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. - ABSTRACT - 1 , x . P f ,. -. , , 
A novel approach to the formulatio~t of the repulsion potential of ions in ionic crystah - 

has been attempted. The repulsion potential is postulated to be the sum of contributions from the 
individual ions, these contribution3 being proportional to the coordination numbers of the ions. 
For the specific , xponential form of the ionic compression energy [Aexp (7 rip)] the two parameten 
A and p have been evaluated for 5 alkali and 4 halogen ion3 to fit the behaviour of 20 alkali halide. 
hot only is the number of parameters (18) used in this theory less than that (26) in comparable 

* - ' 
* existing ones but the fit also is better. The same parameters fit the data of fhe alkali ha!idu. , 

(a) at atmospheric pressure, (b) in the presrure range 0-45 kb wherever data u avadabie and rho  (c) -. 
for both the low pressure NaCl and the high pressure CsCl forms when such transformrlt~ons occur. 
The important feature in this approach IS that the.pamnetc111 evaluated for an ion in one 
compound in one crystal structure can be used directly for the same ion in any other crystalI of 
any structure at0any pressure. I' $ .  I S .  .I ' ", a :. '4: - 

I , r  . - 
INTRODUCTION maps of ionic crystalscll clearly show that the el=- 

T H E  concept of an ion as an incompressible sphere 
w~th a specific hdius has proved very useful in 

many fields, particularry to  in the crystallography of 
~norganic substances1-\ One is therefore tempted 
to enquire whether mok complex properties like 
compressibility could also be ion-&pendent. ' A 

Any crystal is stable because of the balance between 
attractive and re~ufsive forces in it. The attractive 
forces in an ionic crystal mainly consist of electro- 
static cculomb forces and dispersion forces arising 
from van der Waals' dipole-dipole and dipolequadru- 
pole interactions. The' attractive interactions can be 
calculated fairly accurately. They involve lattice 
sums for which powerful methods have been evolved 
(e.g., Ewald'). The repulsion forces between ions 
are known to arise from the overlap of"ektr0nic 
clcuda of the neighbouring ions. However, the actual 
evaluation of these from fint principles is extremely 
difficult and has been rarely attempted7. It is therefore 
customary to use empirical functions to represent 
the repulsion interaction (see Tosis for a review). We 
can write the lattice energy per molecule of say a binary 
ionic crystal in terms of the neamt neighbour distance 
r as 

Wr (r) = - - -. - - - 2 + w l W ~  (I) 

where the first three terms constitute the attractive 
energy and describe respectively the Madezung electro- 
static, the dipole-dipole and the dipole-quadrup~le 
interaction energi&, and WreD (r) is the repulsion 
energy. 

The idea of an i k  r$ a separate entity in an ionic 
crystal cannot be rigorously justified on the basis 
of quantum mechanics. But accurate electron density - 

* Based on an invited ta ic delivered (by S. R.) 
at the Nat~onal Conference i I Crystallography, New 
Delhi, December 4-6, 1975 

trons .of each ion are d l  eP&attd with regions of 
near mo electron density between the ions giving a 
physical substance-?. the concept of the ionic radiua. 
However, considering the ioni as hard incompnssible 
spheres, with @ed 1 radii, is too restrictive. We 
present here ,an attimpt to 'widen our concept of the 
ion and treat It ty'"acomptessib1e sphere. 
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 REPULSION;.^ RE&LT OF IONIC ~ P R ~ I O N  . "" y ,  

The fundamental postulate we make is that the 
kpulsion energy W,, (r) in cqn. (1) can be written 
as the sum of the contributions from the two ions 
in the form. - 
where r+ and r- are the radii of the two ions. The 
implications of eqn. (2) are : 

(a) The ion has an .internal energy [viz., W+ (rt) 
or W- (r-)] which is a function of its size, the ion 
having less energy at large volumes. Figure 1 (full 
line) shows the type of function that is envisagsd for 
this energy. $ -  

(6) When the ion is compressed by a ~IUSUIC, a 
reaction is set up and the ion caches an equilibrium 
size (rto in Fig. I) at which its total energy is m i n i m .  

(c) The internal energy of t!e ion does not depend 
on the agency that compresses it. For instpnce, .the 
neighbouring ions of the crystal could be ca+ tho 
compmion. The internal energy of an ion is 
described by .the same function in the diffmt.crystals 
in which it occurs [subject to' some m o d i t i o n s  
(discussed later) when the structure typq c-1. 

(d) We see from Fig. 1 that a comprrssed ion teaches 
an equilibrium- size because it mists *ion. 
The basic p ~ s t ~ l a t e  used in uniting 'down qil. (2) 
is that the repulsion between ions mines solely from 
their reaction to compredsion. 

.. - .... 



A n  Ionic Property ? 

If the repulsion potential (2) is substituted in the 
expression (I) ,  the lattice energy of a binary ionic 
crystal is seen to be a function of three variables, viz., 
r ,  r+ and r-. However, there are two further rela- 
tions : 

(a) Since nearest neighbours are assumed to be in 
contact 

(b) For any given r, the two ions adjwt their sizes 
so as to minimise their total compression energy. 
This requires the first differential coefficient of the 
energies of the twp iois to be equal, i.e., 

- dW- (r-) 
dr+ dr- 

or 
W+' (r+) = W-' (r-). (4) 

We can physically picture the neighbouring ions as 
pushing against each other and so adjusting their 
radii that the forces they exert on each other are 
balan-ed. Equation (4) deszribcs the balansing of 
the two forces. 

Because of eqns (3) and (4), r+ and rc.are ultimately 
functions of r and it can be shown that' 

dW ( r )  - ac' 6C ' W,' (r+) = W-' (r-) = -z - - 
dr r* r7 

- :: -- = I  ( r )  (say) 

j (r )  has the units of force and is a measure of 
the compressing pmsure acting on the individual 
ions in the crystal. 

is a quantity that can be computed from experimental 
data (it is proportional to the external pressure 
applied on the crystal) The next three terms can 
also be calculated precisely if the constants a, C. 
D are known, so that f ( r )  can be calculated for 
any crystal at any pressure provided the PV data 
are availabk. 

EXPERIMENTAL JUSTIFICATION OF THE FIRST POSTULATE 

In the present picture the ionic radii r+ and r- are 
not constants but variables. At any given pressure, 
the ions adjust their radii so as to minimise the total 
energy given by WL ( r )  + PV. Even when the exter- 
nally applied pressure P on the crystal is zero, there 
is still a pressure acting on the ions [described by f (r)]  
because of the attractive forces among the ions. Tkis 
attractive force which can be calculated, since all 
attractive interactions are well understood, varies 
from one crystal to the other. Even when P = 0, 
the same ion will not have the same radius in two 
different crystals. This is the basic difference of 

this theory from the simple hard sphere model. In 
the present theory, the same ion in two different crystals 
will have the same radius only when the interm/ 
pressure acting on it in the two cases are equal. AI- 
though the two internal pressurn will not normally 
be equal, it must be possible to select two external 
pressures P, and P, such that P, acting on the first 
crystal and P, acting on the second crystal both kad 
to the same internal pressure on the ion. In such a 
case, the radius of the ion in the two crystals must be 
equal. This, if verified, will be a strcng justification 
of the postulate that has been made. However, the 
ionic radius is not an easily aaxssible quantity even 
under ordinary conditions, and to obtain it under 
different pressures would practically be impossible. 
Fortunately an equally powerful test is possible. 
Consider four ions A+, B+, C-, D- and the four crystals 
they form 

A+ C- A+D- B+ C- B+D- 
I I1 111 1v 

(6) 

NowLfour pressures PI, P,, PI,,, P,, can be calculated 
such that PI acting on the crystal I, P,, acting on the 
crystal 11, etc., lead to the same internal pressure [i.e., 
the same value of / ( r ) ] .  Under these conditions, the 
ion A' has the same radius in crystals I and 11, the 
ion C- has the same radius in crystals I and 111, etc. 
It is then easy to deriw from (3) the relationship 
between the interionic distances given by 

(rl  + rl,) - (r,, 4- r,lr) = 0. (7 )  
Equation (7) can be readily tested as we need only 
the nearest neighbour d is tank as a function of 
pressure in the four crystals. In the case of the alkali 
halides family of crystals the test shows that the 
identity (7) is very well satisfied to less than f% tolerance 
in fourteen sets of crystalsla. 

It is possible to derive another identity similar to 
(7) connecting compmsibilities. The compressibilit~ 
of an ion depends on the second derivative of its 
internal energy and is hence a unique function of its 
radius. This, however, cannot be directly tested 
since it is not possible to measure the compressibilit~ 
of an individual ion. What can be measured is the 
bulk compressibility of the lattice which has contri- 
butions from the individual ions j11cr an ** attraction 
contribution " which arises as follows. As the ions 
get compressed, the interionic distances change, altering, 
in their turn, the attractive forces. Now define the 
following function of r for the crystal 

where 
pZ WL ( r )  

dr' 
is inversely proportional to the .compnssibilit~ 
the crystal and W. (r) represents the tota! of the 



att,-active interactions [the first thme terms in the 
R.H.S. of i l ) ]  in the crystal. I t  can then be shown that 
for four cr~stals I, 11, IU, IV at press- PI, PI,, P,,, 
p, as described in (6), the following identity results: 

[g(r), + g(r) , l  - k ( r I r ) , ,  + g(r),,,] = 0. (9) 
This identity also has been tested on the alkali halides 
and it checks to about, 3%. 

The two identities (7) and (9) were derivkd to be a 
of the postulate that repulsion arises 

from the existence of a compression energy 
fcr individual ions. Their strong verification may 
hence be taken to be a fairly good justification of 
the postulate. , 

One of the essential features of the prescnt approach 
is that the functions W* (r*) should be capable of 
being transferred from one crptal to the other. How- 
ever, this cannot be done directly when the structure 
changes. If we are. to introduce compressibility as a 
property of the ion irrespective of the structure in 
which it is situated, we must associate with each ion 
a unique function which is independent of thesymmetry 
of its environment. We achieve this with a second 
postulate whkh states that the compression energy 
of an ion is directly proportional to the number n 
of nearest neighbun, i.e., 

w* (r*) = nh* (r*)  - (10) 
where ht(r*) is a unique function for a given ion, inde- 
pendent of the crystal structure in which it is situated. 
The relation (10) can be rationalised on the picture 
that the increase in internal energy arises from the 
local compression and distorticn at the points where 
an ion " touches " its neighboun. In this picture 
an ion may be compared to a balloon, with an impene- 
trable surface skin and a compressible interior. The 
second postulate implies the following : 4 

(a) Suppose a compound exists in two structures 
having n, and na nearest neighbours. Let the nearest 
neighbour distance r be the same for structure 1 at  
Pressure P, and structure 2 at pressure P,. Then it is 
easily shown that 

These identities have been tested on the six compounds 
KCI, KBr, KI, R ~ C I ,  RbBr, RbI which transform 
$ram the NaCl to the CsCl structure at  high pressures". 
Here again the results are very encouraging indicating 
that there is a &finite physical basis ,for the second 
Postulate. 

(6) We shall &ow shortly that on the basis of this 
Postulate it is quite straightforward to calculate the 

contribution to the npulsion from the aecond Ileipb- 
bour interaction. 

The next step is to evaluate the function h ( r )  for 
different ions. Here again some empiiism is required. 
The internal energy of the i:n has to be represated 
by a suitable function containing a small number of 
parameters which have to be refined to i the data. 
In our studies we have assumed the following function 
which would approximate the actual behaviour s h e -  
matically represented in Fig. 1. 

h* (r*) = A* e-r*/~* (12) 

FIG. 1. Schematic graphs of the variation of the 
internal energy W+ (r+) of the (positive) ion and the 
pressure energy PV with r+ the radius cf the ion. The 
ion takm. up a radius r+" at which. the total energy 
[ W+ (r+) + PV] is a minimum. 

where A* and P* are the parameters to be Ancd, the 
f standing for the positive and the negative ion 
respectively. The failure of this approximation will 
not in any way invalidate the two postulates made 
earlier. Another model function kg., h* ( r d  = 
A*/r+*f I may possibly give a better description of the 
ioric compression energy. 

Using eqn. (10) we can now write the lattioe energy 
per molecule of a binary ionic crystal as . . 

(13) 
The new term in (11) represents the repulsion cncrgy 
arising from second neighburs. n, is the numbcr.af 



second neighbours and 2br is the distance between 
them. We have used the same compression function 
for second neighbours also since according to our 
md.el, thc actual agency compressing an ion is not 
of consequence. Also we assume that the ionic 
radium in the direction'of the second neighboun is 
br and so replace r e  by br for the secord neighbour 
repulsion terms. This implies that the ion extends 
to a diitanre br in the direction of the second neigh- 
bours whi:e it extends to r +  (or r- am the case may be) 
in the direction of the first neighbours. In this 
theory we are compelled to discard the idea of a 
spherical ion, an aspect strikingiy supported by the 
accurate electron density maps of NaCl obtained by 
Witte and W61fe19 (Fig. 2). 

FIG. 2. Electron density plot in the (100) plane 
of NaCl (after Witte and Wolfels) ehowing. the non- 
spherical e'ectron distribution in each Ion. The 
icns extend to a distance r+ and r- respectively in the 
direction of the rearest neighbours and to a aistance 
br in the direztion of the next nearest neighbours. 

The lattice energy function W, ( r )  given in (13) was 
used to fit the repuleion parameters for the five alkali 
ions Lii, Na+, K+, Rb+, Cs+ and the four halogen 
ions F-, Cl-, B r ,  I-.I3 The available data on the 
alkali halides were used for this. The lattice energy 
WL ( r )  itself is not very easily measured, neither is 
it very sensitive to the repulsion function. The equili- 
brium nearest neighbour distances and the compressi. 
bilities which depend on the first and second deri- 
vatives of W,(r) were the data used. These data 
are available over a range of pressures and the repul- 
sion parameters were refined to fit them over the whole 
available range. In some cases- where there is a phase 

transformation from NaCl to CsCl structure at  high 
pressures, the data for these new structures mn also 
fitted. This was possible becarlse the second postu. 
late clearly identifies the changes to be made on the 
repulsion function with change in coordination. Tabk I 
gives the final refined parameters for the nine alkali 
and halogen ions. Table I1 summarizes the rang 
of validity of these parameters in the alkali halides. 
The refined parameters fit the txperimental data very 
well justifying the model function used in (10). 

TABLE I 
Final refined repulsion parameters for the alkali r I,(/ 

halogen ions 

Ion A (10-'ergs) p ( lo-' cm) 

Lit . 7.5 1;( 10-a 1 90 

CI- 3.0 - 1-67. 

The repirlsion parameters listed in ~ a d e  I fit a// the 
available data for the crystals listed below 

LiF LiCl - LiBr - g 

NaF NaCl EaXr NaI 

RbF 

-- 
KBr 1 1 1  

CsF - CsCI x r  ' - Csl - 
* Ngrmal type-only atmospheric pmsun  dam 

available-NaCI type structure. 
Normal type underlined-high pressure data avail. 

able--NaCI type structure. 
Normal type underlined and boxed-high pmsun 

data available on both lower and higher sides a 

NaCl to CsCl type transformation. 
Italics underlined-high prwure data availabir 

CsCl type structure. 
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Is Compressibil&y A n  Ionic Property ? 

The picture of 113pulSion that we have presented is 
a of a very complex phenomenon but 
it is our belief that even so simplistic a model is a 
first step to get an  insight into the phenomena under- 
lying the compressibility of ionic crystals. Even if 
we disregard the physical basis of our arguments 
and consider the ionic repulsion function me ha\e 
proposed as one more of the many empirical functions, 
it has a number of advantages over the existing ones. 
These are enumerated below. 

( I )  The latest and most extensive calculation of 
the repulsion function in alkali halides i, the work 
of Tosi and Fumi". They have employed 26 para- 
meters in their repulsion functions to describe 17 alkali 
halides (they did not fit CsCI, CsBr, CsI). We 
require only 18 parameters (one A and one p per ion) 
to fit all the 20 alkali halides listed in Table 11. 

(2) The repulsion functions of Tosi and Fumi fit 
the equilibrium nearest neighbour distances with a 
r.m.s. deviation of 1.45% and compressibilities with 
15.4% r.ms. deviations. The corresponding values 
for our theory, viz., 0.997% and 6.76% make a very 
favourable comparison. 

(3) Tosi and Fumi attempted only the fitting of 
atmospheric pressure data. Our repulsion para- 
meters fit the alkali halides (except the fluorides for 
which reliable high pressure data are not available) 
in the whole pressuri range from 0 to 45 kbars. To 
our knowledge, no other attempt has so far been made 
to fit the data over a range of pressures. 

(4) Tosi and Furnil' refined a new set of parameters 
whenever a crystal underwent a phase transition. 
We have eliminated this concept of structure depen- 
dent parameters by using the same set of parameters 
in all phases. This is significant because the attractive 
interactions for the new phase can all be calculated 
(the new C and D coe&ients are related to the corns. 
ponding values in the old phase). Thus, since the 
repulsion energy is also known, the theory can predict 
the properties of the new phase. 

(5 )  In our formulation, if the repulsion parameters 
of an ion have been determined in one crystal of one 
Structure, they can be used for that ion in any other 
compound of any other structure. When a new com- 
Pound is encountered, ,if the parameters of the indivi, 
dual ions have already been refined from other 
Compounds, the repulsion potential for the new 

is completely defined. This potential would, 
moreover, be valid over a range of pressures. Hence, 
1" principle, all the properties can be calculated. This 

lends predictive power to our approach. In contrast, 
almost all earlier attempts fit some crystal-dependent 
parameters. They can hence never be used to predict 
the properties of a new system. 

(6) As an offshoot of our calculations, we get the 
"radii" of the ions in the alkali halides. These 
compare fairly well with the experimcntsl values1\ 
Moreover, we also get the variation in the radius of 
an ion frcm one crystal to the other and with pressure 
in the same crystal. 

We envisage in the future a number of extensions 
of the above type of cllculations to systex< other 
than the alkali halides. We are in particular consi- 
dering alkaline earth halides and alkali and alkaline 
earth oxides and chalcogenides. In this conwt  it 
would be very interesting to test the claim about the 
predictive power of this approach [point (5) above]. 
For instance, the repulsion parameters could be caku- 
lated for Ba++ from the compressibility data on BaF. 
using the known parameters of F-. Similarly the 
parameters of S- - could be obtained from the alkali 
sulphides. Using these new parameters one could 
check whether the properties cf Bas are well described. 
It is also hope3 to extend the calculations to noncubic 
structures if the computational problems are not too 
formidable and also to ionic radicals. Finally, 
there is the problem of explaining phase transitions. 
For this, more sophisticated models may be neas- 
sary. 
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