Structure of a Monocarboxylic Acid Derivative of Vitamin B_{12}

One particular monocarboxylic acid derived from cyanocobalamin can be grown in very large crystals on which both X-ray and neutron diffraction measurements have been made. Calculations lead to the placing of some 205 atoms in the crystal asymmetric unit. including 98 hydrogen atoms, and thus to the detailed definition of the chemical structure of the molecule.

Crystal and Molecular Structure from X-ray Analysis

The mild acid hydrolysis of cyanocobalamin gives rise to a nixture of mono- and di-carboxylic acids and one tricarboxylic acid, a finding consistent with the view that the propionamide side cheins on the molecule are the first ubjects of attack. The exact etructure of one of these sicids, which has particularly interesting properties, is the subject of the present inveatigation. This acid, first called E_{2}, constitute more than 90 per cent of the monocarboxylic acid fraction of the B_{1}, hydrolysate ${ }^{\text {: }}$; it cryatallizes in large monoclinic erystals, easily separated by fractional erystallization from the iaomeric acids. It also oeetres as a natural product in the fermentation liquors of Propionibacterium shermanii ($\mathrm{CMS}_{1}{ }^{3}$, CMS-e'; Zone 14) where it belarea an an intermediate in the biosyntheais of the \mathbf{B}_{12} vitamins ${ }^{\text {a }}$. It has antimetabolite activity compared with B $_{12}$ in Eacherichia coli and Ochromonas malhamensis".
The very large size of the erystals of the acid prompted an attack on its structure by a combination of Xeray and meutron difiraction. It wes hoped by such measurements to define the crystal structure of the acid itself, to plase the acid group on the molecule and to edd the details of the arrangement of the hydrogen atoms to the structure of vitamin $B_{z e}$. The X-ray analysis began on the air dried crystals because particularly perfect speciment of these, geveral mm on edgo, had already been given to us by Dr. E. Lester Smith. Later. as experience with neutron diffraction indicated that the more stable crystals in their mother liquor should be the main subject of attack, wet orygtals were also investigated by X-rays. Preliminary data on the crystals are given in Table 1.

	Unib	进 dimen	[0ns	θ	Space froup	Density	Probinhe Ko. of mater molecule
Atr dried	14.51	17-09	16.35	103'	P4	I 435	1
Wet	14.915	$17-480$	16409	$104 \cdot 11^{\circ}$	P2:	1-699	16
-	0000	0.009	0007	$0-047$			

The air dried crystals of the acid gave very good X-ray data, extending to the limit of the copper sphere and showing inarked Bijvoet differences due to anomalons dispersion at the cobalt atom. A total of 6,323 individual $h k l$ and $\overline{h k l}$ reflexions were measured visualiy. Average F^{2} values were derived and used for the initiai thresdimensional Patterson calculations to place the cobalt atom. Two alternative phase angles were then caleulated by the expreasiona given by Ramachandran and Rarnant. Trials of a number of functions and variations of their sxprossions were made which will be described eljowhere. Efidence for the correct atomic arrangement was most
easily obtained from en electron deusity distribution calculated with 2,567 terms phased from the Bijvoet differences, with a chosen as the alternative nearest the cobalt atom contribution. The structure wes, in fact, solved first from a less favourable approximation and the atomic positions improved in successive electron density distributions and least squarea calculations. The present reliability index is 0-142; the average atandard deviation in the carben-carbon single bonds is $0 \cdot 04$. Fig. 1 shows the agreement at this atage batween α_{e}, calculated on the present atomic parameters, and α_{e}, tho phase angles derived from the Bijvoet effect. The curve shows that for 72 per cent of the reflexions, the firgt phase angle chosen was within 45° of the final value.

Once the structure of the air dried crystals was known, it was easy to derive that of the wet crystals, starting from a cobalt atom phased map alone, and sorting out the correct mirror image atomg by inspection of the three dimonsional distribution. This route was followed at Hiarwell (F.M. M.). An alternative routo using Bijvoot pairs of reflexions meatured on oscillation photographs was taken at Auckland (T. N. M. W., J. M. W.). This alternative has some genspal interest as a possible mothod for deriving rapidly the general atomio distribution within a moleoule in the correot absolute configuration.

The crystal structure of the air dried monoacid is illustrated in Fig. 2. It shown no resemblances to that of cyanccobalamin, wet or dryi,4, nor to that of 5^{\prime}-deoxyadenosylcobalamin'. The molecules are arranged in broad layers within which the planes of the corrin rings are inclined at about 80° to one another. Between the layors there is a marked clesvage; contact is made actoss the

FIg. 1. Phase analysig. Here n is the number of retexions in each 10°
 range ond dardel where of it tho potae itom ine lifirneq eftect. ae the valus of lardel where an the tho pose itom t
gap tnrougin hydrogen bonds betweon watar molecules and the acrive groups at the ends of the side chains. The terminating atoms of two of the acetamide groups occupy alremative disordered sites and many of the water molecule positions also ehow disorder. There does not appear to be any obvious feature of the molecular arrangement that would suggest the position of the carborylic acid groups among the amides. Direct observation of the electron density maps favours a definite orientation of each of the three acotamide groups in agreement with the neutron diffraction data below; the longer side chains, however, are less well defined in position snd conclusions from the peak beights or interatomic distances art unreliable here.

The general atomic distribution in the molecule is closely similar to that in oyanocobalamin with one quite interestng difference. This is illustrated by Fig. 3, which showe a projection of the atomic pooitions on to a calculated lesst aquares plane pessing through the cobalt and four inner nitrogen atoms. When tho corresponding projection of cyanocobalamin is compared with this, it is clear that there is a variation in the position of the nucleotide-like side chains in tho two molecules. The phosphate and sugar

Fig.2. Profection of the b
 atomint it opencircles it y+il. Fircles reprement

Fis. S. Projection of etomic positions on the least squares plane through cobalk, N21. N29, N29 mbd Not. Solld Jne, By mopuacid; dotted line. eynnocolsalamin (both ait dried).
group particularly have moved about 1 A rolative to the positions they occupy in cyanocobalamin'. Tho benziminazole, sugar, phosphate, and propanolamine groups are rather flexible and the now positions may ropresent no more than an adjustmont to new packing conditions within the present orygal structure. They do not seem to be connected epecifically with the position of tho acid group.

Wo thank Dt. R. Lestor Smith, Proforsor Bornthauer, Dr. Beisbarth and Dr. Wagner for cryetals used in this research and for interesting discussions. Computing was carried out on the KDF9 computer, Univeraity of Oxford. One of us (S. R.) thaniks the Science Regearch Council for the award of a senior research fellowship.
C. K. Nockolos
T. N. M. Waters
B. Ruacaseshan
J. M. Waters

Dorowiy Crowfoot Hodekns

Chemical Crystallography Laboratory, University of Oxford.

Crystal and Molecular Structure from Neutron Diffraction Analysis'

The distinction between an amide atrd a carboxylic acid can be made more easily by neutron diffraction than by X-ray diftraction. In contrast to X-ray scattering. the coherent neutron scattering lengthe of nitrogen ($b=9 \cdot 4 f^{7}$) and of oxygen ($b=5-8 f$) are widely different and in addition the coherent neutron scattering length of hydrogen ($b=3$-8f), although nogative, has a magnitude approximately equal to that of other atoma. Consequently it hies been possibla by neutron diffraction to define in cietail the structure of the monocarboxylie acid derivative of cyanocobalarnin.

The neutron diffraction data for this purpose reff measured using a wet crystal of weight 11 mg and density $1.339 \mathrm{~g} / \mathrm{c} . \mathrm{c}$. All unique reflexions from planes with interplanar spacings, $d>1 \cdot 3 \AA$, were investigated and $1, \overline{0} 3$, reflexions were classed as observable. The mean peak (including background) to beakground ratio for the observable reflerions was 1-3:1, but the count rate wat sufficient to give a fractionsl standard deviation σ (f)/F for per cent for the structure amplitudes after counting for 30 min equally divided between peak and background.

The etructure analysis is summarized in the fow sheef. The neutron Patterson synthesis first calculated proved as expected, to be uninterpretable because there ant many atoms present in the unit eell, scattering with bolt

[^0]
[^0]: - fm $10^{-4 i t} \mathrm{~cm}$ (fermil ontt).

