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A method for solving the phase problem ob inirio in crystal structure studies by neutron diffraction has 
been suggested. This method is bared on the anomalous scattering of themal neutrons by cectain nuclei. 
Using the data collected s t  two neutron energies, the process of phase determination is carried out in 
two steps: (i) the I-tion of the position of the anomalous scafterer and (ii) the correlation of the phase 
of the structure factor with the phase of the anomalous scatterer. The method gives unique solution 
of the phases. The ex-ions deduced are general and can be used for X-ray anomalous scattering also. 

1. Introdoction 

Direct methods of sign determination* which are based 
on the positivity of scattering matter are not applicable 
t o  neutron diffraction. Nor can the heavy atom method 
be used, as the scattering lengths of various nuclei do  
no: differ appreciably. For these reasons the use of 
neutron diffraction in crvstalloeraohv has been re- 

of light atoms (from the point of view of X-ray scat- 
tering) in a structure for which the main features are 
known from X-ray diffraction work. The possibility af 
solving the phase problem ob initioinneutron diffraction 
studies stems from the fact that some nuclei (e.g. "'Cd, 
'Vim, I5lEu and 15?Gd) show anomalous scattering in 
the thermal neutron range (Petenon & Smith, 1961, 
1962). Ramaseshan (1966) oointed out that anomalous . . .  

stricted to  the location anh the refinement of position disp;rsion effects in neutron scattering are much more 
pronounced than in X-ray scattering and hence can be 

' See a recent paper by Karle (1966). used effectively in salving the structures provided the 
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experir&ntal problems associated with the collection 
of data ire solved. Thus writing the scattering length in 
the form b= bo+6'+ ih", the ratios b'lb. and Ylb ,  can 
be as large as 6 and 10 respectively for '"Cd (cf. the 
X-ray case where mostlylf'lfo,zf"/fo=O-15). 

Fig.l shows that by suitably choos~ng the neutron 
energy one can get (b,+b')/427, for 'L'Cd, i.e. a scat- 
tering length which is greater than that of other nuclei 
by a factor of about 7. This amounts to having a heavy 
atom in the structure. 

What is perhaps of importance is the fact pointed 
out by Ramaseshan (1966) that large anomalous d i c  
persion in nuclei like 113Cd, '"Sm, "1Eu and 1sGd can 
make it possible to use neutron diffraction for solving 
the structure of large molecules. The success of the 
anomalous dispersion methods depends on observing 
significant differences, dl, between the intensities of 
inverse reflexions hkl and MI. In the case of X-ray 
anom3lous scattering. thc Ftructurc of vttzmin B,, 
mono-acid has been culvcd with ( d l )  (1):006. (0 
tndicstes the mot menn square vduel. If ( A l ,  ( I > =  . ., . , 
0.10 is taken as the criteribn for a structlire that can 
be handled by anom3lou.i dispersion mcthc,ds, it turns 
out [hat a structure containing ahout Z M O  lroms pcr 
"'Cd can he solved. 

The aim of the present paper is to show that by using 
the data collected at two neutron energies it is possible 
to locate the ~osition of the anomalous scatterer and 
derrrn~inc rhu phase unambipuou4j. The rcwirs ob- 
tained are gcncral and c ~ n  he applied to X-ray anom- 
alous scattering also 

2. Determination of the position 
of the anomalous sEQtterer 

In handling the phase problem by anomalous disper- 
sion methods, the first step is to locate and refine the 
position of the anomalous scatterer (Azscatterer). The 
posit~on of A-scatteren which are invariably 'heavy 
atoms' in the case of X-ray scattering may be deter- 
mined by Patterson synthesis, but the location of the 
heavy atom vector in a Patterson synthesis becomes 
increasingly difficult as the number of light atoms in- 
creases. However, in the case of neutron scattering the 
A-scatterer need not necessarily be a 'heavy atom' for 
certain neutron enereies and thus location of the A- 
scarterer becomes dlkcult even in structures of mod- 
c r s e  complexity. A method which emplo)s rhc com- 
bination of two sets of data collected at two neutmn- 
energies has been suggested here for locating the posi- 
tion of A-scatteren. The two sets of data are combined 
t o  give IFAI~, the contribution due to the A-scatterer 
alone. Obviously, a Patterson synthesis with lIklZ will 
contain only the A-scatterer vectors. In effect the meth- 
od is similar to those described by Harding (1962), 
Kartha & Parthasarathy (1965). Matthews (1966) and 
Singh & Ramaseshan (1966) which employ the com- 
bination of isomorphous and anomalous dispersion 
data. However, the 'two wavelength method' IS super- 

ior to the combination of isomorphous and anoma- 
lous data because one does not have to depsnd on the 
availability of isomomhous oairs. Moreover. lack of 
exact ~ s o ~ o ~ h i s m  isalway;a factor to be borne in 
mind in choosing the isomorphous pairs. 

Let us consider a structure with n ,  A-scatteren, all 
of the same type and n~ normal scatterers (N-scatterer) 
in the unit cell. Let the scattering length of an A-scat- 
terer be denoted by 

b ~ = b ~ + b ' + W  

=6(r)+ lbtl) 
where b(r) = (b, + b') and b(i) = b". 

The structure factor F,(H) for neutrori-energy Et (as- 
sociated de Broglie wavelength 2, is given by &= 
h/@EIM, h is Planck's constant and M is the mass 
of the neutron), 

FI(H)=FN+FAI+F~'~ 
where 

" A  

FA, = Z bj(r)T~j exp 2niH . r n  
1-1 

" A  
= b(i) Z T a  exp 2niH . r A j  , 

1-1 

since A-scatteren are all of the same type 
And 

"A 
F', = b,(i) Z T A ~  exp 2xiH . rA, 

1-1 

Fis. 1. Thc variation of b' and b" for 113Cd with wavelength in 
the vicinity of the resonant wavelength. The shaded wn 
shows theregion where El and E2- be chosen convcnicntlr 
SO that bl(r)=br(r). (See Appendix.) 
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Now 

where a, E and y, are ENFA, (angle between FN and 
FA,) FAF;; and FA,F;; respect~vely. For only one type 
of A-atom, y=W' and ~=(90-p). Thus 

IF,(H)12=IF~12+{b~r)+b~(i)}lx12 
+21F~lbl(r)lxI cos rp+21F~~lb~(i)lxl sin a (1) 

where 
"A 

1x1 =[{ 2 T A ~  cos 2zH.  r ~ i ) '  
I-I 

+ { ? T A ~  sin 2nH.  rai}Y1; ,-, 
I-. 

similarly, 

IF~(R)12=IF~12+{Wr)+%(i)IIx12 
+2IF~lb,(r)lxl cos a-2lF~lb,(i)lxl sin a . (2) 

Simllar expressions for IF2(H)12 and lF2(lf)12 may he 
written and numbered equations (3) and (4) respec- 
tively. 

Now we define IF,,(H)12, IFm2(H)lz, At , ,  and 
as follows, 

IFmt(H)I2=ftlF~(H)i'+ IFI(R)I'I 
=IF~l'+i%(~)+b:(i))Ixl~ 

+2JF~Ib,(r)lxl cos 9 (5) 

lFm~(f~)12=f[lF~(H)12+IF~(R)121 
=lF.vIz+{~(~)+~(i)}lxl '  

+ZIF~l&(r)lxl cos y? (6) 

and A12=[IF2(H)Iz-IF2(R)Iq= 
4IF~lb~(i)lxl sin a . (8) 

Combining equations (7) and (8) we get, 

AIL - = 2IFn.ilxl sin p=a. (9) 
2&(i) - 2b2(i) 

I t  may be noted that AIj/dl,=b,(i)/b,(i)=constant. 
Since the absorption is quite different for the two 
wavelengths, this will provide a check on the accuracy 
of the data. 

The first term in equation (5) gives rise so N-Speaks 
in a Patterson synthesis computed with IFm,(H)Iz as 
coefficient; the second and third terms give rise to A-A 

and A-N peaks respectively. In order to be able to 
locate the A-A peaks it is essential to eliminate A-N 
and IV-N peaks which tend to mask A-A peaks. Ra- 
maseshan (1966) suggested that if the neutron energies 
are so chosen that b,(r)= - b2(r), then a Patterson f u n o  
tion with [IFm1(H)I" lFml(H)14 as coefficient will 
contain only A-A and N-Npeaks; the background due 
to A-Npeaks will be eliminated. However, a simple 
estimation shows that in a structure containing a large 
number of N-atoms, N-N peaks give rise t o  a back- 
ground which is more serious than that due to A-N 
peaks. I t  is therefore necessary to eliminate both A-IV 
and N-N peaks. 

Expression for 1x12 . 

We shall now derive an expression for 1.~1' in terms 
of IFml(H)12, IFmr(H)15 6, bi(r),.bt(i), bLr) and bh3. 

Eliminating 9 between equattons (5) and (7) and 
using equation (9) we get, 

lF~rl"- 21Fx11[IF,~(H)I+ {Hr)-  Wi)}l.+l 
+[IFml(H)Iz- {bKr)ib~i)}I.li12]2+d2b~(r)=0 . (LO) 

Similarly equations (6) ,  (8) and (9) give, 

IFFI~-~IFXI~[IF~XH)I'+{~~)-~(~))~.~~~I 
+ [lFm2(H)12- {g(r)+b;(i)}lx12]z+@g(r) 0 . ( I  1) 

Subtracting equation (11) from (10) gives, 

~IFNI'[{IF~~(H)I'~IF~Z(H)~~)+ {(%(r)-bXi)) 
- ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ l ~ l ~ = ~ l F m l ~ ~ ~ 1 2 - ~ % ~ ~ ~ + W ~ ~ ~ l ~ 1 2 1 ~  
- [ lFm2(H)12 - {b~( r )+Hi ) } /x1212+~2(b : (~ ) -Hr ) }  . 

(12) 
Now multiplying equations (3 and (6) by bz(r) and 

b,(r) respectively and subtracting the resulting equa- 
tions we have, 

[bdr)lFmt(H)12- bs(r)lFm2(H)121 = 

jb,(r)-b,(r))lF~I+[b>(r)lbXr) +b;-(i)} 
- b r { r i h l l x 1 2  . (13) 

Eliminating lFn.lz between (12) and (13) we have, 
Pls14-2QJx12+ R=O . (14) 

where 

P = {bt(r)-b~(r)}~[2{bXi)+b:(i)} 
+{bdr)-b~(r)>~l+ {@(i)-bXi)}2 

Q= {b,(r)- b~(r)12[lFm~(H)12+ IFm~(H)121 
+ {Wi) - bXi)l{Fml(H)12- IFmAH)Iz} 

I?= {IFm,(H)12- IFm~(H)12}2+@{bI(r) -bz(r))> . 
It is obvious that P, Q and R are always positive 

and therefore equation (14) will always have two posi- 
tive roots ]x+12 and [x-12 given by 

Ix*lz= Q / P i  (Qz- RP)i/P. (15) 

If we substitute bdr)=b,(i)=O, it is equivalent to 
combining isomorphaus and anomalous dispersion 
data. In this case equation (15) reduces to equation 
(I I )  of Singh & Ramaseshan (1966). 
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Interpretation of two solutions 

The physical significance of the two values of 1x12 
as obtained from equation (14) is that, in general, there 
are two sets of vgues of 1x1, IFhl and QLor a given set 
of jF,(H)j2, IF,(H)12, IF2(H)I2 and IF2(H)12. Two pos- 
sible values of IFHI and Q can be calculated as follows: 

Subtracting equation (6) from (5) we get, 

lFrn~(HlI" lFmdH)12= 
[{bZ(r)+ W ) > -  {bXr)+612(i)JlI~l~ 

or +21F~llxl~b~(r)-b~(r)} cos Q 

and from equation (9), 

I F ~ ( i 1 l  sin ~(?-)=6/21x*I . (17) 
Thus the values of IFNI and Q corresponding to /x+/ 

and l r /  can be obtvned from equations (16) and (17). 
For illustration computations were made in a hy- 

pothetical case with b,(r)=2.0, b,(i)= 1.0, b2(r)= 1.0, 
b,(i)= 1.0, ~ = 6 0 " ,  IF,vI=~.O and 1x1 =0.50. These give 
IFl(H)I=4-972, IF3((f)l=4.217, lF2(H)I =4.686, lF2((f)I 
=3.878. Thus, if we start with these as the values of 
the observed structure amplitudes *e get from equa- 
tions (IS), (16) and (17) lx+l=3.95, IFN(+)I=5.581, 
9(+)=175"18'and lx-l=0.50, lF~(-)I=4.0, Q(-)= 
60". 

Choice of the correct solaion 
The next step is to choose the correct solution of 

equation (14). If the structure contains "A anomalous 
scatteren (all of the same type), then 1xrnI2, the maxi- 
mum possible value of 1x12 is n: when nm nuclei scatter 
all in phase. Thus if lx+lZ>n: the only acceptable solu- 
tion is lx-1'. If. however, Ix+lz<n',, both lx+l%nd ix-I2 
are acceptable solutions by this criterion. In such cases 
the ambiguity remains unresolved. 

As the quantity (Qz-PR) tends to zero, lx+12 and 
Ix-IQtend to be eaual. One mav came across cases . , . 
where ix.;' 2nd : x  1' are neari). eqial. Thii maker the 
sclc;tiun of thc corrrct rotjl dtfticult In such c3\cs i t  
is lwltcr to take Q P, the mean vnluc of the !w,, ro.,ti 
for lx12. 

Unique solution of 1xI2 
If thc 1x0 ncurnm-c~ergic, >re o chusen that b,(r)= 

b2(rj a~.l b , ( i ) # h . ( i )  ( i t  IS clc:tr from Ftg. I [hat ;uch 
a rhotce i\  ccnainly parsible) then 

P = {b:(i)-e(i)}z 
Q={b?(i)-%f)){lFm~(H)l~- lFrndH)lz> 

and R={IFm,(H)12-IFm~(H)l2)2 . 
Tbis leads to (Qf-RP)=O and therefore the two 

roots are coincident and axgiven by, 
lx+[Z= lx-l2=Q/P. (17) 

It may be noted that this result* can be obtained 
directly by subtracting equation (6) from equation (5). 

Owing to the practical difficulty in selecting the 
neutron-energies El and E, for which b,(r)=b,(r), one 
may have a case b,(r)=bi(r). I t  is rather fortunate that 
the factor {b,(r)-&(r)} occurs in the expressions of 
P, Q and R as squares and, therefore, equation' (17) 
can be used without introducing much erroreven if 
b,(r) and b2(r) are slightly different. 

As P depends only on the scattering lengths it may 
appear that. P can be made zero by suitably selecting 
E, and E2. In such a case equation (14) will have only 
one root ~ X ~ ~ = R / Z Q .  However, since P i s  the sum of 
three positive terms, it  can be made zero only when 
the three terms are separately zero which cannot be 
done except in a trivial case Ej=E2. 

Rejinemerrt of [he thermal andpositionalpormeters 
Once 1x1 is determined, a Patterson function with 

Ix12g(r) as coefficients will give the positions of A-scat- 
teren. A comparison of 1x1 calculated from the known 
positions of A-scatterers with those obtained from 
equation (15) will reveal the reflexions for which the 
root has been wrongly chosen. If equation (17) is used 
this comparison is not necessary. The values of 1x1 ob- 
tained this way can be used to reline the thermal and 
positional parameten of A-scatteren. 

3. Unique sototion of the phases 

I t  can be easily shown (Ramachandran & Raman, 
1956) that the phase cr_l,(H) of the A-scatterer contri- 
butibn to the structure factor is related to the phase 
4(H) of IF;(H)I by, 

a;(H)=a~,+8, , (18) 

(see Fig.2) where 8, is given by 

sin 9,=A11/4~F;(H)l~F~~l=6/21F~(H)llxl (19) 

and 
I~;(H)I=[~{~FIOI'+IF~(~)I')-IFL~I~I' . 

8, determined from equation (19) will have two 
values 8, and (180"-8,). Thus there is a twofold am- 
biguity in  a;(H) calculated from equation (1 8). In X-ray 
anomalous dispersion work this ambiguity has been 
resolved by various indirect methods (Ramaseshan, 
1963). 

Here it has been shown that the use of data collected 
attwoneutron energiesyields auniquesolution ofz;(II). 

Referring to Fig.2, Q and 8, are related by, 

I F ~ ~ l i s i n  (9--8d=IF;(H)llsin Q . 
or 

sin (Q-~I)=IFAII~IF;(H)~ sin Q . (20) 

'11,: IYLIIOS are gratcrul to the rcrerrc ior drauang lhctr 
atrcnrton to the Rst thxc when b l ( r ) = b 2 ( r ) .  a d,lrcrcnrr even 
Paitehun isnctinn (0La)a. Saito & Pcninsky. 19551 riro leads 
to similar mulls 
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Fig.2, Argand diagram representing F(H) and KG). 
'\ 

Combining equations (19) and (20) we get 
COB cot p/21x/ + IFAIII/IF;(H)I . (21) 

Eauations (5). (6)  and (9) can be combined to  give 

On substituting the value of cot p from equation 
(22) in equation (21) we have, 

that the one-level Breit-Wigner formula is valid. It can 
be shown from the one-level Breit-Wigner theory that, 

gw&rn(E-E0) b'=f 
(E- E,)z+ r2/4 6) 

and 

b"=b(j)=* gw&rnr , ' 
(ii) 

(E- E&+T?/~ ' 

where g is a spin weighting factor, ir is the isotopic 
abundance, which is unity far a resonant isotope, 20 
is the wavelength at resonance divided hy la, T, is the 
neutron width, r is the total width, E i r  the energy of 
measurement and E, the resonance energy. Substituting 
the numerical values (Brockhouse, 1953) for various 
parameters in equations (i) and (ii) we get 

and 
C b"= - 

(E-E0)*+B ' 
where A, B, Cand  Eo, have values respectively 0.278 x 
10-'2, O.M)32, 1.565 x 10W4 and 0-178 eV for i ' T d  and 
0 . 2 5 0 ~  lo-", 0.0014, 0 . 9 2 0 ~  10-" and 0.096 eV for 
leSm. 

The two sets of values of Efor  which b,(r)=b>(r)=ii 
can be calculated from the equations 

cos 0, = 
{lFm~(H)l~- lFm2(H)12}-{(%(r)+b?(i))-(X(r)+b~(i))llx12 + E l l  

2{bl(r)-b~(r)}lF;(H)llxl IFW)I  . 
(23) 

In case b,(r)= b2(r), equations (5) and (6) give, 
IFm,(H)12-Fmt(H)I2={bKi)-X(i))lx12 

and equation (23) reduces to, 

-{b,(r)+b,(r)llxl+21F~:aii . (24) cos 0, = -- -- 
Z I F : ( H ) ~ -  . ,.. .. 

Since sin 0, and cos 0, are known from equations 
(19) and (23) respectively, 0,  and hence sr',(H) is known. 

Similarly a d H )  can also be obtained. 

Thus we see that combination of the data collected a t  
two neutron-energies makes i t  possible to determine 
and refine the thermal and positional parameter of the 
anomalous scatterer in large molecules - a process 
which is normally difficult. Further, the phases of the 
reflexions can be determined unambiguously. 

The author's thanks are due to  the referee for his 
helpful comments. 

APPENDIX 

I t  has been shown in 5 2 that if E, and E2 are so chosen 
That b,(r)= b2(r)=b(r) and b,(i)# b2(i), lx12can be deter- 
mined uniquely. A method has been indicated to cal- 
culate such pairs of E, and E,. 

Measurement of the scattering and absorption cross- 
section of " C d  and. l49Sm (Brockhouse, 1953) shows 

. (Et.,-Eo)= 
0.1391b' + [{0.139/b')z-0-0034Ii for "'Cd - 

and 

(E1.2-Ed= 
0.125/b'i [{0.125/b')2-0-0014]i for '"Sm 

It is clear from Fig. 1 that such a pair, E, and E,, 
can be chosen on either side of the resonance energy 
(E0=0.178). However, the smaller-energy side (the 
shaded region) is preferable to the greater-energy side 
because of the convenient working wavelength and she 
large flux of neutrons from the pile. This region cor- 
esponds to the X-ray wavelength range from Mo Kz --i o Fe Kc. 
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