total compression energy.
This requires the first differential coefficient of the
energies of the two iois to be equal, ie.,

AW, () _ dW_ ()

dr, dr-

or )

W (ry) = W (r). (O]
We can physically picture the neighbouring ions as
pushing against each other and so adjusting their
radii that the forces they exert on each other are
balanzed. Equation (4) describes the balancing of
the two forces.

Because of eqns (3) and (4), r, and r...are ultimately
functions of r and it can be shown that'

dW, (r) act _ 6C

dr rt r

W, (ry) = W' (r) =
) )

is a measure of
individual

/ (r) has the units of force and
the compressing pressure acting on the
ions in the crystal.
dW, (r)
dr
is a quantity that can be computed from experimental
data (it is proportional to the external pressure
applied on the crystal). The next three terms can
also be caiculated precisely if the constants «, C,
D are known, so that f(r) can be calculated for
any crystal at any pressure provided the PV data
are available. ’

EXPERIMENTAL JUSTIFICATION OF THE FIRST POSTULATE

In the present picture the ionic radii », and r_ are
not constants but variables. At any given pressure,
the ions adjust their radii so as to minimise the total
energy given by W, (r) + PV. Even when the exter-
nally applied pressure P on the crystal is zero, there
is still a pressure acting on the jons [described by f (r)]
because of the attractive forces among the ions. This
attractive force which can be calcujated, since all
attractive interactions are well understood, varies
from one crystal to the other. Even when P =0,
the same ijon will not have the same radius in two
different crystals. This is the basic difference of
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this theory from the simple hard. sphere model. In
the present theory, the same ion in two different crystals
will have the same radius only when the interng/
pressure acting on it in the two cases are equal. Al-
though the two- internal pressures will not normally
be equal, it must be possible to select two external
pressures P, and P, such that P, acting on the first
crystal and P, acting on the second crystal both iead
to the same internal pressure on the ion. In such a
case, the radius of the ion in the two crystals must be
equal. This, if verified, will be a strong justification
of the postulate that has been made. However, the
ionic radius is not an easily accessible quantity even
under ordinary conditions, and to obtain it under
different pressures would practically be impossible.
Fortunately an equally powerful test is possible.
Consider four ions A*, B+, C-, D~ and the four crystais
they form

A+ C- At D- B+ C- B+*D- ' (6)

I n I v

.Now four pressures P;, Py, Py, P, can be calculated

such that P, acting on the crystal I, P, acting on the
crystal I, etc., lead to the same internal pressure [i.e.,
the same value of £(r)]. Under these conditions, the
ion A* has the same radius in crystals I and 1I, the
jon C- has the same radius in crystals I and III, etc.
It is then easy to derive from (3) the relationship
between the interionic distances given by

(r, + ’(v) —(ry +ry) =0. . 7
EBquation (7) can be readily tested as we need only
the nearest neighbour distances as a function of
pressure in the four crystals. In the case of the alkali
halides family of crystals the test shows that the
identity (7) is very well satisfied to less than 4%, tolerance
in fourteen sets of crystals’®. -

It is possible to derive another identity similar to
(7) connecting compressibilities. The compressibility
of an ion depends on the second derivative of its
internal energy and is hence a unique function of its
radius. This, however, cannot be directly tested
since it is not possible to measure the compressibility
of an individval jon. What can be measured is the
bulk compressibility of the lattice which has contri-
butions from the individual ions };Ius an attracfion
contribution ” which arises as follows. As the ions
get compressed, the interionic distances change, altering,
in their turn, the attractive forces. Now define the
following function of r for the crystal

1 .
D = m Wy EW.( ®
Tart T T art
where
d? WL r)
T ar .

is inversely proportional te the .compressibility of
the crystal and W, (r) represents the total of the
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attractive interactions [the first three terms in the
R.H.S. of (1)] in the crystal. It can then be shown that

for four crystals I, II, IIT, IV at pressures Py, Py, Py,

Py a8 described in (6), the following identity results:
[g(")x + g(rhy] — (g + g(r)m] =0. %)

This identity also has been tested on the alkali halides
and it checks to about 3%.

The two identities (7) and (9) were derived to be a
consequence of the postulate that repulsion arises
entirely from the existence of a compression energy
for individual ions. Their strong verification may
hence be taken to be a fairly good justification of
the postulate.

THE EFFECT OF COORDINATION ON THE REPULSION
ENERGY

One of the essential features of the present approach
is that the functions W. (r+)should be capable of
peing transferred from one crystal to the other. How-
ever, this cannot be done directly when the structure
changes. If we are, to introduce compressibility as a
property of the ion irrespective of the structure in
which it is situated, we must associate with each ion
a unique function which is independent of the symmetry
of its environment. We achieve this with a second
postulate which states that the compression energy
of an ion is directly proportional to the number n
of nearest neighbours, i.e., )

Wy (re) = nhy (ry) ()
where h+.(r+) is a unique function for a given ion, inde-
pendent of the crystal structure in which it is situated.
The relation (10) can be rationalised on the picture
that the increase in internal energy arises from the
local compression and distorticn at the points where
an jon “ touches” its neighbours. In this picture
an ion may be compared to a balloon, with an impene-
trable surface skin and a compressible interior. The
second postulate implies the following :

(a) Suppose a compound exists in two structures
having n, and n, nearest neighbours. Let the nearest
neighbour distance r be the same for structure 1 at
pressure P, and structure 2 at pressure P;, Then it is
easily shown that .

m_filr) _&alr)

ne fa(r) & (r)
These identities have been tested on the six compounds
KCl, KBr, KI, RbCI, RbBr, Rbl which transform
from the NaCl to the CsCl structure at high pressures!2.
Here again the results are very encouraging indicating
that there is a definite physical basis for the second
Postulate,

(b) We chall show shortly that on the basis of this
Postulate it is quite straightforward to calculate the

(§3))
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contribution to the repulsion from the second neigh-
bour interaction.

THE REePuLsION FUNCTION FOR Innmmm.' Ions

The next step is to evaluate the function A (r) for
different ions. Here again some empiricism is required-
The internal energy of the isn has to be represented

by a suitable function containing a smail number of

parameters which have to be refined to fit the data.
In our studies we have assumed the following function
which would approximate the actual- behaviour sche-
matically represented in Fig. 1.

hy(ry) = Ay eT2/Px (12
v W, (1)
cem—— Y l.
e W) PV IE
. ‘.:
¢

s €01y

=

S—" S Y

. FiG. 1. Schematic graphs of the variation of the
internal energy W, (r.) of the (positive) ion and the
pressure energy PV with r, the radius cf the ion. The

fon take: up a radius r.° at which.the total energy
[W,(r;) + PV} is a minimum.

where A+ and ps are the parameters to be refined, the
=+ standing for the positive and the negative ion
respectively. The failure of this approximation will
not in any way invalidate the two postulates. made
carlier. Another model function [eg., A+ (r+) =
A/r+"=] may possibly give a better description of the
joric compression energy. '

Using eqn. (10) we can now write the lattice energy
per molecule of a binary ionic crystal as
ee* C D
T s

£y [A+e Filbs o T "‘]
~brlp

W(r) = —

+BV..

13)
The new term in (11) represents the repulsion energy
arising from second neighbours. , is the number: of

+m [A+e"” I+ | A e
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second neighbours and 2br is the distance between
them. We have used the same compression function
for second - neighbours also since according to our
model, thc actual agency compressing an ion is not
of consequence. Also we assume that the ionic
radius in the direction of ths second neighbours is
br and so replace r+ by br for the secord neighbour
repulsion terms. This implies that the ion extends
to a distance br in the direction of the second neigh-
bours whi'e it extends to r+ (or r_ as the case may be)
in the direction of the first neighbours. In this
theory we are compelled to discard the idea of a
spherical ion, an aspect strikingiy supported by the
accurate electron dens:ty maps of NaCi obtamcd by
Witte and Wolfel® (Fig. 2).

FiG. 2. Electron density plot in the (100) plane
of NaCl (after Witte and Wolfel®) showing the non-
spherical eectron distribution in each ion. The
icns extend to a distance r. and r_ respectively in the
direction of the rearest neighbours and to a aistance
br in 'the direction of the next neatest neighbours.

The lamce energy function W, () given in (13) was
used to fit the repulsion parameters for the five alkali
jons Li*, Na*, K*, Rb*, Cs* and the four halogen
jons F-, CI-, Br, I-*® The available data on the
alkali halides were used for this. The lattice energy
W (r) itself is not very easily measured, neither is
it very sensitive to the repulsion function. The equili-
brium nearest neighbour distances and the compressia
bilities which depend on the first and second deri-
vatives of W (r) were the data used. These data
are available over a range of pressures and the repul-
sion parameters were refined to fit them over the whole
available range. In some cases where there is a phase
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transformation from NaCl to CsCl structure at high
pressures, the data for these new structures were also
fitted. This was possible because the second postu-
late clearly identifies the changes to be made on the
repulsion function with change in coordination. Table [
gives the final refined parameters for the nine alkali
and halogen ions. Table II summarizes the range
of validity of these parameters in the alkali halides.
The refined parameters fit the experimental data very
well justifying the model function used in (10).

TaBLE 1

Final reﬁned repulsion parameters for the alkali ¢nd
halogen ions

Ton A (10 ergs) p (10- cm)
Lit 7-5% 10~ 190
Na* 64 % 10 1-815
K+ - 0-34 1-848
Rbv. 27 1-574
Cs+ 65 1-645
F- 060 . 1-545
cr 30 - 1°67
Br 3-0 1-81°
. 3-0 2:00

TABLE 11

The repulsion parameters listed in Table I fit all the
available data for the crystals listed below *

LiF

LiCl LiBr Lt
NaF NaCl NaBr - Nal
KF Kl KEr Kl
RbF RbCl RbBr R_bl
CsF felle] CsBr cl

* Normal type—only atmospheric pressure datd
available—NaCl type structure.

Normal type underlined—high pressure data avaik
able—NaCl type structure.

Normal type underlined and boxed—high P!
data available on both lower and higher sides
NaCl to CsCl type transformation.

Italics underiined—high "pressure data available—
CsCl type structure, -

pressuré
of 3
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CONCLUSION

The picture of repulsion that we have presented is
a simplification of a very complex phenomenon but
it is our belief that even so simplistic a mode} is a
first step to get an insight into the phenomena under-
lying the compressibility of ionic crystals. Even if
we disregard the physical basis of our arguments
and consider the iomic repulsion function we have
proposed as one more of the many empirical functions,
it has a number of advantages over the existing ones.
These are enumerated below.

(1) The latest and most extensive calculation of
the repulsion function in alkali halides is the work
of Tosi and Fumi'. They have employed 26 para-
meters in their repulsion functions to describe 17 alkali
halides (they did mot fit CsCl, CsBr, CsI). We
require only 18 parameters (one A and one p per ion)
to fit ali the 20 alkali halides listed in Table II.

(2) The repuision functions of Tosi and Fumi fit
the equilibrium nearest neighbour distances with a
r.ms. deviation of 1-45% and compressibilities with
15-4% r.ms. deviations. The corresponding values
for our theory, viz., 0-997% and 6-76%; make a ' very
favourable comparison.

(3) Tosi and Fumi attempted only the fitting of
atmospheric pressure data. Our repulsion para-
meters fit the alkali halides (except the fluorides for
which reliable high pressure data are not available)
in the whole pressure range from O to 45 kbars. To
our knowiedge, no other attempt has so far been made
to fit the data over a range of pressures.

(4) Tosi and Fumi'® refined a new set of parameters
whenever a crystal underwent a phase transition,
We have eliminated this concept of structure depen-
dent parameters by using the same set of parameters
in al]l phases. This is significant because the attractive
interactions for the new phase can ail be calculated
(the new C and D coefficients are related to the corres.
ponding values in the old phase). Thus, since the
repulsion energy is also known, the theory can predict
the properties of the new phase.

(5) In our formulation, if the repulsion parameters
of an ion have been determined in one crystal of one
structure, they can be used for that ion in any other
compound of any other structure. When a new com-
pound is encountered, if the parameters of the indivi,
dual ions have already been refined from other
compounds, the repulsion potential for the new
tompound is completely defined. This potential would,
fﬂoreover, be valid over a range of pressures. Hence,
In principle, all the properties can be calculated. This
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lends predictive power to our approach. In contrast,
almost all earlier attempts fit some crystal-dependent
parameters. They can hence never be used to predict
the properties of a new system.

(6) As an offshoot of our calculations, we get the

“radii” of the ions in the alkali halides. These
compare fairly well with the experimental values!®,
Moreover, we also get the variation in the radius of
an ion frcm one crystal to the other and with pressure
in the same crystal, -

We envisage in the future a number of extensions
of the above type of cilculations to systems other
than the alkali halides. We are in particular consi-
dering alkaline earth halides and alkali and alkaline
earth oxides and chalcogenides. In this contékt it
would be very interesting to test the claim about the
predictive power of this approach {point (5) above).
For instance, the répulsion parameters could be calcu-
lated for Bat+ from the compressibility data on BaF,
using the known parameters of F-. Similarly the
parameters of S-- could be obtained from the alkali
sulphides. Using these new parameters one could
check whether the properties cf BaS are well described.
It is also hoped to extend the calculations to non-cubic
structures if the computational problems are not too
formidable and also to ionic radicals. Finally,
there is the problem of explairing phase transitions.
For this, more sophisticated models may be neces-
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