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A. Polarisation of light.

1. States of polarisation of light: Poincaré sphere. «) Light is a transverse
electromagnetic wave and the nature of the vibration of the electric displacement
vector in the plane normal to the direction
of wave propagation defines the state of
polarisation of a light beam. In a com-
pletely polarised beam?, the vibration
may be either linear in any azimuth at
right angles to the propagation direction,
or elliptical, with the major axis at any
azimuth. The ratio of the axes of the
ellipse can have any value and the sense
of the ellipse may again be right or left
handed. The two limiting cases of elliptic

" vibrations are linear and circular vibra-
tions. Correspondingly, the light beam
would be said to be elliptically, linearly
or circularly polarised.

A general state of polarisation can
thus be described by two quantities:
{a) the orientation of the major axis of Fig. 1. Elliptically polarised light.
the ellipse, which may be specified by
the angle A which it makes with a given direction in the wave front and (b) the
ratio of the axes of the ellipse (8/a, 6<<a). The sense of the ellipse could be speci-
fied by meking the axial ratio positive for left-rotating ellipses and negative for
right-rotating ellipses. The terms right and left-rotation are with respect to an
observer looking towards the source of light. If the electric displacement vector
rotates clockwise with progress of time, then it is right-rotating. At any instant
of time the terminus of the electric displacement vector therefore forms a right-
handed screw-in space for a right elliptically polarised light beam.

Throughout this article, we shall imagine the light to be propagated along 0Z
(when not specified otherwise), which is taken to be horizontal (Fig. 1). The other
two axes are taken horizontal (OX) and vertical (0Y), the three together forming

- a right-handed system of co-ordinates.

The orientation of the major axis of the elhpse is given by the angle (1) which

it makes with the horizontal (0X) measured in the counter-clockwise direction,

! The descriptions of unpolansed and parhally polarised beams of light are glven in
Sects. § and 11.
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2 G.N. RamacEANDRAN and S. RamasesHaN: Crystal Optics. Sect. 1.

as seen by an observer looking towards the source. The ellipticity is defined
by another angle w, given by tan w =5/a. The two angles 1 and w, which we
shall denote by azimuth and ellipticity?, uniquely specify the state of polarisa-
tion of a beam of light and all possible states of polarisation are covered by the
range O to w of 4 and the range — /4 to m/4 of w (taken together).

B) Poincaré sphere. The states of polarisation of a light beam can be uniquely
represented by a point on the surface of a sphere of unit radius, whose latitude
and longitude have the values 2w, 24. This representation may be called the
Poincaré representation and the sphere, the Poincaré sphere, after H. POINCARE
who first suggested this idea2 The range of values of 24 and 2w required for
describing all possible states of polarisation are therefore 24 =0 to-27, and 20w =
— 7/2 to 7/2, which covers the surface of the sphere completely. Thus all possible

O states of polarisation are represented by
Z points on a sphere, there being a one-to-
T one correspondence between the points on

N : the sphere and the various states of polari-
| £ sation. A reversal of the direction of the

7 major axis changes A by z and therefore
14 22 by 2z It is the same state as before

/ and is represented by the same point on

4 the Poincar¢ sphere.
= i Fig. 2 gives a picture of the Poincaré
24 sphere. The points H and V represent

j horizontal and vertical linearly polarised
light. Both are on the equator (2c0=0)
and are at an angle z apart. L and R
» are the poles of the sphere and represent

O v left and right circular vibrations. All linear
D A e, Tt P ot longitude  states of polarisation are represented by
azimuth 4 and ellipticity a. points on the equator HCV D, the longi-
. tude being equal t6 twice the angle made

with the honzonta.l The pomts C and D, which are #/2 away from H and V
thus correspond to linear vibrations at 4 7/4. All elliptical states having the same
orientation (1) of their major axes are represented by points on the meridian
(LPR) of longitude 24. All ellipses having the same axial ratio (b/a=tan w)
are represented by points on the latitude circle (E PF) of latitude 2w.

We shall, in general, call a beam of polarised light, whose state is represented
by a point P on the Poincaré sphere, as light of polarisation state P. Similarly,
a device which produces light of polarisation state P will be called ““polariser P”".
A device which transmits light of polarisation state P completely is thén called

“analyser P”. As will be seen later, it will be necessary to consider the ortho-
gonal co-ordinate axes O UV W in the space of the Poincaré sphere. These axes
are respectively parallel to HV, DC and LR.

In crystal optics, we shall be interested in the changes produced in the state
of polarisation of a beam of light traversing an anisotropic medium. The Poincaré
representation is admirably suited for this purpose, and we shall therefore deal
with some of the fundamental properties of the Poincaré sphere in this chapter.

e o -4

£,

S -

iIn spite of its ambiguity it has been decided to use the term “elhptmﬂ:y” for the sake
of convenience in preference to such terms as angle of elhptmlty etc. When the * elhpt1c1ty”
is small the ellipse is highly elongated, and it becomes a line in the limit when the elhptn:lty
is zero. .

2 H. POINCARE: ’I‘heone Mathématique de la Lumiére, Vol. II, Chap. XII. Pa.ns 1892.




Sect. 2. Intensity transmitted by an analyser. 3

A knowledge of spherical trigonometry is required for this purpose, which may be
readily obtained from the books listed in footnote!. Wherever possible, a per-
spective diagram of the sphere will be given, but for some purposes, the stereo-
graphic projection is more convenient. Details regarding the stereographic
projection and its properties will be found in any textbook on crystallography,
and the books listed in footnote? may be referred to in particular. The pole L
is taken to be above the plane in all the projections; points on the sphere below
the plane of the paper are indicated by a circle around the symbol representing
the point, e.g. @).

In spite of its elegance and simplicity, the Poincaré sphere representation of polarisation
states is not discussed in most textbooks and works of reference on optics. An account of
the Poincaré sphere and its use in the study of the transmission of light in optically active
birefringent crystals is contained in PockerLs’ Lehrbuch ([2], pp. 11—13 and 309—313).
Since then, a fair number of original investigations appear to have made use of this represen-
tation®. The advantages of the Poincaré representation in studies on crystal optics and
analysis of polarised light were poiunted out
in a recent paper of RAMACEANDRAN and
Ramasesuaw? A review of some of the

application of the Poincaré sphere has been
given by JERRARD, more recently’.
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Fig. 3a and b. Light of state P is incident on an analyser A. Fraction of intensity transmitted is cos® % P4.

2. Intensity transmitted by an analyser when light of arbitréry polarisation is
incident on it®. In Fig. 3, let the analyser be represented by the state 4, (24, 2w,).
We wish to determine the fraction of a light beam of polarisation P, (24p, 2ep)

1 'W.J. McLELLAND and T. PRESTON: A treatise on spherical trigonometry with applica-
tions to spherical geometry. London 1897. — I. TopHUNTER and J. G. LEATHEM: Spherical
trigonometry. London 1911. :

2 S.L. PENFIELD: Amer. J. Sci. 11, 1, 115 (1901); 14, 249 (1902). — E. BoEXE: Die An-
wendung der stereographischen Projection bei kristallographischen Untersuchungen. Berlin:
Borntriger 1911. See also C.S. BARRETT: Structure of Metals. New York: McGraw-Hill
1943. 8

2 J. BeguereL: Commun. Phys. Lab. Univ. Leiden No. 91C (1928); 221A (1930). —
L. CEAUMONT: C. R. Acad. Sci., Paris 150, 1604 (1913). — Ann. Chim. Phys. Paris (9) 4, 101
(1915). — C.A. SEINNER: J. Opt. Soc. Amer. 10, 490 (1925). — R.E. WricHT: J. Opt. Soc.
Amer. 20, 529 (1930). — G.Brurat and P.GrRwET: J. Phys. Radium 6, 12 (1935). —
Y. Brornsra®mL: Phys. Z. 42, 437 (1939). — Z. Instrumentenkde. 59, 425 {1939). — O. SNELL-
MaN and Y. ByornsTanL: Kolloid-Beih. 52, 403 (1941). — M.F. BokoTEIN: J. Techn. Phys.
USSR. 18, 673 (1948). — G.N. RaAMACHANDRAN and V. CHANDRASEKHARAN: Proc. Ind.
Acad. Sci. A 33, 199 (1954). — S. RamasesHaw and V. CHANDRASERHARAN: Current Sci.
20, 150 (1951). — S#RaMASESHAN: Proc. Ind. Acad. Sci. A 34, 32 (1951). — J. Ind. Inst.
Sci. 37, 195 (1955). — S. PANCHARATNAM: Proc. Ind. Acad. Sci., A 41, 130, 137 (1955); A 42
86, 235 (1955); A 44, 247, 398 (1956); A 45, 402; A 46, 1, 280 (1957). — G. DEsTRIAU and
J. ProuTEAU: J. Phys. Radinm 110, 53 (1949).

4 G.N. RamacHANDRAN and S. RAMASESHAN: J. Opt. Soc. Amer. 42, 49 (1952).

5 H.G. JERRARD: J. Opt. Soc. Amer. 44, 630 (1954).

¢ U. Fano: J. Opt. Soc. Amer. 39, 859 (1949). — G.N. RamacHANDRAN and S. Rama-
SESHAN: J. Opt. Soc. Amer. 42, 49 (1952). .
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which is transmitted by this analyser. It is well known that a A/4 plate with its
slow axis 04, (Fig. 3b) at azimuth 4,, followed by a linear analyser IV at an
angle w4 to the slow axis, constitutes an elliptic analyser 4. The action of the
A/4 plate is to reduce the ellipse 4 into a linear vibration parallel to the linear
analyser and the ellipse 4, (antipodal to 4) to a linear vibration perpendicular
to it. When light of polarisation P is incident on this analyser it is easily seen
that the light transmitted by it does not depend on the construction of the ana-
lyser, for an elliptic vibration P can be resolved into two orthogonal vibrations 4
and A, in one and only one way, the intensity of the former component being
transmitted by the analyser 4. Hence without any loss of generality we may
use the specific analyser described above for deducing the magnitude of the
fraction transmitted. .

This is done by resolving the incident light into two linear components P,
and P, parallel to the axes of the ellipse, the latter lagging in phase by /2. Thus
the displacements along these two directions are for unit intensity

#p =COSWp, Up =—isinwp. - (2.1)
The incident light resolved along OA4; and 04, (the axes of the quarter wave
plate) is therefore given by
' %4, = COS WpCOS & —{—isincopsiné‘,}

44, = cOS wpsin § — i sinwpcos &

§=(ip—Ag).

On passage through the 1/4 plate a phase retardation 72 is introduced between
the vibrations along 04, and OA, and finally the linear analyser resolves the
vibration into the plane ON giving the intensity transmitted by the analyser as

(2.2)

where (Fig. 3b)

_ Uy =1y COSW 10y, SN0, (2.3)
Thus the intensity transmitted by the analyser is
[24]? = cos? &cos? (wy— wp) + sin?é sin? (w4 + wp) .
This can be transformed, after some manipulation, into the form
[26,4]2 = % + [$sin2wpsin 2m 4 4 £ cos 20pc0os 20,408 2 (Ap— A4)].

From the spherical triangle LPA of Fig. 3a we have the quantity within the
square brackets to be equal to cos P4, so that ’

——

lugl?=2+Fcos P4 (2.4)
or .
|#4]2=cos2y PA. (2.5)

Thus, the fraction of the intensity of light of the polarisation state P which
is transmitted by the analyser A4 is cos® & PA where P4 is the length of the arc
joining P and A on the.Poincaré sphere. This elegant result has a number of
important applications, as will be seen below.

In particular, it is seen that if pAa =g, i.e., the states of polarisation P and 4
are represented by opposite points on the Poincaré sphere, then no light is trans-
mitted. Thus, these two states are orthogonal to one another. An analyser 4
transmits completely light of state A4, while it completely cuts out light of state



Sect. 3. Effect of linear birefringence represented on the Poincaré sphere. 5

A,, A, being the point antipodal to 4. When arc P4 varies from 0 to 7 the
transmitted fraction decreases from unity (P coincident with 4) to zero (for P
opposite to 4). In particular, if 4 is a linear vibration, then the state 4, cor-
responds to the perpendicular linear vibration. If 4 is a left circular vibration
corresponding to L, the orthogonal state is a right circular vibration, then 4,
corresponds to R. If A corresponds to a general ellipse, then the orthogonal
state 4, is the corresponding ““crossed” ellipse which has its major and minor
axes interchanged with respect to the former and has also the opposite sensé of
description.

In many applications, one is interested in the variations in the intensity of
light-transmitted by an analyser set close to extinction. In such a case, it is

more convenient to consider the smaller arc P4, rather than the larger arc P4
which will be nearly & in value. The fraction of the intensity transmitted is then
given by -

5 t,=sin?% PA,. ) (2.6)

3. Effect of linear birefringence represented on the Poincaré sphere. In crystal
optics a common problem that occurs is the following: When a beam of particular
state of elliptic polarisation (F,) is incident on '
a crystal plate, what will be the intensity and
the state of polarisation P, of the emergent
light. The crystal resolves the incident light
into two specific polarised beams in different
states of polarisation which are propagated with
different velocities and, if the crystal is absorbing,
with different absorption coefficients. In the
case of a transparent crystal, the component
beams will be in opposite states of polarisation
A,4,. When the specific states of opposite
polarisation are linear, circular or elliptic, we
shall refer to the medium as linearly, circularly
or elliptically birefringent. One of the important . o
results of the Poincaré representation, which §;§;;tnff§»° §§é§§ﬁi§§“§§‘;‘§:§°§$ Eﬁ:ﬁ
makes it so useful in crystal optics, is that the orfhogonal states M and N is equivalent to
state P, of the emerge?c’ light can be obtained ot the fatar stare ot o8
from the state P, of the incident light by the
simple geometrical operation of rotating the sphere about the axis 4 4, through
an angle A, where A is the phase advance of 4 over 4, introduced by the
crystal. We shall first .consider the case of a linearly birefringent medium.

Let thetwo linear states of polarisation which are propagated unchanged
through the medium be H and V (Fig. 4) and let the phase difference introduced
between them due to the passage through the medium be 8, H leading ¥ by 4.
Suppose unit intensity of linearly polarised light at azimuth 8 represented on
the equator by F,(HF, =28 in Fig. 4) be incident on the crystal. This may be
Tesolved along H and V giving the components cos 8 and sin 8. Let this be
converted into an elliptical beam represented by the point P, as a result of the
Phase difference d introduced. Let this ellipse have an azimuth 1 and ellipticity .
Resolving the vibration along H and V, we have, for unit intensity, the two
amplitudes to be

% =coswcos A +isinwsini, (3.1)

ty == COSw sin A — i sinw cos 4, (3.2)
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while their phases &, and &, are given by _
tang =tanwtan 4, (3-3)
tan s, = — tanw cot A. ' (5.4)

The amplitudes of the two components must be equal to cos § and sin 8, so that
we have

cos?fi = cos?w cos? A +sinZ2wsin? 4, 5.5)
_ sin? f = cos® w sin? 1 -- sin?w cos? 4. >
The two equations are equivalent and can be put in the form . ~7 .
€08 2f = cos 2 cos 2 4. (3.6)
The phase difference between the two is given by
V 0 =g — &, ' =
so that :
tan (g — &) = %_t;% —;- (tan A + cot 1) (3.7)
and '
tand =tan 2wfsin24. (3 8)

We thus have two relations (3.6) and (3. 8) between the quantities @, Aand g, é.
They can be interpreted very simply by saying that the point P, is obtained from
P, by rotating it about the axis AV through an angle . Both Eqs (3.6) and (3.8)
can be verified to hold between the elements of the right angled spherical triangle
HP K (Fig. 4).

Thus, starting from the linear polarisation state By, the effect of mtroducmg
a phase difference § between the components H and V (H leading ¥ by 8} is to
rotate the representative point about the axis HV by an angle §, measured
anticlockwise looking from H to V. It follows from this that, if the initial state
is represented by a point 7, now considered as a general point, then the effect -
of a phase difference ¢’ between H and V is to bring P, to P, by a rotation through
an angle ¢’ about HV.

So also, if the phase difference §’ is not between the linear states H and 4
but between the two states of linear polarisation of azimuth « and « 4-7/2 re-
presented on the Poincaré sphere by points M and N, of longitude 2e, w42«
on the equator, the representative point is rotated by an angle &’ about the
axis M N (from P, to F;).

Similarly, if a phase difference § is introduced between left- and right-circular
vibrations, the effect can readily be shown to be equivalent to rotating the sphere
through an angle § about LR. Suppose the incident beam is linearly polarised
parallel to OX, represented by the point H on the equator. Following FRESNEL,
‘we may resolve the linear vibration into two circular vibrations (which are in
phase along OX). If the left rotating circle (L) is advanced in phase by §/2 while
the other (R) is retarded by §/2 (phase difference =4), it may be shown that
the two together will produce a linear vibration at azimuth §/2. The correspond-
ing representative. point remains on the equator, but is at longitude 8. It is
obtained from the original state by a rotation through an angle § about LR.
The proof is directly generalised to any linear vibration. Considering any ellipse
as made up of two linear vibrations at right angles but with a phase difference
of 7z/2, it will be seen that both components will be rotated by ¢/2 by introducing
a phase difference of § between L and R. Thus the axial ratio of the ellipse is
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unaffected, but its azimuth is rotated! by §/2; the latitude of the representative
point on the Poincaré sphere is unchanged but its longitude increases by 4. This
is equivalent to rotating the point through an angle ¢ about LR.

Thus, the effect of linear or circular birefringence, and the consequent intro-
duction of a phase difference § between two orthogonal linear or circular states
of polarisation, can be determined by finding the effect of a rotation of the
Poincaré sphere through an angle § about the appropriate axis of rotation. These
results are in fact consequences of even more general properties regarding the
addition of any two orthogonally polarised beams (see Sect. 4).

4. Coherent addition of polarised beams?®. o) Divect interference of two polarised
peams. Suppose we have a pair of orthogonal analysers 4 and 4,. Then it follows
from the results (3.4) and (3.5) that the inten-
sities transmitted by the two analysers would
be constant for all states of polarisation {P) for

which the arc PA (and therefore also the arc y
PA,) is the same. Thus, the locus of points on
the Poincaré sphere representing the states of
polarisation for which a definite fraction f is
transmitted by the analyser 4 is a small circle of .
centre A and radius P4 where %,
cosz%ﬁZ:f. (4-1)
For all these states, the analyser 4, will transmit o ason of polarised beams.
a fraction When a beam of intensity I and any state P
is decomposed into two beams in the states
cos?} PA,=sin*} PA =1—f. Ty B 14.3) a0 (46); the phase difcence

- is the supplement of half the area of the
The above result may be used to wozk out triangle P, F, P..

the resultant of the coherent addition of two

beams of polarised light, say 1 and 2, whose states are represented by points B
and P, on the Poincaré sphere (Fig. 5) and whose intensities are I, and I, re-
spectively. The resultant is the state P. Denote the arcs PP;, PP, and P P,
by 2a, 25, 2¢ respectively, and similarly the arcs P, F, and B, P, by 2a’, 28" re-
spectively. Let B, be the state opposite to B, and resolve the beam 2'into the
state B and P, the intensities of which will be I, cos®c and I, sin* ¢ respec-
tively. The intensity of the resolved component of the combined beam along P
may be obtained by the usnal formula for combining two vibrations in the same
state. The resultant intensity is -

Ip,=1I, +I,costc + 2] I, I,cosccosd. 4.2)
The intensity of theresolved component of the combined beam in the state P, is
Ip, = I,sin?c. i (4.3)

Since the beams of intensity Ip and T, n, are orthogonal, the resultant intensity
is just the sum of the two, independent of the phase difference between them.
Thus, ' - '

" I=I+1I,+2)IT,cosccosé (4.4)

! This uses the fact that the phase difference befween the components is unaitered by the
operation of rotation. We shall not prove this, as a general proof for elliptic birefringence is
given in Sect. 4. : ’

2 S. PancuHaRATNAM: Proc. Ind. Acad. Sci. A 44, 247 (1956).
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and we may conveniently refer to § as the phase difference between the two
beams themselves though they are in different states of polarisation.

Now, the intensities of the resolved component of the resultant I in the state
P,, and of I, also in the state P, must be equal, since P is orthogonal to P, ,.
Hence

Isin?p = I,sin%c

or
I, =TI sin? b/sin?¢c. “ {4.5)
Similarly, -
I, = Isin?afsin%c. (4.6)
Hence .
coss = LZhTa _ siwte—sint—snta “n
II,cosc 2sinasinbcosc
1 — cos2¢ — cos2b’ — cos?a’ .
- 2cosa’cosb’cosc (4'8)
or
cosd =cos ¢’ (4.9)

where ¢’ is the spherical excess or area of the spherical triangle P, P, P, which is
colunar to the triangle PP P,. Thus .

d=mL3e. (4.10)
In particular, when § =0, ¢’ == or the spherical excess is 2. The points P-
and P, must then lie on the great circle passing through P, and P,, P lying on the
shorter arc P P,.

Thus, given I1, I, and 8, one can first calculate I from Eq. (4.4) and then the
spherical arcs a and b from Eqs. (4.5) and (4.6) which immediately fix the re-
presentative point P of the resultant, except for an ambiguity in the sign of 4,
which is present also in Eq. (4.10). The ambiguity can be removed by a consider-
ation of the combination of orthogonal states and a comparison with the conven-
tions adopted in Sect. 3.

Suppose P, tends to the point P, ie., 2¢~>z. Then, the triangle P, PP,
becomes a lune in the limit (Fig. 6a). Denote the angle between the great circles
P,P,P,,and P, PP, , at P as A. Then the spherical excess of the colunar triangle
is &' =2(zw—A4). Thus, we have

A=44. . (4.11)
Further since the beams are orthogonal
I=IL+1I, , (4.12)
and

(4.13)

L/ =sin?b =cos?a, }
I,/I =sin?a = cos?b.

If the phase relationship is kept constant and 7,/I, is altered, the resultant state
moves along the locus for which A is constant i.e. along a great circle (e.g. B PP,
of Fig. 6a). On the other hand, if the ratio 1,/I; is given and the phase difference 8
is varied, then the resultant occurs in a small circle whose axis is P, P, (i.e. B, P,,).
It is however necessary to define the condition when the two have the same phase,
which may be done by taking some great circle through P, P, as the standard
of reference (say the one marked ¢ =0 in Fig. 6a). Then, for any given §, the
resultant P lies on a great circle rotated from the standard through an angle 4.
Thus two position are possible corresponding to 4 = 4.
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We have already shown (Sect. 3) that for the case of linear birefringence the
upper positive sign is to be taken if P, leads P, in phase. From considerations of
analytical continuity the same must be true for adjacent axes of rotation and
hence for any axis of rotation of the Poincaré sphere. We have thus proved the
proposition stated in Sect. 3 namely that fhe effect of any elliptic birefringence
is represented by an anticlockwise votation about the point representing the faster
state.

This result for orthogonal vibrations may be used to resolve the ambiguity
in (4.10) for the case of non-orthogonal vibrations by the method of analytical
continuity, giving ,

b=n—%¢ (4.14)

Fig.6a and b. Locus of the resultant state of polarisation P when the ratio of the intensities of two beams P, and P,
or their phase difference is varied the cther remaining constant. (a) States F;, P, of the combining beams are orthogonal.
(b) States B, P, non-orthogonal.

where £’ is to be counted positive if the sequence of points P, P, P, (and therefore
the sequence P, P,P) is described in a counter-clockwise sense on the surface
of the sphere.

The necessity for defining the condition of zero phase difference occurs only .
in the case of orthogonal vibrations because one cannot be “resolved’” into the
other. When P, and P, are not orthogonal, then the resolved component of one -
along the other can be compared for specifying their phase difference. The result-
ant intensity is then a maximum, when the phase difference is zero as seen from
Eq. (4.4), and the resultant state of polarisation lies on the arc P, P, directly join-
ing P, and P,. When the two beams are opposite in phase, the intensity is a mini-
mum and the resultant state lies on the greater segment (P, F,F,) of the great
circle through P, and P;. '

It follows from Egs. (4.5) and (4.6) that, when the phase difference between
the two beams is altered without altering the ratio of their intensities, then
sin2a/sin?p is a constant. The locus of P is then a small circle, with its centre
on the great circle through P, and P, (Fig. 6b). On the other hand, if the ratio
of the intensities is altered, keeping the phase difference constant, then ¢ is a
Constant, and the locus of P is again a small circle, but passing through P, and P,,
with its centre of the great circle which is the perpendicular bisector of the arc
P, P, (Fig. 6b). When P, and P, are orthogonal, the former family of small circles
are all perpendicular to the diameter P, P, and the latter all become great circles
Passing through P, and P, (Fig. 6a). )

_ B) Interference of two beams after vesolution by an analyser. Given a vibration
In state P, (Fig. 5) its resolved components in the orthogonal states P and F,
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can be said to be in phase by choosing the arc P P, P, as the standard arc defining
the zero of phase difference for two orthogonal states. Considering a second
vibration in state P, let us also resolve it into its components in the states P
and P,. Let ¢’ be the phase advance of the P-component of the vibration in state
P, over the P-component of the vibration in state P,; and similarly let " be the
difference in the phases of the P,-components of the vibrations in states P,
and P, respectively. Then from a consideration of the results of the preceding
sub-section,

§—o" =P © (4.15)

where P is the angle P, P P,, counted positive if (on looking frem P to P,) an
anticlockwise rotation brings arc PP, to arc P P,.

The result of the last paragraph may be used to discuss a problem of common
occurrence in crystal optics (see e.g. Chap. C). Two beams 1 and 2 initially of
intensities I; and I, and in states of polarisation P, and P,—the first having
a phase advance § over the second—are made to interfere after transmission
through an analyser which resolves them to the same state of polarisation P.
(Note that in the present context P does not represent the resultant state obtained
by directly compounding the beams 1 and 2.) The P-components of the beams
of polarisation P, and P, will have intensities I, cos?b and I, cos?a respectively
and our main problem in this section is to determine their phase difference §'.
The intensity transmitted by an analyser P is then given by

Ip=1I,cos?b + I cos?a + 2} I I,cosacosbcos . {4.16)
Similarly the P,-component of the resultant beam will have an intensity
Ip,=1;sin?b + I,sin®a + 2|1, I,sinasin b cos §". (4.17)

The intensity I of the resultant beam, obtained by directly compounding 1 and 2,
is obtained by adding (4.16) and (4.17) using (4.15): :

I=Ill+Iz—|—2]/I1_I;{cosacosbcos d' 4 sinasin b cos (6’—15)}.

By applying the standard expressions for the spherical excess of a triangle this
reduces to -

f=Il+12+2]/1112cosccos(6’+%8) {4.18)

where ¢ represents the area or spherical excess of the triangle P P, P, itself (counted
positive if the sequence of points P, P, P, describe the periphery of the triangle -
in a counter-clockwise sense).

Comparing (4.18) with (4.4) we obtain the interesting result that if two beams
initially have a phase difference  then after passage through an analyser their
phase difference becomes

& =0—3%¢, (4.19)

i.e., an additional phase difference — 3¢ is introduced in the process of analysa-

tion. The intensity transmitted by the analyser (i.e., the intensity obtained by

the interference of the resolved components) is obtained by substituting (4.19)
in (4.16):

Ip=1I,cos?b + I,cos2a —]—2]/[112cosacosbcos (6 —¢). (4.20)

The limiting case when the states of polarisation P, and P, become oppositely

polarised is of particular importance (Fig. 6a). In this case, if the beams have
been originally derived by the decomposition of a beam in state P’, we must
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take the great circle P, P’ P, as defining the condition of zero phase difference.
It follows from (4.19) (since & becomes now the area of a lune) that on passing
through an analyser P the resolved component of the first beam lags behind
that of the second by an angle A which denotes the angle P P, P’ (measured posi-
tive in a counter-clo¢kwise sense). Thus, for example, when two circularly
polarised beams in opposite states are incident on a linear (or elliptic) analyser

the phase difference between the transmitted beams is altered by 24 when the
azimuth of the analyser is rotated (as a whole) through an angle #—a result which
finds application in certain types of phase—contrast microscopes which use
crystal-optic elementst.

5. Propagation of light through an optical system (no absorption). o) Non-
absorbing optical elements of infinitesimal thickness. We wish to investigate the
change in the state of polarisation of a beam of light of polarisation state P as
a result of its passing through a number of optical elements. Each element is con-.
sidered to be either (a) a parallel plate of birefringent material, with principal
planes oriented at an arbitrary azimuth, or (b) an optically active material, which
only rotates the azimuth of the elliptically polarised beam. Systems of this type
were considered by JoNES2 making use of a matrix calculus and his papers may
be referred to for examples and for further details. The matrix method of JoNEs
is also discussed in Sect. 12. The overall effect can however be readily worked
out by the use of the Poincaré sphere.

Before proceeding to the general case we shall first consider a special case
of such combination, which is of particular interest, viz., when the effect of each
optical element is infinitesimai in magnitude. An example is that of a birefringent
optically active crystal. Although strictly the medium must be considered to
have the properties of both birefringence and optical activity and should be
treated as such in a rigorous theory (see Chap. B), one may also picture the crystal
to be made up of alternate infinitesimal layers of equal thickness exhibiting
alternately, only linear birefringence and only optical activity. A thickness 4z
of the optically active birefringent medium can on the above picture be regarded
as a linearly birefringent element producing a retardation d§ =44z, and an
optically active element producing a rotation dp =g’ dz where §’ and g’ define
respectively the retardation per unit thickness in the absence of optical activity
and the optical rotatory power in the absence of linear birefringence. Suppose
the principal axes of the birefringent element are at azimuth « and « +=z/2,
represented by M and N (Fig. 7) of which M is the faster axis. Then the effect
of passage through these two optical elements is to rotate the Poincaré sphere
through angles 46 and 2dg in an anti-clockwise direction about M N and LR
respectively (Fig. 7). The addition of two infinitesimal rotations follow the law
of vectorial addition and the resultant is independent of the sequence and is a
rotation through air angle 44 = |/(d8)% 4- (24 )% about the axis EF which is in
the plane of 3 N and LR and makes an angle 2y with N where

3 2dg
2y -—arctan—ﬁ arctan—é—,—. (5.1)

For unit thickness of a birefringent, optically active crystal, the resultant effect
is an anti-clockwise rotation of the Poincaré sphere through an angle

A" =]5% + (2¢') (5-2)
1 See e.g. BENNETT, OSTERBERG, JUPNIK and RicHARDs: Phase Microscopy, Chap. 3.

New York 1951.
2 R.C. JonEs: J. Opt. Soc. Amer. 31, 488, 493, 500 (1941).
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about the axis EF, where the elliptic state E is propagated with the faster
velocity. SO T T TR S R S AT
Thus, the most general type of non-absorbing crystal (or optical element) is
one which leads to a rotation of the Poincaré sphere about an axis EF, which
is nejther the polar'axis LR nor does it lie in the equatorial plane. Analogous to
the purely birefringent crystal, in which linear vibrations parallel to its principal
directions are propagated unchanged, and the purely optically active crystal
without birefringence, in which L and R are propagated unchanged, light of
. gy, T polarisation states £ ant-F will be propagated
g unchanged in this crystal. This is so becanse a
rotation of the sphere about EF leaves E and FF
". unchanged. These states are two crossed ellipses
. which are orthogondl to each other. o
" In suoch a crystal, incident light of arbitrary
state of polarisation P, is split up into the two
orthogonal elliptical states E and F, which are
propagated unchanged in state, but with a re-
lative phase retardation A’ per unit thickness.
~ On emergence, they recombine, and the resultant
_state P is obtained from Fj by a rotation of the
Poincaré sphere about the axis EF, asshown in
... Sect. 4. The optical phenomena in such crystals,
" are treated in Chap. B. . : N
Since the emerging waves are orthogonally
polarised they do not interfere and the emergent
intensity will be the same as the incident inten-
sity. The crystal will therefore be transparent
as is to be expected. Vice versa, the operation
for a thin layer of any mnon-absorbing optical
I . element must necessarily be a rotation through
g’i@;ﬁfm&ﬁﬁfﬁ;ﬁﬁgﬁﬁ ap infinitesimal angle %A =A'dz about sm?:le
B e e e optioss i‘:,r%?;.ﬁ’;‘,; axis EF. This can be resolved into three in-
the absence of birelringence, the resultant  finitesimal rotations 44, d4,, 44, about the
o akough an anele 3 about the asis EF- axes HV,CD,and LR respectively.g’l‘hese axes
correspond to the co-ordinate axes OU, OV, 0W
- in Poincaré space (Fig.2). Thus, the effect of a géneral infinitesimal {non-
absorbing) optieal element on the state of polarisation of light passing through
it is describable by means of three infinitesimal rotations about OU, OV and OW.
B) Combined effect of a series of transparent plates. We now return to the
" problem stated at the beginning of the section, viz., the passage of polarised
light through a series of transparent parallel plates of finite thickness. For a
linearly birefringent plate producing a relative phase retardation 4, the effect
is to rotate the Poincaré sphere about an axis in the equatorial plane through
the angle 8. The orientation of the axis is known from the orientatjon of the
principal plane. So also, if g is the rotation produced by the optically active plate -
(o is positive for left-rotation), then the effect is to rotate the sphere through an
angle 2p about LR. (If the system also contains plates possessing both linear
birefringence and optical activity, the effect of any such plate is to rotate the
sphere about a given axis EF through a given angle 4.) '
The resultant of two successive rotations about two axes is again a rotation
about some other axis of the sphere which may be determined either analytically
or graphically by the construction illustrated in Fig. 8. The combined effects




Sect. 6. . ‘Effect of absorption and dichroism—no birefringence. 1 3.

of the successive rotations of the Poincaré sphere may in this manner be replaced
finally by a single rotation about some general axis in Poincaré space, i.e., the

- combination will be equivalent to a single elliptically birefringent plate (of the
type discussed in the preceding sub-section), which shows differential retardation
for two orthogonally polarised elliptic states. Alternatively, the resultant single
rotation of the sphere can be resolved into two rotations about perpendicular

axes—the first may be about LR and the other will then be about some axis
in the equatorial plane which may be determined by the construction of Flg 8..
Thus the combination is equivalent to a system con-

" taining two elements, one a rotator and the other a
retardation plate.

"’ Gjnce rotations about non-parallel axes are non-
commutative operations, it is necessary to specify the
exact sequence of the various elements. Interchanging
any two of them would in general lead to a change in
the final state of polarisation. The complete solution
in the important case when all the plates exhibit only
linear birefringence is given in Sect. 74. *

. Fig. 8. Construction for the com-

- . 1 di isIm— i in-  Dposition of two rotatioms. A ro~
6. Effect of absorption and dichro: no birefrin P o e o, AT

gencel, The effect of an isotropic absorption would  the internal angle at 4 followed
7 o;]lly lead to-a reduction -in mter(x)sﬂtyh Wltlﬁouth az:iy fg%;ﬁ;ﬂ%?gﬁ“ﬁ%?{?ﬁ
change in the polarisation state. On the other han equivalent fo a rotation about
if thge med_mmjP exhibits linear dichroism, with the @ TN e ot g xtemal
principal planes along M, and N (Fig.9), then the
absorption coefficients for ‘the linear vibrations M, and N, will be different. Let
these be %, and %, say for amplitude. In consequence, if a general elliptic vibration
is resolved along M, and N, then the components would be attenuated differently
during the passage through the crystal plate, and on emergence the polarisation
state would be changed.
If F, and G, are the amplitudes of the resolved components of the incident

beam of the unit intensity along M; and N, then it follows from Eq. (2.5) that

© B, =cos1y, Gy =sinn, : 6.1)

VTVI]::ere 27, is the angular distance between P, and M, on the Poincaré sphere.
hus
' G [, = tany,. (6.2)

As a result of absorption, the amplitudes of the two components are reduced by
factors ¢ %7 and e~** and in consequence the resolved components on emergence
are ’ : :

F,=F, e ", (63)
Gy = Gp e, (6-4)

a}llld if P is the state of polansa‘uon of the emergent light and 27 is the arc Pm,,
then

tanzy = tany,ef—r) . (6.5)

If we counsider a medium exhibiting pure linear dichroism i.e., with no birefring-
ence, the relative phase difference between the M, and N, components of P, is
- .

1 S. PancraraTNanM: Proc, Ind. Acad. Sci. A 42, 86 (1955).
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unaltered. This restricts the locus of P to the great circular arc M, P, N, (as
shown in the discussion in Sect. 4). Hence the position of P is as indicated in
Fig. 9. It moves towards the less absorbed component, i.e., towards or away
from M, along the arc M, P, N,, according as %, is > or < k,. .
The infinitesimal operation of linear dichroism corresponds to the passage
through an infinitesimal distance dz. If we put 2=(k;—£&,) and denote the
‘ length of the arc M, P, by s; then it follows from

(6.5) that

tan (n + dy) = tany e?4*
=tany (1 4 kdz)y~
or
kdztann =d (tanyn) = sec?n dy.
Hence
ds, =2dn =ksins, dz. (6.6)

Thus, the arc fﬂ'k becomes larger if % is positive,.
and vice-versa.

Similarly, if the medium exhibits circular

dichroism i.e., the two circular vibrations L and
g&&ﬁ%pﬁgﬁg’i‘;;ﬁ e et R are differently absorbed, then the effect on
axes of linear dichrolsm, the iniffal State ro the_ polarisation state of a beam of ].}ght is de-
ponent along a great circle. In the case of  scribed in a manner similar to that given above
S A, I e e "¢ '"®  (on the Poincaré sphere). Let k& be equal to

(B, —kg). Then, if s; is the length of the arc
LP,, then on passing through an infinitesimal thickness dz, the point P, moves
. along the great circular arc LP R by a distance

. ds;=Fksins;dz, 6.7)
an equation exactly analogous to Eq. (6.6).

The most general case possible is one in which the medium exhibits differential
absorption for two crossed ellipses, say E and F. In this case, the state P, goes
to the state P as a result of passage through the medium, and if %2z and %z
are the absorption coefficients for light of polarisation states Eand F and k=
(kg — kz) and sg=arc EP then

dsg=Fsinsgdz (6.8)
and P lies on the great circle E PF. In all these cases it is assumed that the medium
exhibits no birefringence.

Analogous to Eq. (6.5), one could also obtain an equation for the position

' of the final state of polarisation P for a finite thickness also in the cases repre-
sented by (6.7) and (6.8). v

7. Propagation of light through an optical system with absorption. It was
mentioned in Sect. 5 that the infinitesimal operation in the most general case of
birefringence is a rotation through an angle 44 about a general axis, which could
be resolved into three components d A, , d4,, d4,about OU, OV, O W respectively.
From the vectorial law of addition of infinitesimal rotations it can be shown that,
if P, Q, R, are the direction cosines of the direction EF referred to OU, OV, 0W,

then . ddy=Pdd, dd,=Qdd, dA,=RdA (7.1)
so that '
(@A4)2 = (d4)2 + (dA5)? + (@4s)°. {7.2)
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A closely analogous result can be derived from the infinitesimal operation
of dichroism?!.. The operation, as seen from Eq. (6.8), is a movement of the re-

presentative point P away from E by an amount 4s proportional to sin EP=dr
(say), where d k stands for 2ds. This may be shown to be equivalent to the resultant
of three such elementary operations of dichroism associated with OU, OV, OW
and of strength P dk, Qdk, R dk respectively.. Thus, the point P is displaced
away from OU in the great circle U PU’ by an amount

ds,=PdksinUP =dk;sinUP.
Similarly, ds,=Qdksin VD =dk,sin 7 P, (7.3)
ds,=Rdksin WP =dk,sinW P,

and the resultant of these three displacements (which is independent of the
sequence, with infinitesimal operations) is equivalent to :

ds =dksinEP. (7.4)

(@k)2 = (@R)? + (@R)° + (d45)°. (7.5)

The most general type of optical medium will be both birefringent and dichroic.
In such a case, for an infinitesimal thickness, the effect of birefringence is given
by the three quantities d4,, d4,, d4; and that of dichroism by dk, dk,, dk;.
Thus, six quantities have to be specified to describe the variation in the state of
polarisation of the transmitted light. In addition, two more quantities are
required to describe fully the light beam, namely its amplitude and its absolute
phase. The changes occurring in amplitude and phase while passing through
an infinitesimal thickness of the crystal may be defined by a mean absorption
coefficient K and a mean refractive index #. These two quantities cannot be
represented on the Poincaré sphere, which only represents the state of polarisa-
tion; without specifying the amplitude or the absolute phase.

It can be shown that an infinitesimal layer of such a medium exhibits dif-
ferential absorption and differential retardation with respect to two non-ortho-
gonal elliptic states (see Chap. B in Sect. 52). Hence the propagation through
a finite thickness of a homogeneous medium of this type can be handled by the
application of the results of Sect. 4. However, the propagation through an optical
- system of elements, which are of finite thickness and some of which are absorbing
cannot be conveniently worked out by means of the Poincaré sphere—at least
no geometrical analysis of this method appears to have been worked out. The
problem can however be analysed by matrix methods (Sects. 12 and 13) partic-
ularly by the method introduced by JoNEs.

8. Incoherent addition of light beams. Partially polarised light?. The discussion
so far had been confined to completely polarised beams of light and the decomposi-
tion and coherent addition of such beams which occurs during passage through
an anisotropic medium. We shall now consider the state of polarisation of a
mixture of two perfectly polarised incoherent beams, whose states of polarisation
are different.

It also follows that

1 We are here considering the case of orthogonal dichroism, i.e. that in which the different
absorbed states are oppositely polarised. It can be shown that non-orthogonal dichroism
can be resolved into orthogonal birefringence together with orthogonal dichroism for infini-
tesimal operations.

2 . Fawo: J. Opt. Soc. Amer. 39, 859 (1949). — G.N. RaMACHANDRAN: J. Madras Univ.
B 22, 277 (1952). — See also Sect. 17.
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" This is best discussed by using the intensity formula (2.4). Suppose P, and P,
are the states of the two completely polarised beams whose intensities are in
the ratio of f,:f, and that these two beams are mixed incoherently. Thus, there
is no phase correlation between the two, and if we allow the beam to pass through
the analyser 4, then the total intensity is just the sum of the intensities of the
two beams transmitted by 4. Remembering that the intensity of the resultant
is the sum of the components, it follows from Eq. (2.4) that the fraction of the
resultant beam which is transnntted by A 1s , gy

e &5 ~.
“'_A—2f1(1 +COSPA)+2 2( —}—cosPA)}
=3 2(f1cosP1A +fzcosPA)

If we indicate unit vectors along OP and OP by P and P, and that along OA
by A, then we have - :

(8.1)

+ z (flP —H‘z 2)
=%+ 2P ‘4 - } (8.2)
where : :
=f1P1+.(z 2- T (8-3)

Obviously, Eqgs. (8.2) and (8 3) hold for any analyser 4, and (8.2) is the generalised
form of Eq. (2.4) Whlch in our present notatlon may be written in the form:

ta=3+3P-A ' N

where P is now a unit vector paraliel to OP. The mtensmes transmitted by an
analyser of two beams having the same P will be identical and following STOKES,
we may assume that these beams are identical in all other respects. The genera.hsed
equation for an incoherent mixture of two completely polarised beams is (8.3),
and the magnitude of the vector p is given by "~

1Pl =B Bl S+ pe—1

" p=fHP and py=fP. (8.5)

Thus, the state of polarisation of the mixed beam may be defined by the vector p,

whose magnitude $<<1. In Poincaré space, the state may be represented by

a point within or on the surface of the sphere of unit radius. If it is on the surface,
then it represents completely polarised light.

We shall now examine the nature of the light beam represented by a point P,
not lying on the surface of the Poincaré sphere (Fig. 10). Let the length of the
vector O P be p, whose magnitude is less than unity. If we examine this light
beam by an a.nalyser A, then from Egq. (8.2), the fraction of the intensity
transmitted by it is’

where

tA=§—f—§‘PCOSfX - (8.6)

where « is the angle between OP and 04. Obviously, this is maximum and
minimum corresponding to cos w =--1, i.e. « =0 or #. The corresponding posi-
tions of 4 are shown in Fig. 10 as 4; and 4,, and in both cases, 04, or 04, is
parallel to O P; only they are du:ected in opposite senses. The maximum and
minimum values are:

b=bidp wd =i 87)

Thus, unlike with completely polarised light, there is no complete extinction of
the light beam at any setting of the elliptic analyser, nor is there complete trans-
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mission. Such-a beam of light would be called partially polarised. Since the
maximum and minimum of transmitted intensity occurs at the orthogonal set-
tings A4, and A, of the analyser, one may say that the polansed part of the light
beam has the state represented by A, and that there is in addition an unpolarised
component. The relative proportion of the two is readily worked out from
Eq. (8.6), which may be put in the form: :

PL ta=3%(1—2) ’f"/\(?‘l‘?cos“)}
. (8.8)
=3u+pF+Fcosa). a

Here, 1 1 cos & is the fraction of the intensity
of a completely polarised beam of state re-
presented by 4,, which would be transmitted
by an analyser 4. Thus, the beam consists of
a fraction ¢ of completely polarised light of the
state 4, and a fraction # = (1 —$) of unpolarised
light, half of whlch is transmtted by any -
analyser. ' ‘ e
This then is the descnptlon of partially Fig. 10. Poincaré representation of partially

polarised light, of degree of polarisation . If Egiﬁﬁﬁﬁxsgﬁiﬁaﬁitie Pormears
$ =0, we get completely unpolarised light; the jemcmon wd e oosnider sy o
corresponding representative point coincides gﬁ;‘;& e ey ﬁﬁ*"%}?&g&o‘flg‘g_
with the centre of the Poincaré sphere and any called the Stokes vector.
analyser would transmit half of its intensity.

The state of partially polarised beam can be represented by a point P within
the Poincaré sphere of unit radius, the two limiting cases being a completely
polarised beam, represented by a pomt on the surface and an unpolarised beam,

represented by the centre.

9. Stokes parameters The geometrical representatlon in Pomcare space of
partially polarised light discussed above can be given an analytical form by
taking the components of the Poincaré vector along the three co-ordinate axes
OU, OV, OW. Ii these components are denoted by #, v, w then obviously, -

' Wt wt=1 ' (9-1)

The intensity 7 of the light beam and the three components of the vector Ip
namely T4, Iv, [w are called the four *“ Stokes Parameters” of the beam of light.
They are respectively denoted by the symbols

T I, M(=Iw, C(=Iv, S(= Iw) o {9.2)

The vector I p may be called the Stokes vector X of the Light beam.

The above parameters were first introduced by STokes! in connection with
his studies on polarised light more than a century ago. Many of the theorems
discussed below were proved by him even then. In fact the concept of unpolarised

~ and partially polarised light which he put forward so long ago is remarkably
modern and is consistent with quantum mechanical concepts. The Stokes para-
meters have however found very few applications until recently. SOLEILLET?
used them for a study of fluorescence, while PERrIN® developed a general theory
of the polarised components in light scattering in terms of Stokes parameters.

1 C.G. StokEes: Trans. Cambridge Phil. Soc. 9, 399 (1852)
2 P. SoLELiET: Ann. Phys., Paris 12, 23 (1929).
3 F. Perrix: J. Chem. Phys. 10, 415 (1942).

Handbuch der Physik, Bd. XXV/1. : 2
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It was CHANDRASEKHAR! who drew pointed attention to the advantages ot these
parameters in optical studies. MUELLER? has made a systematic use of these
parameters in a course on optics but unfortunately this treatment has never
been published i extenso. Since then, Stokes parameters have figured in several
papers?, some of which are mentioned in the later sections. The relationship
between the Poincaré sphere and Stokes parameters is discussed by Fanot and
RAMACHANDRAN® while a few reviews have also appeared recently®.

It is obvious that
I=ZyM2L-C2+ 52, (9.3)

the equality occurring only for completely polarised light.

The most interesting property of the Stokes parameters is that, if two light
beams are incoherently added, then their Stokes parameters are additive. This
follows from a result analogous to Eq. (8.3), which holds for the incoherent
addition of partially polarised beams. If p, and p, are the Poincaré vectors of
the two beams and f; and f, are the fractions of the intensity contributed by the
two beams, then the intensity of the resultant beam of intensity I which is
transmitted by an analyser 4 is

Li=1fG+3p-A) +1f,(3+4p.-A) i
=3 I[1 +(fip1+ fop5) - 4] (9.4

=zI[1+p-4]
where .
P =1+ fape- (9:3)

If now I, and I, afe the intensities of the two Beams, and the resultant is I,
we have

I=I,1+1, ’ ) (9.6)

and , .

e Ip=Ifipr+1f;p.=1,pi+1:p; 9.7)
giving .

M=]W1+]Mz, C=C1+Cz: S =51+ Se. (9-8)

The result can obviously be generalised to the incoherent addition of any number
of light beams, and each Stokes parameter of the resultant beam would be the
sum of the corresponding parameters of the component beams.

The intensity formula (9.4) can now be put in terms of the Stokes parameters.
Suppose the elliptic analyser 4 corresponds to an azimuth 4 of the major axis
and an ellipticity w. Then the latitude and longitude of 4 are 2w and 24, and

its three components along OU, OV, OW are

cos2w cos24, cos2wsin24, sin2w.
Thus,

I,=2%[1+ Mcos2wcos24 + C cos 2wsin 24 + Ssin 2w]. (9.9)

1 S. CEANDRASEKHAR: Astrophys. J. 105, 424 (1947). — Radiative Transfer, pp. 24—37.
London 1950. ’

2 H. MurrieEr: M.LT. Course (8.26), Spring 1945. — J. Opt. Soc. Amer. 38, 661 (1948).

3 B.H. Bririvgs and E.H. Lanp: J. Opt. Soc. Amer. 38, 819 (1948). — B.H. BILLINGS:
J. Opt. Soc. Amer. 41, 966 (1951); 42, 72 (1952).

4 U. Fano: J. Opt. Soc. Amer. 39, 859 (1949).

5 G.N. RaMACHANDRAN: J. Madras Univ. B 22, 277 (1952).

6 M.J. WaLxer: Amer. J. Phys. 22, 170 (1954). — W.H. McMasTER: Amer. J. Phys.
22, 351 (1954). — G.V. RozENBERG: Uspekhi Fiz. Nauk 56, 77 (1955).
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This formula gives the intensity transmitted by a general elliptic analyser of
light having the Stokes parameters I, M, C, S and its variation with the azimuth
and ellipticity of the analyser. -

Various methods could be worked out for determining the Stokes parameters
of a beam of light by making use of the variation with w, 4 of the transmitted
intensity. A straightforward method, however, follows from Eq. (9.4)1. Suppose
one determines by a photometer the intensity transmitted by the following ana-
lysers: a linear analyser set at angles (a) 0°, (b) 90°, (c) 45°, (d) —45° and (e) a
left circular analyser and (f) a right circular analyser. Let the measured intensities
be respectively denoted by Iy, Iy, L45, I_45, I; and Ip. Then we have from (9.2)
and (9.4),

Ioz%(I +M): Iso=%(I—M):
—1I+0), Iy=3(0-0), (9:40)
L—‘2(I+S) In=3(I—9)
so that
' ‘ M=(I,—Iy), C={Ip—1,), S=(I—I, . (9.11)
I=(Ty+Ig) =gz + 1 45) =+ Ip). ’ (9.12)

Actually, only four of the six measurements are independent, but the others
serve as a check.

10. Incoherent addition and decomposition of polarised beams. When two
partially polarised beams are incoherently added, the resultant Poincaré vector
is given by Eq. (9.5) and the Stokes parameters are additive. More generally,
if p is the Poincaré vector representing the state of polarisation of a beam obtained
by incoherently adding fractmns fyofa number of beams of state p; (j=1 to #),
then

Z 1ip; (10.1)

since the magnitudes of all the vectors p;=1and 2'f;=1, it follows that p=1
as it should be. What is more interesting is the fact that

PEDNT : (10.2)

which follows from Eq. (10.1). Thus, the degree of polarisation of the resulting
beam is less than the mean degree of polarisation of the component beams. In
other words, the degree of polarisation always decreases on mixing light beams
incoherently. In the special case, when the polarised components of all the added
beams are of the same state, there is no change.

A particularly vivid example of this is obtained when two completely polarised
beams are mixed. If the two are not of the same state, the resulting beam is
only partially polansed If the two are orthogonally polansed then P, =—P,,
so that on mixing equal proportions of the two, p=%P, -+ 1P, —0i.e. the beam
has zero degree of polarisation, or it is unpolarised. Thus unpolansed light can
be obtained by incoherently superposing any two orthogonally polarised beams
in equal proportions. If the two are not mixed in equal proportions, then a
partially polarised beam is produced the state of the polarised part being that
of the stronger component.

Conversely, suppose we wish to resolve a beam of partially polarised light
represented by the Poincaré vector p into a sum of two incoherent oppositely

1 U. Faxo: Phys. Rev. 93, 121 (1954).
. 2*
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polarised beams. This can be done in one and only one wayl. If P, and P, are
the Poincaré vectors (modulus unity) into which the vector p is to be resolved
then obviously P, P, and p must be coplanar. Consequently, if P, and P, are
oppositely directed, then all the three vectors must be parallel, which makes the
resolution unique (except when p =0). Also, if f1 and f2 are the fractions of the
total intensity of the two resolved beams, then »

o f1P +f2P2-—P “
R . 11’ f1 ”'fz PR - (10.3)
This together with f1+f2—1 gwes Lo . o T
h=tU4H), h=t0—h). . (10.4)

If p =0 then f;= fz— 3 and therefore completely unpolarised light can be resolved
into two equal beams of any pair of orthogonally polarised beams.

If the restriction that the two. components should be orthogonally polarised
is removed, then the resolution of an arbitrary state of polarisation (p) into an
incoherent sum of two completely polarised beams of states P, and P, is not
unique. In fact, the only condition is that P,, P, p should be coplanar? and p
should be contained in the angle between P, and P,. Thus, one has the interesting
result that, while two polarised beams combme to produce a partially polansed
beam whose state can be uniquely spec1f1ed the resolution of the latter beam ™
into two completely polansed beams is not at all unique (unless the state of one
of the component beams is given).

11. Partially coherent light beams. o) Interference of two partmlly coherent
beams®. The most general case of the interference of two completely polarised
beams of intensities I; and I, occurs when they are pariially coherent, i.e., when
there exists only a partial correlation between the fluctuations in the absolute
phases and intensities of the beams. The correlation may be expressed in terms
of a degree of colierence y and the effective phase advance ¢ of the first beam £,
over the second, or alternatively, in terms of two correlation parameters C’ and S'.
The former parameters are defined by

AVaile® =y [VLLle® 1)

while the latter are defined as

C'=2<Y4 1, cosé,)—Zy |/IlIacos¢5 }
S'=2{)4, 1,510 8,) = 29 VI, I,sin 8

where <& stands for the average value of a.

Here 4, and s, are the instantaneous intensities of the beams in the states of
polarisation P, and P, and §, is the instantaneous phase advance of the first
vibration over the second. The state of polarisation.of the vibration obtained
by their composition will obviously be fluctuating rapidly, giving us a new
picture of a partially polarised beam—into which we must briefly digress. .

1 G.N. RAMACEANDRAN: J.Madras Univ. B 22, 277 (1952). This result was first proved
by an analytical method by C.G. STOKES I'l\da,thematlca.l and Physical Papers, Cambridge
3, 233 (1901)].

2 TFor more details, see U. Faxo: J. Opt. Soc. Amer. 39, 8359 (1949). An exampie of such

a resolution occurs in Sect. 709.
3 S, PANCHARATNAM: Proc. Ind. Acad. Sci. A 44, 247, 398 (1956); A 45, 1 (1957).

(11.2)
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Let 6 be a vector (drawn from the centre of the Poincaré sphere) whose length
is equal to the instantaneous intensity of the resultant (partially polarised) beam,
and whose point of intersection with the Poincaré sphere defines the instantaneous
state of polarisation. Then the parameters Whlch are observable in usual expen-
ments are

I=Gy, Z=<(o. - _(11.3)

The relation that the present representation (I, X) of the state of a partially
polarised beam bears to the representation introduced previously, is made ob-
vious by writing down the expression for the intensity Ip transmitted by an-
analyser P which will be the average of the instantaneously transmitted intensity:

Ir=<}G+06-P)>=%I+X.P). T 119

If we write T=1Ip, then p is the Poincaré vector representing the state of polari-
sation of the beam, which had been introduced by a simpler procedure in Sect. 8
[see e.g. Eq. (8.2)]. Thus X is the three-component part of the Stokes vector,
which we shall for brevity refer to as the Stokes vector of the light beam. The
component of the Stokes vector parallel to any direction is given by a formula
of the type (9.11) since we have from (11.4) -

Ip— I p=2X.P. (11.5)

Returning to the problem of the addition of two completely polarised but
partially coherent beams, the resultant intensity may be obtained by averaging -
a formula of the type (4.4) for the momentary intensity, using (11.2):

I=L+I,42yp)LIcosccosd ' (11.6)
where 2¢ is the angle between F, and F,.

The intensity transmitted by an analyser P if introduced in the path of the
interfering beams is similarly obtained by averaging a formula of the type (4.20)
for the momentary intensity transmitted using (11.1); and hence Ip will be given
again by the expression (4.20) except that the third term will be multiplied by
the degree of coberence y. The Stokes vector of the resultant beam obtained by
directly compounding two partially coherent beams in states P, and P, may
now be determined by using (11.5) to find the x, y and z components of S—by
taking x, y and z to lie success1vely along these coordinate axes. Referring to
Fig. 11, we take the x-axis along the direction of (P, —P,)—which bisects extern-
‘ally thé angle between P, and P,; the y-axis is taken along the direction of the
internal bisector (P, + P,) a.nd the z-axis along the perpendlcula.r direction (P, X Py).

It ‘can then be shown that
 E=3 43543,  (117)

where El_IIP1 and Z,—=I,P, are the Stokes vectors of the two interfering
beams and X, is a vector arising because of the interference of the beams [cf.
e.g. Eq. (9.7)]; the vector X, is given by

(Z12):=0, - ' (@)
(Z19)y =2y VL1 T, cos 6 =C’, (b) (11.8)
(Z12):= 2;1_]/?12 sin§sinc = S’ sinc. (c)
On the basis of the above discussion it may be shown that just as a partially

polarised beam may be regarded as a mixture of completely polarised and un-
polarised light, so also two partially coherent (but completely polarised) beams
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may be pictured in the following way: an independent fraction ¢2 of the intensity
of one beam may be regarded as completely coherent with the whole of the
second beam having a phase advance § with respect to it.

The result in the limiting case when the two interfering beams become ortho-
gonally polarised may be deduced either as a special case of the problem discussed
above, or independently. Here B, and P, lie respectively along the positive and
negative directions of the x-axis, the arc P, Y P, being taken as defining the arc
of zero phase difference for the orthogonal states P, and P,. The resultant partially
polarised beam (I, X) is now given by

I=I+1,; Z,=15—1,

2y=27]/III2c056=C’; =2y Illzsinc3=5'.} (11.9)
A beam (I, X) in any state of polarisation can always be decomposed into
two completely polarised beams in any given state though the component beams
Z will in general be partiaily coherent; for example
even unpolarised light can be decomposed into
two non-orthogonal polarised beams which will
then be partially coherent with one another
(see Sect. 70). We shall not however quote the
results for the general problem which is the
converse of that discussed above.
B) Partial coherence and partial polarisation.
/r 1t is seen from (11.6) that the visibility of fringes
obtained by the interference of two completely
polarised beams is affected in a similar manner
o by two factors namely the degree of coherence
z "y and the factor cos ¢, which specifies the
B e iogonay difference in the states of polarisation. Never-
of the resultont partially polarised beam is . theless these two factors must be carefully
theSED o emeE, distingnished; for example two orthogonally
polarised beams can never give rise to interference
in intensity and yet may be completely coherent (combining to yield an elliptic
vibration). Similarly two beams may be in the same state of polarisation and
yet at the same time be completely incoherent. In general the beams can be
tested for partial coherence after transmissjon through an analyser which resolves
them into the same state. It is convenient to adjust the setting of the analyser '
so that the intensity of the transmitted beams are equal. The degree of coherence
is then given by the visibility of the fringes, V. The latter is defined by

Imax — Imin

V= Imax + Imin ’ (11.10)
and the relation y =V is readily obtained from Eq. (11.6) remembering that the
interfering beams are in the same state of polarisation (cosc=1). Here I,
and [;, correspond to the cases when the phase differences of the final beams
are respectively 0 and z#. Similarly by direct interference experiments, without
Tesolving the beam through an analyser, the factor ¢ cos ¢ may be determined,
being equal to the visibility of this system of fringes. Since y is known from the
previous experimeént, the non-orthogonality factor may be separated out. The
physical interpretation of the degree of coherence y is that an independent
fraction 92 of the intensity of one beam is completely coherent with the other
beam (having a phase advance of § over the other).
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As an-example of two partially coherent pencils we may mention the two
completely separate pencils emerging from a calcite rhomb when a partially
polarised pencil is incident on the first face. This example leads us to the relation
between partial polarisation and partial coherence. When a partially polarised
beam is resolved into.two orthogonally polarised beams, the component beams
can only be incompletely coherent. In particular the state of partial polarisation
of a beam could itself be specified by regarding it as the sum of two partially
coherent beams which are linearly polarised in two orthogonal states H and V.
This forms the basis of the conventional presentation of the Stokes parameters.
In fact the Stokes parameters of a beam with reference to axes on the wavefront
corresponding to H and V are then defined as the values taken by the quantities
on the right-hand side of Eq. (11.9). However in such a representation the in-
variant character (namely the state of partial polarisation) of the given beam
is not immediately evident since the degree of coherence of the component beams
itself varies with the orientation of the two orthogonal axes. For example, at
one extreme the given partially polarised beam can always be resolved into two
orthogonal states which are completely incoherent and at the other extreme, if
the orthogonal beams are chosen such that the component beams have equal
intensity, their degree of coherence will be a maximum, being equal to the degree
of polarisation of the beam. By picturing a partially polarised beam as one in
which the instantaneous state of polarisation fluctuates (as in Sect. 11«) the
Stokes vector may then be directly obtained using the Poincaré sphere without
recourse to the concepts of partial coherence. Alternatively the Stokes vector
may be introduced as in Sect. 9 where only the extreme concepts of coherence
and incoherence and of completely polarised and unpolarised light are used.

12. Propagation of light through an optical system. Changes in the state of
polarisation. a) Use of Stokes representation. Although Stokes parameters have
been introduced essentially to represent unpolarised or partially polarised light,
they may be used equally well for completely polarised light. In this case,

RP=M24C24 S2 (12.1)

so that the Stokes vector X, or its three components M; C, S can be used to re-
present both intensity and the state of polarisation. Consequently in this case,
all statements regarding the transformation of the Stokes vector will be equally
valid for the Poincaré vector, provided the medium is transparent.

The effect of passage through a finite thickness of a transparent birefringent
plate has been shown to be a rotation through an angle 4 about some axis OR
in the Poincaré space. The corresponding operator may be represented by a

matrix T R=TUTY . (12.2)
where T is the operator for the transformation of axes which brings OU to OR
and U is the operator for a rotation through an angle about 0 U.
Explicitly, U takes the form
1 0 0
0 cosd —sind (12.3a)
0 sind cosd
which for an infinitesimal rotation 44 takes the form

1 0 0
0 1 —dA4). (12.3b)
0 d4 1 : ‘
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The matrix of the operator in the case of dichroism is not so simple and is not
independent of the polarisation state of the incident beam. In fact the total
absorption also depends on the state of polarisation of the incident beam [see
Eq. (12.5) below].

When the medium exhibits both birefringence and dichroism, then the effect
of an infinitesimal thickness on the polarisation state may be expressed by a
product of two matrices, one representing the operation of linear birefringence
and the other the operation of linear dichroism, the product being independent
of the order when both are infinitesimal. It appears that, in the Poincaré re-
presentation, problems are best worked out by means of geometncal methods,
rather than by the use of matrices given here.

B) Mueller mairices. The matrices discussed above relate only to completely
polarised beams, and for coherent additions of such beams. When incoherent
mixtures of light beams are considered, then the resultant beam is partially
polarised, and in such cases, the Stokes parameters I, M, C, S should be used
to denote its intensity and state of polarisation. The effect of the passage of
light through a depolarising system (i.e., a system in which the components of
the emergent light are not perfectly coherent) may then be described by a 44
matrix IR having 16 elements. .If & is the column vector with components
I,M,C, S, then,

& =Mme. (12.4)

We shall call the matrix i the Mueller matrix, after Professor MUELLER! who
advocated the systematic use of these matrices, although the relation (12.4) had
been used earlier by other workers23,

The matrices could also be used even in the case when the system introduces
depolarisation. For example for the infinitesimal operation of dichroism the
Mueller matrix is given by

1—2Kdz —PdK —Qd4dK —RdK

- —PdK 1—2Kdz 0 0 (12.5)
| —0dK 0 1—2Kdz 0 '
—RdK 0 0 1—2Kdz

. where the notation of Sect. 7 is used, K representing the mean of the absorption
coefficients for the two crossed elliptic states.

The Mueller matrices have 16 coefficients; actually one more is necessary
to define the absolute phase. If there is no depolarisation, then J12=2M?2 -+ C2 - S2
and it can be shown that 9 identities occur between the Mueller coefficients, so
that 7 independent coefficients are required to describe the change in the state
of polarisation.

The Mueller matrices in the general form are useful in the study of the polansa—
tion and intensity of light scattering®.

13. Jones matrix method5. JonNgs has developed a diﬁ'erent matrix method
for studying the propagation of light through an optical system, of the type

1 H. MueLLER: J. Opt. Soc. Amer. 38, 661 (1948).

2 F. PerriN: J. Chem. Phys. 10, 415 (1942). — S. CHANDRASEKHAR: Radiative Transfer,
London 1950.

3 R.C. Jongs: J. Opt. Soc. Amer. 37, 107 (1947).

4 F. PERrIN: J. Chem. Phys. 10, 415 (1942).

5 R.C. JoxEs: J. Opt. Soc. Amer. 31, 488, 500 (1941).
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discussed in the previous section. The method is based on the idea that any
elliptic vibration can be represented as the resultant of a coherent addition of
two linear vibrations at right angles (e.g. OX and OY) with appropriate amplitudes
and phases. The elliptic vibrations can be then represented completely (amplitude,
phase and polarisation state) by the column vector?

B=(4) o

where A, and A, are the resolved components of the electric displacement vec-
tor D along OX and OY, and are in general complex numbers. The intensity is
I=|A;[2+|A,|? while the complex ratio 4,/A4, describes its polarisation state.
The azimuth A and the ellipticity w of the ellipse are related to 4, and 4, as

141 ana d=g, —¢&, where g and e, are the phases of 4,

follows: If tan o = 14|

- and 4, then

tan 21 = cos § tan 2«,
sin 2w = sin § sin 2¢«.

(13.2)

The effect of an optical component, e.g., a birefringent, absorbing or dichroic
plate, or a combination of such plates, would be to change both 4, and 4,, so
that the effect may be represented by a 22 matrix with complex elements

D' —MD. (13.3)

For a non-absorbing plate, there is no change in the intensity and the matrix M
is therefore unitary i.e., det M =1, which makes |D’|=|D|. Suppose that the
plate exhibits only linear birefringence (retardation plate) and the principal axes
are parallel to OX and OY. If ¢,, @, are the phase retardation for vibrations
parallel to OX and OY respectively and we set ¢ =% (¢, +@,) and y = 3 (g, — @),
then obviously M takes the form €’ G, where

e’ ¢ :
G=(0 e"'?)' , (13.4)

If we are only interested in the state of polarisation of the emergent beam, then
exp ¢ may be omitted.
" If the principal axes are inclined at angles § and g+ % to OX, then the

matrix is
—— , M) =5(B) G S(—B) , - (13.5)
where S(f) is the rotation matrix '
cosffi —sinf\
(sinﬂ cosﬂ) ) (13.6)

If the plate exhibits only circular birefringence (rotator), then the effect is
to rotate the plane of polarisation. If the rotation is p, and the mean absolute
phase retardation is @, then the matrix is simply €'? S(g) and the effect of the
lgl(a’ge on the state of polarisation of the light beam is completely represented by

0).

1 Jones has useéd the components of the electric vector E for this purpose. In anisotropic
media, it is the displacement vector D that should represent the light vibrations.
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It can be readily shown! that for light of a given wavelength, an optical
system containing any number of retardation plates and rotators is equivalent
to a system containing only two elements—one a retardation plate and the
other a rotator. This has already been shown from the Poincaré representation
in Sect. 5.

In fact, it follows from the group theory of three dimensional rotations that
any unitary 2 X 2 matrix with unit determinant may be associated with the rota-
tion of a sphere in a unique manner? Thus the Jones matrix method is identically
equivalent to the Poincaré sphere representation, as far as the polarlsatlon state
of a light beam is concerned.

Suppose the optical element is linearly dichroic, with its principalaes parallel
to OX and OY (partial polariser). Then, its matrix is e’? P where ~

. ,
P—(1 < p < <P, <1, .
(O pz)’ 0=p <1, 0=p, <1 . (13.7)

For a perfect polariser one of the $’s will be zero. The more general dichroic
element will be discussed in Sect. 14.

The matrix representing the combined effect of a succession of optical elements
would be the product of the matrices representing the effects of the individual
elements (taken in the proper sequence). Using these results several elegant equi-
valence theorems of the type given above have been derived by JONES (see
Sect. 74).

14, Experimental determination of the Jones matrix3. Explicitly written, the

Eq. {13.3) takes the form
(Ai) (ml m4) (Al) (14.1)
A‘é mg My A‘Z . )

where m,, m,, my, m, are complex numbers. The following is a procedure which
may be used to determine the real and imaginary parts of these four numbers.
It is assumed that the state of the light beam is completely reversed, if it traverses
the system in the reverse direction.

(i) Use incident light linearly polarised parallel to OX (i.e., 4, =0) and deter-
mine the state of polarisation of the emergent light by an elliptic analyser. This
gives the ratio 43/4; =¢, (say). Then

¢ = % i : (14.2)

(ii) Use incident light linearly polarised parallel to OY and determine the ratio

A3/A] =c, (say). Then
) =12 (14.3)

(iii) Reverse the system and repeat the procedure (i) with this. Let the ratio

be ¢;. Then :

Cg = % . ‘ ‘ ('144)

1 See H. Hurwiiz jr. and R.C. Jowes: J. Opt. Soc. Amer. 31, 493 (1941) for aproof by
the matrix method.

2 C. Eckart: Rev. Mod. Phys. 2, 305 (1930).

8 R.C. Joxgs: J. Opt. Soc. Amer. 37, 110 (1947).
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As a check, the procedure (ii) may be repeated in the reverse position giving '

Cyp=—2. (14.5)

g
This is not an independent determination, for
01 €y =CyCy. (14.6)

However, it provides two checks, namely for the real and imaginary parts of
Eq. (14.6).
The matrix M may then be written in the form

1 ¢ )
M =c< ) (14.7)

G GG
where ¢ is a complex number.
(1v) Determine the transmitted intensity for unpolarised light (7,,,,). This

is given by
Tunpol = %Z l’”ll2 ('148)
so that
9 __ 2 Tunpot
| = T e Faar 149)
. (v) Determine the absolute phase of the transmitted light. This serves to
determine the real and imaginary parts of ¢, and completes the determination.
It may be mentioned that each of the measurements, under (i), (ii) and (iii)
consists of two determinations, namely the orientation and ratio of the axes of
the ellipses or the real and imaginary parts of the ratio ¢, so that in fact the five
determinations give (3 X2 -+2) i.e., 8§ parameters.
Even if the principle of reciprocity does not hold for the system, all the
matrix elements can be determined by replacing procedure (iii) by the following:
(vi) Use incident light linearly polarised at 45° to OX, ie., 4,=4,, and
determine cg=4,/4;. Then

L .
= (14.10)
so that
__ 60
b= o (14.11)

As a check, a determination may be made with incident light linearly polarised
at —45° to OX, which gives

— 5 - S
- Cyp = —’—51 —y . (‘14.’12)
Then
G 0 =6 .
— = : 14.1
C2—Cg e} ( 3)

each being equal to c;.

15, Differential matrix operatorsl. In the previous section, we considered the
effect of optical elements of finite thickness. We may now define a differential
operator N, such that M is an integral of N:

N hm Mz,z' —1
vy 22—z

1 R.C. JonEs: J. Opt. Soc. Amer. 38, 671 (1948).

(15.1)
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Since M, , =M;/M, we have
Mo M,

N, = l,iglz 7z a1 (15.2)
or
N=-M p. (15.3)

Integrating this equation, one obtains the formal result
' M,=exp(N,). . (15.4)

It may be readily verified that the N matrices transform exactly like the M ma-
trices when the optical element is rotated. Thus, if N becomes N’ by a rotation

through an angle § then
N =S({@)NS(—p). (15.5)

The differential operators are very useful for discussing the case when the
medinm exhibits both general birefringence (linear as well as circular), as well
as general dichroism. Now, a general 22 matrix requires eight quantities
to specify it completely, namely the real and imaginary parts of its four elements.
Let us suppose therefore that a thin slice of the plate of thickmess 7(<&1) is
made up of 8 laminae, each of thickness %7, and each having a different property
as listed below. The differential matrices of the eight laminae are denoted by N,
and let @, = £N,. Then, we have

”’;’) = exp (0, 7). (15.6)

Thus, the matrix of the operator corresponding to the passage through all the
eight laminae is

Mk=exp(

. 8
M=MM,. . M=1+4+3 60,7+ 617 (15.7)
F=1
in the limit when 7—0,
8
M=14+>0,v=1-+Nt (say) (15.8)
1

where N is the differential matrix operator of the sandwich of eight plates. Thus,
‘ 8
N=3@6, (15.9)
B=1 .

The eight matrices, corresponding to the eight elementary operations may be
defined as shown in Table 1.

It is obvious that any 2 X2 matrix N whatsoever can be written in the form
(15.9) by choosing suitable values for the eight parameters %, %, gy, 45, 0, Po> Pas
and pu. Of these, the first two represent the changes in phase and amplitude of
the beam, while the other six denote the changes in the state of polarisation.

Although the six elementary operators of birefringence and dichroism, viz.,
O, to @, take a simple form in the 2 X2 matrix representation, their physical
content is best understood in terms of the Poincaré representation. Thus, it
appears as if an unusual type of resolution is involved in representing the linear
birefringence of a crystal plate with its principal axes kept at an arbitrary azimuth
o. If g is the birefringence, the N matrix is

N=(igcos2rx 1gsin2a ) (15.10)

tgsin2a —7gcos2a
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Table 1. The eight elemeniary @ matrices.

The parameter 7 is the propagation constant, or the phase retardation
per’ unit thickness, and is thus related to the index refraction # by
7n=2m nfi.

The parameter % is the amplitude absorption coefficient to the base ¢
per unit thickness, and is thus related to the extinction coefficient 2
by k=2m /.

The parameter g, is a measure of that part of the linear birefringence
which is parallel with the co-ordinate axes. It is equal to one-half of
the dlfference between the two principal propagation constants, i.e.,
g=7% (17 —1,) and is thus positive when the fast (smaller 1ndex)
axis is parallel with the » axis.

The parameter g5 is a measure of that part of the linear birefringence
which is parallel with the bisectors of the co-ordinate axes. It is
equal to one-half of the d1fference between the two principal pro-
pagation constants, i.e., g = F (45 —175) and is thus positive when
the fast axis bisects the positive x and ¥ axes.

The parameter p is a measure of the circular birefringence, and is
equal to the rotation (in the positive direction) of the plane of linearly
polarised light, in radians per unit thickness. It is equal to half of
the difference of propagation constants for right and left circularly
polarised lights, i.e. o= (g — ) and is positive for crystals which
are laevo-rotatory.

or=n(} °,

The parameter p, is a measure of that part of the linear dichroism
which is parallel with the co-ordinate axes. It is equal to one-half
- of the difference of the two principal absorption coefficients, i.e.
Po=7% (k — k) and is thus positive when the more highly transmit-
ting axis is pa.rallel with the » axis.

@7=P;; ((1) é)

The parameter p,; is a measure of that part of the linear dichroism
which is parallel with the bisectors of co-ordinate axes. It is equal
to one-half of the difference between the two principal absorption
coefficients, i.e. P35 =% (k45 —k,;) and is thus positive when the
more highly transmitting axis bisects the positive ¥ and y axes.

O=p (0 ;z)

The parameter g is a measure of the circular dichroism, and is equal
to half of the difference of the absorption coefficients for left and
right circularly polarised lights, i.e., g =% (kg — 4z). The parameter
is positive for crystals which are more transparent for right polarised
light.

which is to be compared with

Thus,

i i
6, + @4=( P8 o ) (15.11)
i85 —18
go=gcos2a, gz=gsin2« and g =|gf+ gi- (15.12)

In the Poincaré representation, the points representing azimuths 0 and 45° are
actually at right angles, so that the resolution given by (15.12) is very natural.
) The six elementary operators @; to @, can be divided into two groups, the

first three representing birefringence and the second three representing dichroism.
The following identification with the operators mentjoned in Sect. 7 is then

obvious: 8, @, O, — rotations dA, d 4, d4,, }

. (15.13)
0, 6, @, —~ displacements ds; ds, ds,.
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Thus, there is a one to one correspondence between the matrix method of Jones
and the Poincaré representation and the associated matrix method involving
Stokes parameters which was discussed in the first part of Sect. 12. However,
in both matrix methods, the formulae are simple only for elementary operations. -
The problem of the passage of light through a finite thickness of medium exhibit-
ing both birefringence and dichroism is best discussed by using the geometry
of the Poincaré sphere. This is done in the succeeding chapters of this article.

The Jones matrices are applicable only for completely polarised beams. Of
the eight coefficients which occur, one represents the absolute phase, leaving
seven to describe the change in state of polarisation. This is also the number
of independent coefficients in the Mueller matrices in the corresponding case.

16. Quantum mechanical description of polarisation!. The ‘““‘state’ of electro-~
magnetic radiation can be described in quantum mechanics by a wave function,
whose variables are the amplitudes of each of the basic states of a complete set.
For a particular frequency and direction of propagation, the complete set consists
of just two states of opposite polarisation. They are orthogonal, since light in -
one of the states (say P) is completely admitted by the analyser P while if the
beam is in the other state P,, then it is completely rejected by it. Any two
opposite states of polarisation can be taken as a basic set. We shall however
choose them to be states of linear polarisation parallel to OX and OY, and designate
the normalized wave function by ¢, ps. Then, a beam of completely polarised
radiation may be represented by the wave function:

y=4p+4:0, (16.1)

where A, and 4, are complex. If we set | 4,|2 and | 4,2 equal to the intensities
of the two components, then [p|? gives the intensity of the beam. JoNES’ re-
presentation is identical in content with this quantum mechanical picture. If

. y: | .
we represent the wave function y by the column vector ( Al)’ then the matrix
2

method of Sects. 13 and 14 can be carried over # fofo for the quantum mechanical
description.

Consider now the 2 X2 matrix
0i;=4;AF. (16.2)

This matrix also has four components, analogous to the four components of
A, and A4,, and they are the observables of the system. However, the absolute
phase is lost by the multiplication with complex conjugates, and only three of
them are independent, there being one linear relation between them, namely

Det QU =0. (16‘3)
The four Stokes parameters are just linear combinations of the four matrix ele-
ments ;2 In fact,

IT=01+ 02 M=013-=022, C=012F00, S=1%(021— 013)- (16.4)

1 For a detailed account of quantum mechanical theory of elliptically polarised photons,
see G. Araxi: Progr. Theor. Phys. 1, 125 (1946); 2, 1 (1947); Phys. Rev. 74, 472 (1948) and
the references given therein. . ’

2 D.L. FaLgorFF and J.E. McDonaLp: J. Opt. Soc. Amer. 41, 861 (1951). The applica-
tion of Stokes parameters for the treatment of polarisation in quantum mechanics is discussed
by U. Faxo: Phys. Rev. 93, 121 (1954). .
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This may be proved as follows. Suppose the state of polarisation of the beam
is an ellipse of amplitude 4, with azimuth 1 and ellipticity w. Then

Ay = A (cosw cos A — isinewsin 1), 16
Ay =A (coswsin A —¢sinw cos ). (16:5)
This gives
01+ gee =42+ {42 =42=1,
. Q12— Q22 = | 41| — [ 4,]* = A% cos 2w cos 24 = M, (16.6)
012+ s =4, AF + A, AT = A%cos2wsin24 =C, )
1 (0a1 — 012) =1 (Ap AF — 4, Af) = A%sin2w = S.
For a completely polarised beam, the condition Det g;; =0 gives
12 = M2 4 C2 52, (16.7) .

The additivity law of Stokes parameters for incoherent addition of light beams
follows from the result that the g-matrices are additive for incoherent super-
position of states. Suppose we have N completely polarised beams described
by the wave-functions

YP=detde (=1t N). (16.8)
Then, for incoherent superposition, we have
KeFeEy =cFcf b,4. (16.9)
Hence . .
oij> = <¢§9 ct C}‘S*> = ; cier* =a§19%i . (16.10)
By a direct application of the Schwarz inequality, it follows that
Det<g;;> =0 (16.11)

so that for the resultant beam ‘
RzM4C 4 S, (16.12)

a result which we have already seen. The equality holds in (16.11) and (16.12)
only when all the beams are in the same state; when it is not so, the resultant
beam is only partially polarised.

The generalisation of the additivity law (16.10) to the incoherent superposition
of partially polarised beams is obvious, and thus, STOKES’ theorem (Sect. 9)
follows also from the quantum mechanical formulation.

The intensity formula (8.4), namely ' _
~ =11 +P-A) -

may also be derived from the quantum mechanical representation®. This how-
ever represents only the mean fraction of the photons in the beam accepted by
the analyser 4. A discussion of the fluctuations in the number of photons passed
by the analyser is more complicated?2. ’

17. Nature of unpolarised and partially polarised light. It was mentioned earlier
that natural or completely unpolarised light may be obtained by incoherently

1 G. Araxi: Phys. Rev. 74, 472 (1948). — U. Fano: J. Opt. Soc. Amer. 39, 859 (1949).
See also R.H. Daritz: Proc. Phys. Soc. Lond. 65, 175 (1952).
2 U.Fawo: J. Opt. Soc. Amer. 41, 58 (1951). See also the references given therein.
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superposing equal proportions of oppositely polarised radiation. Any pair of
oppositely polarised beams may be used and they all lead to the same state,
namely unpolarised light. It follows from this that any analyser transmits exactly
half the intensity of a beam of unpolarised light.

Although the above picture of unpolarised light is perfectly consistent and
in conformity with quantum mechanics, it may be worthwhile to consider some
of the earlier ideas. BREWSTER supposed that natural light is made up of two
plane polarised waves, with their vibration directions at right angles and being
propagated independently. FRESNEL put forward the hypothesis that natural light
consists of plane polarised light in which the azimuth of polarisation varied rapidly
and assumed all possible values. It is obvious that the point representing its
polarisation state would then rapidly move along the equator of the Poincaré
sphere. The resulting state would be represented by the centre, asis to be expected.
A slightly better picture would be to assume that all directions of linear vibration
are taken up at random, but with equal probability. In any case, as has been
discussed in Sect. 14, provided the variations occur in a time much less than the
.period of observation, the beam would exhibit all the properties of natural light.

An attempt was made by LaANGSDORF and DU BRIDGE? to verify the Fresnel-
hypothesis. They obtained interference fringes with unpolarised light using a
biprism, and then introduced in the paths of the two beams optically active media
which rotate the plane of polarisation by +45° and —45° respectively. The
fringes then completely vanished and the field of view had only uniform illumi-
nation?, and continued to remain so even if viewed through a linear analyser
at any azimuth. The latter observation can be explained because in both beams
only the components with vibrations paralle]l to the analyser would be transmitted
by the analyser. The vibration directions of these were however, originally at
right angles, so that the phase difference between them will vary at random and
no interference fringes would be formed. The same result also follows from
FRESNEL’S picture, as was shown by LaNgsporF and Du BrIDGE.

On the other hand, if we resolve the unpolarised beam into its two opposite
circularly polarised components L and R then the optically active media in the
two beams would not change the state of polarisation, but would introduce a

relative phase difference of :]:—— according-as it is L or R. Consequently, the

. fringe system would be present 1f observed through a. circular analyser L or R,
but would be displaced by L % fringe from the appearance when the two hqmd
cells were not there. This is ac‘tua.]ly what was observed.

These beautiful experiments clearly show that the various alternative methods
of decomposing an unpolarised light beam are all valid. However, it must be
mentioned that all possible orientations of elliptic vibrations of definite ellipticity
(b/a) would not lead to unpolarised light, but only to partially (circularly) polarised -
light. Only if both senses of rotation are equally probable would the resultant
behave as unpolarised light. Similarly, if all possible (elliptical) states of polari-
sation are occupied with equal probability, i.e., the representative points on the
Poincaré sphere are uniformly distributed over its surface area, then again the
resultant is unpolarised light.

1 A.LangsDorrF and L. A. DU Bringe: J. Opt. Soc. Amer. 24, 1 (1934).

2 A similar observation was made as early as 1864 by STEFAN who obtained Talbot bands
with a plate of gunartz of thickness 5 mm cut perpendicular to the optic axis and found
the bands to vanish in the orange region, for which the optical rotation was 90°. See R.W.
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Thus, an unpolarised light beam occurs in what might be called a “mixed”
state in the quantum mechanical sense. Consequently, one would obtain uniform
results for experiments made on such a beam only if the period of observation
is large compared with the time over which coherence exists. It is known that
in any atomic system, the light emitted as a result of a transition between two
precisely defined quantum states must be completely polarised. Consequently,
if a system emits unpolarised, or partially polarised light, then this must be at-
tributed to (a) the fact that a number of closely spaced levels are involved in
the emission, and (b) the fact that the individual emitters may be oriented dif-
ferently. If the gas is subjected to a strong magnetic field, then the different
components can be separated spectroscopically and then each is found to be
completely polarised. In such a case, each component corresponds to a transition
between two precisely defined states of the atom.

Thus, complete polarisation of the emitted light is observed only if the states
of the emitter are precisely defined both before and after emission. If either is
incompletely defined, then the light emitted is also incompletely polarised!. In
fact, if a beam of light is precisely monochromatic, then it must also be completely
polarised. Even if it consists of several components derived from different sources,
and not expected to be connected with one another, the phase relationships
between the components beams remain the same for all time if the frequencies
are identically equal. Consequently, the resultant must have a unique state of
polarisation2. For the same reason, a beam of unpolarised monochromatic light
would appear to be elliptically polarised if it is observed over a period of time
small compared to the reciprocal of the frequency width Av of the line. It is
immaterial if the small line breadth is due to the characteristics of the source,
or if it is obtained by means of a narrow band filter. The state of polarisation
would however change with time and if one makes measurements over time
intervals large compared to 1/4w», then all possible states would be occupied, and
only average values would be observed. It is interesting to note that not only the
state of polarisation, but the intensity also should fluctuate with time. A detailed
discussion of the statistical properties of unpolarised light is given by Hurwirz?,
based on the conventional decomposition of elliptically polarised light into two
linear states 4t right angles, viz., OX and OY. They however follow much more
simply from the Poincaré representation, and two of the interesting results are
derived below. :

As mentioned earlier, unpolarised light is represented by a point at the centre
of the Poincaré sphere, and this would be true on the average if all peints on the
Poincaré sphere are occupied with equal probability. - Assuming this to be the
case then.it is obvious that the quantity sin? e is uniformly distributed between 0
and 1. Now,

sin 2w =2 sinw cos w = 2a b/(a? - b?) (17.1)

which last function has been shown by HurwiTz to be uniformly distributed
between 0 and 1. So also, if we consider ellipses of varying ellipticity, then the
median value of w is that value which divides the area of the sphere into two
equal halves, i.e., sin 2w =%, which gives 2w =30° or & =15°. The correspond-
ing axial ratio of the ellipse is 0.268, a rather surprising result, when not pictured
in terms of the Poincaré sphere.

1 U.Faxo: J. Opt. Soc. Amer. 39, 859 (1949).
2 H. Hurwirrz jr.: J. Opt. Soc. Amer. 35, 525 (1945).
Handbuch der Physik, Bd. XXV/1.

w
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18. Production of polarised light!, «) Production of plane polarised light. Com-
pletely polarised light may be obtained from unpolarised light or partially polari-
sed light by using one of three methods: (a) passing it through a strongly dichroic
crystal, (b) removing by suitable means one of the two polarised components
into which a beam of light is split up in a birefringent medium, and (c) by re-
flection from a surface at a suitable angle or by refraction at oblique incidence
through a pile of plates.

(@) In a dichroic crystal, two orthogonal states of linear polarisation are
absorbed differently, sometimes with very different absorption coefficients. Con-
sequently, one component may be reduced only by a small fraction. Hor jnstance
a crystal of tourmaline, cut parallel to the optic axis and of thickness one milli-
meter, transmits very little of the component with its vibration direction parallel”
to the optic axis. HERAPATHZ found that crystals of iodoquinine sulphate was
even more strongly dichroic, a thickness of 0.1 mm being sufficient to absorb
almost completely one of the components, but this did not receive any practical
application until recently. It was only some twenty years ago that large crystals
of herapathite could be grown3,

However, it is possible to obtain an oriented deposit of colloidal herapathite
crystals in a transparent base of nitrocellulose or plastic and this works very
well as a polariser. Other materials, even more dichroic than herapathite have
been prepared, and in this way polarisers useful for various spectral ranges,
even going up to 2.8 & in the infrared have been prepared® 5. We shall refer
to such polarising filters as polaroids though this is a commercial name given
to one particular brand.

b) The difference in the refractive indices of the two polarised components
in an anisotropic medium may be used to obtain total reflection of the component
with the lower index. This is used in the well-known Nicol prism and similar
polarisers like the Glan-Thomson prism. Sometimes, the two components are
separated by refraction, as in the so-called double image prisms.

(c) Complete polarisation can be obtained by reflection at the Brewsterian
angle from an isotropic material®. The corresponding transmitted beam must
also be completely polarised. This method is useful in the infrared region. Using
selenium, which has a high refractive index (about 2.9), a degree of polarisation
of nearly 99% is possible for an angular range of incidence 59 to 77°7.

Another method is to use a pile of plates, so that the degree of polarisation
of the transmitted beam increases as it passes through successive plates. Usually
four. or five plates are sufficient. This method has been used in recent years
for obtaining polarised infrared rays®, using selenium, tellurium and silver

1 A good review of the earlier work related to the production and measurements of polarised
light is available in the articles of Szivessy [1] and details of apparatus are given in this
article and in that by Scrurz [9]. Only the principles are discussed here. A more recent
account is by W, Herier in the chapter on Polarimetry in ““Physical Methods of Organic
Chemistry’. Ed. A. WEISSBERGER. New York 1949.

2 'W.B. HerapatH: Phil. Mag. 3, 161 (1852).

3 F. BERNAUER: Fortschr. Min. 19, 22 (1935).

4 E.H.LaND: J. Opt. Soc. Amer. 41, 957 {1951).

5 The characteristics of the optimum polariser is discussed by C.D.Wsst and R.C.
Jonzs: J. Opt. Soc. Amer. 41, 976, 982 (1951). — The spectral properties of high extinction
polarisers are discussed by L. BAXTER, A.S.Maxas and W.A. ScHURCLIFF: J. Opt. Soc.
Amer. 46, 229 (1956).

§ W. KonNig: Handbuch der Physik, Vol. 20, p. 141. 1928.

? A.H. PFuND: Astrophys. J. 24, 19 (1906). — J. Opt. Soc. Amer. 37, 558 (1947).

8 A.Eiirort, E. J. AMBROSE and R. TemprLE: J. Opt. Soc. Amer. 38, 212 {1948).
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chloride!. With eight thin films of selemum each 3 p thick, a degree of polarisation
of 99.8% is obtained.

In a polarcid, the transmitted beam suffers no lateral deviation, but this
difficulty is present in most of the other polarising devices. A method of avoiding
this with the pile of plates, by using two sets of plates producing opposite dis-
placements, has been suggested2

B) Production of elliptically polarised light. It is possible to produce elliptically
polarised light of any desired azimuth, axial ratio and sense from a linearly
polarised beam by the use of a linearly birefringent plate. With a given azimuth
of vibration of the plane polarised beam N (Fig. 12), any state of polarisation P
may be obtained, provided a suitable thickness of the birefringént plate is avail-

able. The orientation &, -+ —721 of the slow and fast axes of the plate with reference

to that of the linear polariser and the required
phase retardation ¢ may both be determined
from the construction shown in Fig.12. The
former are given by the longitudes 2«, 2a +7
of the points where the great circle bisecting the
arc PN cuts the equator. If 2w, 24" are the
latitude and longitude of P with respect to

4
N, then, ~—Za—f
1—cos2wcos24” Fig. 12. Principle of the elliptic polariser.
tan 2a = W 5 ('18'1) A linear vibration N is brought to the elliptic
@ sin state by the action of a plate of retardation
. . . . & whose slow axis is E.
sin & = sin 2e/sin 2«.. {18.2)

With a given retardation plate, if the azimuth of both the polariser (N) and
plate (E) can be arbitrarily varied, then a wide range of ellipticity can be obtained.
However, there is an upper limit to the axial ratio 3/a, ie., of 2 which can be

obtained, namely |2w|=|¢|, which leads to '%I = tan —;— This may be readily

proved from the construction in Fig. 12 by allowing E to vary, keeping N fixed.
Thus all possible states of polarisation can be obtained with a single birefringent
plate and incident linearly polarised light only if the relative retardation is /2,
ie., it is a quarter wave plate.

If a quarter wave plate is used, then £=m=/2, so that we have from (18.2)
sin 2w =sin 2« and from (18.1) 2w =-424". Thus the fast or slow axis of the
quarter wave plate must be parallel to the major axis of the ellipse and correspond-
ingly the polariser must be set at an angle A'=-4w to the fast axis. This is also
clear from Fig. 12. _

Owing to the dispersion of refractive indices, the phase retardation varies
with wavelength and the settings calculated from (18.1) and (18.2) hold good
only for a definite wavelength. In particular, a quarter wave plate prepared
for one wavelength is not useful for other wavelengths. An achromatic quarter
wave plate, whose phase retardation is a constant over the visible region may
however be obtained by combining three plates of micas3.

1 A review of infrared polarisers is given in Cahiers de Phys. 38, 26. The theory of “pile’”
polariser, including multiple reflections is discussed by G.K.T.ConN and G.K.EatoN:
J. Opt. Soc. Amer. 44, 546, 553 (1954).

2 A.S.Maxas and W.A. SCEURCLIFF: J. Opt. Soc. Amer. 45, 998 (1955).

3 The design of this, as well as of an achromatic circular polariser, was obtained employ-
ing the Poincaré representation, by S. PANCHARATNAM: Proc. Ind. Acad. Sci. A 41, 130, 137
(1955). See also G. DEsTRIAU and J. ProuTEAU: J. Phys. Radium 10, 53 (1949).

3*
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The retardation between two perpendicular components could be produced
not only by a birefringent plate, but also by total internal reflection. In
the Fresnel rhomb two successive internal reflections at the appropriate angle
(calculated from the refractive index) are used to produce a total retardation of
7/2 so that system acts like a A/4 plate., The advantage of the Fresnel rhomb is
that it is practically achromatic. However it displaces the incident beam, though
- arrangements have been suggested to get over thls deﬁc1ency by employing more
than two reflections. Vo :

19. Measurement of elhptxcally polansed hght The meaéﬁrement of elhptlcally
polarised light reqmres the determination of three quantities, namely the orien-
tation of the major axis, the axial ratio and the sense. These are given respec-
tively by the longitude (24), the latitude (|2w]) and the SIgn (k) of the latitude
of the representative point on the Poincaré sphere.

The pnnc1p1e of determining these quantities is in essence the reverse of what
was discussed in the last section: The elliptically polarised light is converted
into linearly polarised light by a retardation plate set at the proper azimuth,
and the orientation of the resultant plane vibration is determined by means of
a plane analyser. In practice, the azimuths of both the retardation plate and
analyser are adjusted until complete extinction is obtained. Then the azimuth
and axial ratio of the elliptic vibration may be obtained by inverting Egs. (18.1)
and (18.2). This method, in which a retardation plate with arbitrary phase

retardation is used, is originally due to MACCULLAGH? and STOKEs? and it is™.

discussed in Sect. 24. It is obvious that if ¢ is the phase retardation of the plate,
then ellipses with axial ratio |b/e|= tan g/2 cannot be measured. On the other
hand, all states of polarisation can be measured by means of a single retardation
plate if it is a quarter wave plate. The use of a quarter wave plate is ongma.]ly
due to SENARMONT® and this method is usually called after him. A defect in
methods requiring the use of quarter wave plates is that such a plate will not
have a relative phase retardation of /2 for all wavelengths: '

The analysis of elliptically polarised light is of interest in two types of ap-
plications: (a) determination of small relative retardations introduced by doubly
refracting media (having natural birefringence), birefringence produced by stress,
or flow birefringence, (b) measurement of the parameters involved in the reflection
of light from surfaces. According to the particular application, simplifications
in the method as well as special techniques of high accuracy have been evolved.

"Some of these will be d1scussed below, particularly with respect to the general
principles involved 4.

All the methods are based essentially on the intensity formulae (2.4) to (2.6),
namely that the fraction (¢,) of the intensity of light of polarisation P transmitted
by an analyser 4 is

ty=2(1-+cos PA) =cos?: PA =sin?} PA,. (19.1)

This may be directly used to determine the azimuth 1 of the ellipse. As the orien-
tation of the analyser is varied, 4 travels along the equator, the arc P4 varies

1 7. MacCurracx: Collected works, pp. 138, 230. Dublin and London 1880.

2 C.G. StokEs: Mathematical and Physical Papers, Vol. 3, p. 197. Cambridge 1901.

3 H. DE S&NarMoNT: Ann. Chim. Phys. Paris 73, 337 (1840).

4 Two excellent review articles have appeared recently by H.G. JERRARD: J. Opt. Soc.
Amer. 38, 35 (1948) and-by M. Ricaartz and H.Y. Hsu: J. Opt. Soc. Amer. 39, 136 (1949).
They contain a survey of all the methods so far proposed, with full details of theory and prac-
tice. An earlier descriptive article is by G. Szivessy: Handbuch der Physik, Vol. 19, p. 926.
1928,

}A



Sect. 20. S Determination of azimuth.- 37

and is obviously largest when 4 lies in the same meridian as P. The point Aa
is then nearest to P, and the minimum intensity transmitted is simply sin® o
If we denote by § the azimuth of the analyser and by B, the setting for minimum
mten51ty, then clearly,

Z"::Bmm”‘%' - ‘ ”.(19-2)

20. Determination of azimuth. In practice, it is difficult to judge the setting
for minimum intensity accurately, and comsequently what are known as half-
shade devices are used. In these, the field of view is divided into two parts, the
intensities of which will vary differently and the correct setting is one in which ™
both are equally bright. The optimum intensity of the field of view at equality
varies with the observer, and it is therefore desirable that this should be capable
of adjustment. So also, the difference in intensity between the two halves should~ .
rapidly increase with a slight missetting of the analyser. If J' and J’ are the
intensities in the two halves for a missetting specified by the parameter 48,
then the sensitivity s of the device may be defined as follows:

I_ cld 1 .
g—J% =+ s4p. (20.1)
For small values of A8, th.ls g1ves
- UG T (20.3)

Obv10usly, s should be large for high accuracy. The three types of half-shades
commonly used are discussed below!. In all the three cases, if the devices are
aused for the direct determination of the azimuth, the sensitivity decreases with
increasing angle of ellipticity. This defect can be removed by arrangements
described in Sect. 21. 2

o) Double field analyser. Two linéar analysers are used in the two halves of
the field of view, the azimuth of the two being rotated with respect to each other
by a small angle . The arrangement is originally due to JELLETT? but several
improvements have been made3. It consists of a Glan-Thomson prism from
which a wedge-shaped piece has been removed and then cemented together.
. When the double field analyser is rotated, the intensities in the two halves will
be equal when the major or minor axis of the ellipse is parallel to the internal
bisector of the angle between the vibration directions of the two analysers. Of
these, the latter is the more sensitive position, as the intensity will be less. The
setting is shown on the Poincaré sphiere in Fig. 13 and the condition for equality

of intensity is A,, P —A,, P which gives

'\ sin?3 4, P =sin*3 4, P. (20.3)
If § is thé azimuth of the internal bisector (4 in Fig. 13) then
r=p—= _ (20.4)

independent of the ellipticity.

1 Experimental details and a fuller account will be found in the articles by O. ScHON-
ROCK, GEIGER-ScHEEL: Handbuch der Physik, Vol. 19, p. 749, 1928; Scrurz: Handbuch
der Experimentalphysik, Vol. 18, p. 420, 1928; W. HELLER, in Physical Methods of Organic
Chemistry, Ed. A. WEISSBERGER, Vol. 1, Part ITT, p. 1531. 1949.

2 J.H. JeirETT: Rep. Brit. Assoc. 30, 13 (1860).

8 A. Cornu: Bull. Soc. Chim. 14, 140 (1870). — ©. ScuSNRrock: Handbuch der Physik,
Vol. 19, p. 750. 1928.
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The half-shade angle is not variable in the Jellett prism, but is adjustable in
the arrangement due to LippIcH!. In this, a smaller Nicol prism is put in front
of the large analysing prism, with its azimuth at an angle 5 to the analyser.
While % can be varied in this way, the transmissions of the two halves are different,
the ratio of the two being cos?#. If the incident light is linearly polarised, then
its azimuth can be accurately determined with respect to a standard orientation.
If % is small, the azimuth 1 of the linear vibration is given by (20.4). If % is not
small, it can be shown that ;

r=p— T : (20.5)

where .
tano = % tany. (20.6)

There is only a constant difference (x— &%) from equation (20.4), which does
not matter. However, this is not so for a general elliptic vibration, since the
condition for equality of intensity is

mz%-A’;} =sin? % 4,, P cos? 7.  0.7)

If P is not on the equator, the difference of the

solution for 4 from Eq. (20.4) is not the same for

all states, but depends on the ellipticity, and soa
. small systematic error is introduced.

In both arrangements, the sensitivity de-
creases with increasing angle of ellipticity.

B) Rotating biplate?. This consists of two thin
plates of quartz (thickness about 0.05 mm) cut
perpendicular to the optic axis, one dextro- and
the other laevo-rotatory, and is known as a

Fig. 13, Principle of the double fiqa . Piquartz” or Nakamura plate. Each covers
analyser. (Stereographic projection.) half the field of view and the arrangement is
put before the analyser. If %# is the rotation
of each, then one half is transparent to linear vibrations making an angle
— &7 with the plane of the linear analyser while the other half is transparent
for linear vibrations at azimuth +%7. The arrangement is therefore equi-
- valent to a Jellet prism of angle . The intensities of the two halves will
be equal and darkest only if the setting of the analyser is at 7/2 to the azimuth
of the major axis of the incident ellipse. The Nakamura biplate is preferable to
some other arrangements in which a plate of optically active material covers
only one-half of the field of view. Because of the asymmetry, the loss of light
~.due to reflection and other causes will be different in the two halves, and so
precise measurements are not possible with the latter type.

A combination of two half wave plates, with their axes inclined at an angle
%7 can be seen to be equivalent to an optically active plate producing a rotation 7.
In Fig. 14, the effect of the two half wave plates E, F, and E, F, is to bring the
point B, to P, and then to P,, the movement from P0 to P, being equivalent to
a rotation about L R through an angle 5. Such a combination may therefore be
used instead of the quartz plate in each half of the Nakamura biplate?.

. 1 F. Lyprice: Wien. Ber. 91, 1059 (1885).

2 8. Naxamora: Zbl. Min. 267 (1905). The Nakamura half shade has been used to deter-
mine the principal directions in a doubly refracting medium of small phase difference: H.G.
JerrARD: J. Opt. Soc. Amer. 42, 259 (1956).

3 M. RicearTz and H. Hsu: J. Opt. Soc. Amer. 39, 136 (1949).
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y) Doubly refracting half shade. The simplest form of this, originally due to
LavreNT! and CHAUVIN? consists of a half wave plate kept in front of the analyser
covering half the field of view, with one of its vibration directions at an angle
# 77 to that of the analyser. The portion covered by the mica has its maximnm
transmission for linear vibrations at an azimuth # with respect to the analyser
vibration. The arrangement is therefore equivalent to a Jellet prism. The half-
shade match is achieved when the vibration directions of the half-wave plate
are parallel to the axes of the ellipse. By varying #, the sensitivity may be altered;
but in common with the other two types, the sensitivity of this device also de-~
creases with increasing ellipticity. Further, the device cannot be used for dif-
ferent wavelengths, as the retardation of the plate can be made exactly equal
to a half-wave only for a definite wavelength.
A very thin sheet of mica embedded in
Canada balsam and covering half the field of view
is a very useful half-shade for measuring the
azimuth of linearly polarised light, obtained for
instance in the Stokes-MacCullagh method after
passage through the retardation plate. This is
known as a Brace half-shade and is widely used
in the measurement of the elements of elliptically
polarised light. Its principle is described in the
next section. A symmetric modification of this
is a biplate composed of two equally thin bire- £
fringent plates with their fast directions at a 7
small angle to each other3. Another modification  rig 14 Two halt-wave plates with their axes
of the birefringent half shade consists of two [inciatdnare toest o oarvasee o o
equally thin birefringent.plates (usually of mica) (Stereographic projection.)
with their fast and slow directions interchanged.
When such a plate is placed in front of a linear analyser the system will show
an equality in the two halves only when linearly polarised light is incident on it.
This system is found to be of great use in the analysis of elliptically polarised
light (see Sects. 21, 23).

21. Determination of ellipticity: Direct methods, The methods which have
been proposed for the determination of ellipticity generally require a knowledge
of the azimuth, although in some methods both are determined by suitable tech-
niques. The main application of the measurement of ellipticity is for determin-
ing the phase retardation introduced by a birefringent medium. In such a case,
the principal directions of birefringence are known, and it is the phase difference
between the two waves which must be determined. Instruments designed for
this purpose are known as compensators. By having auxiliary devices to deter-
mine the azimuth of the ellipse, these can also be used to determine the ellipticity
of a polarised beam. In this section also, we shall only discuss the broad principles
and give only one or two examples. A complete review is available in the
publications mentioned in Sect. 20.

«) Sénarmont and Stokes-MacCullagh methods. If a quarter wave plate be
set with its axes parallel to the principal axes of an elliptic vibration, the emergent
vibration will be linearly polarised at an azimuth « with respect to the slow axis,
where « determines the ellipticity of the incident vibration, i.e., tan « is the ratio

* L. LavreNT: C. R. Acad. Sci., Paris 86, 662 (1878). — J. de Phys. 3, 183 (1874).
2 M. CmauvIN: Ann. de Toulouse 3, 30 (1889).
3 G. Szrvessy and W. HERzoG: Z. Instrumentenkde. 58, 229, 345 (1938).
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of the two principal axes of the incident ellipse parallel to the slow and fast axes
of the retardation plate (taken with a negative sign if the incident light is right-
elliptic). This is the principle of the original Sénarmont method, in which the
azimuth of elliptic vibration may be first determined by ﬁndmg the setting of
a linear analyser at which the intensity transmitted is a minimum,

As has been previously mentioned, the azimuth cannot be determined accu-
rately in this manner when the ellipticity is not small. But if the principal axes
of the 4/4 plate are not exactly coincident with those of the incident elliptic
vibration, the emergent vibration not being linearly polarised eannot be completely
extinguished at any setting of the linear analyser placed after the retardation

plate. ‘Hence the deficiency of the simple method
can to a large extent be over-come by a method
of successive approxnnatlons due to STOKES!
" and MacCuriaGu?, which has the added ad-
vantage that it can be used even when the re-
tardation of the plate is different from /2.
The procedure is to find by trial and error
that particular setting of the retardation plate
at which the emergent light can be completely
extinguished at some setting of a linear amnaly-
ser. The azimuths of the principal axes of the
retardation plate are noted as also the orienta-. .
. tion « with respect to these principal axes of a
et stage. f}gf e o  direction crossed with resplgct tg the linear
vibration A, on the equator by a suitdbly  gpayeer,  If the retardation of the plate is

oriented retardation plate whose siow and iy -
fast axes are E and F, end whose effect is 1o exactly /2 the constants of the incident elliptic
dlameter EF. A’s_s;mmetrical. setting with  vibration are immeédiately obtained. When the
ot wotation s about 7 brings 7, Tetardation of the plate is g(4=7/2) the re-
to the equator at 45. quired setting of the plate is explained in
Fig. 15 using the Poincaré sphere. In the setting
illustrated, the major axis M of the elliptic vibration will not coincide with the

slow axis E of the retardation plate but will be inclined to it at an angle y (arc

EM = =2y). Since the analyser setting 4 is adjusted to cross out the emergmg

linearly pola.nsed state, the latter coincides with 4,and therefore £ P, By=E i A, =2
: From the spherical triangle B, ME :

sin 2w =sin2asin ¢, (21.4)

tan 2y — tanacos¢. (21.2)

Hence the azimuth y and the ellipticity w may be calculated if « is measured,
provided, ¢is known. Howeéver even a knowledge of the retardation is unnecessary
if by the method of successive approximations another setting of the retardation
plate and analyser at which no light emerges is obtained. This is clearly a sym-
metrical setting (see Fig. 15), the fast axis F’ of the retardation plate being such

that 7'M —EM =2y while the anticlockwise rotation & about F* brings P, to

A,, where F' A =2a«. The bisector of the angle between the slow axis at first
setting and the fast axis at the second setting determines the azimuth of the major
axis of the incident elliptic vibration. Having thus determined y, the ellipticity

1 C.G. Stokes: Mathematical and Physical Papers, Vol. 3, p. 197. Cambridge 1901.
2 J.MacCurragH: Collected Works, pp. 138, 230. Dublin and London 1880.
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is obtained from the spherical triangle P ME as ,
| CoS 20 = Cos 2 sec2y. . . (21.3)
[It may be noted that the unknown retardatlon ¢ of the plate may also be now

determined from (21.2) —a principle used in some compensators—see e.g. Sect. 23.].

Though the oldest method, we have referred to this in some detail not only
because of its great simplicity but also as most other methods are only minor
modifications attempting to improve its accuracy. The following drawbacks
in this method may be noted. The Sénarmont method has the apparent advantage

that there are two independent operations (namely of determining the azimuth-.

and then the ellipticity) but is inaccurate in its elementary form for reasons
mentioned. The Stokes-MacCullagh method, though more accurate, requires a

procedure of successive approximations. Further in neither of the methods is-

the half-shade principle incorporated. We shall discuss three modifications which

have been suggested for incor- ¢ 8 4

porating the half-shade principle ] my 4

in the adjustments. — ’ ‘
B) The Tool half-shade method. » 4 4

TooL has devised an elegant half- ___

shade method! making use of a

Jellet prism to which is attached ' 84, | B,

a Brace elliptic half-shade. The — ) /s

pnnc1pa1 planes of the Brace -

late are at -~ — to the internal  Fie. 16. Tool elliptic analyser. 4 = Jellett double prism, B = Brace
P at € :‘: half-shade, C = Compensator plate, 4,, 4,=Two h’alves of

bisector of the a.ngle between the Jeltett prism.
vibration directions of the analy-
ser, and the plate is kept so as to cover one-half of each half of the analyser.
The arrangement is shown schematically in Fig. 16.
The setting'for-equality of intensity in all the four guadrants is obtained by

successive approximations. The compensator and the combined analyser half-
shade system are first rotated together to obtain a match for the birefringent
half-shade. With the compensator fixed, the analyser system (with the attached
Brace-plate) is rotated for a match of the two parts of the Jellet prism, which
now affects the match already obtained for the birefringent half-shade. The two
procedures are then repeated successively. Fig. 17a explains the final setting
on the Poincaré sphere. In this figure E, F, Ep, Iy represent respectively the
‘principal axes of the compensator and the Brace birefringent half-shade; P,
a-nd P, are the states incident on the upper and lower halves of the Jellet prism;

A; and 4, répresent the azimuths of the left and right halves of the Jellet analyser
and A their internal bisector. The Brace plate is attached to the Jellet prism

-such that arc AF is a quadrant. .

The actual formulae for the parameters 4 and w of the incident ellipse clearly
involves, in addition to the setting of the compensator and the analyser system
and the phase retardation of the compensator, also the phase retardation # of
the Brace plate. These are not given here but may be obtained from the paper
by SkmnEeR1. Fig. 17b gives the corresponding figure when a symmetrical
birefringent half-shade is used in which the two halves consist of equally thick
birefringent plates but with their fast and slow axes interchanged. In this case

1 A.Q. Toor: Phys. Rev. 31, 1 {1910). The theory of the instrument is discussed, making
use of the Poincaré representation by C.A. Skinngr: J. Opt. Soc. Amer. 10, 491 (1925).
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a method of successive approximations is not required when the compensating
plate is set properly (i.e., such that P, is brought to a point P on the equator),
since whatever be the setting Fy of the birefringent half-shade, the states P,
and P, emerging from its two halves will be symmetrically above and below the
equator, and consequently the birefringent half-shade will appear matched. The
formulae in this case are clearly identical with those for the Stokes-MacCullagh

Fig. 17a and b. Tool elliptic analyser at correct setting. (a) The incident state P, is brought to B, by the compensator; Pl-is
altered to P, by the Brace plate in the lower half of the field, P, and P, being symmetrically above and below the equator.

The birefringent half-shade is matched since 4 , P, =4, , P, and A, 4 P, = A2 4 ,; while the two halves of the Jellett
prism are matched since 4, , B, =A,,,>, and 4, ,P,=4,,P.. (b) Modified symmetric form. Here F, is brought to P
on the equator and then converted to B, and B, respectively by the two halves of the birefringent half-shade.

method, with the added advantage of the hali-shade. The retardation of the
half-shade does not enter into the formulae, and a knowledge of the retardation ¢
can be rendered unnecessary as in that case. ‘

v) Double half-shade methods. RicEARTZ! has devised a simple, at the same
time accurate, modification of the Sénarmont method for determining all the
elements of an elliptically polarised beam. Half the field of view is covered by

¢ p 4 a quarter-wave plate and behind

— this is kept a Nakamura rotating

bi-plate, with its dividing line at
P right angles to the edge of the
¢ quarter-wave plate (Fig. 18.) The

- U system is backed by an analyser.

=

Initially a principal axis of
el | % the quarter-wave plateis adjusted
to be perpendicular to the vibra-
Fig. 18. Richartz double half-shade analyser. ( =quarter wave tion-direction of th:e a'nalyser by

Plate, N=Nakamura biplate, 4 =linear analyser. keeping the combined half-sha-

dow plate between crossed nicols
and rotating it so that both pairs of the fields of view are equally bright. The
elliptically polarised light is then allowed to fall on the elliptic analyser, and
the whole system is rotated until the lower halves not covered by the quarter-
wave plate appear equally bright. The axes of the quarter-wave plate are now -
parallel to those of the ellipse. The azimuth of the plane polarised light

1 M. Ricuartz: Z. Instrumentenkde. 60, 358 (1940). A sensitive half-shadow device
for use with a quarter-wave plate has been devised by JERRaRD: J. Opt. Soc. Amer. 44,
289 (1954). This paper may be referred to for detailed references to literature on the subject
of compensators.
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emerging from the /4 plate is determined by rotating the analyser alone until
equality of intensity is obtained in the top quarters.

The polarisation states of the light emerging from the four guadrants of the
half-shade system at the correct setting of the quarter wave plate are indicated
in Fig. 20a by P,, P,, B;, P, P being the state of the incident light. It will be
noticed from this that the first setting for the determination of the azimuthof P

will not be sensitive if the ellipticity is large (see also Sect. 19). This in turn
affects the accuracy in measuring the ellipticity, although the second setting

in the above arrangement is by itself P, p

¢)

very sensitive
This points to the need for devising
a half-shade system by which both the
azimuth and ellipticity can be measured

accurately. RaMASESHAN! has made

a careful study of this problem and he

has suggested a number of arrangements

for achieving it. The essential idea is to a)
have a system by which the point P’
is accompanied by four points P/, P,
P;, P, forming a cross with it, as shown
in Fig. 20a. Then, at the correct setting,
there will be equality of intensity in
both the half-shade pairs only if P’ is
exactly on the equator and if the
analyser is set at azimuth P, antipodal
to P’. In fact, if this could be achieved, s b)
then the setting of the quarter wave

plate can be made for any arbitrary ¢ 8
setting of the analyser (although the

sensitivity is maximum when it is at

P;), by adjusting for equality of inten-

sity in P/ and P;. The analyser is then

adjusted for equality in Py and P). The

measurement does not require the use of

successive approximations and the first ¥

setting can be made mdependent of the
second.
Perhaps the simplest way of achiev-

Fig. 19a—c. Different possible arrangements in Rama-
SESHAN’s analyser. @ == quarter wave plate, IV = Nakamura
biplate, B = birefringent half-shade consisting of two plates

«of low, but equal retardation (2 to 5°), with their fast

and slow axes interchanged, A =linear analyser.

ing the cross of points, when a quarter
wave plate is used, is to have the
quarter wave plate [Q of Fig. 19a) covering the whole field and having one
Nakamura biplate in front covering the top half, and another Nakamura
biplate behind it covering the bottom half. The states of polarisation of the
light emerging from the upper two quarters are then represented by B and
P, (Fig. 20a) and of light emerging from the lower two quarters by Py and Pj.

Two other possible types of arrangement are shown in Figs. 19b and 19c.
In Fig. 19b, the upper half consists of a Nakamura biplate kept before Q, while
the lower half is a double-refracting biplate, B, which is also kept before Q, but
whose axes are at +-45° to those of the quarter wave plate. The way in wluch
P/, P}, P], P/ are produced is shown in Fig. 20b.

1 S. RamasesHAN: J. Ind. Inst. Sci. 37, 195 (1955).
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In Fig. 19¢, on the other hand, both the biplates are kept after the quarter
wave plate. Here, the Nakamura biplate forms the lower half and leads to the
points Py, Py on the Poincaré sphere. The upper half consists of a double-refract-
ing biplate, but its azimuth can be varied by rotating the half-shade system.
The separation between P/ and P; produced by it is maximum when its axes
are at 45° to the analyser setting. Fig. 20c¢ has been drawn corresponding to this
setting. . CLoTeR - : .

£) . :
Fig. 20 a—c. Theory of the double half-shade arrangements in Figs. 18 and 19. (a) correspo'nds to Figs. 18 and 19 3, (b) to
. 19b and (¢} to 19¢.

In all the three arrangements, the adjustments of the quarter wave plate ¢
and the analyser 4 can be made in-a straightforward manner. First Q is adjusted
for equality in the upper half-shade (P, and P;) and then 4 is adjusted for equality
in the lower half-shade (P; and F,). The sensitivity of the first setting is maximum
when the second is correctly adjusted, and vice versa and therefore a second
adjustment of both Q and A4 is desirable.

In the arrangements 19a and 19D, the effective ‘““half-shade angle” i.e., the
angular separation of the points P/ and P; and of P; and P, isnot a constant,

independent of the ellipticity. In both, P??z' decreases with increasing ellipticity.
So also, they are not suited for use with compensator plates whose retardation
is not exactly #/2, for then the four points P/, P;, P;, P, do not form a rectangular
cross. The last arrangement (20c), on the other hand, is ideally suited for this
case, since it is the final state P’ which is split up into four parts with different

SETUURBLT Gl UPTITAY dClIvVe DITCIIIIZTHT CLy STl PIaty, LT PIate IS "Praceq U TiIe”
stage in between the polariser and the orthogonal elliptic analyser. Both the
P-system and the Q-system are adjusted until crossing is obtained. Then the
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azimuth and ellipticity of the state propagated unchanged is the state of the
light incident from the polariser and may be obtained from the settings Apand Ao
In certain experiments it is necessary to have the incident vibration of constant
ellipticity, but of variable azimuth. This can be obtained by setting Ap— 4,
equal to w and rotating the P- and Q-systems together. If more general sections
of the Poincaré sphere have to be explored it would be necessary to use a pair of
crossed birefringent plates of equal retardation §=00°.

22, Compensators. In the above methods, the compensating plate which con-
verts the elliptical vibration into a linear vibration has a fixed retardation and
only its azimuth is varied. On the other hand, one could employ birefringent
plates of fixed orientation, but of variable retardation.” Such a plate is known
as a compensator and may be obtained by using a wedge-like plate, or a
combination of wedges, with their fast and slow directions interchanged. The
two types most commonly used are the Babinet compensator (Fig.21a) and
the Soleil compensator (Fig.21b)! which are usually made of guartz plates

ALY

AN

a) b)

Fig.21. (a) Babinet compensator. (b} Soleil compensator.

cut parallel to the optic axis? In the Babinet compensator, the path retardation
varies linearly over the breadth of the plate, while it is a constant over the whole
area in the Soleil compensator. In both, the retardation may be varied by moving
one of the plates, and the relative phase retardation may be varied over a few
cycles in the usual designs. , '

In all methods involving the use of such compensators, it is necessary to know
the azimuth of the elliptic vibration beforehand, as the principal directions of
the compensator must be kept parallel to the axes of the ellipse. This may be
done by using one of the half-shadow methods discussed earlier. However, by
far a major part of the applications of compensators is for finding the retardation 6
produced by a crystal plate or birefringent medium. This may be measured by
keeping a linear polariser at n/4 to the principal planes, when the ellipticity of
the resulting ellipse is given by tan 4. The axes of the ellipse will be parallel
to the principal directions of the crystal plate, and so the orientation of the
compensator presents no problem.

In the Babinet compensator, a series of dark and bright fringes will be observed
in the field of view, when linearly polarised light at azimuth 7/4 is incident and

an analyser is set at azimuth :[:%. The setting of the analyser does not affect

1 For details, see G. SzivEssy [I] and H.G. JErrARD: J. Opt. Soc. Amer. 38, 35 (1948).
2 This particular orientation is however mot essemtial. See also G. Szivessy and Cr.
MuUNSTER: Phys. Z. 36, 101 (1935) for eliminating errors due to optical activity of quartz.
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the position of the fringes, but they are clearest at ii:- and vanish at 0 and —'}.

If now a crystal plate is introduced with its principal directions parallel to those
of the compensator, then the fringes will shift by an amount proportional to the
retardation 9 introduced. The shift may be directly measured, or may be com-
pensated by moving one of the wedges. The instrument is calibrated by measuring
the band-width or the movement necessary to shift the fringes through one band,
which corresponds to a phase retardation of .

The Soleil compensator is very similar to the Babinet, except that the field
of view is uniform in intensity and the adjustments of the compensator are made
for extinction. The calibration is done by measuring the movement of the wedges
from one setting for extinction to the next. In view of the large field of view,
half-shadow devices could be used in combination with itl.

The problems connected with the accurate adjustment and the calibration of the
Babinet and Soleil compensators have been discussed by JERRARD 2. A birefringent
compensator having a field of view about 25 times that of the Babinet and suitable .
for use in strongly convergent light, as in microscopy, has also been developed3.

23. Compensators for measuring small ellipticity. A type of compensator,
suitable for small ellipticities, may be obtained by compressing or tensioning a
plate of optical glass, whereby it develops birefringence with the principal planes
parallel and perpendicular to the direction of the tension. Uniform phase retarda-~
tion may be obtained over the field of view with proper arrangements, and its
value may be varied by adjusting the tension. This method is particularly used
for measuring very small retardations of the order of 1075.2z. Half-shade
arrangements using such a compensator have also been described?.

A particularly accurate arrangement, making use of two retardation plates,
one as a compensator and the other as a half-shadow device has been devised
by BrRACE 5. Several modifications of this have been suggested by various workers,
and full details may be obtained from JERRARD'S review.

Here, we shall consider the typical arrangement. The polariser is kept at
7/4 to the principal planes of the crystal plate under study, producing a phase
. retardation §, and the emergent elliptical light passes through a retardation plate
producing a phase difference ¢ of about 27/50. Behind this is kept another bire-
fringent plate with a retardation of about 2#/200, which covers half the field
of view (Brace half-shade of Sect. 20). As mentioned in Sect. 21, a more satis-
factory arrangement would be to have a biplate, of half the thickness, each
covering half the field of view, but with their fast and slow directions interchanged.
We shall develop the theory for the latter arrangement®. Behind the half-shade
is the linear analyser.

With the polariser and analyser crossed, and keeping the principal directions
of the half-shade at - %, the setting of the compensator for equality of intensity
is indicated in Fig. 22a.

1 H.G. JERRARD: J. Sci. Instrum. 28, 10 {1951). ’

2 H.G. JERrarD: J. Sci. Instrum. 26, 353 (1949); 27, 62 (1950); 27, 164; 30, 65 (1953).

3 M. FrancoN and B. SERGENT: Optica Acta 2, 151 (1955).

8 4( ;;3 BE Forest PALMER: Phys. Rev. 17, 409 (1921). - H.A. Bourse: Phys. Rev. 46,
75 D.B. Brace: Phil. Mag. 7, 320 (1904). — Phys. Rev. 18, 70 (1904); 19, 218 (1904). —
G. Szivessy: Z. Instrumentenkde. 57, 49, 89 (1937).

6 The use of the Poincaré sphere helps one to appreciate the simplicity and symmetry
of the arrangement discussed here. In the theory of the Brace compensator, worked out by
analytical methods by the earlier workers, the formulae are highly complicated, because of
the unsymmetrical nature of the two balves of the device.
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The half-shade is kept at z/4, but the compensator azimuth % can be varied,
and if this is such that the elliptic vibration P, is converted into alinear vibration P,
then there would be equality of intensity in the two halves of the field of view
(Fig. 22a). The setting is independent of the position of the analyser, but the
sensitivity can be greatly increased by bringing the analyser close to the setting
orthogonal to P i.e., 4, coinciding with P. Let the azimuth of the analyser

for this condition by y —{——g— ie., 2y is the longitude of P.

Alternatively the half shade plate may be kept in front of the compensating
plate and the setting of the compensator for match determined. This is indepen-
dent of the polariser setting but the field will appear darkest when the polariser

a

Fig.22a and b. Diagrams (a) and (b)illustrating two possible arrangements for the Brace compensator The rotations of the
Poincaré sphere are }:ughly exaggerated.

is turned through an angle § such that the state F, of the light emerging from the
test plate represents a state which, if the half shade had been absent, would have
been crossed out by the elliptic analyser composed of the compensator plate
backed by the nicol (Fig. 22b).

The values of p and § for the two cases, as also that of the phase retardation §,
in terms of the compensator setting % and its retardation & are given by the

following equations. They may be derived from the appropriate spherical triangles
in Figs. 22a and 22b.

(a) tan § =sin2ktane,
tan 2 A—see (23-1)
V= cot2k+tan2ksece
(b) sin2f =sin4ksin®¢g/2,

sin § = sin g sin 2&/cos 23
. sin2ksin &
V1 —sin?4%sin4 /2 )

The setting of the compensator for match of the half-shade is first determined
approximately with the polariser and analyser crossed. The value of y or § as
the case may be is calculated, the polariser or analyser is kept at that position
and the compensator is carefully reset for match. A second setting of the com-
pensator is also possible, shown by E’F’ in Figs. 22a and 22b, for which y and
have respectively the same values as in the previous case, except for a change
of sign. Two more settings can be obtained during a full rotation of the compen-
sator at an angle st away from the above two settings. The best method of utilis-
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ing these four readings is discussed by Szivessy!. Very accurate measurements
can be made in this way and an accuracy of one percent or better is claimed for
measuring phase differences of the order of 1x107¢-27zz. As may be verified
from Fig. 22 and the equations for §, the setting of the polariser or analyser has
no effect on the setting of the compensator for match of the half-shade, although
it affects the sensitivity. The settings » and § are only those for maximum sen-
sitivity.

Several modifications may be made in the above arrangement e.g., by inter-
changing the position of the compensator and the half-shadow plates, or keeping
either the half-shadow plate or the compensator
plate, or both, in either order, before the crystal
plate whose retardation is to be measured2 No
special advantages seem to be present for any of
these arrangements over the case considered above.

"A simple method, making use of a single bire-
fringent plate both as a compensator and a half-
shade has been proposed by Szivessy3. This is
particularly useful for small ellipticities. The bire-
fringent plate, whose phase retardation 7 is chosen
to Dbe slightly larger than twice the expected
phase difference ¢, is fixed to cover half the field

Fig. 23. Principle of SzivEssy’s com-

of view. The analyser is initially kept at right
angles to the major axis, and the compensator plate
is rotated until equality of intensity is obtained.
The setting for this is shown on the Poincaré sphere
in Fig. 23.and it will be seen that there will be
four possible settings of the fast axis during a

pensator half-shade. The incident state
P, is transformed to P for one half of
the field of view by the compensator
half-shade whose fast axis is F,. The two
halves are matched when P, and P are
symmetrically above and below the equa-
tor, A being the.analyser setting for which
the field is darkest. Rotations of the
Poincaré sphere are exaggerated.

rotation of s, marked by F,F,, F,F, in the
figure. The latter two are not of interest, because they correspond to the settings
when the principal directions of the half-shadow plate are parallel and per-

pendicular to the analyser. If %, % — k are the settings corresponding to F
and F,, then the relation between ¢ and % is

tan§ =sin2ktan 4.

| (23.3)
Modifications of the above method, and of the Brace compensator have been

suggested by Szivessy and HErzog? A detailed study of the Sénarmont com-
pensator and of its modifications has been made by GABLER and SakoBS,

24, Photoelectric methods for the 4nalysis of elliptically polarised light. o) Meth-
ods using compensators. Visual methods cannot be employed for the regions
of the spectrum outside the visible, and so other methods have to be used. Photo-
graphic methods are useful, particularly in the ultravioleté, The main purpose

1 G. Szivessy: Z. Physik 54, 594 (1929).
For details see H.G. JERRARD: J. Opt. Soc. Amer. 38, 35 (1948).
G. Szivessy and A. DIERKESMAN: Ann. Phys., Lpz. 11, 949 (1931).
G. Szivessy and W. HerzoG: Z. Instrumentenkde. 57, 305 (1937).
F. Gasrer and P. Saxo: Z. Instrumentenkde. 58, 301 (1938); 61, 298 (1941). —
Z. Physik 116, 47 (1940). — Phys. Z. 42, 319 (1941).

8 W. VoigT: Phys. Z. 2, 303 (1901). — R.C. MiNor: Ann. Phys., Lpz. 10, 581 (1903). —
G. BruraT and M. PautHENIER: Rev. d’Opt. 6, 163 (1927). — G. Szivessy and C. MUNSTER:
Z. Physik 70, 750 (1931). — G. Szivessy, A. DIERKESMANN and C, MunsTER: Z. Physik
82, 279 (1933). — Z. Instrumentenkde. 53, 465 (1933). — J. Bor and B. G. CuaprMan: Nature,
Lond. 163, 182 (1949).

Handbuch der Physik, Bd, XXV/1. 4
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of such studies have been the investigation of the optical properties of absorbing
materials, from the state of polarisation of the light reflected from the surface.
The relationship between the polarisation state and the optical constants, both
in isotropic and anisotropic media, will be found elsewherel. Here, we shall
consider the main principles involved in the non-visual methods which have
been proposed for measuring the characteristics of an elliptically polarised beam.

All methods use some type of detector for measuring the intensity of radiation.
We shall use the term photocell for this device, although other types of detectors
may be employed actually. In polarimetry, where only the azimuth of a linearly
polarised beam is to be determined, the photoelectric methdd is in principle the
same as the visual method® The setting of the analyser for minimum intensity
gives the azimuth du'ectly, or the method of symmetric angles may be used, in
“which the settings on either side at which the

intensities aré equal are determined, the mean
giving the setting for minimum2. The dark current
of the photo-cell may be suppressed by modulating
the incident beam, e.g. by an intermittent chop-
per, and using a tuned amplifiers.

BruHAT and GRIVET® were the first to use the
photoelectric method of analysing elliptically po-
larised light. However, they did not use the prin-
ciple of modulation. KENT and Lawson® have
suggested a very ingenious method in which the.
ellipse is converted into a circular vibration by
means of a quarter-wave plate, instead of into
Fig. 21, Princigle of the Kent and Lawson & linear vibration as in the usual methods. If the
photoelectric analyser. The state of po-  emergent light is fed through a rotating linear

1{‘;,;?2‘;‘.;{@21??:,%2;:}% oaihe’t  analyser to a photo-cell, then there would be no

is brought to R by the same operation. - g ¢, sjgnal if the light is circularly polarised. Other-

© wise, it is obvious that there would be a fluctuating

component in the intensity of twice the frequency of rotation of the analyser.

By using a narrow band amplifier, the signal-to-noise ratio may be greatly
increased.

The principle is indicated in Fig. 24. The point representing the state of
polarisation of the incident light may be brought to L (or R as the case may be) -

" Dby rotating it through an angle ¢ about EF, where the longItude of Fis— +22
Thus, the prmclpal planes of the compensator must be at ;{:— to the axes of

the ellipse, and the phase retardation e of the compensator must be variable.
If the azimuth A’ and the retardation.e are adjusted so as to obtam circularly

1 See the article by J. FRIEDEL and J. Bor: Vol XXV, Part 2 of this Encyclopedla

2 G. BrumaT and P. CaarerLain: C. R. Acad. Sci., Paris 195, 370 (1932). — G. BRUHAT
and A. GuiNiEr: C. R. Acad. Sci., Paris 196, 762 (1933). — D.H. Ravng, J.H. Liear and
P.R.Yoper: J. Sci. Instrum. 27, 270 (1950). — G.B.Levy, P. ScEWED and D. Fereus:
Rev. Sci. Instrum. 21, 693 (1950).

3 An account of this and other special techmques in photoelectric polarimetry is given by
W. HeLLER, Ref. 1, p. 34.

4 Such a method has been used recently for the measurement of Faraday rotation, the
modulation being obtained by running a mercury discharge lamp from 50 eycles a.c. V. Sivas-
RAMAKRISHNAN: Proc. Ind. Acad. Sci. A 44, 206 (1956). See also L.R. INgGErRsorl and
D. LIEBENBERG: J. Opt. Soc. Amer. 44, 566 (1954). - :

5 G. BrunaAT and P. Griver: C. R. Acad. Sci., Paris 199 852 (1934).

6 C.V.Ken~T and J. Lawson: J. Opt. Soc. Amer. 27,117 (1937).
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 polarised light, then - e B
Sothat - - e
o = |tan ] =c0t%. - - L (24.2)

It is clear t'hat'tiile.sense of the ellipse cannot be determined, since there is 1o
way of distinguishing whether the state of the circularly polarised beam is L
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Fig. 252 and b, Photoelectric method for analysing elliptically polarised light. (a) Using modulated light sourca. (b) Using
. rotating analyser.

or R. Thus there is an ambiguity between two orthogonal states in this method.
_ A practical difficulty of the rotating analyser method* is that the photoelectric
effect is dependent on the azimuth of the plane polarised light, so that the photo-
cell is not equally sensitive for all azimuths. This difficulty may be avoided by
fixing a quarter-wave plate behind the analyser at the appropriate azimuth, the
- two being rotated together, so that circularly polarised light is always incident
on the photocell :

B) Methods without compensating plates. Two interesting methods have been
suggested for the analysis of elliptically polarised light using a stationary double
image prism and two photocells?. In both, tuned amplifiers are used and a
matching circuit, which can compare the two outputs, either in phase or anti-
phase, is utilized for making the adjustment.

- The first is a simple application of the visual? and photographic® methods,
using a double image prism. The principle is shown in Fig. 25a. The double

1 The sources of error in this method are discussed by J.F. ArcrarD, P.L. CLEGG and
A.M. Tavior: Proc. Phys. Soc. Lond. B 65, 758 (1952).

2 J.F. ArcEARD, P.L.CLEGG and A.M.Tavior: Research, Lond. 3, 339 (1950). —
Proc. Phys. Soc. Lond. B 65, 758 {1952). )

3 L.R. Ingersorr and J.T.LrtTLETON: Phys. Rev. 31, 489 (1910).

¢ G. PrEsTORF: Ann., Phys., Lpz. 81, 906 (1926). :
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image prism separates two perpendicular linear vibrations, and may be considered
to be a double field analyser (Sect.20) with a half-shadow angle of m/2. The
two fields will be equally bright when the two bisectors of this angle are parallel
to the axes of the ellipse. It may be shown that the sensitivity of the device
is a maximum when the half-shadow angle is z/2, but this condition is not utilised
for visual methods, since the intensity in the field of view will be too high. In
a photocell, this presents no difficulty because the constant intensity may be
removed by having a chopper rotating at a fre-
quency f and observing only the components of
frequency 2f.

Having obtained the azimuth of the ellipse,
the double image prism is then rotated through
7/4, so that the axes of the prism are parallel to
the axes of the ellipse. The ratio of the intensities
in the two fields then gives b2/a%. Using a Wollaston
double image prism, it is possible to match the
two fields by means of an auxiliary analyser be-
hind the prism. Its azimuth at equality gives
directly the ellipticity w(=arctanb/a) of the
iigfﬁ. Theory of the photoelectricelliptic el]ipse.

lyser of Fig. 25b. Light of polarisation . . E
state Pis passed through a rotating linear The other method is rather ingenious. Here,
analys e;ﬁgﬁdwﬁc? e ole no chopper is used, but a rotating analyser is placed
D e e e P in front of the double image prism (Fig. 25b).

on the meridian through D, and Ds. Imagine all azimuths to be measured from the
major axis of the ellipse to be determined. Let 3,

B+ —Z— be the azimuths of the two axes of the double image prism and y that of

the rotating analyser. Then the fraction of the intensity received by the photo-
cell 7 is, referring to Fig. 26

ty=% (1 +cos ﬁ) [z (1 +cos @1)] (24.3)
—~ 21 + cos2uc0s20) [1 + <0520 — B)]- |
Similarly ' '
ty=%(1 + cospcos2w) [1 —cos2(u — f)]- (24-4)
Thus
to=%[1 +{cos 2w cos 2p = cos 2(u — B)} + (24.5)
+- cos 2 cos 2w cos 2 {u — f)]. '

If f is the frequency of rotation of the analyser, then the second term is of fre-
. quency 2f while the third is of frequency 4f. By means of a tuned circuit, the
latter is eliminated. Considering only the second term, the two intensities are

£1, 3= (c0s 2@ & cos 2f8) cos 2y £ sin 2 sin 2. (24.6)

It is seen that only if 8 =0 are the two exactly in anti-phase and the ratio of the
~ two is then .
Z=—m=——tan2w. (24-7)
Thus, the setting of the double image prism for this condition gives the orientation
of the axes of the ellipse and the ratio of the two signals give 5%/a%. As in the
first method, an auxiliary analyser may also be used to give directly w.

Both the methods do not give the sense of the ellipse. Unlike in KENT and
Lawson’s method, the ambiguity in these methods is that the sign of w is
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indeterminate, whilé A is definitely fixed. The alternative choice of P is shown
by P’ in Fig. 26. Such an ambiguity is unavoidable if no compensators are used,
and only measurements of inteusities are made with analysers represented by
points on the equator of the Poincaré sphere. On the other hand, these methods
do not require any calibration of the compensator plates.

The photocell method has been utilised for the analysis of elliptically polarised
radiation in the infrared, particularly in connection with the determination of
optical constants by reflection®.

25, Depolarisers. A depolariser is an arrangement which converts a beam of
light of any state of polarisation into an unpolarised beam. Such a device finds
an application for instance if the relative intensities of two differently polarised
components have to be compared after passing through an instrument such as
a spectrograph, where refraction throungh optical surfaces occur.

In the Poincaré representation, unpolarised light is represented by a point
at the centre of the Poincaré sphere. Thus, if the vector p represents the state
of the beam emerging from the depolariser, then it must change in such a way
that its mean value is zero, i.e.,

[pds=0 (25.1)

where s is some parameter?. This must happen independent of the state of
polarisation of the incident beam. Since any light beam can be considered to
be made up of a mixture of an unpolarised part and a completely polarised part,
it is only the latter that has to be rendered unpolarised by the depolariser. Our
discussion may therefore be confined to completely polarised incident light.

The effect of an optical element is to rotate the point on the Poincaré sphere
about some axis. Suppose the crystal plate exhibits varying path retardation
over its surface extending over a number of wavelengths. Then P would be
rotated over a number of complete revolutions about the axis concerned. If
the incident beam is plane polarised and the plate is optically active, the point P
is rotated around the equator, and the mean value of p for an integral number
- of rotations is zero. However, if the incident light is elliptically polarised, such a
plate will not render it unpolarised. In general, rotation about any one axis alone
will not be sufficient to depolarise an incident beam, irrespective of its state of
polarisation. However, if the instrument produces, in effect, rotations distributed
evenly over a range of 2 about two perpendicular axes in Poincaré space, the
rotations being uncorrelated, then it would act as a depolariser. This is so because
any point on the sphere would be evenly distributed over its surface area by
this process. "

- Tt is also possible to achieve this by means of correlated rotations about two
perpendicular axes3. If the ratio of the two rotations is , then the resultant
Poincaré vector can be shown to be zero if 7 is an integer equal to, or greater
than 2. The simplest case with » =2 was adopted by Lvor4, who obtained the
effect by using two plates of quartz, one twice the thickness of the other, both
cut parallel to the optic axis, but kept one behind the other, with their axes at
45° to each other. The resultant rotations are about HV and CD which are at
right angles. LyoT used this with white radiation and the thickness was quite
large, so that small variations of wavelength introduced the varying phase retar-
dations. If a similar arrangement is to be used for monochromatic light, e.g.,

G.K.T. Conn and G.K.Eaton: J. Opt. Soc. Amer. 44, 477, 484, 546 (1954).
G.N. RaMACHANDRAN: J. Madras Univ. B 22, 277 {1952).

B.H. Bizrings: J. Opt. Soc. Amer. 41, 966 (1951).
B.

1
2
3
4 B.Lvor: Ann. Obs. Astron. Phys., Paris 8, 102 (1928). ~
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in the study of scattering of light or the Raman effect, then two wedges, one
with twice the angle as the other, but with their principal directions at 45° may
be used. Here, the transmitted light would be unpolarised when averaged over
the area of the depolariser. BirLrinGgs has suggested the use of the electro-optical
effect to construct a depolariser. The electric field which is applied to the crystal
(like KH,PO,) through which the light is transmitted is varied in a saw tooth
fashion at a high frequency. The transmitted light would be unpolarised if ob-
served for a period much larger than the period of one cycle,- '

) : A . . .
B. The theoty of propagation of light in anisotropic media.
1. General considerations.
26. Electromagnetic equations!. The four field vectors E, D, H and B where

E is the electric field
D is the displacement or the electric induction
H is the magnetic field .

and B is the magnetic induction

define the electromagnetic field in any medium and they must satisfy MAXWELI\,’S\
"equations2. If in a medium the charge density is ¢ and the current density is j °
then MAXWELL’S equations are given by

_itpad
curlH = CD—]—G,

. Dy (26.1)
and one also has the scalar relations )
divD =g,
26.1
divB =0. } (26.12)

When a non-conducting medium is placed in an electric field, the distribution of
_ electric charges that constitute the atoms and molecules is altered and this
alteration prodnces a dipole moment per unit volume described by a polarisation
vector P. There would also be quadrupole moments (¢) and other higher order
effects induced3. The induction D is given by. .

D=E+P—divQ.... (26.2)

We shall not deal with these atomistic causes but shall present the propagation
of light in material media purely from the phenomenological point of view. The
only a priori condition that one can impose is thet I must be a linear vector
function of E. This implies that D and E need not necessarily be in the same
direction. ‘

We shall restrict ourselves in the present Chapter to the case of electrically
non-conducting media which are also at the same time “non-magnetic”—i.e.

1 Several excellent treatises on crystal optics are available, which present the details
of the various phenomena observed in crystals e.g. [1] to [8], List of References at the end of
this article.

2 Throughout this article, we shall be using Heaviside units for electromagnetic quantities
so that factors like 47 will not occur in the equations. :

3 See L. RoSENFELD: Theory of Electrons. Amsterdam: North Holland Publ. Co. 1951.
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ones in which the magnetisation cannot follow the rapid optical oscillations. For
such media . .
j=0, ¢=0 and B=H!
and MAXWELL'S vequations (26.1) and (26.i a) reduce to
1 8D’

() divD=o0, () culH=—"2, .
. o , _ (26.3)
b) divH=0, (@ culE=——20 N

In what follows, we shall be dealing essentially with the propagation of plane “
electromagnetic waves in a material medium. We are therefore interested in
the solutions of MAXWELL’S equations (26.3) of the form o

E,D. H = (E,, D,, H,) exp [m (t — 2y s)] (26.4)

where o (=27 v) is the circular frequency, ¢ is the velocity of light in vacuum,
# is the refractive index, s is the unit vector along the wave normal and # is
the vector distance of any point from the origin. The refractive index » measures
the ratio of the velocity of light in vacuo to the phase velocity of the wave in
the medium. It is convenient to take the velocity of light in vacuo to be unity,
so that the phase velocity v is related to the refractive index by the equation
n=1/v. ’

11{ most problems, we would be interested in the diverging bundie of rays
emerging from a point source or a source of finite size. In such cases, we assume
that the light disturbance can be represented by a system of mutually independent
plane waves. This assumption can be fully justified from the theory of Fourier
transformation, for any arbitrary disturbance can be represented as a sum of its
Fourier components, each’ of which may be identified with a plane wave.

Thus, if %(x, y, z, &) is the light amplitude at a point #, y, z at time ¢ and
v(K,, K,, K,) is the amplitude of its plane wave components with wave vector
KKK, K, K,; | K| = 1/4), then » may be put in the form

+oo
w(%, v, 2,8 = [[[0(K,, K,, K,) ernibt—E-n K _dK dK,. (26.5)
—0

 Ifnow u,(%y, e, %) is the light disturbance at time ¢ =0, then »’s can be connected
 with u, by inverting (26.5). Thus,

+o0
. v(K,, K,, K,) = JT #o (%0, Yo, 20) e B dy, dy,dzy. (26.5a)
. . 4 .
v Hence, given the light field at =0, that at any later time may be obtained
by combining the above two equations. Thus,

+00 oo )
u(%,y,2,8) = [[{ [[] 15(*0, Yo%) g2nilvt—K-tr=mlldy, dy,dzydK, dK,dK,. (26.5Db)

It may readily be verified that #, as defined by (26.5b), satisfies the wave équa—
tion -
1 2u

2u — =0

2 o

1 See however Sect. 36 on Optical Activity.
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with ¢=v/K and obviously also satisfies the initial conditions at £=0. Thus, a
superposition of plane waves satisfies the wave equation because of (26.5) and
can be made to fit any required initial conditions by means of (26.52a)

It must however be mentioned that Eq. (26.4) represents a disturbance which
is propagated in a homogeneous isotropic medium. We shall however assume
that the plane wave representation holds equally well in a homogeneous aniso-
tropic medium. It is also supposed that there is no change in the state of polarisa-
tion. This is true in general, but not so along certain singular directions in absorb-~
ing crystals (see Sect. 56). Plane wave solutions of a more general type have been
dealt with by R.C. JoNES2 s

. It will be seen that the operator a—i is equivalent to multiplication by ‘e
and the operatoraixto multiplication by —iw#» —sai Substituting these, one has

3 J oD .
1 —5;=th
and
curlE:z'wi:—EXS
¢ 2 and Eqgs. (26.3) become
% . nHxs =D,
26.6

Fig. 27. Relation between vectors con-
nected witl;rﬁlectromagnetic wave pro- 4

pagation. The wave normal 8 is per- mi 3 1 7

D eilar to I, the tay direction p Eliminating H from the two equations in (26.6) we
is perpendicular to ¥, while E, D, ¢ get

and & are coplanar, H is normal to the

plane of the paper. D=—n(Exs)xs=n2{E— (E-s)s}. (26.7)
If the z axis is along the direction of propagation, Eq. (26.7) takes the elegant form
D,=n*E,, D,=n?E, and D,=0. (26.8)

From Egs. (26.6) one can deduce? that (a) H is perpendicular to D, E and s and
hence D, E and s are coplanar; (b) the wave normal s is perpendicular to D
and not necessarily to E (s being perpendicular to E in vacuum) and from Eq. (26.7)
we find that (c) I is equal to the product of #? and the component of E along the
wavefront.

The direction of ray propagation is the direction of travel of a marked element
- on the wavefront. In Sect. 27 we shall be considering from a wave-optical stand-
point the relation between the ray and wave propagation. Here we may identify
the direction of ray propagation with the direction of emergy propagation, the
latter being defined by the Poynting vector EXH. The ray therefore travels
along ¢ which is the unit vector perpendicular to E and coplanar with E, D
and s. These results are illustrated in Fig. 27. It is clear from the diagram, as
E, D, ¢ and s are coplanar, that if s and ¢ are at an angle «, D and E also make
the same angle with each other.

1t is worthwhile at this stage to give the relation between the wave and ray
velocities?. If at time #==0, the points of constant phase lie on a plane A B

1 Attempts to justify the plane wave representation were made by Lame, for elastic
waves in his “Lecons sur la théorie mathématique de 1’élasticité”’, Paris 1852, and these were
extended by V. VOLTERRA, Acta math. 16, 153 (1892).

2 R.C. JonEs: J. Opt. Soc. Amer. 46, 126 (1956).

3 We are here describing the simple case when the solutions are plane polarised waves.
4 See also Sect. 27.
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(Fig. 28) and later, on a plane A’ B at time ¢, thén the normal distance between
the two planes will be proportional to v#, where v is the wave velocity. The
marked element of wavefront on the other hand will be propagated along @
making an angle « with the wave normal - If the ray velocity is »,* then from -
Fig. 28,

v,CO0S% = ¥ (26.9)
and the ray index is
71— =mn,=ncosc. (26.10)
Now Eq. (26.7) can be written in the form A P
| D} :nﬂE[cosoc:%]E]coszx. (26.11) s %o
A '3

Hence, we have the inverse relation
Fig.28. Relation between ray velocity and

i . wave velocity. 4B and 4’5’ are planes of

1
| E} =—2TID[ cosa = —| D] cosa (26.12)  constant phase, 8 is the wave normal g is
7= cos° o 7y the ray direction along which 2 marked element
or . is propagated.

1E| = 2| D] cosa. (26.13)

Since a vector of length | D} cos « along E is from Fig. 27 equal to D—(D - g) @,
this gives for the vector E the equation

E=_3{D—(D-¢)e} (26.14)

which is exactly analogous to Eq. (26.7).

Egs. (26.7) and (26.14) may be taken as the fundamental equations for develop-
“ing a consistent theory of the optics of homogeneous media.

27, The wave surface, the wave velocity surface and the ray velocity surface
for an anisotropic medium. In the last section the distinction between the direc-
tions of the wave normal and the ray normal was introduced specifically as a
consequence of the electromagnetic theory. This was done by assuming that the
direction of the ray normal—i.e. the direction of travel of a limited portion of a
wavefront—may be identified with that of the Poynting vector which gives the
direction of energy flux. This assumption is not without exception even in the
case of isotropic media? and in any case the direct evaluation of the Poynting
vector becomes complicated in the more complex class of crystals {e.g. those
which possess optical activity). It is therefore worthwhile considering how the
ray direction may be obtained independent of the idea of the Poynting vector.
In fact, the considerations given below are valid for any type of wave, not neces-
sarily an electromagnetic wave. ; :

As we have seen in Sect. 26, the propagation of waves arising from an arbitrary
source distribution ifi-a medium may be represented by a superposition of plane
waves. It then follows that the disturbance emanating from a point source may
be represented by a series of plane waves, all proceeding from the same origin
in various directions, the velocity of propagation along the wave normal being
however different for different directions if the medium is anisotropic.

Consider the disposition of the wave fronts after unit time, which will be
as shown in Fig. 29. The envelope of the planes is shown by the thick line in the
figure, which obviously would form a closed surface in three dimensions. It will

1 Measured taking the velocity of light as unity. .~ .
2 See e.g., F. ZERNICKE: J. Opt. Soc. Amer. 47, 466 (1957).
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be noticed that, at a point such as @, which is not on the envelope, the different
waves reaching it have varying phases. On the other hand, at a point like P on
the envelope surface, waves having their propagation directions close to that of
the tangent plane at P will all have very nearly the same phase, and therefore
there will be a concentration of intensity at P. Thus, at time {=1, there is a

‘concentration of intensity on the en-
5 /\ velope surface, which we may call the

wave surface at time f=1. This sur-
£ face is defined-by the condition that
/4 the length of the normal from the ori-
14 gin to a tangent plane is equal to the
wave velocity (v,) along the normal.

We may also plot another surface
passing through points, such as R of
Fig. 29, i.e., the feet of the normals
X~ from the origin to the tangent planes,
or the wave fronts at time ¢=1.
This surface (Fig. 30a) is called the
wave velocity surface, since the length
Fig. 29. Construction for obtaining the wave surface. The wave of the radius vector from the OHgiIl
sugface.is the envelope of the ;ll;iiwaves proceediné'invariuus to any POint on this surface is equal
directions. to the wave velocity along that di-
rection.

It is obvious from the construction of Fig. 29 that the shape of the wave
surface will be the same at any instant ¢, only the size increasing proportional
to . So also, it is clear that if we mark a small element ds at P (Fig. 30b), then
the marked element would go to the corresponding element ds’ at P, and that P’
would lie on the line O P produced. We shall call the “ray” direction as that

: along which a marked pot-
‘tion of the wave surface
would proceed. Hence, ev-
ery radius vector of the
wave surface is a ray direc-
tion and the distance of its
tip from the origin would
be proportional to £, There-
fore at time ¢=1, the
lengths of the radii vectors
of the wave surface would
Fig. 30. (a) Relation between the wave surface and the weive velocity surface. be equal to ﬂ_le ray VEIO,Clty
(b) Relation between the wave normal s and the ray direction g. (‘Z)r) along different direc~
tions. The wave surface at
£=1 is thus also the »ay velocity surface?, using a terminology similar to the wave -
velocity surface. It must be noted that the direction of the ray velocity is not
normal to the marked element of the wave surface. It is along the radius vector,
i.e. along the unit vector @ of Fig. 30b. The wave velocity on the other hand is
parallel to the normal i.e. along the unit vector s.

Tt is obvious from the construction shown in Fig. 30a that the wave velocity
surface is the ““pedal surface” of the ray velocity surface.

A

Blve veloeriy surfice

1 This surface is also sometimes called the “normal surface”.
2 Also sometimes called the “ray surface”.
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28. Light propagation in an anisotropic medium—formulation of the problem.
Eq. (26.7) or alternatively its simpler form (26.8) may be regarded as the form
which MAXWELL’S equations assume for a plane wave field—the properties of
the medium not having been introduced in their derivation (except B=H).
There are however other constitutive relations between the field vectors D
and E imposed due to the properties of the medium viz. its particular polaris-
ability characteristics.. It is clear from the discussion in the last section that our
basic problem reduces to the following: To determine the states of polarisation D
of the plane waves that can be propagated along an arbitrary direction Oz in
the medium as well as their wave velocities. The reason why only specific plané-
wave solutions can be obtained is that they have to be consistent with the field"
equations and the properties of the medium. Since the solutions depend on the
relations between D and E, these relations completely determine the optical
properties of the medium j.e. whether it will be birefringent, optically active,
absorbing, etc. We shall deal with these cases individually in the sections that
follow.

II. Non-absorbing and non-optically active crystals.

29. Dielectric and index tensors. It has been mentioned earlier that D is a
linear vector function of E and this in the most general case can be written as

D=[:]E (29.1)

where [£] is a tensor of rank two. The tensor [€] is called the dielectric tensor.
Written explicitly in terms of the three ‘orthogonal axes %, ¥ and z fixed in the

medium D,=¢&,E,+ 812Ey + &3 E,,
Dy = 821Ex + 822Ey + 823 Ez > (29-2)

i D, =g E, + &5, E, + &5, E;.
The tensor [¢] will vary with the frequency of the incident light. We shall at
present confine ourselves to considering the effects for a monochromatic beam.
We shall now show that the dielectric tensor for a non-absorbing optically
inactive crystal is symmetric, taking as our starting point PoYNTING’S theorem

which states that at any point of an electromagnetic field the rate of flow of energy
is described by the Poynting vector G given by

G=c(ExXH). (29.3)

From MAXWELL’S equations, by taking the scalar product of H with (26.3¢)
and of E with (26.3d), and combining we get

e —cdiv(ExH)=(E-D+H-H). (29.4)

The flow of energy into a volume v through the bounding surface ¢ is thus

—fG-naZazc div (Ex H) dv =f[E.1)+%(g—H2)}dr (29.5)

T
where n represents the unit normal to the surface element do. This should be
equal to the increase in the electric and magnetic energy in the volume plus the
energy that may be dissipated. Expressing by W, (E) and W,, (H)the electric and
magnetic energy densities and by W; the dissipation function appropriate to the
medium (representing the rate at which work is performed by the electromagne-
tic field against dissipative forces), we have

-fG-nda=%f(vn+Wm)dr +fmdr. (29.6)
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Comparing (29.5) and (29.6) and identifying the magnetic energy density (which
should be a function of state of H alone) with $H?, we obtain

—{—W} E. D.
Hence

AW, +W,dt —=E-dD. (29. 7)

In this chapter we shall only consider non-absorbing crystals for which W}
‘We then obtain \
AW,=E-dD. (29.8)

The type of linear vector relationship that can subsist between D and FE-is now.
restricted by the condition that W, is a function of the state, i.e. 4W, should be -
a perfect differential. We again restrict our attention to media in which D depends
on E alone and not on JE/d¢ [with the use of complex periodic functions this
means, because of (29.1), that the components of the tensor ¢;; must all be real
and cannot take complex values]. Then

. i
This is a perfect differential only if ¢;;=¢;; showing that the dielectric tensor

must be symmetric. Then .

Integrating the electric energy per umt volume for the particular type of medium
considered?!
W, = '2"2 Z Eiy‘EiEf = EEiDz‘ }
=%[el]E-E=3%E-D. )

Hitherto we have expressed D as a vector function of E using the dielectric tensor.
If now we take the opposite view and express K as a linear vector function of D
then

(29.11)

=[a]D (29.12)
where [a] is a tensor of the second rank—the index tensor—which must necessarily
be symmetric since .

_ l[a] =[e]?. ©(29.13)
Written explicitly

E;v:' alle + alsz + a]sDzr

E,—=a,D,+0a,,D,+ a5, D,, (29.14)

E,=ayD,+ a3, D, +ag D

Consequently with a;;=a;; the a;;'s in (29.14) can be obtained in terms of the
components of the diclectric tensor by substituting the values of D from (29 2).
Thus one obtains

4= (29.15)

where & is the minor of ¢;; in the determinant |&|.

! Itis not implied that W, = 1 E - D for all types of media since it has been assumed that
the dielectric tensor is real and that there is no dissipation. The case when the dielectric
tensor is complex even in a non-dissipative medinm is considered in the section on optically
active crystals (Sect. 36) while the general case is met with in Sects. 43 and 50.
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Associated with the index tensor [a] we can define a tensor surface without
any reference to a co-ordinate system in the following manner. From a chosen
origin, lay out radii vectors of length » in all directions, the reciprocal of 72
being equal to the ““magnitude of the tensor property” in that direction, in this
case the ratio of the resolved component of E in the direction of D to the magni-
tude of D which produced it. Thus, . -

1 D-E D-[a]D
ey = D =~%—u (29'15&)

1f 4, Iy, Ig are the direction cosines of the vector D referred to a co-ordinate system
and the co-ordinates of the tip of the vector of length r are x, v, z, then

v 7

and therefore the equation to the surface traced by the tip of the vectox of length
y is ' :

b4

B33 X%+ Ggp¥? + Ua2® -+ 2003 Y7 - 2853 2% - 28,5y = 1. (29.16)

The surface is thus an ellipscid, and as it is associated with the index tensor it
may be called the index ellipsoid®.

It will be noticed from (29.16) that if we denote the vector (x, v, 2) by D,
and the corresponding E by E, then E,- Dy=1. This relation can be used to
find both the magnitude and direction of E when D is given, by means of a geo-
metric construction on the ellipsoid. This is discussed in Sect. 30.

In the same way, we may associate another ellipsoid, the Fresnel ellipsoid,
with the dielectric tensor [¢]. The equation to the Fresnel ellipsoid is thus given by

E11 %% E90 Y2 + £332% + 28937 + 28512% + 2812'2?31 =1. (29.17)

Thus, we see that the coefficients of the equation to the tensor ellipsoid with
respect to any coordinate system are also the components of the temsor with
reference to the same coordinate system. It is useful therefore to recall the
manner in which the coefficients in the equation to an ellipsoid transform with
a transformation of coordinate axes. Let OX, OY, OZ be the coordinate axes
taken along the principal axes of the ellipsoid, i.e. for which the equation to the
ellipsoid is . .
ay X2+ ay Y24 a,22=1. (29.18)
Then, if we transform to the axes Ox, Oy, Oz whose direction cosines are given
by the scheme . )

| % v 2

-
> Xloy ag ag

Y By B Bs

. Z{vive Vs
we have

@y =ax ol +ay i+ az i,
Gyo=ayty %+ ay B fatazyivs.

1 This is also called by various other names such as the indicatrix, Fletcher ellipsoid and
reciprocal ellipsoid.

(29.19)
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30. The complete solution of wave propagation: Geometrical method. «) The
index ellipsoid. By proving that the dielectric tensor is symmetric we have
proved that in any non-absorbing non-optically active crystal there exists for
a particular wavelength three orthogonal directions 0X, 0Y, OZ called the prin-
cipal electric axes for which: < oo :

Dy = EXEX; B
"Dy=gyEy, (30.1)
DZ= SzEz \

. . ~

where £y, &y and ¢ are called the principal dielectric constants. In most cases
for discussing the problem of the propagation of waves it is more important to
express E as an explicit function of D. This can
be done by rewriting (30.1) as

Ex=oaxDy,
Ey-:-' ayDy, . (30-2)
EZ= dZDZ

Fig. 31. PoINsoT’s ccustruction on the index where ay, ay and a, are -called the principal
ellipsoid. Given the vibration direction D 3 -

D ewallel 0.0 P, i 1s slong OQ the per- components qf the index tensor and are respec
pendicula fo the tangent plane at . Hence tively the reciprocals of the corresponding prin-~
an?iga?:u%r?;ﬁng rhe vove i ond - Cipal dielectric constants. The electric vector
ray directions. If the magnitude of DisOP, 3 3 :
B e B 121100 Moes gonerally, will be parallel to the displacement vector only
|E{=|D}joPx 0Q. when the latter is along one of the principal

: electrical axes. For other directions of the dis-

placement vector, the corresponding directions and magnitude of the electric
vector can be obtained by a simple geometric comstruction from the index

dlipsoid. This ellipsoid we define by the equation
’ o axXitayYida,Z%=1. (30.3)

Suppose now we choose the displacement vector D to be equal to the radius vector
O P of the ellipsoid, then Dy, Dy, D, are also the coordinates X, ¥, Z of the tip
of the vector and hence using (30.2) the equation to the ellipsoid can also be
written as

E-D=1=YayDy=f, say. - (30.4)

The normal to the ellipsoid at the tip of D would have direction cosines pro-

of of @of
X oY oz
to E from Eq. (30.2). Hence E lies along the perpendicular to the tangent plane
of the ellipsoid at the tip of D. Further the magnitude of E will be equal to the
reciprocal of this perpendicular length since from (30.4) we have

portional to ie. to axDy, ayDy, a;Dz, and is therefore parallel

l%lchgsﬁ. '(30.5)
By this construction which is known after Poinsor (Fig. 31), if D is the radius
vector of the index ellipsoid, then E is the normal from the origin to the correspond-
ing tangent plane. Consequently, given the vector D, the plane containing D
and E can in general be uniquely determined. From Fig. 27 and Eq. (26.6) we
know that a wave can be propagated along a direction perpendicular to D, only
in the plane of D and E. Consequently, given D, by virtue of the Poinsot con-
struction there is in general a unique direction of wave propagation inside an
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anisotropic crystal. This is in sharp contrast to the case of the isotropic solid
where the wave can be propagated along any direction perpendicular to D (since
the directions of D and E coincide).

The converse problem of determining the orientation of the vector D for any
given direction of propagation is of considerable importance in crystal optics.
Let us consider the propagation of a wave along an aribtrary direction which we
take as the Oz direction. The section of the index ellipsoid by the xy plane will
be an ellipse shown in Fig. 32. The vibration of any wave propagated along Oz
must be in the plane of this
section. Itis clear that only
that D vibration for which
E lies on the (D, z) plane can
be propagated along Oz
And thishappensonly when
‘the D vector coincides with
the principal radii of the
elliptic section. This-is a
.property of any triaxial
ellipsoid which can be
proved as follows. Let the x
axis be taken along the D
vibration. We wish fo de-

termine the orientation of Fig. 32. Given a direction of wave propagation Oz, two waves can be

axi 3 propagated, and these have their I vectors parallel to the principal axes of
the x S fOI' Wthh the the central elliptic section of the index ellipsoid perpendicular to Oz. Their

above conditioni.e. E hes in refractive indices #,, 7, are equal to the principal radii of this section.
the DOz plane is satisfied. )

If the equation to the ellipsoid is

aj.lxz_l_ Ao )%+ U332 120105y 285392 + 245,25 =1 (30-6)

the equation to the elliptic section would be
Ay P+ Ay Y2+ 20,8y = 1. (30.7)

The normal at any point %, ¥, 2 of the ellipsoid has direction cosines proportional

Zi s : £ Zf Hence the condition that the normal at the tip of the radius
vector along the direction should lie in the xz plane is that —f =0 at x=0,
y=0 ie., .
Go= 0 . (30.8)

This signifies that the x axis and hence the D vector must be taken along one of
the principal axes of the elliptic section. Hence we get the proposition: Given
the divection of the wave novmal S two waves can be propagated with their vibrations
Linearly polarised along the principal axes of the elliptic section of the index ellipsoid
normal fo s 1,

Tt now remains for us to determine the refractive index corresponding to any
direction of vibration of the D vector. We have shown in (26.7) that D is equal
to the product of #2 and the projected components of E on D i.e.

1 DEcos?® D-E
= Dczs [D7] (309)

1 Extremely elegant geometnc proofs of this and many theorems in crystal optics using
the index ellipsoid have been given in G. SAIMON, Analytical Geometry of three dimensions,
Dublin 1881.
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which from (20.15a) is equal to 1/#2, where 7 is the radius vector of the index
ellipsoid. Hence, the refractive index -
n=zr . (30.10)

where 7 is the length of the radius vector of the index ellipsoid. Thus, for any
given divection of the D vector the refractive index is equal fo the length of the radius
vector of the index ellipsoid drawn parallel to the D vector. The above results are
illustrated in Fig. 32.

The vector E corresponding to any one of the D vibrations is obtained by
PoINSOT’s construction and in general makes an angle with D). Consequently
the ray direction g, which is coplanar with D and s but perpendicular to E would
in general be different from the direction of wave propagation s. Since.for any
direction of wave propagation there would in general be two directions of vibra- -

g
g

g ol

&
S 4
& g

‘w / % 4

a : b

Fig. 332 and b. Relation between ray and wave propagation. (a) For each direction of the wave normal 8, two waves

1 and 2 are propagated with different ray directions g, and p,. JB;, Dy, 8, p, are coplanar and so are E,, D, 8, pa-

The two planes are perpendicular to each other. (b) Similarly, for every direction of ray propagation g there are two
directions s; and 8; of the wave normal and two velocities of ray propagation.

tion, there would also be two directions of ray propagation, respectively in the
planes (D, s) and (D,, s) (Fig. 33a). The ray direction corresponding to each
one of the P vibrations is parallel to the intersection of the D, s plane with the
tangent plane touching the index ellipsoid at the tip of the corresponding prin-
cipal axis of the elliptic section (Fig. 31). :

Any elliptically polarised vibration can be regarded as the sum of two linearly
polarised vibrations along the principal vibration directions of the crystal. Since
these two vibrations will be propagated with different velocities, the elliptic
vibration cannot in general be transmitted through the crystal without change
of form. Hence though we have sought for and obtained only plane polarised
solutiors it is quite clear that there cannot, in general, be solutions for any other
states of polarisation (in transparent, optically inactive crystals).

B) The Fresnel ellipsoid. Just as (29.14) expressing E as an explicit function
of D may be described by means of the index ellipsoid so also the relation {29.2)
which expresses D as an explicit function of E may be described by the Fresnel
dllipsoid whose equation is :

SXX2+€YY2+ Szz2=1. (30.'1'1)

If the radius vector of this ellipsoid represents in magnitnde and direction the E
vector, then the equation to the ellipsoid can be written from (29.17) as

D.E=1. (30.12)

Given F, the vector D can be obtained from the Fresnel ellipsoid by the PoiNsor’s

construction described in the previous paragraph. Since ¢ the direction of ray

1 Hence the name index ellipsoid for this tensor surface.
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propagation is perpendicular to E and it lies in the plane of D and E, we get the
result that given E, we have in general a unique direction of ray propagation.
Further E is equal to the product of v2 and the component of D along E [Eq.(26.14)]
Hence we can by using all the geometiric arguments presented in the previous
paragraph show that for a given direction of ray propagation, two E vectors
(parallel to the principal axes of the elliptic section of the Fresnel ellipsoid, normal
to the ray direction) are propagated with ray velocities equal respectively to the
semi-principal axes of the elliptic section (Fig. 33b). .

" The vector D corresponding to any one of the E vibrations in general makes
an angle with E. The direction of wave propagation s lies in the plane of E and o
and is perpendicular to D (see Fig. 33b) and would therefore be normally dif-
ferent from the direction of ray propagation. Hence for any direction of ray
propagation there would be usually two directions of wave propagation. The
wave direction of any one of the E vibrations is the intersection of the E, ¢ plane
with the tangent plane touching the Fresnel ellipsoid at the tip of the correspond-
ing principal axis of the elliptic section. '

From what has been stated above it is clear for every property to be derived
from the index ellipsoid there is a corresponding property to be obtained from
the Presnel ellipsoid!. It follows that the variables occurring could be written
in two rows:

EDsgz} nﬂxayaz,} (30.43)

11
DE ——c gz.
951,’ 7, x €y &z

Any relation that is valid for the members of one row remains valid when all
the corresponding members of the second row are substituted.

_31. Analytical solution of wave propagation along an arbitrary direction. We
have proved from geometric considerations that given the direction of propaga-
tiom, all vibration directions transverse to it are not permissible in an anisotropic
medium. We have shown that in general, only two directions of vibrations are
possible corresponding to two orthogonal states of linear polarisation—these
vibration directions and the corresponding refractive indices being determined
by the index ellipsoid. We now give a simple analytical proof of the same results.
We present this as we shall be extending the same method for the systematic
presentation of the features of the propagation of light in 2 more complex class
of crystals.

‘We may choose the direction Oz of a set of orthogonal coordinate axes Ox, Oy,
0z to be along the direction of propagation. Then D,==0 as the vibration direc-
tion must be perpendicular to the direction of propagation. We wish to find the
orientation of the vector D in the x, y plane for which the wave is propagated
unchanged. The orientation may be specified by the ratio D,/D,. Then the
section of the index ellipsoid normal to the direction of propagation lies entirely
in the %y plane and is an ellipse with its major and minor axes not coinciding
with O % and Oy. Without loss of generality we may for convenience choose the
axes Ox and Oy to be the axes Ox’ and 0y" which lie along the principal axes
of the ellipse. Then the equation to the ellipse becomes

A X2 ape v’ 2=1. (31.1)

1 Tt has been remarked in SOMMERFELD’s “Optics™ [6]. *““What is involved here is the
same duality that exists in projective geometry between the coordinate spaces of points and
planes.”

Handbuch der Physik, Bd. XXV/1. ‘ 5
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We have already proved in Sect. 29 that the coefficients ;s which occur in the
equation to the ellipsoid are also the components a;; of the tensor [a] referred
to the same axes. By our choice of axes we have made a;,==0 and D,=0 and
hence Eq. (20.14) which gives the relation between E and D yields
E.=a:D,,
FT o } (31.2)
Eyl =4dgy Dy' .

Now if  is the refractive index for the wave with the '\fe;tof D then it follows
from Eq. (26.8) that o~

1 1 '
E"=—7z—?'_D‘}; Ey=jn?Dy- (31.3)

Combining the two equations (31.2) and (34.3) we have =

1 ’
(F — all) D =0,

s , (31.4)
(‘E -— azz)'Dy' =0.
These two equations must simultaneously be satisfied for wave propagation along
the Oz direction.

The two solutions of (31.4) are A T ’

~,

D, =0 for which —n?; =aj1, "
. 615
D=0 for which = ags.

We get the result that given the direction of wave propagation (a) the direction
of vibration of the two D vectors coincide with the direction of the principal
axes of the elliptic section of the index ellipsoid normal to the direction of pro-
pagation, (b) the refractive indices are equal to the lengths of the major and
minor axes, i.e., velocities of propagation along the given direction are proportio-
nal to the reciprocal of the two principal axes of the elliptic section. If we define
the plane of the D vector and s the direction of propagation as the plane of polari-
sation of the light, we find that all plane waves (monochromatic) travelling in a
crystal are completely linearly polarised in directions determined by the major
and minor axes of the elliptic section.

32. Crystal symmetry and the index ellipsoid. o) General considerations. Since
the index tensor is a second order symmetric tensor, it can be defined by six
parameters. Correspondingly, the index ellipsoid also requires six parameters
for its specification, which may be taken to be the lengths of its three principal
axes and three “angle” parameters to specify its orientation with respect to the
crystallographic axes. The principal axes of a triaxial ellipsoid are two-fold
axes of symmetry and its principal planes are mirror planes of symmetry. It is
therefore necessary that if a crystal possesses certain elements of symmetry, the
disposition of the optical ellipsoid in the crystal must be in accord with these
symmetry operations. The conditions imposed by such elements of symmetry
may be readily worked out! and may be summarised as in Table 2.

Any combination of these symmetry elements existing in a crystal will lead "
to the restrictions corresponding to each one of the elements. As a consequence,
the crystals occurring in different crystal systems may be classified as in the

1 See for instance, the article of H. JAGODINSKI in Vol. VII, Part 1 of this Encyclopedia.
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Table 2. Effect of crystal symmetyy on the index ellipsoid.

Element of symmetry

Reéstriction on index ellipsoid

Centre of inversion (1= 1)
2-fold axis (2§
Mirror plane (2=m)

n-fold axis or z-fold alternating axis with.

nz3(n, %)

None
One principal axis parallel to the 2-fold axis
One principal axis normal to the mirror plane

One principal axis is parallel to the axis and
the two axes in the perpendicular plane
are equal, ie., perpendlcular SecthIl is a

circle

™~

Table 3, according to their optical behaviour?. Thus, in a monoclinic crystal, since
the orientation of one of the axes is fixed, only 4 parameters are required to specify _
the index ellipsoid, three to give the magnitudes of the three principal axes and
the fourth to specify the azimuth of the major axis in the ac¢ plane with respect

to the crystallographic axis a (say).

readily deduced from the data in Table 3.

In the other cases, the number may be

Table 3. Optical behaviour of crystals belonging to different crystal systems.

Optical behaviour

Variation with
wavelength, temperature or
isotropic pressure

No. of N N
Crystal system rﬁ::;:s Nature Da;g c(;rllgl?;:;stgindl of the
Triclinic 6 Triaxial, principal axes
in general direction
Monoclinic 4 Triaxial, one principal
(b-axis unique) - axis || b, other two L b
Orthorhombic - 3 Triaxial, all three prin-
cipal axes along a4, b
and ¢
Rhombohedral, 2 Uniaxial, spheroid with
Tetragonal, He- unique axis parallel to ¢
xagonal (¢ axis ]
to 3,4 or 6-fold
axis)
~ Isometric (éubic) 1 Sphere

Biaxial, optic axes in
general directions

Biaxial, optic axial
plane either || or L
tod .

Biaxial, optic axial
plane || to b, be or
ca, acute bisectrix ||
to one of the crystal
axes i

Optic axis || ¢

Isotropic

General

Orientation of one
principal axis al-
ways along b

No change in orien-
tation, but only in
length of principal
axes i.e,inea, f§, ¥
(or n,, Ny, M)

Optic axis always
along ¢, but n, and
7, Ay Vary

Alwaysisotropic, but
# may change .

" Obviously the elements of the index tensor would in general vary with the
wavelength of light, the temperature of the crystal and also with hydrostatic
pressure. The nature of these variations is listed in the last column. The optical
axial angle in general varies with these factors in a biaxial crystal, but the plane
of the optic axes is not arbitrary except in triclinic crystals.

B) Uniaxial crystals.

In crystals belonging to the trigonal, tetragonal and

hexagonal systems the index ellipsoid must clearly become an ellipsoid of revolution,
the axis of revolution OZ being coincident with the #-fold crystallographic axis

1 Reference may also be made to the article by C.D. WEesT in ‘Physical Methods in
Chemical Analysis”’, Ed. BErL, New York 1950, p. 438, wherein he has pointed out the
inadequacy of the Hermann-Mauguin (Internatiomal) or the Schoenflies symbols in con-~
nection with crystal optics.

*

v
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of rotation. The normal to the circular section of the uniaxial ellipsoid viz.,
the OZ direction is defined as the optic axis. The crystal is termed positive
or negative according as the index ellipsoid is a prolate or an oblate spheroid i.e.,
according as #, the refractive index for the D-vibration parallel to the optic
axis is greater or smaller than #,, the refractive index for any vibration per-
pendicular to the optic axis. '
The features of propagation in uniaxial crystals may be obtained by a con-
sideration of the results of the previous section, Referring to Fig.34a it will
be seen that OY will be normal to the ellipsoid at Y, so that the E and D vectors
coincide for this direction of vibration as for an isotropic medium. Thus a D
vibration parailel to QY can be propagated along any direction lying in the plane”

Wave surface
=~
~,
4
AL
b
A ¢
r
4 I [
a b

Fig. 34 a and b. Propagation of light in a unjaxial ceystal. (a) Section of theindex ellipsoid whichis an ellipsoid of revolution

about 0Z. For propagation along 8, the two ID vectors are ), in the plane of the paper and D, normal to it. The two

refractive indices are #; =0P, and #,=nm. (b) Section of the Fresnel ellipsoid which is also an ellipsoid of revolution
about 0Z. The two ray velocities along p are v and vy, which are used for constructing the wave surface.

of the paper. Conversely if we consider an arbitrary direction of wave propaga-
tion s which we may, without loss of generality, suppose to be in the plane of
the paper, one of the D vibrations is normal to the principal plane containing
the optic axis and the direction of propagation. This is known as the ordinary
wave since it has a constant refractive index #, and for it the wave normal
and the ray direction coincide (since D is parallel to E). The second wave—the
* extraordinary wave—which can be propagated along s must have its D vibration
perpendicular to the first, i.e., lying in the principal plane defined by the optic
axis and the direction of propagation. The actual orientation of the vibration
is along the radius vector of the ellipsoid drawn perpendicular to s in the plane
of the paper (see Fig. 34a). The extraordinary refractive index # given by the
length of this radius vector depends on the inclination § that the direction of
propagation makes with the optic axis. The expression for # is readily obtained
by writing the equation for the section of the index ellipsoid by the plane of the
paper as
n—gj‘ _1;3 = —'r? (32.1)
where o and y are the direction cosines of any radius vector of the ellipse. Hence
we have
1 cos? & sin? &

z (32:2)

n? ng n2
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It will be seen from Fig.34a that for the extraordinary wave, the D vector
obtained by PoiNsoT’s construction does not coincide with D. This leads to the
most interesting property of this wave, viz., ; that the ray-direction deviates from
the wavenormal, always lying however in the principal plane defmed by s and
the optic axis.

Along the optic axis itself any linear vibration lying in the circular section—
hence a wave in any state of polarisation~can be propagated unchanged with
refractive index #,,, the ray and the wave normals being also coincident.

The wave surface for a uniaxial crystal may now be obtained by using the
fact that it is identical with the ray velocity surface (Sect. 27). The extraordinary
ray velocity v, for any direction of ray propagation ¢ (Fig. 34b) in the plane of
the paper may be determined from the section of the Fresnel ellipsoid. This
is done in the same manmner as the extraordinary wave index corresponding fo
the wave normal s has been obtained from the section of the index ellipsoid.
Remembering that the lengths
of the semi-axes of the Fresnel
ellipsoid along OX and OZ are
Uy (= 7::) and v, (— —nL) we have

corresponding to Eq. (32.2)

L
W= +5- (32.3) negative pastiive
7 £ Fig. 35. Wave surfaces of umiaxial carystals. (a) for a negative
The extraordinary ray velocity arystal, (b} for a positive crystal.

surface is traced by the tip of

the radins vector whose length is equal to the extraordinary ray velocity w,
corresponding to the particular ray direction (see Fig. 34b). The equation to
its section is therefore obtained by setting

v,=7, X=gxv, Z=gz7
in Eq. (32.3) giving .
X2 Z2
wr T =1 (32.4)

_

On the other hand since for all directions of ¢ in the plane of the paper, the E
vector perpendicular to the plane of the paper is propagated, the section of the
ordinary ray velocity surface is a circle of radius v,

- Thus the complete wave surface of a uniaxial crystal consists of a spheroid
and a sphere touching at points Z = =-7,. This is illustrated in Fig. 35a and b
for positive and negative crystals. :

33. Biaxial crystals—singular directions and conical refraction. For crystals
of lower symmetry than those considered in the previous section, the index ellip-
soid is a triaxial ellipsoid. We shall choose the axes of coordinates 0X,0Y, 072
such that ny << #y < #, Where ny, %y , 72 are the lengths of the principal semi-axes, -
being also the refractive indices for vibrations parallel to X, Y,Z* The cor-
responding light velocities are called the principal light velocities being given by

. ,
vk=ax = 5 etc. . (334)

1 The three principal refractive indices are often referred to as «, §§, ¥ in the mineralogical
literature, a<<ff < 7.




70 G.N. RamacuanDrRAN and S. Ramasesaan: Crystal Optics. Sect. 33.

Considering any direction of propagation, in the XZ plane (Fig. 36) one of the
vibrations propagated must be parallel to the Y direction (since the radius vector
in that direction meets the surface of the ellipsoid normally), the corresponding
refractive index being #y. The other vibrations must necessarily lie in the XZ
plane, normal to the direction of propagation, having therefore a refractive index #
intermediate between 7y and nz. Asin (32.2) # is given by

1 cos? P sin®

= +— : (33-2)

HE ny n%

where & is the inclination of the direction of propagation to the Z axis.

Clearly, there will be two directions ON; and O N, (Fig. 36) for which » would
be equal to %y and where the sections normal to these directions would be circular.
These directions are called the optic axes (also some-
times called binormals), and they would be symme-
trically inclined to the Z direction. The optic axial
angle 2V is determined by substituting V for ¢ and %y
for # in Eq. (33.2) giving

ay = ay costV 4+ azsin? V (33.3)
or
ay—a, - ax —a
costV=2X"22 = 2= 2X"Y (33 4)
ax —az ax —az
and
1 1
2 ay —ay nk ~ nk
tan? V= = . (33.5)
Fig. 36. Central section of theindex . ay—az 1 1
ellipsoid for a biaxial crystal normal ne,  nl
to OY. B F and P, B are the two Y z

circular sections of the ellipsoid and

e o O e 0% The expressions for cos?V and sin®V could similarly

axes, which liein this plane. be written in terms of the principal refractive in-
dices.

A crystal is said to be a positive or a negative crystal, according as 2V is
acute or obtuse, i.e., according as the acute bisectrix coincides with 0Z or 0X
(these directions correspond respectively to the maximum and the minimum
refractive index).

Since the section perpendicular to an optic axis is circular, any state of polari-

“ sation is capable of being propagated along it with a single refractive index #y.
The optic axes are therefore sometimes called the axes of isotropy, but actually
all directions of the D vibration lying in the circular section are not equivalent
as far as the corresponding ray directions are concerned. We have seen that
OY lies on the circular section and since OY is also normal to the ellipsoid at Y,
the D and E vectors will coincide for this vibration. Hence for a D vibration
parallel to OY, the ray direction coincides with the wave normal which in the
present case is the optic axis ON;. However, for a D vibration lying on the cir-
cular section perpendicular to OY (i.e. parallel to OF,, Fig. 37), the E vector
obtained by PornsoT’s construction would make an angle with the I vector
giving rise to a ray direction OR different from ONj, but lying in the XZ plane.
For other directions of the D vector, the deviation between the ray and the wave
normal will be less. In fact, it can be shown that as the D vector occupies all
possible directions parallel to the radii of the circular section, the corresponding
ray directions will describe a cone, the optic axis itself being one of the generators®.

1 See G. SarmoN: Analytic Geometry of Three Dimensions. Dublin 1881.




Sect. 34. Formulation of results in terms of optic axial directions. 71

This phenomenon is known as the internal comical refraction. Each point
of the circle of rays observed with unpolarised light corresponds to a specific
direction of vibration of the D vector. The phenomenon is considered in greater
detail in Sect. 77.

With an identical treatment, it is clear that the Fresnel ellipsoid will have
two circular sections, the normals to which will be the directions of single ray
velocity. These are also called the optic bi-radials. These will again lie in the
XZ plane symmetrically about the Z axis. To obtain the angle 2V, between them,

we note that the principal semi-axes of the Fresnel ellipsoid are 7:— s % and —7—22—
x| Py
R instead of ny, ny and n; as is the case

of the index ellipsoid. Hence, corre-
sponding to Eq. (33.5), we have

2 2
27 L MY —%X
tan V’*—_n%—n";, . (33.6)

Fig. 38,

Fig. 37. Internal conical refraction. When the vibration direction is along OY, D and E coincide and the ray is along

ON,. When D) is along OF,, in the circular section, E is along 0 (,, and the ray direction is OR. For various other directions

of D in the circular section, the ray directions form a cone, The vibration directions for different directions in the cone
are marked in the expanded diagram at the top.

Fig. 38. Section of the index ellipsoid normal to a general direction of propagation. R, and R, are the traces of the circular
section in this plane.

This formula shows that the directions of single ray velocity do not coincide with
the optic axes. In the circular section of the Fresnel ellipsoid, as the direction
of E varies, one gets different directions of wave propagation for the same direc-
tion of ray propagation. This phenomenon is known as the external conical
refraction and will be considered again in Sect. 77. :

34, Formulation of results in terms of opfic axial directions. It is of impor-
tanceIfi practice to be able to determine the vibration directions and refractive
indices corresponding to any specified direction of wave propagation. Geometri-
cally the problem is to obtain expressions for the orientations and the magnitudes
of the principal semi-axes of the elliptic sections in the plane of the wave front
{i.e. normal to the direction of wave propagation). The results are more elegantly
expressed if the direction of propagation is specified by the angles it makes with
the two optic axes rather than by its direction cosines with respect to the principal
electric axes.

Let us now consider any direction of wave propagation which we may con-
veniently take as normal to the plane of the paper (Fig. 38). The central section
perpendicular to Oz will be an ellipse and the major and the minor axes of this
elliptic section will correspond to the directions of vibrations D’ and D" of the
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waves propagated along Oz. The two circular sections of the index ellipsoid will
intersect the elliptic section along R, and R,; these must be equally inclined to
the principal axes of the elliptic section since we must have R, =R,. Further
since R, is perpendicular both to Oz and to the optic axial direction ON,, it
must be perpendicular to the plane defined by Oz and ON,. Similarly R, is
perpendicular to the plane defined by Oz and the other optic axial direction
ON,. The plane N,0z and N,0z will intersect the elliptic section in 7, and 7,

where 1y is perpendicular to R;, and 7, to R,. Hence r; and 7, must be equally
inclined to the principal axes of the elliptic section, or vice versa, the principal
axes are the internal and external bisectors of the angle between 7 and 7,.
Representing the directions by points on a sphere (Fig. 39) the D vibrations pro-
pagated along the direction z bisect internally and externally the angle subtended
at z by the two optic axial directions IV, and N;.

Fig. 39. (a) N;, N, z are the intersections of the optic axes and the direction of propagation with a sphere. The two
vibration directions I and 1"’ for propagation along Oz are the internal and external bisectors of the angle N,z N,.
(b) Construction for proving Eq. (34.1).

The velocities v* and v of the two waves propagated along the arbitrary
direction Oz are given by the elegant relations

vi=}k+op) +3 (vi—v%)cos(UerUl)} Ba)
V"2 =3 (vk +98) + % (vk — v3) cos (U, — ),

where U, and U, are the respective mchnatlons that the direction of propagation
makes W1th the ophc axes NV, and N,.

To prove this we choose our Ox axis such that the xz plane bisects the angles.
between the planes Nz and N,z (Fig. 39b). The x direction is therefore one of
the vibration directions D’ and the length of the intercept by it is the correspond-
ing refractive index, i.e. we have v'2=ga,, where a,, is given by (29.19) in terms
of the direction cosines ay, 8y, 3, of Ox. Since the direction cosines of the optic
axes are (sin V, 0, cos V) and (—sin V, 0, cos V) the angles %, and #, which Ox
makes with the optic axes are -

cosuy =aysinV4pcosV, cosuyg=—oysin¥V-+ycos¥, (34.2)
. QOS#; —cosuy =2 sin ¥V,  cosu 4 cosu, =2p;cos V. ’
We have also from spherical trigonometry

cosu, =sin Ujcos 27, cosu,=sinUcos%] (34.3)
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where I is the angle N;ZN,. On account of the expressions for sin?¥ and cos?V
given in (33.4) the first relation of (29.19) can be written as.

VE=ay, = ay + (ax — az) (oc:'Sin2 V— yf’cos2 18]

or because of (34.2) and (34.3)

v'2 = ay — (ax — az) COS 4, COS Uy
- ; : 21 (34.4)
=ay — (ax — az)sin U sin U, cos? 5 7.
Similazly it can be shown that
V't =ay -+ (ay — az) sin Uy sin Upsin?§ 1. (34.5)

Now according to (33.3)

ay =% (ax + a5) + % (ax — az) cos2V
=% (ay +az) + % (ax — az) (cos Uy cos U, +sin U, sin Uy cos I).

Introduction of these in (34.4) and (34.5) leads to the expression (34.1).
From (34.1) we see that?
2

V2 — 9”2 = (% — v}) sin U sin U, (34.6)

Hence the birefringence for propagation along a direction making angles of U
and U, with the two optic axes is, approximately

An.= K sin U, sin U, - (34.7)

where K is some constant. When the two optic axes coincide as in a uniaxial
crystal U, = U, =U (say), the formula reduces to

An =Ksin?U. (34.8)

This may be directly derived from (33.2). These are of importance in the discussion
of the interference figures exhibited by uniaxial and biaxial crystals (Sect. 63 ef seq.).

Since D, s and ¢ lie in a plane, the two ray-normals corresponding to the wave
normal z in Fig. 390b must be on the arcs zx and zy respectively. The position
of any one of them, for example, the ray R, lying on zx is determined by the
condition that zx must also be the internal bisector of the angle subtended by
the two optic bi-radials at R since the plane of E and ¢ is also the plane of D
and s. This is known as SYLVESTER’s conmstruction. For all the propositions
proved in this section, there exist corresponding propositions for rays which can
be derived from the Fresnel ellipsoid representation.

35. Wave velocity surface and the wave surface. The wave velocity surface was
defined in Sect. 27.. The equation to it can be derived from the constitutive
equation (26.7), which may be written as follows in terms of the principal electric
axes of the medium as co-ordinates axes:

Dy =nt|2X — sz (B-3)] (35.1)
oY
Dy=—sx (E-8)[{ — 1} 35.2)

1 This relation is usually proved by a method using the wave surface (see, e.g. DiTcu-
BURN), but the above proof of (34.1) and (34.6) due to VoicT is much simpler. For other elegant

proofs, see SALMON’S Analytic Geometry of three dimensions.
a
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Since D - s =3 Dy sx =0, we have from the right-hand side of (35.2)
' 1 1 '
Ds#/(— ) =0 353)

2 skl — vk) =o0. (35-4)

Since any radius vector r (x, v, z) of the wave velocity surface is equal to the wave
velocity v in that direction we may set r=v and X, Y, Z=s,7, 5,7, 5,7 in (35.4)
to get the equation to the wave velocity surface, which.is

> X2 — v}) =0. a (35.5)

The ray velocity surface could be obtained in a similar manner from the other
constitutive equation (26.14) which may be put in form

EX=—,:3‘ [éxEx— ox (D Q)]

or

or
Ex=—0x(D-0)/(n} — ex).
Since E - 0 =0 we have similar to (35.3) the result

TG —g)=0. 656

Since the radius vector r(x, ¥, z) of the ray velocity surface is equal to the ray
velocity v, along that direction, we thus obtain the equation to the ray velocity

surface as
3 X 20/ — v}) =0. (35.7)

This is also the equation to the wave surface at £=1, which was shown to be
identical to the ray velocity surface in Sect. 27.

It may be mentioned that the equations to the wave velocity surface and the
ray velocity surface could also be derived from the index ellipsoid and the Fresnel
ellipsoid respectively in the following manner. To obtain the former, mark off
along a line from an origin O in the direction of wave propagation s, two points
P and Q, such that O P and O Q are equal to the two wave velocities, which are
given by the reciprocals of the major and minor axes of the central section of the
index ellipsoid normal to 8. The loci of the points P and Q, for all directions of s
" in space, would represent the wave velocity surface, which is in general a surface
of two sheets. The ray velocity surface (which is the same as the wave surface)
could be obtained in a similar manner from the Fresnel ellipsoid, but now O P
and O Q are equal to the two ray velocities, which are directly equal to the major
and minor axes of its central section normal to @. This is only an extension of
the method of obtaining the wave surface of a uniaxial crystals discussed in Sect.32.

The wave surface is also a two-sheeted surface, as would also be evident from
its Eq. (35.7), which is of the fourth degree. An idea of its form is best obtained
by considering its sections by the principal co-ordinate planes. These sections
could also be derived, ab initio, by the process illustrated in Fig. 34 for uniaxial
crystals, each section therefore consisting of an ellipse and a circle. When making
the construction for a biaxial crystal, it must be remembered that the third re-
fractive index for the vibration normal to the paper in Fig. 34 is not equal to
one of the other two, so that the circle and the ellipse will not touch each other.
In fact it may be shown that, for the section by the Y Z plane the circle completely
encloses the ellipse; whereas for the XY section, the circle is contained within
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the ellipse. In the case of the section by the XZ plane however the circle and the
ellipse intersect. These are illustrated in Figs. 40a—d. In Fig. 40c the
tangent line touching both the circle and the ellipse has been drawn. It can be -
shown that the plane parallel to the ¥ axis and containing this line, touches the
wave surface along a circle (see Szivessy [I]). The perpendiculars ON; and
ON, to these tangent planes are clearly the-optic axis, i.e. directions of single
wave velocities. Corresponding to one such wave normal ON,, there are an
infinite number of ray directions, lying on a cone obtained by joining the origin

&)

Fig. 40a—d. Form of the wave surface for a biaxial crystal. (a), (b), (c) are the sections by the three co-ordinate planes.
(d) is a three-dimensional diagram of one octant.

to the circle of contact. This is the phenomenon of internal conical refraction,
which has been discussed in Sect. 33, using the index ellipsoid.

The lines OR, and OR, joining the origin to the points of intersection of the
circle and ellipse in Fig. 40c are the directions of single ray velocity. Each such
point is a dimple in the wave surface, through which an infinite number of tangent
planes can be drawn. The normals to these tangent planes lie in a cone and re-
present the possible direction of the wave normal for a ray propagated along the
optic biradials OR, and OR,. This corresponds to the phenomenon of external
conical refraction already discussed in Sect. 33, using the Fresnel ellipsoid.

The features of light propagation in crystals can be derived not only by the
index ellipsoid treatment as described above, but also from the wave surface
representation, which is the one that is usually followed. The wave surface
representation also finds application in the discussion of the phenomenon of
refraction in anisotropic media (see Sect. 58). The two refracted wave fronts
_are given by the envelopes of the different Huygens wavelets. HUvGENs himself,
after introducing the idea of the secondary wavelets applied it to explain the
“strange refraction of Iceland spar ", assuming with ingenious foresight the correct
form of the wave surface for a uniaxial crystal.
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II1. Non-absorbing optically active crystals.

36. Nature of the dielectric and index tensors. So far, we have discussed the
case of non-absorbing, non-optically active crystals, for which the dielectric
tensor has real components and is symmetric. In such a crystal, two linearly
polarised waves are propagated in any general direction, and in particular direc-
tions, namely the optic axes, waves of all states of polarisation are transmitted
with the same velocity. The last property is exhibited in all directions by a cubic
crystal or an isotropic medium. It is known that some isotropic media exhibit
the property of optical activity, i.e. of rotating the plane of polarisation of a
linearly polarised wave traversing the medium?. The same property is also shown
by some cubic crystals, e.g. sodium chlorate and sodium bromate, and by umi-
axial (quartz, cinnabar, benzil) and biaxial (cane sugar, Rochelle salt) crystals-
along their optic axial directions. The phenomenon of optical activity was first
discovered by ARAGO? in quartz and other crystals in 1841 and later observed
by BrotT in liquids and gases.

A theory of optical activity in isotropic media was first given by FRESNEL
as early as 1822. The incident plane polarised beam is supposed to be resolved
- into two opposite circularly polarised components in the medium which are then
propagated with different velocities. When they reunite on emergence, the plane
of polarisation is rotated on account of the phase difference introduced between
the two waves. This theory is phenomenologically correct and corresponds to
thé-special case of the more general theory of the propagation in optically active
media. -

FlSome attempts were made in the nineteenth century to develop a structural
theory of optical activity, notably by SorNckE and REUSCH, but they were not
very satisfactory. A full bibliography of these studies will be found in the article
by Szivessy [1].

The first attempt to explain optical act1v1ty in terms of the dlspersmn theory
is due to DRUDE ([3], p. 400 et seq.). It is obvious that in a medium having
the property of a screw axis, the displacement vector I} must depend not only
on the electric vector E at that point but also on the spatial va.natmn of Einy
the neighbourhood. DRUDE therefore assumed for D the form

D=¢E+fculE. (36.1)
Since
curl E = % %I and H=sXxE

for an electromagnetic wave in vacuum, we have

, D=:E+i2f(sxE). ’ (36.2)
Putting
iTts=G (36.3)
we get
D=:E+i(GxE). (36.4)

This equation, as will be shown below, agrees with the more general theory, as
far as an isotropic medium is concerned. However, DRUDE made a further

1 A full account of this subject of optical activity will be found in the article by J.P.

MatHIEU in Vol. XXVITII, p. 333, of this Encyclopedia.
2 F. AraGo: OEuvr. Compl., Vol. 10, p. 54. Paris 1858.
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assumption that the parameter / and hence the vector G is the same for all
directions of propagation; this does not agree with observation.

The form of Eq. (36.4) may also be derived from general phenomenological
considerations. If we discard the assumption made in Sect. 20 that the com-
ponents of the tensor relating the vector D and E are all real, we have the relation

D=[6]E +i[e]E. (36.5)

This implies that Dis dependent not only on E but also on 2E/d% (since 6/0t =1c)
and hence (36.5) can be written in the form :

.1 %
D=[cE+~ - [o]E. (36.6)
For an infinitesimal change we have

dD = [¢]dE +— (o] B dz.
Hence
E.-iD=E.[s]dE —oE-[o] Edi. (36.7)

Comparing Eq. (36.7) with (29.6) and (29.7) we see that the introduction of.the
imaginary part of the dielectric tensor will generally lead to dissipation unless
the second term in {(36.7) vanishes identically. This will occur only if [] is anti-
symmetric i.e.-p;;=—p;;. This can be seen more clearly by using the fact that
an antisymmetric tensor w[g] can be replaced by a vector operator GrX where

Gy =003 =— W03 GCo=0gs =003 Gy=wg = —wgy. (36.8)
Then
D=[¢]E++GxE. (36.9)

This equation is the same as (36.4) and we shall call G the gyratton vector.

Integrating Eq. (36.7) we obtain as in the case of an optically inactive medium
the electric energy density ‘
W,=3}E-[s]E. (36.10)

Thus the antisymmetric tensor [g] does not contribute to the energy deusity
which must be a function of state of E. Hence it is not at all necessary that the
components of [p] should be the same, independent of the direction of propagation
as should be the case with the components of [¢]. As the gyration vector depends
on the spatial variation of E in the neighbourhood of a point, it would in general
depend on the direction of propagation in an anisotropic crystal. We may take
G o0 be a linear vector function of the wave normal s. This has also been obtained
from a molecular theory® of optical rotatory power. Thus we may write

G=[¢s (36.11)

where the gyration tensor [g] need not necessarily be symmetric. This is in
accordance with the molecular theory of Born. It may however be remarked
that since the observable rotation is dependent only on (g;;+g;;) it wounld have
been sufficient for a phenomenological theory to assume the gyration tensor to
be symmetric.

1 M. Borx: Z. Physik 8, 405 (1922).
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We shall take Egs. (36.9) and (36.11) to be the conmstitutive relations for a
transparent optically active medium assuming in addition B=H?,

37. Refractive index of an opticaily active crystal?. Eq. (36.4) may now be
combined with the relation (26.7) )

D=u[E—s(E-s)] (37.1)

for an electromagnetic wave. Suppose the coordinate axes are chosen parallel
to the principal axes of the real part of the dielectric tensor. Then, equating the
right hand sides of (36.4) and (37.1). we have

Ey=[nk—(1 —s¥) n2 4+ Ey{(n®sx sy +1G)} + Ez{ntsysx—iGy}] (37.2)
and two similar equations. The quantities Ex, Ey, E, may be eliminated from
these, giving the following equation for the variation of refractive index with
direction:

1t (n% 5% + n% 5%+ nksg) — w2 {D n¥nE (s} + sP} + #2(s X G)? —}—} (57.3)
+1’I«X7Ly'nz—- (’ﬂXcg(—i—ﬂyG%r—i—n%G%) =0. ) . )

Although this quadratic equation in #? can be exactly solved, the solution may
be put in a more tractable, but approximate form, by using the information that
the components of G are small compared with those of [¢]. If we denote by #,
and »,; the solutions of (37.3) when &' is set equal to zero, then it can be written as

. (1% — np?) (12 — mg'?) = g? ) (37.4)
where
_ (1% Gy +ny Gy + n3GE) —#P (s - G)2 _
g'= n% % + 1y sy +ng sy (37.5)

Even then, the right-hand side of (37.5) contains the quantity #, which is to be
determined. To avoid this difficulty, we put #,=n,=mn3 in Eq. (37.5) only, i..
we assume that the property of optical activity does not depend on the magnitude
of the birefringence, although actually the crystal may be in fact birefringent3.
Then, g takes the simple form

g=s-G (37.6)

and has a fixed value for a given direction of propagation. The two refractive
indices for this direction may then be calculated from (37.6) and are

w2 =3 {uf? -I-n6'2+”/ (mg? — 1y %) + 48|} }
i i o T 7

1 See PockELS' Lehrbuch [2] for an alternative theory where B+ H. In the customary
treatments B is set equal to H to avoid excessive complication, although this procedure is
considered an approximation. The treatment we have adopted in Sect. 20 and Sect. 36
shows that contrary to what is often supposed, the use of (36.9) and B = H, together with
PovnTING's theorem, does not lead to any violation of the principle of conservation of energy.
However the expression (36.10) which we have derived for emergy density is not 3E-D
as is assumed at the commencement in the usual treatments. That the electric energy density
can differ from +E - D for any medium is by itself not a matter of surprise since this is mani-
festly the case in absorbing crystals. Hence phenomenological considerations by themselves
do not require that B == H. It may be remarked that polarisability theories of optical activity
do not appear to lead to any magnetic moment being induced. See Borw [4] or e.g. G.N.
RaMACHANDRAN: Proc. Ind. Acad. Sci. 33, 217, 309 (1951).

2 The treatment in this section follows the conventional method adopted by most treatises,
e.g. Bor~ [¢], Szivessy [1]. A more exact solution of the wave equation is given in Sect. 38.

3 W. Voigr: Gottinger Nachr. 1903, p. 167.

(37.7)
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where we assume that #g>#g. It follows that
't n"t=ng? -+ ngy'2, (37.8)

Making use of the above formulae, it is possible to show that the two waves
which are propagated corresponding to the principal indices #’ and #”’ are two
. opposite ellipses, whose axial ratios bfa =z are!:

wWromi? g

M= T (37.9)
‘We have from (37.8)

n'r 12")'2 —_ (n'z__ 1’L{)2)
so that s, = — xi showing that the two elliptic vibrations correspond to oppositely

polarised states. We shall however show this by other methods.

38. A more exact solution of the wave equation2. The approximations which
we had to make in the last section can be avoided by the use of the inverse of
the dielectric tensor, viz. {], the index tensor. We have already seen how the
use of this tensor, with the associated index ellipsoid, considerably simplifies
the discussion of the optical behaviour of non-optically active crystals. When
the dielectric tensor is complex and takes the form (36.5), the corresponding
equation in terms of the index tensor is

E=[a)D —iI'xD (38.1)

where I' may be called the optical activity vector. Like the gyration vector it
will be a function of the direction of propagation being determined by a relation
corresponding to (36.11)

r=[]s 38.2)

where [y] is a general nine component tensor which may be called the optical
activity tensor. To obtain expressions for the quantities introduced in the present
formulation in terms of the dielectric and gyration tensors we may justifiably
neglect the squares of the components of G since even their first powers will
always be very small compared with the principal values of [¢] even in crystals
whose optical rotation is normally large. Choosing the coordinate axes along
the principal electrical axes of the crystal it can then be shown that

Ay = *é; etc., ) (38.3)
_ &xGx
N Iy= wever etc., ' (38.4)
_ EKEXY e 38.5)
Yxy Ex €y EZ ) :

It may be mentioned that the formulation of the constitutive equation of
the medium in the form (38.1), in terms of [a] and I" is as valid as the form
(36.4), in terms of [¢] and G. In fact, using the same method as was adopted
for G in Sect. 36, we can show that if Eq. (38.1) is valid, then there is no dis-
sipation in the medium. Actually, in discussing the optical bebaviour of the
medium, the formulation (38.1) in terms of the index tensor and the optical
activity vector is the more convenient one, as will be seen below. However,

1 F. PocxeLs [2], p. 328; Szivessy [1], pp. 811—843.
2 S, PANCHARATNAM: Proc. Ind. Acad. Sci. A 43, 247 (1956).
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both formulations (36.4) and (38.1) are exact and completely valid, although the
relations (38.3) to (38.5) between the coefficients in the two formulations are
correct only to the first order of magnitude.

If now we choose the coordinate axes such that the z axis is along the wave
normal, then D,=0 and we have only two components D, and D,. Also from
Eqg. (37.1) we have the simple relations

E,=»D, E,=uD, D,=0. (38.6)
Since D,=0 we have also from (38.1)

E,=auD,+ “12Dy+7:[;D s } - (38 7)
E,=ayD,+ 433D, —i13D,.
Following the same procédure as in Sect. 30 if we now take the x and y axes
to be parallel to the principal vibration directions in the absence of optical acti-
vity, then :

@p=0, @ =1}, =1} (38.8)

where v, and v, are the velocities for the particular direction of propagation in
the absence of optical activity (i.e. '=0). Substituting for E, and E,, from (38.6)
we havel!

vz—v%=i1§(Dy/Dx)’} (38.9)

v — =i [(D,/D,).

These equations can be solved to give both the principal refractive indices
and the polarisation states of the two waves.

The form of the vibration for propagation along Oz is defined by the ratio
(D,/D,) and may be obtained by eliminating * between the two equations in
(38.9) when we obtain

D, , D, i 5 2i

o +_13; =-T;(v§_,”1 =— % say. (38'10)
In terms of a general coordinate axis, /
Ii=s-I'=y, say. (38.11)
Hence
K=-2Y_. : (38.12)

vi—oi

The two solutions for D,/D, are reciprocéls of each other and it is also obvious
that both should be purely imaginary.

Putting therefore
DY . DN\’ .
(—LTZ) —itand, (ﬁ) = —icotd (38.13)
in (38.10) we obtain '
: tan 28 = K =2 —. (38.14)

73
vE— Uy

The two vibrations given by Eq. (38.43) are naturally orthogonal and correspond

to oppositely polarised elliptic waves. The ellipses are similar in form though

described in opposite senses, the two major axes lying along two perpendicular
principal planes.

1 These are practically equivalent to the equations derived in PockELS [2], p. 328.
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If we eliminate (D,/D,) between the two equations in (38.9) we obtain the
equation for the velocity » of the waves propagated along 0Z:

(02— vf) (v — vd) =72 (38.15)

The two solutions of this equation are the two principal velocities v" and 2",
which are then given by

v =} (f +of) — [/l — B + 47, }
v2=} @l 4 o) + 3B+ 497
It follows from this that
‘ (v72— v’ 32 = (v — 032+ 492, (38.17)
The wave with velocity »* will be in the state of polarisation (D,/D,)’, while the

velocity v corresponds to the state (D,/D,)” in Eq. (38.13). This may be verified
by substituting the corresponding values in Eq. (38.9) )

‘When y =0 we have from (38.14), # =0 giving the orthogonal linear vibrations
with velocities v; and v,, as should be the case for a non-optically active crystal.
The characteristic effect introduced by the parameter y is best revealed by sup-
posing linear birefringence to be absent i.e. by setting v, =v,=1,, say, in Eq. (38.13)
and (38.17). The former gives # =m/4 i.e. the two waves should be circularly
polarised in opposite directions, thus theoretically confirming FRESNEL'S hypo-
thesis. Thus if there is no birefringence the difference in the refractive indices
of the two circular waves is given by

(38.16)

2 B
4 (.ng) = 2 (o, —m) =2y. (38.18)
The rotatory power g is related to #,—n; by the equation
o =% (n,—m) (38.19)
so that ’
o= i;—nf,,y. (38.20)

Eq. (38.20) gives the rotatory power of a crystal to be positive! when y is positive.

The propagation of two circularly polarised waves as described above should
occur for instance in an isotropic medium or a cubic crystal for all directions of
propagation, and for propagation along the optic axis in birefringent crystals.

In these cases, the medium should actually exhibit circular double refraction.
This was first shown to be so by FRESNEL? using a combination of quartz prisms.
Later, the experiment has also been performed with the cubic crystal, sodium
chlorates. '

39. Method of supérposition. A simple way of calculating the combined effect
of birefringence and optical activity of a medium is by the method of super-
position* dealt with in Sect. 5. Here, we assume the two properties are
independent, and that an infinitesimal layer ¢z of the medium may be considered

1 This corresponds to a left rotating or laevo-rotatory crystal. In chemical literature,
however, g is taken to be positive for a dextro-rotatory crystal. Our convention agrees with
the mathematical convention of taking counter-clockwise angles to be positive.

2 A, FresneL: OEuvr. Compl., Vol. 1, p. 731, Paris 1866.

3 G. Meszin: C. R. Acad. Sci., Paris 152, 166 (1911).

4 For reference to earlier literature, see POCKELS (2], p. 309.

Handbuch der Physik, Bd. XXV/[1. ‘ 6
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to be made up of two parts, one producing the phase retardation (24) due to
linear birefringence and the other a rotation (dg). The superposition of the two
effects is best worked out by means of the Poincaré sphere. The former is a
clockwise rotation of the sphere about the axis X, Y, (X, being the slower axis)
through an angle 4 8, while the latter is a clockwise rotation about a perpendicular
axis RL through an angle 2do (see Fig. 41). The combined effect is obviously
a clockwise rotation through the angle

a4 =)(do2 + (2d o) (39-1)

about an axis BB, in the plane containing X, Y, and RL, the latitude 24 of the
state B being given by 2dg

f 3 | tan29 = — s - {39.2)
If 6 is the phase retardation per umit length,

- ZT“ (n,— n5) and g is the specific rotation, then

' -2
4l r . tan 28 = — =5 {39.3)
2 20 and per unit thickness the effect on the state of

polarisation of the transmitted light is a rotation
through an angle
pUao 4 =] +(20)% - (394)
i a1 S " £ < bizeiein 4 Obviously, the polarisation states of the two
o T actiity. The cliipses 5 od B, are  Deams which are propagated unchanged in the
. Propegated UIcha ey hesthe  crystal are B and B,, which represent crossed
ellipses, whose axial ratio is {tan ¢

Further from the results of Sect. 4, 4 represents the relative phase retardation
per unit distance between the waves in the state B and B, the former being the
slower wave. :

1t will be noticed that the results obtained by the method of superposition
are closely analogous to those obtained from the exact theory, although they
are not exactly equivalent. This may be seen by comparing Egs. (39.3) and
(39.4) with (38.14) and (38.17) respectively.

Since
1 1 1 1
-41,—2‘1'7%72‘:;%‘-1"@ (39.5)
we may take
1 (n +n’ 1 {n,+n 1
?( w22 ) = —é—( ;@n%z) = E’ say, (396)
where we shall call #,, as the mean refractive index. Then, (38.17) takes the form
(0 — n")2 = (ny— mp)® + (2715,7)*. (39.7)
If we suppose that
o =Ty (39.8)

analogous to Eq. (38.20), then we get the result (39.4). Correspondingly, Eq. (38.14)
becomes the same as (39.3).

Quite apart from the small approximation involved in (39.6) we have to make
the assumption in (39.8) that the medium has a rotation ¢ given by that equation
in the direction concerned. It involves in addition to y the quantity #j, which
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is not entirely independent of the components of the dielectric tensor. The formal
similarity of the results obtained by the use of the superposition method with
those from the rigorous theory enables us to use the former method which is
much simpler, with the assumption that the medium has a *rotatory power”
given by Eq. (39.8). We shall use the method of superposition hereafter for work-
ing out the theory of the experiments to be described later.

40. Symmetry and optical activity of crystais. The rotatory power of a crystal
along any directions is determined by the parameter ¢ which is given by Eq.(38.11).
It turns out that, although y;; is not symmetric, the expression for p involves
only a symmetric combination of the components of the optical activity tensor.
Thus combining (38.11) and (38.2)

4 ='}’115%+)’225§+7335§+('}’23+732) S285 -+ }

40.1
+ (Va1 -+ 713) S350 + (V12 V21) S152 ( )

where s;, 5, 5; are the direction cosines of the wave normal with respect to an
arbitrary coordinate system.
If we lay off a radius vector s parallel to the direction of propagation such
that
1 A g
a=Wl=lelva (40.2)
we get the surface of optical rotation. Given this surface we can-determine y

for any direction (the sign to be attached being supposed to be marked on the
surface). It follows from this that the specific rotation ¢ may be put in the form?

2 2
0 =715 + 72958 | #3355 + 27235253+ 2731538 + 27125 S5 (40.2a)

This is a slight approximation because #%, is not a constant, but the subsequent
discussion on symmetry does not depend for its validity on this approximation.

Some interesting consequences follow from this regarding the occurrence of
optical activity and of its variation with direction in crystals of different sym-
metry. Thus, if the crystal has a centre of inversion, then applying this operation,
a right-handed system of axes is converted into a left-handed one. Referred to
the latter, the sign of ¢ is reversed. However, substituting —s;, —s,, —s; for
S, Sg, 83 in Eq. (40.2a) the sign of ¢ is unchanged. Both these conditions will
be satisfied only if g =0, i.e. there can be no optical activity for centrosymmetric
crystals, a result which is in conformity with the corresponding property of
molecules.

Thus; of-the 32 crystal classes, the specific rotation is zero in all directions
in 11 classes, namely 1, 2/m, mmm, 3, 3m, 4jm, 4jmmm, 6jm, Gjmmm, m3, m3m.

Similarly, applying the other symmetry operations for crystals belonging to
the remaining 21 points groups, the form of the variation of p with direction
can be obtained. Details are omitted?2, but the results are given in Table 4. It
will be noticed that the optical activity does not vanish in all directions for a
crystal having a symmetry plane of reflection. Optical activity occurs for crystals
belonging to 15 classes, but it has actually been observed only in 7 crystal classes,
namely 2, 222, 3, 32, 6, 42 and 23. Even among these, measurements are avail-

1 Unlike the index ellipsoid and the Fresnel ellipsoid, this surface need not be an ellipsoid,
but only a central quadric.
2 These may be found in F. PockELs [2], pp. 313—318; W.A. WOOSTER: A text-book on
crystal physics, pp. 156—160. Cambridge 1949.
6*
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v

Table 4. Variation of votatory power g with direction in non-centrosymmetric crystals.

Crystal system Crystal class Expression for g
Triclinic 1 $37y + $57ys + SBrag + 25 Sa %15+ 283 Sag ¥y T+ 2538171
Monoclinic " 255 (Sy¥ag 1 S1731)

2 537y + 5370+ SBra3 T 251557
Orthorhombic 222 $3ry - $5750 + 5375
mm 285,75
Rhombohedral 3 (s34-53) 7y, + 5575
32 (53 L sB) g + 53755
3Im 4] - ——
Tetragonal 4 (s2+s3) 7y + sE7sg
42 (s§+s8) myts5rs
4 [}
1 (s§—s3) 1+ 2552719
f2m (s§~sdmy
Hexagonal 6 (s34 5By +s3rg
62 (s34 sB) my +s37aa
6mm 0
6 0
6m2 0
Cubic 23 (s3+s3+sB)my=ny
43 (sfsiHshm=r
i3m 0

able only along the optic axes, except for quartz, for which measurements have
been made perpendicular to the optic axis (see Sect. 84). It is obvious that the
rotatory power along the two optic axes need not be equalin a biaxial crystal—for

Fig. 42. Wave surface of an optically active transparent crystal.

instance one belonging to

the crystal class 2. A typi-

cal example is cane sugar

for which the rotatory

power along the two optic

axes are — 1.6%and +5.4°
* per mm.

41. Wave surface in
optically active crystals.
As was shown in Sect. 38,
the refractive indices of
the two waves propa-
gated along any direction
are only slightly modi-

fied by the presence of optical activity. Consequently, the shape of the wave
surface is practically the same as in a non-optically active crystal except for
directions close to the optic -axes. In a non-active crystal, the optic axes are
directions of single wave velocity and the two sheets of the wave surface
therefore touch along these directions. However, when optical activity is ‘present,
two orthogonal circularly polarised waves are propagated along this direction,
with slightly differing velocities. The comsequent modification of the wave
surface is shown schematically in Fig. 42 for both uniaxial and biaxial crystals..
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Since the two sheets of the wave surface do not touch along the optic axes,
there are no points on the surface, where the tangent plane is singular. 'Thus
internal conical refraction, in the sense of the phenomenon which occurs in non-
active crystals, cannot occur here. However, if a slightly divergent pencil is
used, it is obvious that the orientation of the tangent planes varies appreciably
for the different directions of propagation in the pencil and thus a conical beam
emerges from the crystal. The phenomenon has been studied in great detail
by VoieT! in cane sugar and tartaric acid.

External conical refraction should also occur readily even in the presence of
optical activity. '

IV. Absorbing non-optically active crystals.

42, Fundamental equations. For every crystal there are regions of the spectrum
in which it exhibits the phenomenon of absorption of electromagnetic radiation.
It has long been known in the case of minerals and crystals which absorb visible -
light that both the intensity and the spectral nature of the absorption depends
not only on the direction of propagation but also on the state of polarisation
of the incident light. The anisotropy of refractive index (which is present even
in the transparent regions) and the anisotropy of absorption are linked to one
another by the theory of dispersion, both these phenomena being in their turn
related to the ultimate atomistic structure of the crystal. From the point of
view of the classical dispersion theory, the motion of the charges giving rise to
the polarisation of the medium would be opposed by dissipative forces of an
anisotropic nature in the absorbing regions of the spectrum. Thus the polarisation
P would not oscillate in phase with the electric intensity E. The components of
the macroscopic polarisability tensor would therefore be complex. In turn the
relation between the vectors D and E would be described by a complex dielectric
tensor [£]. We shall not deal with the atomistic causes of the anisotropy in the
intensity and the spectral nature of the absorption but only present the pheno-
menological theory of light propagation in absorbing crystals applicable to one
particular frequency.

In an absorbing crystal the propagation of a light wave may be described by
two parameters, namely the refractive index # and the absorption coefficient .
Thus the - electric vector of a wave propagated along the z direction is given by

Ezon e—kzpo—2ninzd (42.1)
or
E,= E e~ 2ninzi (42.2)

where # is the complex refractive index. Let % =un —¢x where » the extinction
coefficient is equal to k4/27z. In an anisotropic crystal both # and x are functions
of the state of polarisation and the variation of both can be expressed by a com-
plex tensor [£] representing the complex dielectric constant. Just as in the case
of non-absorbing crystals, not all waves are propagated without change of form
but only those with certain states of polarisation. The method of finding these
for a given direction of propagation as well as the corresponding complex re-
fractive indices is closely similar to what was adopted for optically active non-
absorbing crystals.

Before however proceeding to discuss the properties of the dielectric tensor
we may mention that the absorption in the medium may also arise if the medium
has a finite conductivity represented by a tensor [¢] in addition to the usual

1 W. Voigr: Ann. Phys., Lpz. 18, 678, 692 (1905). — Phys. Z. 6, 789 (1905).
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dielectric tensor [¢] relating D and E. We shall show that this is formally equi-
valent to the introduction of a complex dielectric tensor. The current density j
and the charge density ¢ (as determined by the equation of continuity) will
then be .

j=[1E : (42.3)
and

¢=—divj or o= div[d]E. (42.4)

If we introduce these in the MAXWELL’S equation (26.12) ..‘Ehey become formally
identical with the MAXWELL’S equation (26.3) for a non-conducting medium
provided we replace D by I’ where

D;= (g; —i0;) E;. | (42.5)

The solutions for such media will thus be foi’mally equivalent to the more common
case of absorbing but non-conducting media in which the relation between D
and E is represented by a complex dielectric tensor.

43, The dielectric tensor and the index tensor of absorbing crystals. We may
write
D=[FE (43.1)
where
;= & — 11 (43.2)

If the tensor [#] contained an antisymmetric part it would contribute to optical -
activity as was seen in Sect.36. To correspond to the case of absorbing non-
opticallyactive crystals we shall take [¢] and [#] to be symmetric. We have
seen in Sect. 36 that the introduction of the imaginary part of the dielectric
tensor leads to a dissipation of energy.

.. - Arghments subsequent to (36.5) may be followed with ¢ replaced by —iy

-and arl equation similar to (36.7) may be derived; comparing this with (29.7)

we get that the rate of dissipation of energy W; is given by

. W=wE-[yg]E. {43.3)
If we write
D=D,—iD, . (43.4)

where D, and D, are related to E by the real tensors [g] and [], then the rate
of dissipation of energy is given by 3 E - D, while the electric energy density
will as in transparent optically active crystals be given by 3 E - D,.

It is more convenient to use the complex index tensor and write (43.1) in
the form ‘ :

E=[Z]D, (43.5)
where
: (] =[]* (43.6)
and
@y = a;; 1 by (43.7)

Both the real and imaginary parts of the complex index tensor are tensors of
the second rank and could therefore be represented by ellipsoids. The ellipsoid
representing the tensor a;; will be called the index ellipsoid as in the previous
cases while the ellipsoid representing b;; defines the absorption ellipsoid. There
is no reason why the principal axes of the index and absorption ellipsoids should
coincide, excepting where required by the symmetry of the crystal.
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The imaginary part of the complex tensor is usually small compared to unity
and to the real part, and therefore it would be sufficient to work up to the first
order of magnitude in b;;. To this order of approximation the index and absorp-

tion tensors are-given by
la] =[] (43.8)

(6] = [ef™ [] [e] ™ - 439)

ie. the principal axes representing [¢] the dielectric tensor may be taken to
coincide with those of the index ellipsoid. However the principal axes of the
absorption ellipsoid need not coincide with those of the ellipsoid [#] 1. -

Along any direction of propagation the nature of the waves propagated
depend on the central sections of the index ellipsoid and the absorption ellipsoid
.normal to the direction of propagation. We shall call the directions of the major
and minor axes of the section of the index ellipsoid as the principal directions of
linear birefringence and those of the absorption ellipsoid as the principal direc-
tions of linear dichroism.

As the magnitude of the dichroism, determined by b;; is usually very small
compared with the birefringence, for most directions of propagation it is found
that .the behaviour of an absorbing anisotropic crystal is closely approximated
by the behaviour of non-absorbing crystals. The state of polarisation and the
velocities of the two beams propagated along any direction are then determined
by the index ellipsoid. We have however the additional property that for any
direction of vibration there is an attentuation of the transmitted beam. The |
extinction coefficient » is related to the radius vector 'I/]/b of the absorption
ellipsoid drawn parallel to the direction of vibration by the equation '

2%v3 =0 (43.10)

and

where v is the velocity of propagation for that particular direction of vibration.
The above results are exactly true for uniaxial crystals. A behaviour similar to
that described in this paragraph was postulated in the early theory of MALLARDZ.

44, Formal solution of the wave equation. The phenomena are however com-
plicated for directions of propagation close to the optic axes in a biaxial crystal.
These directions are defined as the normals to the circular sections of the index
ellipsoid as in a non-absorbing crystal. If we consider the normal to a circular
section of the index ellipsoid in an absorbing crystal, then there is no reason why
it should also be normal to the circular section of the absorption ellipsoid. The
section of the absorption ellipsoid normal to an optic axis will in general be an
ellipse.

Consequently, as will be shown rigorously a little later, two waves can be
propagated along an optic axial direction, with different absorption coefficients.
There exist however directions along which only one wave is propagated un-
changed; there are actually four such directions3, called Windungsachsen or
singular axes, two near each of the optic axes, and circular vibrations of one
sense is propagated unchanged along two of them and of the other sense along
the other two. It is however necessary to work out the full formal solution of

1 As in the case of optically active non-absorbing crystals, here also Egs. (43.7) and
(43.3) are both equally valid. However, the relations between the two tensors given by
Eqgs. (43.8) and (43.9) are only correct to the first order.

2 For this and earlier references see SzIvessy [1].

3 'W.VoieT: Ann. Phys. 9, 367 (1902).
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the wave equation before these and other interesting aspects of absorbing biaxial
crystals are discussed.

The complex tensor @;; can be brought to the diagonal form by a suitable
transformation of axes. Egs. (44.1) below give the relation between the principal
axes @, 7, @ and the original axes #, v, z. Since#,7, ® are complex linear func-
tions of x, ¥, z, the a;;’s must also be complex. Thus

=0y X &gV T Aaa? (44.1)

Denote by @, Zs, @ the principal values of the tensor &;; so that Ep=a; Dy'.
Referred to the axes#, 7, @ we have the following equation completely ana- .
logous to (26.7) and (37.1):

7D ={E—s(s-E)}, (44.2)®
(@ —7) Dy=(s-E)s; ’ (44.3)
and .
Z a‘lsz % = 0. (44.4) -

Formally, therefore, Eq. (44.4) gives the two principal refractive indices, both
real and imaginary parts, as well as the principal vibration directions.

45. Simplification of the general solution. The understanding of the pheno-
mena is facilitated by taking one of the axes, say z, along the direction of propaga-
tion, and the other two x and y in the perpendicular plane. Then D, =0 and using
a procedure exactly similar to that for a non-absorbing crystal (Sect. 31) and
comparing the x and ¥ components of (43.5) with (38.7), we obtain

92D, =ay, D, —l—EmDy,}

- _ 45.1
D, =150, -+, Dy (45.1)

where D, and D, are the complex components of the vibration along x and 4.
Unlike the case in a non-absorbing crystal it would not in general be possible
to choose the coordinate axes OX and OY such that 7, , vanishes, since the prin-
cipal radii of the elliptic sections of the index and absorption ellipsoids need not

coincide.
From (45.1), we have, .
e =y = D
({0 —&y,) =a15(D,/ ) s } 45.2)

(% —&ya) =a;,5(D,/Dy)

 where D, and D, are the complex displacenients parallel to x-and y directions.
If we put D,/D, =7 then r defines the state of polarisation of the wave. Eliminat-
ing 7% in (45.2) .
~ 1 = =
12 ( - 7) = (@2 —al}) (45.3)
or _
G . B Y (45.4)
12

1 The vectors P and E both have complex components in genera.l.‘
2 There should be no confusion between the axis 7 and the complex velocity 7 in Egs. (44.2)
to (44.4).
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Eliminating » between the two equations, we have for the two velocities,

(@ — @) (@ —ay,) =3i,. (45.5)
It follows from (45.4) that if " and #” are the two complex solutions, then
ry'l=—1. (45.6)

As may be easily shown from this relation, the two vibrations propagated un-
changed along any direction have their major and minor axes crossed but are
of the same sense. They do not correspond to orthogonal states of polarisation
unlike the case of an optically active non-absorbing crystal. The values of 7 for
the two waves and the corresponding refractive indices are given by

o T
e A (45.7)
e e (e

102 =o't =} @y +50) + VG — Tl Tl } (45.8)

10’2 = 0" = } (@ +Bae) — | F @1 — 20 ]* +22

Writing the complex refractive index in the form #Z=#(1—iz) we have
72 =1v%(1 +247) neglecting 7% and higher powers. Here, # is the refractive index
and 7 is known as the absorption index. Eq. (45.5) can then be split up into two
‘equations between the real and imaginary parts

(@21 — ¥%) (@yy — v®) — afz = (byy — 202 7) (Byp — 207 7) — b,
(@1 — v?) (bgg — 202 T) + (@ — %) (byy — 207 7) =24, bys-

‘We shall now consider a few special cases.

} (45.9)

46. Special cases. o) Uniaxial crysials. For this case both the index and
absorption ellipsoids must be ellipsoids of revolution about the common optic
axis. Thus, for the arbitrary direction of propagation Oz, the principal axis of
the elliptic sections of the index and absorption ellipsoids coincide, lying along |
and perpendicular to the principal plane containing the direction of propagation
and the optic axis. Thus in the treatment of the previous section, it would have
been possible to choose axes Ox’, Oy’, such that @, =0. As for non-absorbing
crystals, Eq. (45.1) gives two solutions linearly polarised along the principal planes.
For

D=0, T®=a;; or ¥=ay; 2t0¥=0b, (46.1)
while for :

D. =0, 72=as, or v¥=az,; 2TV2=10b;,. (46.2)

This corresponds to ‘the description already given at the end of Sect. 43, the
behaviour being similar to that for a non-absorbing crystal, except that the
extinction coefficient for each vibration is determined by the absorption ellipsoid
from (43.10). The above behaviour becomes true also for certain special direc-
tions of propagation in biaxial crystals where the principal planes of linear bi-
refringence and linear dichroism coincide, e.g., along the symmetry planes in
orthorhombic crystals. ‘

B) Biaxial crystals—directions appreciably inclined to optic axial directions.
For directions that are not too close to the optic axes (a;, —a,,) Will be large
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compared to the aBsorption parameters, namely by, ba5, B¢, 20%7. Then, it
follows from (45.9) that

Duprmvraa,, r=vi—g, (46.3)
and : '
o 205 T =0y, 2d957 =by,
giving

T =by/2a,; T =1bys/20,,. (46.4)

Also, the corresponding states of polarisation are given by.r' =0, " = o i.e.
linear vibrations parallel to x and y axes respectively. The behaviour again
obviously corresponds to the sitnation mentioned at the end of Sect. 43, i.e. the
behaviour is similar to that of a non-absorbing crystal, except for the difference
in the absorption index between the two propagated waves.

y) Propagation along optic axes. As with non-absorbing crystals, we shall
call the directions normal to the circular sections of the index ellipsoid as’the
optic axes.

In this case, a,; =a,,=a, (say) and @y, 1dentically vanishes for any pair of
orthogonal directions at right angles to the direction of propagation. We choose
that pair for which &, also vanishes, i.e. parallel to the major and minor axes
of the corresponding central section of the absorption ellipsoid. Then it follows
that

'1/n'2=1/n"2=“1 : (465)
and
=byuf2a, T =0by[24. (46.6)

To find the polarisation states, we may use Eq. (45.3) in which the right hand
side is zero, giving the two roots, 7' =0, " = co. Here again, two orthogonal
linearly polarised waves are transmitted, as in case (), and they may be regarded
as having the same velocity. The two velocities cannot be exactly equal as with
non-absorbing crystals, for then every direction of vibration must be possible
for this direction of propagation all of them being propagated with the same
velocity. The indices #' and »'" differ to the second order of magmtude of the
absorption parameters.
Although two linearly polarised waves are transmitted along directions far
- away from the optic axes and also exactly along the optic axes, the two waves
are in general elliptically polarised in the vicinity of the optic axes. The two
waves are not orthogonally polarised and are propagated with different velocities.
If the principal constants 4;; and b;; are known, then these can be calculated
from Egs. (45.7) and (45.8) but it is easier to do so by applying a method of super-
position as we shall show later.
8) Singular axes. However, there exist directions of single wave velocity in
an absorbing crystal, but these do not coincide with the optlc axes. From (45.7)
and (45.8) it follows that

n'=n" if (5@, — )2+ a.=0 {46.7)

" and correspondingly #' and #"" are also equal, both being equal to either to 42
or —34. Along directions which satisfy Eq. (46.7) therefore the two waves are
propagated with the same velocity and are dof% of the same state of polarisation.
Thus there is really only one wave solution obtained, this wave being either right
or left circularly polarised. There are four such directions, called singular axes
and they should obviously occur near the optic axes.  The exact location of these
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and the polarisation of the wave propagated along any one are discussed later
(Sect. 49). :

¢) Idiophanic rings. Unlike transparent crystals, the two waves which are
propagated unchanged in form are not of orthogonal states of polarisation in
an absorbing crystal. This leads to the interesting result that it is possible to
see interference figures (idiophanic rings) namely rings and brushes by using
only either a polariser or an analyser (se¢ Sects. 66, 69, 70).

47. Application of the Poincaré sphere. Just as the superposition method gives
results which are practically equivalent to those yielded by the rigorous theory.

L

a b

Fig. 43. (a) Section of the index and absorption ellipsoids in an absorbing erystal. X, ¥, are the principal axes of refrac-

tion and X3, Yy are the principal axes of absorption. (b) Poincaré sphere construction for determining the states of polarisa-

tion propagated without change (stereographic projection). These are P’ and P’/ for which the infinitesimal operations
of linear birefringence and linear dichroism produce movements ds, and ds; which are equal and opposite.

in the case of optically active crystals, this method could be usefully applied to
absorbing crystals alsol. The two properties, which appear superposed in the
_ case of absorbing crystals are linear birefringence and linear dichroism. The
elementary operations on the Poincaré sphere corresponding to these two proper-
ties have been discussed in Sects. 3, 6 and 7. We shall now consider the super-
position of the two.

In Fig. 43a let X,, Y, be the principal directions of refraction, representing
the major and minor axes of the section of the index ellipsoid, X, corresponding
to the slower wave. Let X, ¥ be the principal directions of absorption represent-
ing the major and minor axes of the section of the absorption ellipsoid, X cor-
responding to the smaller absorption. Then the effect of birefringence is to rotate
the representative point P (of the state of polarisation) about the axis X, Y,
(Fig. 43b) and that of dichroism is to move it towards X, along the great circle
X, PY,. If ds, and ds, are the movements of P as a result of these operations
then the two must be equal and opposite for there to be no change in the state P,
In general we shall find that there are two such states P’ and P as shown in
Fig. 43b. Referring to this figure and using Eq. (6.6) the following relations are
obvious ,

[ds,| =0sin2¢@; |ds|==ksin2yp (47.1)

1 S, PancHARATNAM: Proc. Ind. Acad. Sci. A 42, 86 (1955).
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where 2¢ and 2y are the angular distances of the representative point P from
X, and X, respectively and

0=(0,—0y); k=(—k) (47.2)

where ¢, and d, are the phase retardations introduced in the absence of dichroism
and %, and %, the absorption coefficients in the absence of linear birefringence?.
1f the major and the minor semi-axes of the sections of the index and absorp-
tion elipsoids have the lengths, 1/)a,, 1/)a, and 1//b,, 1/Jb, then
_2m 1 s 2m 1 -
61 =i Va;’ 62 ) V“—2 ——— (473)
and the absorption coefficients in the absence of birefringence are defined by rela-
tions analogous to (43.10) »

27
3
2k 05, = by, 2kyv5,=

(47.4)

where v,, is the mean velocity.

In order that the simultaneous superposition of linear dichroism and birefring-
ence should cause no change in the state P, the movements ds, and ds; must be
equal in magnitude i.e.

dsin2¢ = ksin2yp. (47.5)

Secondly they should be opposite in direction. Since arc ds; is along PX, and
ds, is perpendicular to PX, it is necessary that

N
X’PXk =7'5/2
or )
€08 2y == cos 2@ Cos 2y (47.6)

together with the condition that P will represent a right or leit elliptic vibration
according as 2¢ is positive (0 to ——) or negative (0 to — ?) Both these equa-

tions are satisfied when 2¢ and 2y are changed to (x —2¢) and (z—2y), thus
giving two states P'(2¢’, 29’} and P”(2¢", 29"”) indicated in Fig. 43a which
are propagated without change of form. Clearly the states P’ and P” have the
same latitudes their longitudes differing by #. Hence we arrive at the result
also obtained by the electromagnetic theory that the states of polarisation pro-
pagated unchanged along any general direction are two simslarly rotating elliptic
vibrations which have their major axes crossed and which have equal ellipticities
(Fig. 43 b).

" The states P’ and P” are fixed by the angular distance 2¢ and 2y which
satisfy the simultaneous Egs. (47.5) and (47.6). The explicit values of these are
obtained by eliminating successively 2¢ and 29 between these equations and
are given by

B2 cos? 2y = 3{(k* — &%) + |/ (A* — &?) + 46 k2 cos? Zx} R
82 cos?2g = £{(82 — k%) +/(6® — #%) - 40° R2cos? 2y} -

} (47.7)

The actual latitudes and longifudes of the states can be determined from spherical
trigonometry. Referring to Fig. 43a let the inclination of the major axis 0X”
of one of the ellipses be g, (anticlockwise) with respect to 0X, and y, (clockwise)

1 The symbol % here introduced differs in sign from that in Sect. 6.
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with respect to OX,. The directions 0X’ may be determined by the relation

sindy, & : -
sindy, A2 (47.8)

and the ratio of the minor to the major axes tan ¢ may be obtained from
sin?2¢ =tan 2y, tan 2y,. 47.9)

48, The refractive indices and absorption coefficients of the waves. As in the
case of transparent crystals it is convenient to specify the refractive indices
and absorption coefficients as functions of the state of polarisation (2¢, 2y) of
the waves. : :

The alterationin the state of polarisation of a vibration initially in the state X, to
an adjacent state Q (Fig. 44) on travelling through the distance 4z may be evaluated
by the method of superposition as being entirely due to the operation of birefrin-
gence: The infinitesimal arc X, O will be equal
to ddzsin2y and will be perpendicular to
the equator. More properly this alteration in
the state of the vibration is connected with
the phase retardation (6" — 0’) dz between the
two waves in the states P’ and P” into which
the original vibration will be decomposed.
Applying the results of Sect. 4, Eq. (4.9), the
relative phase retardation must be equal to the
area of the infinitesimal quadrilateral £, X, £,’Q
where P, and P’ are points antipodal to P’
and P”. The area of this quadrilateral (being
equal to the area of the lune whose angle is
contained within the arcs P’ X, and P’ () may  Fig.44. Construction for determining the phase

H S0 difference and difference in absorption coeffi-
be easily shovm to be ddzcos 2¢’. Hence Jrgeace o waves provegated along 42y

h direction.
WeRAVE . g 8" =bcos2¢. (48.1) o
Alternatively the difference in the refractive indices of the waves is given by
(n' —n"") = (n, — ny) cos 2¢’ ' (48.2)

where #, and #, are the refractive indices in the absence of absorption. The state P’
for which the value of 2¢ (viz. 2¢') is less than /2 is the slower state.

The absorption coefficients 2’ and k" of the waves in the states P’ and P”
may be easily evaluated from the following considerations. The diminution of
intensity 2% dz which a vibration of unit intensity in state P’ suffers on travelling
a distance dz arises entirely from the operation of absorption. The X, and ¥,
components of the vibration P’ have intensities cos?y’, and sin’y’ respectively;
hence the operation.of absorption diminishes the intensities of these components
by 2k, dzcos®y’ and 2k, dzsin?y respectively. Hence we obtain on addition

B =% (ky + k) — 2k cos 2y, }
Bl =3}k + R, +Fkcos2y’.
These may also be written in the form

B, R =%k + ky) — 2kcos 2y, 29" .
We have from (48.3)

(48.3)

k' — k' =kcos2y'. (48.4)
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The last formula is similar to the expression (48.2) for the difference in the re-
fractive indices. In fact it can be shown, from the symmetry of the operation,
that the actual retardations per unit distance 8’ and 6" of the wave will be given
by expressions similar to (48.3) i.e.
8 =350+ 8) +Edcos2¢,
0" =2%(8,+ 8,) —F6cos2¢,

which may be written in the form

(48.5)

~

&', 8" =%(8,+ 8;) + 5 cos 29, 29"

where the value of ¢ appropriate to the wave in question is to be used.

It can be shown that the states of polarisation of the waves as deduced by
the superposition method are identical with those deduced from the electro-
magnetic theory if we define the mean velocity v,, for the particular direction of
propagation as
V=% (01 1) 0175 : (48.6)
It may be noted that this is of the same form as the one used for optically active
crystals, cf. (39.6).

The expression for the refractive indices and extinction coefficients of the
waves as obtained by the electromagnetic theory may also be expressed as func-
tions of the states of polarisation (2¢, 29) of the wavesl. They then take the
form

V=g (0 + ag) + 2 (4 — aa) 005290,}

8.
20099 =3 (b + b) + 3 (b~ ) cos 2. )

The difference between these expressions and those deduced by superposition

method (48.3) and (48.5) is usually not of much practical significance especially
for directions near the optic axis. :

B) Approximate formulae. The Poincaré sphere method gives a direct geo-
metric interpretation of the results discussed in Sect. 46. Ii the birefringence is
zero, as along an optic axis, then the polarisation states that are propagated
unchanged will be X; and Y, i.e. the principal directions of absorption are at
right angles to the optic axis. If the birefringence is large, i.e. §>>, then obviously
the states of polarisation which are propagated unchanged will be close to X,
and Y,, i.e. they will be the same as if the crystal had no absorption. This will
also be the case if the principal planes of birefringence and dichroism coincide
as for a uniaxial crystal. These are identical with the results already deduced
in Sect. 46.

For directions not too close to an optic axXis we may usually neglect the
squares and higher powers of %/d. Hence from (47.5) the square of sin 2¢ may
be neglected which means that in Fig. 43 the arc X, P’ is an infinitesimal arc,
perpendicular to the equator. Hence we may set

sin2¢ = |[2w|, sin2y =sin{2y]|
which gives the common ellipticity of the two waves to be
k.
0= —sin2y. (48.8)

1 See Sect. 45.
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To this approximation the major and minor axes of the elliptic vibration lie
along the principal planes of birefringence and from (48.7) the velocities and
absorption coefficients may be determined from the index and absorption ellip-
soids as though the waves were linearly polarised.

49, The singular axes. «) General considerations. The singular axes also follow
very simply from the Poincaré sphere. Since the two states of polarisation are
crossed ellipses of the same sense they would become one and the same only when
both represent circular vibrations of the same sense i.e. L or R. For example
if R is to be propagated unchanged i.e. if state P’ of Fig. 43 is to coincide with
R the condition that the movement ds, and ds; should be oppositely directed

will be statisfied only if the arc X, X, is a right angle (2;5=+—n2—) since the -

angle at P’ must continue to be a right
angle. In this case 2¢ and 2y are also right
angles and the condition that the movements
|ds,] =|ds;| gives from (47.1) that

8=*r. (49.1)

Similarly for 2x=——725, and d=~% (see

Fig. 45) the left circularly polarised state L
alone is propagated unchanged. The same
results could also be proved from Eq. (45.8).
Thus singular axes occur along direc-
tions at which the principal planes of ab-
sorption and refraction make angles of 45°
with each other, the linear birefringence
and linear dichroism being equal in magni- g, 4. Propagation of light along a singular axis.
tude. It will be shown in Sects. 67 and 68 O the siale 113 Propagated rirg oo
that very close to each one of the optic axes,  converted to L via the great circular arc RXzL.
there exist two singular axes, one on either
side of it, propagating respectively right and left circularly polarised waves. It
may be noted that a singular axis cannot be designated uniquely as ““ right circular”’
or “left circular’’ unless the direction of propagation is also specified. For example
along the same singular axis right circular light is propagated unchanged when
traversing it in one direction, left circular light would be propagated unchanged
for an opposide direction of travel. This is because the sign of y changes when
Fig. 43a is viewed from the opposite side.

B) Propagation of circularly polarised light alomg the singular axes. Along
any parficular singular axis, only circularly polarised light of one sense is propa-
gated without change of state. Let this be the left circular state L (Fig. 43).
The question arises as to what would happen if light in the right circular state R
is incident exactly in this direction. VoiGT! suggested, without proof, that it
would be totally reflected. However, we obtain an entirely different answer
by applying the method of superposition®. From Fig. 45 it is seen that for this
direction of propagation the movement of the representative point B, is along
the great circle R X,LY,. Initially, the effects of birefringence and dichroism
are additive until the point X, is reached; thereafter they are opposite, but the
birefringence effect is larger and so the point moves on towards L asymptotically.

1 'W. Voigr: Ann. Phys., Lpz. 2, 1002 (1908).
2 S. PANCHARATNAM: Proc. Ind. Acad. Sci. A 42, 86 {1955).
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Let Pbethestateof polaﬁsation at depth z inside the crystal, and let arc RP=s.
Then, the state s+ds at depth z+dz is from (47.1) given by

ds = (0 +kcoss)dz. (49.2)
Putting in 6 =% and integrating, we have
tans/2 = %z. (49.3)

Thus, the change from R to X i.e. to linear vibration at 45° to the principal
planes of refraction, occurs in a smaller distance than would be the case if absorp-
tion were absent, while the change from X, to L requires an infinite distance.
The intensity I, at a depth dz may be similarly calculated. The change dI,
due to the passage through a distance dz is -

al,=—2k,I,dz (49.4)

where %, is a function of the state of polarisation. In terms of %; and %, it is
given by an expression of the form (48.3)

kz=%(k1+k2)—%k00521pl

= %(krl‘ k) —%ksins (49.5)

1 2z

=7(k1+k2)—1—_“w-

Thus, k,<<%{k,+k,) which is the coefficient of absorption for L, the state of
polarisation propagated unchanged. We thus get the surprising result that if
the incident light is of state R, then the transmitted intensity is more than if
it were of state L, although it is L that is propagated unchanged.

Substituting (49.5) in (49.4) we have

ar, 2k2z
T, =(k1+k2) dz—m

dz. (49.6)

If I, and I are the incident intensity and the intehsity transmitted after a
thickness z, then

log (Iy/Ig) = (ky+ &) z — log (1 + A22%). (49.7)
For left-circular vibration, we have
log (Io/Ip) = (By + ko) 2 (49.8)
so that the ratio of the two is simply
Ipll; =1+ k222, (49.9)

which is always greater than unity.

This interesting result has been verified experimentally® (Sect. 68).

The result is not really in contradiction with those of the electromagnetic
theory. It is true that according to the electromagnetic theory only one homo-
geneously polarised plane wave solution (not two) is obtained for a singular
direction. A theoretical approach more general than the one we have adopted
in Sect. 26 becomes necessary to establish that other solutions also exist, re-
presenting however plane disturbances propagated with a progressive change of
polarisation (see Sect. 56).

1 §. PANCHARATNAM: Proc. Ind. Acad. Sci. A 45, 1 (1957).
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V. Absorbing optically active crystals®.

50. Formal solution of the wave equation. When both absorption and optical
activity are present, then again the relation between E and D takes a form similar
to that for an optically active crystal without absorption, viz.

D=[FE+iGxE, G=I[g]s, (50.1)
=[a]D —iIxD, T =[y]s. (50.2)

However the tensors [¢] and [g] and correspondingly the tensors [a] and []
are all complex. Thus G and T are complex vectors. We shall use the form (50.2)
for further discussion. It is convenient to express the above relations in terms
of tensors having real components; these tensors will therefore separately deter-
mine the various optical characteristics of the medium. Thus in (50.2) we may

substitute
(@] =[a] +4[b] and [¥]=[y]+i[f]. (50.3).
We may further substitute
I'=I+i8 (50.4)
with
I'=[y]s and B=[p]s (50.5)

where [a] and [b] are the usual index and absorption tensors which occur for
example in optically inactive absorbmg crystals and which define the index and
the absorption ellipsoids. As in the case of transparent optically active crystals
I' is the optical activity vector which for any direction of propagation is deter-
mined by the optical activity tensor [y]. The new vector 8 may be called the
vector of circular dichroism being determined for any direction of propagation
. by the “tensor of circular dichroism” [B]-—the reason for this nomenclature will
be justified as we proceed.
Taking the direction of the z axis along the wave normal we may proceed as
in the case of transparent optlcally active crystals (Sect. 38). Comparing (38.6)
and (38.7) and remembering that in the present case the constants are complex
we 1mmed1ate1y obtain

(v? _au)—(“lz""-r) / }

(02 —y5) = (@ — i 13)D,/D,. (50.6)

If we put » =D,/D,, then r gives the state of polarisation of the wave. Eliminating
r between the two equations we have :

(@ —y,) @ —y0) = @2+ I32). C (50.7)

The solutions of this equation give the complex velocities 7’ and 7" of the two
waves that are propagated along any chosen direction. The two states of polari-
sation 7” and 7" are the roots of the equation

@25+ i L) 12 + (@1 —Bag) 7 — (@12 — 2 13) = 0. (50.8)
Explicitly written the roots of (50.7) and (50.8) are

72,572 = } (@1 +Eag) = V{E (@1 — 3202+ (@5 + I32) (50.9)

1 §. PaNCHARATNAM: Proc. Ind. Acad. Sci. A 48, 227 (1958).
Handbuch der Physik, Bd. XXV/1. 7
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and

y o = H O Ta) VR @u—F)P+ @+ Y (50.10)
(@2 tidy)

The task of discussing in greater detail the velocity and absorption coefficients
and the state of polarisation of the waves is complicated by the fact that all the
coefficients occurring in (50.9) and (50.10) are really complex guantities, namely

Zy=a;;+iby;, L=IL+iBs. ~ - (50.11)
In terms of a general coordinate system
I=TI.-s=7%, say,
I;=TI"-s =¢, say, (50.12)
B;=R&-s =p, say,

or

and here y is the scalar parameter of optical rotation already met with, and g
may be called the scalar parameter of circular dichroism for reasons discussed in
the next section 51 and ¥ is the complex parameter of optical activity.

51, Circular dichroism and its directional variation. By assuming the complete
absence of linear birefringence and linear dichroism we can understand the
characteristic effect introduced by the parameter &,. Hence, setting

M1 =0a3s=8, @3=0, by=Dby="b, Dbp=0

ie.
@y =0ge=0a; G13=0 ' (51.1)
in Eq. (50.7) and (50.8) we get )
DD, =i, v=z+I. (51.2) .

This means that the waves are right and left circularly polarised and if 7, and 7;
are the complex velocities of the circular waves then

P—v2=21]. (51.3)

“The complex velocity 7 is related to the actual velocity and the extinction coef-
ficient % by the relation

1
n—1ix

U=

=v(1+1%v) (51.4)

and when terms containing the squares of the extinction coefficients are of
negligible magnitude we get to a high degree of approximation:

i c
, n_f—’ﬂz=;%=;9: (51.5)
2 c
x,—xl=%=;o' ()'1.6)

where v,, is the mean velocity. Thus, the optical rotation of an absorbing crystal
may be considered to be a complex quantity being given by g =p 440, where g
and ¢ are related to ¢ and 8 by (51.5) and (51.6). The reason why y and § are
termed as the parameters of optical rotation and circular dichroism is now
quite evident.
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The parameter of optical rotation has been shown to be a quadratic function
of the direction cosines of the direction propagation in Sect. 40. The same must
be true of the parameter of circular dichroism. If we measure off two radii
vectors 7, and 7, parallel to the direction of propagation such that their lengths
" are given by

F=lrl=Z 1012, . 517)
=18l =210l%, (51.8)

where y and § denote the parameters for propagation in a general direction, then -
(51.7) and (51.8) define respectively a surface of optical rotation and a surface
of circular dichroism, both of which are central quadrics to a good approximation.
Given these surfaces we may determine y and § for any direction or alternatively
the coefficients of circular birefringence and circular dichroism for any direction.

52. Method of superposition.—The use of the Poincaré spherel. It will be
noticed that the equations for a general direction of propagation (50.9) and
(50.10) are very intractable. We shall now develop the theory of wave propagation
in absorbing optically active crystals by making use of the method of superposition.
The change in the state of polarisation of a vibration on travelling through a

Fig. 46 a and b. Propagation of light in an absorbing, optically active crystal. (a) Linear birefringence about X, ¥, and circu-

lar birefringence about RL compound to yield elliptic birefringence about BB,. Similarly, linear dichroism about Xz Yz

and circular dichroism about RZ compound by the vectorial law to yield elliptic dichroism about DD,. (b) P, P’ represent

states propagated unchanged under the effects of elliptic birefringence (about B B,) and elliptic dichroism (about DD,).
C is the pole of the great circle throngh BD,

thickness 4z will have to be determined by applying in succession the infinitesimal
operations of linear birefringence, linear dichroism, optical activity (i.e. circular
birefringence) and circular dichroism. For any particular direction of propagation
the first two operations are determined by the sections of the index and absorp-
tion ellipsoids according to Egs. (47.3) and (47.4). The latter two operations are
determined respectively from the surfaces of optical rotation and circular dichroism
according to Egs. (51.7) and (51.8). [The mean velocity v, is defined in Eq.(48.6).]

Referring to Fig. 46a the infinitesimal operations of linear birefringence
(rotation ddz about X,Y,) and of circular birefringence (a rotation 2p dz about
R L) may be compounded by a vectorial law as in the case of transparent opticaliy
active crystals. The two operations are together equivalent to a single operation

1 S.PancuaraTNaM: Proc. Ind. Acad. Sci. A 46, 280 (1957).
7*
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of elliptic birefringence, a rotation of A4z about the axis BB,. The relative
phase retardation per unit thickness A between the crossed elhpses B and B,
which are propagated unchanged in the absence of absorption, and the latitude
29 of the slower state B, are determined by Egs. (39.4), (39.2 for transparent
optically active crystals.

Similarly it has been shown (Sect.7) that the infinitesimal operations of
linear dichroism (axis X, ¥;) and circular dichroism (axis RL) can be compounded
by a vectorial law and may be replaced by the operation of elliptic dichroism.
In Fig. 46a, vibrations of two oppositely polarised elliptic states D and D, (which
have the same longitudes as X, and Y, respectively) remain unaltered in form
under the combined effects of linear and circular dichroism. If ¢ is the angle
of ellipticity of the less absorbed state and K the difference in thé #bsorption
coeifficient of the vibrations in the state D and D, then

tand = — 2¢/K (52.1)
g K =||#+ @20)?| (52.2)

where 2¢ corresponds to the difference between the absorption coefficients of
left and right circular components in the operation of circular dichroism, i.e.
2O'=kL—kR and k=kyk——-ka.
Referring to Fig. 46b we may specify any point on the Poincaré sphere by

its angular distance 2¢, 29 and 2& from the three reference points D, B and C
which form a right handed set, the point C being at an angular distance of 7/2
from both B and D, the arc BD, which is not in general a right angle, being de-
noted by 2y’. Since the three direction cosines are not independent, it is sufficient
to specify 2¢ and 2y ,and give merely the sign of 2. Thus we have to superpose
only the operations of elliptic birefringence 4 (about the axis BB,) and of el-
liptic dichroism K (about the axis D D,), the two axes B B, and D D, being inclined
at an angle of 2y’. There will in general be two states P'(2¢’, 2¢") and P”
(2¢", 29”") as indicated in Fig. 46b which are propagated unchanged under the
combined effects of these operations, 2£ being positive in both cases. The problem
is formally the same as in an optically inactive absorbing crystal so that the results
derived in that case can be taken over, provided we replace § by 4, 2 by K, and
2y by 2y'.

x Thus the state of polarisation 2¢, 2y of the waves are given by the simulta-
neous equations analogous to (47.5) and (47.6): ’

Asin2¢p = Ksin 2y, : (52.3)
cos 2y’ = cos 2 cos 2y. (52.4)

- The refractive indices and the absorption coefficients of the waves expressed in
terms of these states of polarisation are g1ven by the equations analogous to
(48.5) and (48.3).

8,8" =% (0, +0,) -+ Acos2¢’. (52.5)
R =%k +k)+3Kcos2y'. (52.6)
Further ‘
8"~ 8" =Acos2¢’,. (52.7)
R'—Fk =Kcos2y'. (52.8)

The explicit expressions for cos 2¢ and cos 2y will be of the form (47.7) with the
replacements mentioned above.
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For directions of propagation appreciably inclined to the optic axis the effect
of linear birefringence predominates over all the other operations and the waves
may be regarded as linearly polarised along the principal planes of linear bire-
fringence.

It can be shown that the expressions for the velocities and extinction coef-
ficients of the waves as derived by the electromagnetic theory may also be expres-
sed as functions of the state of polarisation (2¢, 2y) of the waves’. They take
a form similar to (52.5) and (52.6) deduced by superposition methods, being for
any general direction of propagation given by [cf. (48.7)]

=3 (0 +ay) + 5 |/(e— )2 +(2f)% cos 29, (52.9)
267° =7 (by+bo) + 3 |/ (b + b2)* + (2)% cos 29. (52.10)

For directions not too close to an optic L
axis the squares and higher powers of o/4 I
and K/A may be neglected so that from :
(52.3), lcos 2¢p| &~ 1. According to (52.9) the
velocities may then be determined from the -
section of the index ellipsoid as though the b
waves were linearly polarised. Since for AN
such directions 2y a2y’ from (52.4), it can AN
be shown from (52.10), using (52.1), that the -
extinction coefficients of the waves may P A
similarly be determined from the absorption
ellipsoid. For directions still closer to the /]
optic axis, the difference between the expres-
sion (52.9), (52.10) and those derived bythe 7
superposition methods (52.5) and (52.6) will  Fig.47. Prepagation in a uniaxial crystal. The great
be entirely negligible, so that the latter may The states b B rnich e ?E?&Qfégﬁg;
be more conveniently used. s bear il gomeric i 1o cne note
For uniaxial crystals the principal pla- of linear and circular dichroism.
nes of linear birefringence and dichroism
coincide so that the points B and D (Fig. 47) lie on the same great circle passing
through the poles. It will be seen from Fig. 47 that the two ellipses have the
same numerical ellipticity though described in opposite senses; and the orienta-
tion of the major axes of the two ellipses are obtained from the principal planes
of 0X, and OY, by turning the latter through equal angles in opposite directions.
This result has been obtained by FORSTERLING? from the electromagnetic theory
" of propagation in umniaxial crystals. For uniaxial crystals however, the linear
dichroism close to the optic axial direction will be weak (being near a circular
section of the absorption ellipsoid) while circular dichroism in crystals has always
been found to be a.weak phenomenon. It is appropriate to remark here that
Vo16T? has made some observations on the so-called liguid crystals which exhibit
very strong circular dichroism. However, we shall not deal with them here, for
the large circular dichroism and the enormous rotation of the plane of polarisation
indicate that these media may not be homogeneous but may on the contrary
possess a lamellar structure (DE VRIES)4

1 See Sect. 56.

2 FORSTERLING: Gottinger Nachr. 1912, p. 207.
3 W. Vorer: Phys. Z. 17, 159 (1916).

¢+ H. DE VRIEs: Acta crystallogr. 4, 219 (1951).




102 G.N. RaMacHANDRAN and S. RamasEsHAN: Crystal Optics. © Sect. 53.

As in the case of absorbing inactive crystals, interesting phenomena are to
be expected for the class of biaxial crystals showing appreciable linear dichroism
along an optic axial direction. In such a case, circular dichroism being a weak
phenomenon may be neglected in comparison with linear dichroism. We shall
therefore next consider the case when circular dichroism is zero:

53, Biaxial crystals with negligible circular dichroism. o) General considerations.
In this the constant of elliptic dichroism K has to be replaced by the linear di-
chroism k. Further the axis DD, (Fig. 46a) of elliptic dichroism becomes coin-
cident with axis X, Y}, of linear dichroism. Accordingly Fig. 46b takes the special
form shown in Fig. 48. ‘

In this case we have, from (52.4) and {(52.7),

cos2y’ =cos2¢’ cos2y’ = % cos2y’. (53-1)
L B . v

Fig.48. Fig. 49.
Fig. 43. Propagation in a bigxial erystal with no circular dichrojsm. DD, of Fig. 46 (b) becomes coincident with X3 Y.

Fig. 49. Propagation for directions not in the vicinity of the optic axes (no circular dichroism). Each wave has an ellipticity
which is the sum of the corresponding ellipticities which would obtain in the absence of absorption and of optical activity.

Here again we note that the two polarised waves in the states P’ and P" that
are propagated along any direction are in elliptic states of polarisation whose
geometrical forms bear no simple relation to one another, i.e. the major axes of
the elliptic vibrations are not in general crossed, their ellipticities are not equal
numerically and finally they may or may not be described in the same sense
(depending on the direction of propagation). We shall consider only certain
special cases.

B) Directions not too near an optic axis. For such directions we may neglect
the squares and higher powers of g/4 and K/A. The arcs X, B and B P’ of Figs. 46a
and 46b respectively become infinitesimal arcs normal to the plane of the equator,
the situation being illustrated in Fig. 49. To this degree of approximation A =

and 2y'a2y from Egs. (39.4) and (53.1). From Fig. 40 the directed arc BP
will be equal to 2¢ where ¢ is the common ellipticity of the two waves in the ab-
sence of optical activity given by Eq. (48.8) of the section on absorbing inactive

crystals. Moreover the directed arc ﬁ is equal to 24 where & is the ellipticity
of the slower wave in the absence of dichroism (i.e. as in a transparent active
crystal). Thus to this degree of approximation the orientations of the major
axes are along the principal planes of linear birefringence but the ellipticity for
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each state now approximates to the sum of the corresponding ellipticities obtain-
ing, in the absence of optical activity and absorption respectively, Thus the
ellipticities of P’ and P" are

4 17 k 3
&, & =—ssin2yF L. (53.2)
As has already been mentioned in the last section the velocities and' absorp-
tion coefficients may be determined by the usual index and absorption ellipsoid
constructions as though the waves are linearly polarised. It may be seen that
though the waves are non-orthogonally polarised, the non-orthogonality facter
cos?c (where 2¢ is the angular separation of the states on the Poincaré sphere)”
is the same as in the absence of optical activity. It may also be seen that the waves -
tend to the form of a linear vibration
as d increases, i.e. as the inclination from
the optic axis increases (Sect. 71).

v) Propagation along an optic axial
direction : Two classtfications of the gener-
al behaviour. Case 1. Linear dichroism
k> circular birefringence [2p].

In this case (as will be shown) the
waves propagated along the optic axes
are actually linearly polarised, the angle
between the linear vibrations being dif-
ferent from a right angle. This is illu-
strated in Fig. 50 for the case when g

is positive. The azimuths of the two R B

linear vibrations may be readily calcu-
lated remembering that linear bire-

Fig. 50. Propagation along an optic axis. No circular di-
chroism and k> {2¢|. Linear states P’, P* are propa-

gated unchanged. The construction is for a left-rotating
crystal, i.e. ¢ positive,

fringence is absent. A linear vibration
P injtially at an azimuth ¢ with re-
spect to OX, will under the infinitesimal operation of linear dichroism be turned
through an angle £% sin 29 dz towards 0X,, the less absorbed component—as a
direct calculation shows. On the other hand, it is turned through an anti-
clockwise angle p 4z under the infinjtesimal operation of rotation. Since these
must be equal and opposite, the azimuths of the states propagated must satisfy
the equation .

* (53.3)

 Thus-there will be two states at azimuths 3" and g — ' which are propagated
unchanged. These azimuths will be either both positive (0 to 7/2) or both nega-
tive (0 to — %) according as g is positive or negative. The situation is illustrated

sin 29 = 2g/fk.

in the Poincaré sphere drawn for the case when p is positive (Fig. 50). This is
the special form which Fig. 46b takes for optic axial directions when linear bire-
fringence is absent i.e. when BB, coincides with RL and 4 =|2p|. The arc
2y’ in Fig. 46D has become a right angle and from the condition that the angle it
subtends at P’ should also be a right angle it may be seen geometrically that P’
must lie either on the equatorial arc X, C (2¢ = #/2) or on the meridional arc
CR(2yp=m/2). The latter corresponds to the case when |2¢]> k& which we shall
consider later. The former is the case we are treating at present for which Eq. (53.3)
has a solution. The two linearly polarised beams have the same velocity since
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2¢'=m/2 in (52.9). They are however propagated with different absorptmn
coefficients given by (52.10).

k’—k’-—-Kcoqup’. (53.4)

The behaviour in this respect is somewhat similar to that for inactive crystals
except for the fact that the two linear polarised states are %ot orthogonal

Case 2. Circular birefringence [2¢| > linear dichroism k.

This situation is illustrated in Fig. 51 when g is positive and represents the
second of the two cases mentioned in the last paragraph—namely the case when P
Lies on the meridional arc CR(2p=w/2). In this case two elliptic_vibrations
exactly similar in form and orientation but described in opposite senses are.

/ propagated. The sense of description of
the slower elliptic vibration is the same
as that of the slower circular vibration
which would be propagated in the absence
of dichroism. The major axes of the el-
o liptic vibrations are coincident and make

1 T -
+, anangle + Tor—7 with reference to
7 ' 0X, according as g is positive or nega-
tive. The numerical value of the ellipticity _
|ew’] of the vibrations may be obtained
from the Eqs. (52.3) since 2¢"' =n/2—
|20’| and 29’ =z/2
cos |2e'| =kf[2p]. (53.5)
Fig. 51. Same as Fig. 50, but for the case when [2¢|>% L€ t\?vo waves hfwe equal absorption
eTg"‘;h“-;hmpjﬁl;fl;%?ﬁ?mze’;‘;‘f;gﬁﬁﬁi‘?ggi coefficients according to (52.8) but they
45°to Xp. possess different velocities of propaga-
tion and the phase retardation which one
wave suffers relative to the other per unit distance of propagation is obtained
from (52.7) to be

8 — ¢ = —2psin2w’: (53.6)

One can see the parallelism between this and the case of the propagation
along the optic axis in transparent optically active crystals. There is however
" the important difference that, in the present case, the two waves are not circularly
but elliptically polarised. This leads to the curious property that-the observed -
. rotation of the plane of polarisation along the optic axis depends on the azimuth
.of the incident linear vibration so that the true rotatory power cannot be obtained
“Without correction for the dichroism. This important correctlon will be dealt Wlth
in Sects. 718 and 72.

54. Propagation in the vicinity of the optic axis. Biaxial crystals with negligible
circular "dichroism. For directions in the vicinity of an optic axis the linear
dichroism and the rotatory power may be regarded constant. Hence for example
if |2p|>#% along the optic axis, the same holds for directions in its vicinity.
The general behaviour even along directions other than the optic axis exhibits
a certain similarity to that of transparent optically active crystals or to absorb-
ing inactive crystals according as |2g|>%or £>>|2p]| along the optic axis itself.
Thus, in the former case, there are no singular axes, but in the latter, singular
axes do occur in the vicinity of optic axes, just as in absorbing inactive crystals.
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Case 1. |2¢|>4.

We shall first consider the case when the optical activity predominates over
linear dichroism. We see from formula (53.2) that the sign of the ellipticity is
determined by the second term since it is always numerically greater than the
first. Thus the two ellipses will always be described in opposite senses, and the
numerical magnitude of the ellipticity for one of the waves will be greater than
that for a transparent active crystal, while that for the other will be less by the
same amount. Since the formulae (52.5), (52.6) for the states of polarisation are
formally similar to those for inactive absorbing crystals (48.5), (48.3) it follows
as in that case that the two states P’ and P of Fig. 48 can become identical,
i.e. there will exist a singular axis, only if

2y =mj2, A=k ' (54.1)
Since the elliptic birefringence is given by

its minimum value is |2p| which occurs where the birefringence vanishes i.e.’
along the optic axis itself. Hence if |2¢| >, the situation 4 =% cannot occur
for any direction, showing that for such cases (i.e. when [2¢]>Z), there will be
no singular directions. ,

Case 2. E>|2p].

Here, we shall first consider a general direction of propagation in the vicinity
of the optic axis. The singular axes will be considered in the next section.

We have seen that the principal planes of linear dichroism as well as-% and g
may be regarded as constant in the neighbourhood of the optic axis. On the
other hand the linear birefringence § increases rapidly with angular distance

. from the optic axis. Further as we go round the curve é =const, i.e. round the
optic axis, the principal axes of linear birefringence also tnrn round rapidly i.e.
in the approximate formula (53.2) g, the inclination of 0X, to 0X, varies rapidly
with the azimuth (see for example Sect. 66, Fig. 70a). Hence along these azi-
muths where the first term becomes numerically equal to the second, one of
the waves will be elliptically polarised (with twice the ellipticity obtaining for a
transparent active crystal). But the other wave Wlll be lmearly polarised. This
obv10usly occurs along d.lrectlons Where ’

Csinzy =200k - (54.2)

Thus when any one of the. pnnc1pal planes of linear birefringence (0X, or 0Y,)
is at an azimuth ¢ with respect to 0X;, where zp satisfies the equation

sm21p-2g/k o L (54.3)

a hnear wbratlon;a;\aﬂel to that partlcular pnnmpal plane is propagated un-
changed.

That the truth of this Iast statement does not depend on the use of the ap-
proximate formula (53.2) is seen directly by applying the method of superposition
which gives in fact a simple physical explanation of the phenomenon A vibration
along the principal plane of linear birefringence remains unchanged under the
infinitesimal operation of linear birefringence. Further if it is at an azimuth ¢’
which satisfies (54.3) it will remain unchanged under the combined effects of
the two succeeding operations of linear dichroism and optical rotation, as we
have demonstrated in Sect. 53p. Thus the linear vibration will be propagated
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unchanged under the superposed effects of all the three operations. It must how-
ever be remembered that the second wave propagated along such a direction is
elliptically polarised and for directions close to the optic axis, its ellipticity and
orientation are different from that derived from the approximate treatment.
For these directions, since  is a constant, we see from (52.8) that the absorp-
tion coefficient of the waves are the same as those propagated along the optic
axes. :

The results of the previous paragraph leads to the interesting conclusion
that in the interference figures observed between crossed polaroids in convergent
light, if the polarised vibration is parallel to any one of the vibrations propagated
along the optic axis, #ru¢ isogyres are formed occurring in the same position
as in a transparent inactive crystal.

55. The singular axes. From Eq. (53. 2) we see that the elliptic birefringence
increases from a minimum value of |2p| as we move away from the optic axial

Fig. 522 and b. Determination of the singular axas, when k> |2¢]. (a) E, is the only state which can be propagated
unchanged along one of the singular axes, (b) E; is the only state propagated unchanged along the other singular axis
associated with the same optic axis., No singular axes occur when % < [2¢].

direction. Since |2g]< % there can arise a situation when A =%. From Egs. (54. 1)
a singular axis will occur if in addition 2y —n/2 In such a case Fig. 48 acquires
‘the form illustrated in Fig. 52a.

Here the arc BX, » has become a right angle and since the angle it subtends
at P’ must be a right angle, the states P’ and P both coincide at E;. Since X,

is on the same longitude as B, the arc X, X, is also a right angle, so that the
principal planes of linear birefringence and dichroism must make angles of 45°
with one another. (The case when y =/4 and pis positiveisillustrated in Fig. 52a.)
The major axes of the ellipse will be along the principal plane OY, of linear bi-
refringence if g is positive, and along OX, if g is negative.. Since 2¢" =2y’ =2,
it follows from Egs. (52.7) and (52.8) that the two refractive indices and the
two absorption coefficients become identical in the limiting case. It is seen that
along this singular axis only one wave is propagated as in the case of absorbing
inactive crystals, but this wave is elliptically polarised.

In the case when y=mxr/4 and A =% we again get a singular direction where
only the elliptically polarised state E, (Fig. 52b) is propagated unchanged. This
differs only in the sense of its description from the ellipse £; which is propagated
along the other singular axis associated with the same optic axis. A similar pair
of singular axes wil be associated with the other optic axis.
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When an elliptic vibration orthogonal to that propagated without change
of form along a singular axis is incident in that direction it will not be reflected
away, but will be propagated with a progressive change in its state of polarisation
towards the state which is propagated unchanged.

VI The matrix method of solving electro-magnetic equations
in anisotropic media®. ”

56. The refractive index matrix. o) Description of the matrix. The method we
have hitherto followed in the previous sections for solving the electromagnetic
equations has been to seek homogeneously polarised plane-wave solutions of
the customary form (27.4). A limitation of this method is revealed for directions
of propagation along singular axes in absorbing crystals where only one such
solution is obtained and not two, as is usually the case (see e.g. Sects. 49, 55).- -
Hence the procedure leaves unanswered the question as to what will happen
when light in any other state of polarisation is incident in the direction of a
singular axis. Though this problem was solved by the method of superposition,
it must be capable of being handled directly and more rigorously by the electro-
magnetic theory. For this purpose we discard the restriction of seeking plane
wave solutions of constant polarisation.

We wish to write down the equation to a more general type of plane wave
propagated along an arbitrary direction Oz in an anisotropic medium. We how-
ever continue to seek solutions for which the time factor is exp iw¢ so that?

aD
'ﬁ— —7ICUD (56-1)

and we use the matrix representation of JoNEs (discussed in Sect. 13) according

to which the state of vibration D at the plane z would in general be a linear
vector function of the state at z =0 being related by the matrix M of (13.3). The
propagation through an infinitesimal distance however is described by the ma-
trix N, the vibration at the plane z 44z being a linear vector function of the vibra-
tion at the plane z. In fact by substituting (15.4) in (13.3) and differentiating
we have o5 N
S~ =ND. : (56.2)
Tn order to see the similarity of this equation with that satisfied by the usual
plane wave we write (56.2) as

8D =

R o7 —¢—c—nD. (56.3)

This resembles exactly the equation satisfied by the usual type of plane wave
of the form (27.4) with the following difference; the refractive index # has been
replaced by the refractive index matrix n in order that the same equation may
represent the most general plane wave that can be propagated in a homogeneous
anisotropic medium. By deferentla.tmg (56.3) with respect to ¢ and (56.1) with
respect to z we get

#D )

Fr- iy i | - (56.4)

1 R.C. Jones: J. Opt. Soc. Amer. 45, 126 (1956). — S.PaNcHARATNaM: Proc. Ind.
Acad. Sci. A 48, 227 (1958).

2 The displacement vector is bere written as a two-dimensional vector D since it lies on
the wave front and it can be described by its » and ¥ components.
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This resembles the usual form of the wave equation to a plane disturbance except
that the square of the velocity has been replaced by the matrix ¢2n2. Our
problem is to determine the refractive index matrix n or alternatively the matrix
n~? satisfying MAXWELL’S equations consistent with the properties of the medium.

In Sect. 27 we replaced the operator V by — sw#s/c since solutions of the form

(27.4) were sought. More generally 7 — k'g% where k denotes the unit vector

along the z-axis (which is here taken as the direction of propagation). The rela-
tion obtained by eliminating H between the MAXWELL’S equations takes the form
(see Sect. 26) ;

D=c [BE— k(- B) ___;_A (56.5)

and writing the components of this equation we have

b,=0, B,=all p—=cl (56.6)

or N N
. } (56.7)
The properties of the medium can be expressed in the form ‘ '
E=AD o (56.8)

where the components of A can be written down by comparison with the complex
analogue of (38.7) as follows:

A11=5311: L A12=¢E12+i1—1;, } (56.8a)
Ay =a1,— 113, Asp=0,,
From (56.8) and (56.7) we have N
. 02D 52D
am = A (56.9)
and comparing with (56.4) we have
n?=A (56.10)
or ,
n=A"%. (56.11)
Hence if we write (56.8) in the form ’
D=cE (56.12)
where
. g=A"1 (56.13)
we get the most elegant result? )
nt=e¢ ‘ ' (56.14)

analogous to the result #?=¢ in an isotropic medium. Hence the refractive
index matrix n or alternatively the matrix n~2 can be determined from (56.10)
and (56.11). :
Though the wave equations (56.4) and (56.3) describe in general a disturbance
propagated with change of polarisation this is not always the case. Clearly they

1 Ounly the physically significant square root of the matrices in (56.11) and (56.14) are
to be taken. See R.C. JonEs: J. Opt. Soc. Amer. 46, 126 (1956).
. We have here considered the case of a homogeneous medium. For the corresponding
relation when N is not independent of z see the paper by R.C. Jones quoted above.
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reduce to the customary equations satisfied by a homogeneously polarised wave
- for those particular states of D for which

AD=3D, (56.15)
A-D =D, ' (56.16)

where 7 is the velocity, # the refractive index of the wave., The Eq. (56.15) is

usually satisfied for two states D—the eigen vectors of the matrix A—with two
corresponding values of 72, the eigenvalues of A; these may be determined as in
Sect. 26 since the Eqs. (26.8) previously used are merely the components of the
vector equation (56.15), giving thereby the connection with our previous method
of solving the electromagnetic equations.. Alternatively we could start with
Eq. (56.16) and determine the states of polarisation of the waves which should
be eigenvectors of the refractive index matrix n=A—%, the corresponding eigen-
values being the complex refractive indices of the waves. :

A singular axis represents a special direction for which the matrix A (and
correspondingly the refractive index matrix n) has only one eigenvector and
correspondingly in this case the matrix itself cannot be reconstructed from a
knowledge of its eigenvectors and its eigenvalues but this does not in principle
lead to any difficulty in directly determining #2 from (56.11). From the present
standpoint, along a singular direction, as indeed along any other direction, we
can have disturbances propagated with a progressive change in the state of
polarisation. The peculiar feature of a singular direction however is that such
a disturbance cannot in turn be described as a sum of two plane waves with
constant states of polarisation. .

Also, while in a general direction, the state of polarisation of the wave under-
goes an oscillatory change (the representative point on the Poincaré sphere going
around the sphere), along a singular axis it tends asymptotically to the only
state propagated unchanged along it. '

B) Relationship of the matrix method with the method of superposition. The.
components of the two-dimensional matrix A are identical with the corresponding
components of the three-dimensional matrix [a] relating E to D by E =[a]D*.
Comparing with the complex analogue of (38.7) we may write

A=a-+ib—(y+iB)SEn). ‘ {(56.17)

Here the components of the two-dimensional matrices a and b are identical
with the corresponding components of the index and absorption tensors and
y and B are the parameters of optical rotation and circular dichroism in (50.11)
and (50.12) and S :
| ~ s (é—n)rr-—(? 01), o (56.18)

the rotation matrix S(B) of (13.6) with 8 =¢=. :

Our previous procedure has been in effect to determine the refractive index
matrix n indirectly by determining the eigenvectors and eigenvalues of the ma-
trix n~2. The refractive index matrix n is also directly given by A~%. Though
this could be solved exactly, we obtain a direct connection with the method of
superposition adopted previously by noting that, when the birefringence is not

1 A corresponding statement cannot be made regarding the relationship between the com-

ponents of the 2 X 2 matrix ¢ and the components of the three dimensional matrix in D = [¢]E
since E does not lie on the wavefront. ) . .
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high, we have to the first order of approximation,. - - -

Ad=n—ik+RS@En) (56.19)
where . . s : -
1 L5 1 _ A .
n=a k=-v§b,; ‘Rr=;§y=;(g+zo‘) - (56.20)

[compare with Eg. (51.5)].

Thus we have expressed the refractlve mdex matrix as the sum of symmetric
and antisymmetric parts in the form (56.19). This decomposition is very closely .
related to the splitting of the N matrix into the sum of eight @ matrices considered -
in Sect. 15. As has been explained there, such a decomposition is the analytical

expression of the method of superposition. It may be remarked that the physical - -

interpretation of the relation (56.20) is the following: the operation of linear
birefringence given by n is determined by the section of the index ellipsoid (47.3);
_ the operation of linear dichroism given by k is determined by the section of the
absorption ellipsoid by the relation (47.4); the optical rotatory power g and the
coefficient of circular dichroism ¢ are determined from the surfaces of optical.
rotation and circular dichroism (54.7) and (51.8). With these as postulates the
consequences of the method of superposition have been developed using the
Poincaré sphere.

The method of superposition as we have adopted is equivalent to solvmg\\
Eq. (56.16) taking A~ to be given by (56.20) and (56.19). Such a procedure can
be seen to be formally similar to solving Eq. (56.15) together with (56.17) except
that in the latter case we have ¥, a, b, ¥ occurring in place of #, n, k, and R.
Hence by following such a replacement scheme, toevery relation derived by the
method of superposition we obtain a relation which is exactly the same as that
derived from the electromagnetic theory or vice versal. Such a procedure shows
that the state of polarisation of the waves derived from the method of super-
position must be identical with those given in (50.10) by the electromagnetic
theory and hence can be expressed more conveniently by the parameters @, p
on the Poincaré sphere. The refractive indices and the absorption coefficients
have to be altered from the forms (52.5) and (52.6) to (52.9) and (52.10) so that
the results obtained from the electromagnetic theory are also transformed to an
elegant form.

C. Optical phenomena in crystalline media.

1. Reflection and refraction at boundaries.

57. General formulation. The laws relating to the phenomena of reflection
and refraction can be derived by solving the electromagnetic equations of propaga-
tion, subject to the specified boundary condition, and the properties of the two
media on either side of the boundary. The subject has been treated in good
detail by PockeLs [2], DRUDE [3] and SzIvEssy [1] and therefore only the es-
sential principles will be outlined here.

We shall denote the first medium in which the wave is incident as medium 1
and the second as medium 2. Both of them are supposed to be anisotropic in
general. Suppose that the plane of the boundary is the x y-plane and the normal
to it is the z-axis. Let the direction of the incident wave normal be in the xz
plane making an angle #, with Oz. Denote a unit vector along the wave normal

1 8. PancuHARATNAM: Proc. Ind. Acad. Sci. A 48, 227 (1958).
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waves are given by

General formulation.

Eo — AO ezni[vt—‘nu (8o+1] ,
El — A1 eZni[ut—n,(s,,-r) + 6;],
E2 —_ A2 ezni[vt—n, (85 - 1) + 85} .
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Let 8, s, be unit vectors of the reflected wave in the first medium and
refracted wave in the second medium. Then, the electric vectors in the three

(57.1)

In an anisotropic medium, there would in general be two waves propagated along
any direction with two different refractive indices. For the present, we assume

that the incident wave is polarised with its state of polarisation corresponding to .

one of the two waves propagated along that direction. Then, #, is unique, but
#, and #, are in general double-valued functions of the direction of propagation.
At the boundary, we must have the conditions

E0x+E1x= sz’
Eoy+ Ery=Esy,

H0x+ H
H,, +H1:v =H,

HZz: }
2y

(57.2)

It is obvious that these equations would hold for all points (x, ) on the
boundary only if the exponential terms are the same in all the three terms, which

gives the following

conditions:

(a) 6;=08,=0 or mi.e. if thereisa phase change, it can only reverse the ampli-
tude, without producing any phase shift as such;

(b) the vectors §g, 8,, S, and Oz are coplanar, i.e., the reflected and refracted -

wave normals remain in the plane of incidence, and
(c) if B, F,,, are the angles made by the incident, reflected and refracted

wave normals with

02z, then

g SN Py = 7, sin Py = ny sin .

(57.3)

These laws of reflection and refraction are similar to those for isotropic media,
but they differ in important details. Thus, the wave normals of the reflected and
refracted waves remain in the plane of incidence, but the corresponding rays
need not lie in this plane, as will be shown in the next section. Also, since #,

is in general not equal to #, in an anisotropic medium, the angle of incidence is
not equal to the angle of reflection. Further, we should expect to have in general

two reflected and #wo refracted waves, even when there is only a single incident
wave with a definite refractive index. If, however, the incident wave is unpolarised
or has a general state of polarisation, this would be split up into two waves in the
medium with different refractive indices, and therefore we should expect four
reflected-and four refracted waves. We shall denote by 4, B the two polarised
waves along the incident direction and by P, Q; and P,, ¢, the two polarised
waves along the reflected and refracted directions. Then it follows that the direc-

tions of propagation of the four waves of each type are given by

. n -
sin$4p, = nil sin,

sindyg, =

. n .
sindpp = 7;1 sind,,

sin'ﬁBQ, =

ny, -
& sin oy,
g

. .
9 gin 4,
74

sind,p, = n’: sind,,

) SmﬁAO’ = :LL?: Sin'ﬁo,

- n -
sinfigp, = n? sind,,

. n, .
sin g, = n—f;smﬂo.

- (57.4)

-,
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It is obvious that the above laws do not depend on the exact form of the
boundary conditions, but follow directly from the condition that the equations
must hold for all points on the boundary. If now, the Eqgs. (57.2) are applied,
one can also obtain relations between the amplitudes of the incident wave and
of the reflected and refracted waves. For a definite polarisation of the incident
wave, the directions of propagation and states of polarisation of the two reflected
and the two refracted waves are first obtained from (57.4). Feeding these data
into the four equations (57.2), the amplitudes of the four waves can be solved.for
in the terms of the amplitude of the incident wave. ;

If the first medium is isotropic, then there is only one réflected wave a.nd two
refracted waves. The reflected wave follows the usual law of reflectiofi as far as
direction is concerned, but its intensity and state of polarisation are affected by
the anisotropic nature of the second medinm. This result has been applied for
measuring the optical properties of a crystal from a study of the light reflected
from its surface and the theory of the phenomena is discussed in Sect. 60.

Fig. 53a—c. Total reflection at the boundary of an apisotropic medium. Upper medium is isotropic, lower one anisotropic,

A G being the dividing line. (a) Huygens construction for wave propagatlon in anisotropic medium. A B is the incident

wave front and AN and 4 M represent normals to the waves propagated in the medium. 4 P and A4 Q are the ray direc-

tions. Two cases when total reflection takes place are illustrated in (b) and (c). (b) When the wave normal (4 M) coincides
with AC, or (c) when the ray direction (4 Q) coincides with AC.

58. HUYGENS’ construction and total reflection. Although the relation between
the angle of incidence and of reflection or refraction of the wave is formally very
simple even in anisotropic crystals, the actual determination of the direction of

“the reflected or refracted ray is not so straightforward. The method of obtaining
this is by a generalisation of the well-known HUYGENS' construction to ani-
sotropic media (see Sect. 27). If we consider the secondary waves radiating from

“~a point 4 on the boundary into the second medium, then the envelope of the
© wave at any instant of time will be a surface of two sheets, the so-called wave-
surface or ray-surface of Sect. 27. Let 4B be the wavefront of the incident plane
wave (Fig. 53a), which covers the region AC of the surface, of unit length. Then
the incident wave takes a time # =, sin J,/c to reach C after it has reached 4.
During this interval, the secondary wave from 4 would have spread out, and its
position would be given by the wave surface corresponding to . The secondary
waves from points in between A and C would have spread to intermediate
distances proportional to their distance from C and the two resultant refracted
wave-fronts would thus be the tangent planes through C to the two sheets of
the wave surface. The directions AM and AN perpendicular to these lie in the
plane of incidence and give the directions of the wave normals of the two refracted
waves. On the other hand, the two ray directions are given by the lines AP, 4Q,
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joining 4 to the two points where the tangent planes touch the wave surface.
These do not, in general, lie in the plane of reflection.

A similar situation holds for the reflected waves and rays also, if the first
medium is anisotropic. The two reflected wavefronts are parallel to the tangent
planes through C to the two sheets of the wave surface radiating from A, after
a time #. The ray directions again need not be parallel to the wave normals and
may not even lie in the plane of reflection. E

An interesting consequence of these is in relation to total internal reflection
in anisotropic media when the medium on the other side is isotropic. In Fig. 53a,
let #, be the refractive index of the isotropic medium, which we may first con-
sider to be greater than all the three principal indices of the crystal. Then, there
would in general be two refracted waves in the second medium. Suppose that
the angle of incidence is increased. Then the time interval ¢ increases and the
size of the wave surface also increases. Thus the point P and @ would approach C
and the wave normals AM and AN would also approach the direction AC tan- -
gential to the surface of separation.

Considering the point P it is clear that when it reaches the position shown in
Fig. 53 b, the wave normal 4M coincides with AC. For larger angles of incidence,
the wave cannot propagate into the second medium and is therefore totally
reflected. This condition for total reflection is analogous to that for isotropic
media and is given by the condition

g SIN @y = 71 (58.1)

where, however, #, is the wave refractive index along the direction AC.

On the other hand, if we consider the point Q, it is clear that when it reaches
the point C (Fig. 53c¢), the refracted wave normal AN is not tangential to the
surface of separation, but the ray direction 4Q is tangential. For larger angles
of incidence, the wave surface with 4 as origin goes beyond C and so no tangent
can be drawn to it from C. In other words, there will be no refracted wave cor-
responding to this sheet of the wave surface, and there will be total reflection.
The critical angle for total reflection is now defined by the condition that the
ray is tangential to the surface of separation, i.e.,

g SIN g = n,, . (58.2)

where now #,, is the ray refractive index along the direction AC.

Thus from the boundary between an isotropic and an anisotropic medium,
total reflection may occur if either the wave refractive index or the ray refractive
" index satisfies Eq. (58.1) or (58.2). Which one is relevant to a particular
sitnation depends o1 the shape of the wave surface, and the fact whether the ray
or the wave normalis at a smaller angle to the surface, near the critical condition.
It is obvious that, if AC coincides with a principal axis, then the ray and the
wave normal directions coincide and so the two conditions are equivalent.

If we now denote by #; and #, the wave or the ray refractive indices, which-
ever is smaller, for the two sheets of the wave surface along the direction AC,
then it follows that : ’

if #,<<my,<<m, there are two critical angles,
if %, <<my<<n, there is only one critical angle,
the other polarised component being always refracted and if #,<lm,<<n, total

reflection does not occur for any angle of incidence in the isotropic medium.
. Handbuch der Physik, Bd. XX V/1. ’ 8
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The above results may be used to obtain the principal refractive indices of
a crystal from measurement on the critical angles for total reflection from a
parallel plate of the crystall. The isotropic medium is chosen such that its
refractive index #, is larger that the largest index y of the crystal. The plane of
incidence is kept fixed while measurements are made for different settings, rotat-
ing the crystal plate in its own plane. Both the indices #; and #, would then be
found to vary between a maximum and minimum over a full rotation of the
crystal. It is readily verified that the minimum of #, will be «, the maximum
of n, will be y, and either the maximum of #, or the minimum of #, will be
(see Sect. 82{ for the experimental method).

59, Twin plane reflection phenomenon exhibited by some minerals. o) Calcite
and fascicular gypsum. The beautiful iridescence displayed by the twin plane
v reflection in calcite is well known and has been
treated in great detail by FramicH, OSLOFF, -
RaviEIGH2. When a distant luminous source is
viewed through a rhomb of calcite containing a
twin plane, three images of the source may be
seen. The central image, which is undeviated,
is colourless while the two -outer ones display
vivid colours. The intensity, the colour and the
angular separation of the images are markedly .
4" dependent on the direction in the crystal along
which the source is viewed.

The explanation of this phenomenon is quite '
P : simple. When a beam of light traverses a layer
Fig. 54. Location of the principal axes of the  0f calcite which has on either side of it crystal-
index ellipsoid fa Be svmmetry Plane i Jine matter in different orientations, the inci-
dent wave would be both reflected and refracted.
Since the medium is birefringent, the incident beam would split into two and
associated with each of these, there would be two reflected and refracted beams.
Of the four refracted beams possible, two emerge from the twin layer in the same
direction as the incident beam in the case of calcite (since it is a uniaxial crystal).
Hence for the most general direction of incidence, although there would be four
_ reflected pencils, there occur only three refracted pencils. The central undeviated
ray appears in the same direction for all wavelengths, while the dispersion of
the refractive indices of calcite manifests itself by the later deviated images being
drawn out in the form of spectra.

One can also show that the twin plane reflections actually vanish when the
plane of incidence coincides with a plane of symmetry. Fig. 54 represents the
location of the principal axes of the index ellipsoid in the symmetry plane, 0X
and QY referring to the upper side and 0X” and OY” to the lower side of a twinning
plane. 0Z and OZ’ coincide and thay are normal to the plane of the paper,
coinciding with the two-fold axes. The upper and lower parts being mirror images,
the coefficient of reflection at the boundary for a given angle of incidence would
be the same whether the incidence is from above or below. But according to
the principle of reversibility the reflection coefficient should be of opposite signs
according as the wave is incident on one side or the other of the boundary. As
these two results are contradictory, the coefficient of reflection should be zero

Twinming plve

’

1 W.H. WoLLasTon: Phil. Trans. Roy. Soc. Lond. 92, 381 (1802).
2 See PockELs’ Lehrbuch [2] or WALKER [5] for summary of earlier work. See also
C.V. Ramawn and A. K. RamMpas: Proc. Ind. Acad. Sci. A 40, 1 (1954).




Sect. 59. Twin plane reflection phenomenon exhibited by some minerals. 115

for all angles of incidence and all states of polarisation when the plane of incidence
coincides with the symmetry plane.

~ An extremely striking variation of the phenomenon described above has been
observed® in the case of a variety of gypsum. Gypsum is a monoclinic crystal
and it is known to have a fibrous modification (satin spar). But another variety,
fascicular gypsum is found which consists of an aggregate of crystalline rods having
their axes of symmetry nearly parallel to each other while the other two axes
show a range of variation. Optical studies indicate that in the best specimens
the rods can take two orientations, in both of which one of the axes of the index
ellipsoid is unchanged, while the two other axes are approximately interchanged. .

When such a plate is held close to the eye and a distance source of light is
viewed normally through it, a brilliant circle of light is seen and the source of
light appears at thé centre with
an overlaid diffraction pattern
of concentric circles. As the
plate is slowly tilted away
from the normal setting the
outer circle enlarges and the
inner pattern enlarges first to
form a second ring and later
as the tilt is increased a third
ring appears (Fig. 55a). The
intensity over each circle varies
considerably. The circles do
not display any colours when
white light is viewed, suggest-
ing that their origin is due to
"internal reflection.

It is well kIlOWIl t.hat if a Fig. 55a. The circles of internal reflection in fascicular gypsum.
pencil of rays is incident onm  Note the source being visible as a bright point on the second circle.

an isotropic cylindrical rod in

a direction making an angle ¢ with its generator, the reﬂected rays lie on
a right circular cone whose semivertical angle is ¢ and the axis of the cone is
parallel to that of the cylinder. The direction of incidence would therefore be a
generator of the cone. If now, as in the present case, reflections take place at
inter-crystalline boundaries within a birefringent solid, the angles of incidence
and reflection need not necessarily be equal as a consequence of the planes of
polarisation and the wave velocities being different for the incident and reflected
pencils. Hence four cones of rays must emerge from the cylinder. But in the case
of fascicular gypsum, since the surface of the plate is normal to the common axis
of the index ellipsoids, two of the reflected rays (whose planes of polarisation are
perpendicular to each other) would obey the ordinary laws of reflection and would
therefore - emerge along identical directions. Hence the four reflection cones to
be expected in the most general case, degenerate to three. The central one cor-
responds to the case where the ordinary laws of reflection are obeyed; the direction
of incidence being a generator of this cone, the source should appear as a luminous
- point on it. The first and the third circles correspond respectively to the two
cases when the angle of reflection is less than and greater than the angle of inci-
dence.

1+ C.V. RaMaw and A.K. Rampas: Proc. Ind. Acad. Sci. A 39, 133 {1954).
8*
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The polarisation characters of the rings may be briefly described as follows:
If the incident pencil on entering the plate divides into two pencils with vibrations
along two mutually perpendicular directions, (0X and 0Z, say) then in the first
circle the vibration direction changes from OX to OZ on reflection, while in the
third circle it changes from OZ to OX. In the central circle OX remains as OX
and 0Z as 0Z.

The reflecting power at the 1nter-crystallme boundary would obviously be a
function of the azimuth of the incident light, it being zero when the plane of
incidence coincides with the plane of symmetry in the crystal. It may be remarked
that as this substance has a peculiar preferred orientation it also displays ma.ny
of the phenomena to be treated in Sect. 61. _—

B) Iridescence of potassium chiorate. The spectacular iridescence of certaln".
crystals of potassium chlorate (KClO;) when viewed in white light has long been
known. Crystals of this substance are strongly birefringent (belonging to the
holohedral monoclinic class) and they crystallise in tabular forms. The tablet
face (¢ face) contains the two-fold axis of symmetry with the mirror plane per-
pendicular to it.

STOKES! was the first to recognise that the iridescence had its origin in the
reflection of light at twin plane boundaries within the crystal. Rayleigh concluded
that a single twin plane layer was quite insufficient to explain the observed effects
and postulated that the crystals exhibiting this phenomenon must be polysynthe-
tically twinned parallel to the tablet face causing the medium to be regularly -
stratified. Hence for a given angle of incidence the intensity of the reflection
would be a maximum for wavelengths at which the reflections by successive
stratifications reinforce each other because of the agreement in phase. The
maximum should therefore be a function of the angle of incidence. This explains
the sequence of changes in the colour (the narrow spectral band shifting towards
the shorter wavelengths) as the angle of incidence is increased. In all cases how-
ever, irrespective of the angle of incidence, the coloured reflection vanishes
completely when the plane of incidence coincides with the plane of symmetry in
the crystal. The reflections reappear, although feebly when the plane of incidence
deviates even slightly from the plane of symmetry. Under these conditions,
there would be a rotation of 90° in the plane of polarisation of the incident light.
A light wave polarised in the plane of incidence would be reflected as a wave
polarised in a perpendicular plane and vice versa. We shall for convenience call
this as a reversal of the plane of polarisation.

Since the crystal is highly birefringent other extremely interesting phenomena
have been observed by RamMaN and KrRIsENAMURTEY 2. As we have seen previously
- (Sects. 57, 59«) there would be four reflected streams of light and hence there
-would be four wavelengths of the maximum intensity in the spectrum, their
positions being determined by their respective optical paths; of these four, two
would be polarised in the normal manner while the other two would have reversed
polarisation. The relative intensities would vary with the angle which the plane
of incidence makes with the plane of symmetry. When the angle is small, there
would be only two maxima of the latter type while if the angle is large all four
would appear with comparable intensities (see Fig. 55b).

When the plane of incidence is perpendicular to the plane of symmetry the
total optical paths of the two pencils which emerge after reflection with their

! For a summary of earlier work see PockeLs [2].
2 C.V.RaMaN and D. KrRISENAMURTHY: Proc. Ind. Acad. Sci. A 36, 315—334 (1952);
A 38, 261 (1953).
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planes of polarisation rotated would be the same. This can be very simply seen
as symmetry permits us to deduce the optical path of one from that of the other
by just interchanging the path of the incident and the reflected rays. Therefore
for this setting two out of the four maxima of intensity would coincide. It can
also be shown that if the alternate layers of the stratifications are of equal thick-
ness then each layer would be related to the one below it by a mirror not only in
atomic structure but also in thickness, the optical paths of these two pencils
showing reverse polarisation would be the same irrespective of the azimuth of
the plane of incidence. This however, would not be the case when the alternate
layers are not of equal thickness. Hence the :
Presence of four Spectral maxima in any POSi‘ i >': u»?ﬁxmm%inuusl’limuf:!‘yulm"cf;v(.
tion is an indication of the inequality in the
thickness of the alternate layers.

If diffuse monochromatic light is allowed to
fall on a specimen simultaneously in all direc-
tions, the resulting effect would be total re-
flection in all directions along which all the
reflections reinforce each other due to the agree-
ment in their phase. For a particular order of
interference such directions will lie on the genera-
tors of cones whose cross sections would be
circles if the medium is isotropic and ellipses
if it is birefringent. In the present case there
must be four cones of total reflection of elliptic
shape two having the normal type of polarisa-
tion and two of the reversed type of polarisa-
tion. Each cone will be accompanied by second-
ary maxima of interference. Such reflection -
spectra have been observed as bright curves on  Fig 55b. Reflection spectra of iridescent

. N N potassium chlorate. The angle of incidence of
a dark field when monochromatic source is used.  the whitelight is kept constant and azimuth

If however, the source is viewed through the ey i sih e st ooy
crystal, corresponding extinction curves are seen ?&?ﬁgﬁ?ﬁﬁgﬁfgﬂ;ﬁ it ohe
as dark bands on a bright field. The pattern to a triplet may be noted.

vanishes in the symmetry plane of the crysial :

and has its maximum clarity in the perpendicular plane. Hence the pattern
observed consists of two pairs of crescents with their tips narrowing to shaip
points fading off gradually as the symmetry plane is approached. Of the four
components of extinction and reflection bands, two are polarised with their vibra-
tion direction parallel to the symmetry plane while the other two are perpendicular

to it. . :

60. Reflection at the surface of an absorbing anisotropic crystal. The first
medium, from which light is incident on the surface of the anisotropic crystal,
is assumed to be isotropic and non-absorbing. The formulae for the intensity and
polarisation of the reflected and refracted waves in the case of transparent crystals
were derived long ago by MacCurragH and NEUMANN and they are available
in PockELs’ Lehrbuch ([2], S. 183 —211) and Szrvessy’s article ([1], pp. 717—751)
and is therefore not given here. The theory has been extended to absorbing
crystals by BEREK!, who has also devised several methods of investigating the
optical properties of such crystals from a study of the light reflected from their

SRS LoRTI IO Vhimtnd 18 g datpiaid

¥ M. BeErek: Z. Kristallogr. 76, 396 {1931); 77, 1 (1931); 89, 125, 144 (1934); 93, 116
(1936); 96, 357 (1937). — N. Jb. Min. Geol. Paldont. A 64, 132 (1931).
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surface. It is only possible to discuss sﬁme of the more important results obtained
in this very interesting series of papers. The original papers may be referred to
for the detailed derivations and also for a review of earlier work in this field.

) Obligue incidence, The general solution of the boundary equations for ab-
sorbing media is formally the same as for transparent media, except that the
refractive index is complex, and consequently all the quantities involved, such
as amplitudes of electric vectors, azimuth of polarisation etc. are also complex
The significance of the complex nature of these quantities is explained below.
Complex quantities will be denoted by symbols in bold face italics®.

As with non-absorbing crystals, there would be, in absorbing crystals also,
two refracted waves.in general for any angle of incidence, which may be denoted
by suffix 1 and 2, the former referring to the faster and the latter to the slower
wave. Let 7 be the angle of incidence in the first medium of refractive index #,
and let 4 and s denote the two components parallel and normal to the plane of
incidence. If A is the amplitude of the incident wave and R that of the reflected
wave, then

' (Bp, As, — By, As,) — As (Rp, Ap, — Rp, Ap)

__Ap s
R,= (Ap, As, — Ap, As) ’

60.1
R Ap (RslAc ol ]fs2 Asl) — As (1{31 A?: Izs2 Ap l) ( . )
s (Ap, As, — Ap, As)
where
__ cosrycos Oy sin 7, cos dy
24,,= cosi + sin ¢ ’
2R, = cosz;;:(;s &y + sin:;i,nc?s & )
. (60.2)
—si _sinmy
?A“' =sind; + sinicosi T
—sind, — —SBTh _
2R, =sind, sinicoss Tk

Here, 7, r, are the (complex) angles of refraction of the two refracted waves,
d is the azimuth of polarisation of the refracted wave with respect to the plane_
of incidence and m stands for

m;, = cos 1, 5in dj, + sin v, tan 7, (60.3)

where 7, is the angle between the ray and the wave normal, which may be ob-
tained in terms of the components of the index tensor and the direction cosmes
of the wave normal.

The complex nature of the angle of refraction arises from the relation
#ySini =mn, sinr,
’ L (60.4)
=, (1 — €3) sinwry,. .

The complex azimuth of polarisation means that the wave is not linearly, but
elliptically polarised. If y is the azimuth of the linearly polarised wave to which
this is brought by a compensator producing a phase difference 4 between the
perpendicular and parallel components; then

tan d = tan y . {60.5)

1 Note that this differs from the convention followed in other sections of this article.
Further » is also used in a different sense in this section (see Sect. 45).
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Alternatively, if 4 is the azimuth of the major axis and o the ellipticity, ie.,
tan w =b/a then A and w are related to y and A as follows:

€08 2y = €0s 2 cos 24,

s e
sin 4 ==sin 2w/sin 2y, (60.6)
cos A — sin 24 cos 2w

© sin2y
Eq. (60.5) then becomes o
tan d — sin 24 cos 2w + 7 sin 2w (60.7)

1 4-cos 24 cos 20

B) Normal incidence. In this case, { =1, =r,=0 and m; becomes equal to
sin d,. The two refracted waves are propagated in the same direction, and
therefore the two ellipses have the same axial ratio and sense, but their axes

are crossed (see Sects.42—49). Thus, o, =w, and d,= —;1 + d,. Further, there is -

no particular sense in talking of the parallel or perpendicular component of the
incident amplitude, for the plane of incidence is not defined at all for normal
incidence. We may therefore take 4, =4 the amplitude of the incident linearly
polarised wave, and 4, =0.

Putting in these simplifying conditions in (60.1) and (60.2), we obtain

- (&_1«»_)
.giz ';2 "1n sin 2 d,
o2
ny n,
T 1Mo
By M3 sin? d, + ™ cos? dyb. (60.8)
i 1
1+ 20 .
n,

The ratio of R, to R, which gives the complex azimuth of pélarisation of the
reflected wave, is n
(ﬂ — ——0-) sin2 d;

R, _ n, ny . (60 9)
R, ny My 7y ny : :
1—I.I+ (_n:-—z)coszdi
If B stands for the resultant amplitude obtained by combining R, and R, then
1— T 2 1— o 2
R n, . n.
4 =— { 2 sin dl} + t 1 cos 0”1} . - (60.10)
S " %o
~ 14+ -2 1+ =2
n, ny

The most interesting result is that R, is not zero, i.e., there is a component in the
reflected wave which is at right angles to the vibration direction of the polariser.
Therefore, the field will not appear dark under crossed polariser and analyser
and this phenomenon is known as the ““anisotropy effect ”. The reflecting power
under crossed linear analysers is

R, = [R_SZP = (sin? 24, + cos? 2 1, sin? 2a;) X

2 73 {1+ x8) + nd (1 +23) — 2m, 1, (1 + 221 %65)
X M0 Tt (4 wd) + 21g 1y - 18] [P (1 T ) + 27 g+ 78] (60.11)

4

= (sin22 4, + cos? 24, sin?2wy) - f (ny, n, %),  say.




120 G.N. RaMacHANDRAN and S. RamaseEsHAN: Crystal Optics. Sect. 60.

Here, o, is the ellipticity of the two refracted waves, while 4, is the azimuth
of the faster wave, with reference to the electric vector of the incident wave. It

is readily verified that R, is a minimum for 4, =0 or % and a maximum for
A= %f— the two values being

Ry min =70, %, %) SN2 2005 Ry poe = F (10, 7, %) - (60.12)
The ratio of the two gives the ellipticity directly. Thus,

ER"‘- min

— ain2
T e — S0 200, . _ (60'1‘”

and we have here a method of determining the ellipticity of the waves transmitted
in any direction in the crystal, purely by observation on light reflected from its
surface. The minimum intensity is zero only if there is no absorption. The -
reflecting power under crossed analysers is identically zero for all azimuths if
n, =n,i.e., if the crystal is isotropic, or if the light is incident along the direction
of single wave velocity.

The reflecting power R =|R|2/A2 is also of interest. If the ellipticity is zero
or small, this is given by

(”2—'”0 + ngong 3 {1y — 1)* + nfoed 2 } S 2
f= V ”z'f"”o THiAg sin’ 21+mn~lcos A 4ng sin?26; X
ny%; [03 (1 + %3) — n§] — nyaty [0 (1 +5) — nd]

[(ny + 16)% + 1§ 53] [(10g + 125)® + nF 23]

This is maximum or minimum when 4, =0 or z/4 and the two values then
correspond to the azimuth of the incident beam parallel to the vibration direc-
tions of the two transmitted waves. These are called the uniradial reflecting
powers R, and R, and are given by

(60.14)
« _

_ (np—mg)? - niok .
Rf,= (T aEEn s h=1,2. (60.15)
The difference between the two,
AR=R,— R, (60.16)

may be called the “bireflection” of the section, analogous to the quantities
birefringence and dichroism. It is interesting that the uniradial reflecting power
and the bireflection (for normal incidence) depend only on the direction of the
electric vector and its corresponding refractive index. Omne may thus talk of
the three principal uniradial reflecting powers for the crystal:

R,> Ry > R,

Elegant formulae have been worked by BEREK! also for the case when ellipticity
is not small. Thus, the ratio of R, to R, in (60.9) may be written in the from

II:S =C+iD. (60.17)
»
Consider in partlcular the settings of the polariser at :t to the fast axis.
Then 4; = — = and +5 2 for the two settings and we have from (60.7)
tan d, = F cos2w -}isin2w. {60.18)

1 M. BErek: Z. Kristallogr. 93, 116 (1936).
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Putting this in (60.9)
R 1
== . (60.19)
RP —nz—nl—_ﬁ—-coszw—l—isinzw
g (1) — 1)

Using the absorption coefficient % instead of the absorption index x we may write

n,=mn,—1ik,, h=1,2 (60.20)
when we have

-

: 1
S =
R,  +Gcos2w-i(sin2w F Hcos2w) (60-21)

where
G L. malmh 4 A —ny (nd 4 D) + g (g — )
Mg (g — 19)? + (By — &y)® ’

.22
B 1 PR~k (rd+ A F nd ey — Ay (60.22)
g (nz—n1)2+ (kz—kﬂz .
Comparing with (60.17)
' c
+ Gcos2m = e
. " D (60.23)
sin 2w & H cos 2w = — o5

Denoting the quantities relating to the two settings of the polariser by the
indices I and II, it may be shown that

i 1[_Dr Dri
200 = ~— —
sin2o = — > {e ¥of + Gt oh)
1 ¢t Cu
T 2cos2w {cf.;.pf T CH+DEJ’ (60.24)
H = 1 Dy _ D11
T 2cos2w cf +Df C%I +D%I .

For an account of the application of these formula to various crystal symmetries,
the original paper should be referred to.

I1. Propagation of light in heierogeneous media.

61. Polycrystalline media. Most minerals sccur in nature as polycrystalline
aggregates, consisting of a great number of optically anisotropic crystallites,
variously oriented, firmly adhering to each other to form a coherent solid. It is
therefore of importance for the study of the properties of such substances to work
out a theory of the propagation of light in polycrystalline aggregates. The optical
property of the single crystal, its birefringence, pleochroism, etc. would no doubt
play a dominant role in determining the optical characteristics of the aggregate.
For example, the greater the birefringence, the greater would be the coefficient
of reflection at the ihtercrystalline boundaries. One could therefore explain
the brilliant whiteness of pure marble as due to the strong birefringence of the
constituent calcite crystallites. However, it is clear that a simple geometric
theory is quite inadequate. For according to it when the crystallites are very
small, one should expect the more numerous intercrystalline boundaries to reflect
the incident light to a greater extent. Experiment shows the contrary result,
namely that the more fine-grained the material is, the more deeply the light pene-
trates it. This suggests that wave optical principles have to be involked for a
better understanding of the optical properties of polycrystalline aggregates.
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We present below a theory developed by RaMaN and VISWANATHAN? using
a very simplified model for introducing random orientation for studying this
problem. It is assumed that the crystallites are feebly birefringent, and are in
very large numbers, but not numerous enough to completely extinguish the
emergent light. To obtain the retardation due to the varying orientations of the
individual crystallites, it is assumed that the plate of polycrystalline material
consists of crystallites, cubical in shape having a common edge length D com-
pletely filling up the available space. The three edges of the cube are assumed
to be parallel to the principal axes of the index ellipsoid-of the crystallite for
which the indices are n,, #,, #;. The varying orientation is introduced in the
following manner. The incident light is supposed to be plane polarised with its
vibration direction parallel to one set of edges of the cubical blocks, while the
effective refractive index may be either #,, %, or s, the respective probabilities
for these being $,, p; and p,. One can see that when p, =p, =4, one gets the
case of the random orientation of the crystallites while in the case when the p’s
have different values (provided ¢, +#,+p;=1) one gets the case of a poly-
crystalline aggregate of any desired preferred orientation. For example p; =1
and p,=p5=0 is the case of all the crystallites having a common refractive
index for a particular direction of vibration while the indices may be different
in the perpendicular direction. This case is quite often met with in polycrystalline
aggregates. One serious draw-back of these assumptions is that the incident
plane polarised disturbance would remain plane polarised in its passage through
the plate. In an actual case the incident vibration would be transformed to an ™
elliptic vibration and the parameter describing the ellipticity would alter from
crystallite to crystallite. In spite of these serious limitations, these authors have -
been able to explain many observed phenomena. Finally the assumption has been
made that the variation of the amplitude over different areas on the rear face
of the plate may be ignored while only changes in the phase are taken into account.

Let the incident wave train be
271 .

_ y=¢2 &7 (61.1)
and let there be NV cells along the direction of the thickness of the plate. When
the wave has passed through %, cells of refractive index #,, &, of 7, and %; of n,
before emerging from the plate, where

kB+hk+k=N, (61.2)

the optical path retardation is

(Fy 7y + ko my + kyng) D. (61.3) -
Now the number of ways in which %, %, and Z; cells can be orientated along a
row of N cells so as to have refractive indices #,, %, and #; is

N1

Byl gl A (61.4)

and the probability of occurence of each one of these cases is
P b5 pl. (61.5)

Hence the proportion of the total area of the rear surface of the plate from which

a wave
2:1n

{6t — z— (kymy —+ ky g+ Fy ) D}} (61.6)

1 C.V.Raman and K.S. ViswanaTHAN: Proc. Ind. Acad. Sci. A 41, 37 (1955).

exp
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emerges is equal to
kl'k'k' pk p2p3‘

Hence the emergent wave is

NI
y=€+k-§,Nk1!k2'k!P1ﬁ2p3 -
whhs (61.7)

Xexp[ Lot —z— (hymy + Rymy + By ) D}]

where P is introduced to take into account the loss of intensity of light due to
reflections at the intercrystalline boundaries. From the multinomial theorem,
(61.7) may be written as

27 ‘ 27 2mi -
y — Pe (ct z} [ﬁle—TmD—i—ﬁze_TnZD—Fp:;e— 7 n,D}N. (618)
The average refractive index of the medium is

N =Py My + Pa#g + P3¥s; (61.9)

hence if we set
vy = (thy— ), Vo= (mg—my),  va(ny—my)
-’7'1:”‘5‘(752”3_?3”2): 77'2=”+(p3”1_f71”3)»}
g =1+ (Prv2— Pay)-

Since d=ND, subst1tut1ng (61.10) in (61.8) and expanding in terms of a power
series, one obtains

¥ =P{ 2;:i (ct—2) — ”d} X {1 21 (Pavs— ﬁa”z)z}N (61.11)

neglecting the third and higher powers of ('nl——nz), etc. as the birefringence is
assumed to be small. Further a little algebra will show that

ZPl (Povs — Pava)> =2 a5 7. (61.12)

Hence (61.11) can be rewritten as

we have

(61.10) -

ZnD

2nd ct—2}—nd 1 2 _Dd
y=pe 1 A7 {__ m 2752753,,1} (61.13)
27
— PRe £ @9 (61.14)
where -
. 2:: Dd
N Ree 7 2P i Nis large. (61.15)

The ratio of the intensity of the transmitted light to that of the incident light is
given by

471 Dd
D2 g (12 — g R} :
L_prr=pre # MR (61.16)
0. :
If the three axes of the cube have the same probablhty of being oriented in the
direction of the incident light then $, =, =#; = % and (61.16) reduces to

I 8n2Dd
+ =Prexp — 7;}2 Znf— > mny). (61.17)
o ;i
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RamaN and ViswANATHAN illustrate the significance of the formula (61.16) by

the example that in a plate of alabaster 1 mm thick, taking 1 =5893 A and the

principal refractive indices of gypsum (the constituent of alabaster) to be ;=

1.520, #y=1.523 and #; =1.530, the percentage transmission for D =1, 0.5 and

0.1 u are respectively 13.5, 37 and 82% thus showing that the plate approaches

practically complete transparency as the crystallites approach colloidal dimensions.

Also of interest is the case mentioned previously when p, =1, 9, =5,=0 i.e.,

when the crystallités are orientated with a common refractive index along one

direction. In such a case for the direction of vibration for the incident light

parallel to the common direction, the transmission is complete, while for a per-
pendicular direction of vibration there would be a considerablé attenuation

depending on the actual values of the probabilities and the refracfivé indices

for that direction. Since the latter transmission is dependent on the thickness 4.
if the incident light is unpolarised the state of polarisation of the emergent light ™
would vary with the thickness of the plate. These facts are confirmed in minerals

like chalcedony?. These substances are very transparent for one particular direc-

tion of incident polarised light, while becoming practically opaque for a perpen-

dicular vibration (almost reminiscent of the behaviour of thin tourmaline plates).

The polarisation characteristics of the transmitted beam are also well explained

by the theory.

The attenunated energy should obviously appear as diffracted radiation in
the form of a halo in various directions surrounding the direction of the incident
beam. Such a diffusion halo is actually observed in these crystals. According
to this theory if the incident light is plane polarised the diffusion halo must also
be perfectly plane polarised—a deduction not supported by experiment. This is
actually the consequence of some of the simplifying assumptions regarding the
orientation of the “cubical” crystallite blocks made in the theory. Experimental
. observations show that while this theory explains most satisfactorily the intensity
and the state of polarisation of the transmitted beam it fails to account for the
state of polarisation of the diffracted light.

It may be remarked in this connection that the study of these diffusion
haloes by Raman? and his collaborators have been very fruitful in the understand-
ing of the anisotropic distribution of crystallites in various minerals like moon-
stone etc.

62. The Christiansen phenomenon in birefringent powders. CHRISTIANSEN3 in
1884 discovered the beauntiful phenomenon that goes after his name. To observe
it some powdered isotropic solid like optical glass is put in a flat sided cell and
then filled with a liquid whose refractive index is suitably adjusted by either
varying its composition or its temperature. Beautiful chromatic effects are

~._observed as the mixture becomes transparent for a restricted region of the spec-

trum for which the refractive index of the liquid coincides with that of the solid.
This phenomenon is often used for the construction of monochromatic filters—
particularly in the infrared. CHRISTIANSEN himself failed to observe the pheno-
menon in birefringent crystals. Recently Ramanx and BuAT* have observed
this phenomenon using powdered quartz, barium sulphate, calcium sulphate,
lithium carbonate, and magnesium fluoride suspendend in suitable liquids. It

1 C.V. RamaN and A. JavAaRaMAN: Proc. Ind. Acad. Sci. A 38, 199(1952); A 41, 1(1955).—
A. JavaraMan: Proc. Ind. Acad. Sci. A 38, 441 (1953).

2 C.V. RaMax: Proc. Ind. Acad. Sci. A 37, 1(1953).

3 CmrisTriansen: Ann. d. Phys. 23, 298 (1884); 24, 439 (1885).

4 C.V. Raman and M.R. Buar: Proc. Ind. Acad. Sci. A 41, 61 (1955).
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is found that provided the birefringence is small and the material is finely powdered,
it is possible to observe the transmission exhibiting brilliant colours. It is also
found that the light so transmitted is practically as monochromatic as that
observed with isotropic powders. If the -incident light is plane polarised the
light transmitted is also completely plane polarised. The diffusion halo surround-
ing the direction of transmitted light however exhibits imperfect polarisation
depending on various factors, including the fineness of the powder. Finally the
colours of the diffusion halo are markedly different for the two components of
the light vibration parallel or perpendicular to that of the incident light. The
general features of these observations (except those regarding the state of polarisa-
tion of the light of the halo) have been explained by Raman and VIswANATHAN?
by an extension of the theory of the propagatlon of light in polycrystalline media
presented in the last section.

The only difference in the theory is that some of the cubical elements of volume
each of edge length D is now. considered as filled either by the liquid of refractive
index #; or by the crystallites. We assume that the operative refractive index of
any omne block may either be #;, #,, 1, with equal probabilities p ifitisa crysta]hte
or #, (with a probability ¢) if it is filled with the liquid. Hence

3p+g=1. (62.1)

If in the passage of IV cells N — M happen to be solid blocks and M liquid blocks
then the probability of the occurrence of this event is

F—amram B8 0¥ (62.2)

and again Eq. (61.2) becomes
By t+hks+k=N—-M (62.3)

" and the probability of occurrence of a state in which &,, k, and %; cells in a row

of (N — M) cells can be oriented in such a manner as to have refractive indices

7y, %y and g is _ Nt
| o (v (62.4)

PAAEE

Following an identical procedure as in the previous derivation we get the ratio

of the intensity transmitted to that of the incident radiation to be

L 4n Dd {?22 (ng— ) +- D g 3 (m — m)%}. (62.5)

— = R%=¢exp —
This formula reduces to that deduced by Raman? for an isotropic case.

I o

The formula shows that the effect of birefringence is to diminish the interisity
of the transmitted light for all wavelengths and one cannot therefore expect to
observe the phenomenon unless the size of the particles is extremely small or
the thickness of the cell is reduced to a minimum. When the chromatic effect
due to difference in refractive indices is not there, the colour is determined by
the factor 4172 (due to scattering by the large particles). However, if the bire-
fringence is not very small, chromatic effects will be observable when the volume
occupied by the powder is small compared to the volume of the liquid. All the
limitations of the theory mentioned in the last section apply to this case also.
Most of the deductions from the theory about the transmitted light have been
verified by experiment. B

1 C.V.RamaN and K. S. Viswanaraan: Proc. Ind. Acad. Sci. A 39, 55 (1955).
2 C.V.Raman: Proc. Ind. Acad. Sci. A 29, 381 (1949). .
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‘ I11. Interference phenomena.

a) Transparent crystals.
63. General discussion. «) Conditions of observation. The interference pheno-
mena exhibited by crystals in polarised light are very well known and are perhaps
the most colourful of phenomeéna observed in nature. In the case of transparent
crystals both a polariser and an analyser are necessary to observe these effects.
In this case they arise because every polarised ray incident on the plate splits
up into two rays in orthogonal states of polarisation which siiffer a relative path
retardation on passing through the plate. Pairs of orthogonally polarised rays
) derived from the same-point of the original source will be
8 coherent and can interfere after resolution by an analyser.

7 These interference phenomena are usually observed under
two different experimental conditions. In the first case
‘ the incident hght is very nearly parallel and the eye or

the microscope is focussed on the crystalline specimen.
If the specimen is a parallel plate it will exhibit a uni-
form tint over its area since the retardation at all points
would be the same. This will not be so in the case of a
specimen of varying thickness. .

N

The second method of observatmn is by the use of,

L _ convergent light 7, for example with the aid of the usual

conoscopic arrangement given in Fig. 56 [see also Fig. 86b]

an extended light source being placed below B. In this

case the interference effects occur at infinity i.e., at the

g . focal plane of the lens L'. Each point P’ in the focal plane

lﬂT is a focal point of a bundle of parallel rays emerging from

the crystal in a particular direction. Since the retarda-

Fi o tion introduced by the plate varies with direction, the
ig. 56. Schematic diagram N . N .

of "conoscopic arrangerment. interference phenomenon varies over the field of view.

-] Fig. 57a illustrates one particular ray incident on the crys-

tal which sphts into two on entering it, the final rays emerging from the crystal

being parallel to the incident ray. The path retardation suffered by each ray

should strictly speaking be calcnlated using the ray velocity. It must be noted

" that in Fig. 57a any other ray incident on the plate in the same direction would

be incoherent with the particular incident ray considered since by reference to

Fig. 56 it may be seen that they originate from different points of the ongmal

liminous surface. Nevertheless for simplicity we consider the incident ray in

Fig. 57a as being normal to the portion of a plane wavefront as in Fig. 57b, the

wave normal suffering refraction according to SNELL’s law. The path retardation

suffered by a parallel wave front on passing through a parallel plate of isotropic

medium is n# cos # where # is the refractive index and 7 the angle of refraction.

In the present case if #,, #, and 7, and 7, are respectively the refractive indices

and the angles of refraction of the wave normals then the difference in the phase

retardation suffered by the two components is

A== (nlcos #,— My COS 73) £. . (63.1)

The equation expresses the fact that A depends on the difference in the refractive
index as well as the difference in the lengths AL and AN. For normal incidence
this is exactly equal to zero and even for oblique incidence, it can be shown that
when the birefringence is small the second effect may be neglected in comparison
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with the first. Then the expression can be written as?
A= 27 =) 63 23

i cos7
where 7 is the mean angle of refraction.

LW

Fig.57a and b. The paths of (a) the rays, (b) the wave fronts travelling in a particular direction in a birefrh;gent plate.

g) I nterference effects in parallel light. As we have seen above, each pomt in
the conoscopic figure is a focal point of a bundle of parallel rays emerging from
the plate in a particular direction. We shall
therefore first consider the closely connected
problem of the interference effects in parallel
light at normal incidence of a transparent crys-
tal cut in any arbitrary direction when exa-
mined between an elliptic polariser P and an
elliptic analyser 4 (Fig. 58). Since the crys-
tal is transparent, the incident light of unit
intensity will ‘be split into two orthogonally
polarised states’ P, and P, (in general ellip-
tically polarised), whose intensities will be

cos?a; and sin® o, respectively, where 2o, is
" the angular distance of P from P, on the Poin-
caré sphere. These states suffer a relative
 phase retardation 4 on passage through the
plate, the state P, being taken to be the slower
beam. The analyser 4 at 2u«; from P, trans-
mits fractions cos? &, and sin® a, of these
beams; and as we have seen in Sect. 48,
Chap. A, the phase difference between the re-
" solved components will be equal to (4—g¢)
where —¢ may be described as the phase re-  gig 58. (a) Poincaré representation for com-
tardation due to the processes of decomposi- Puting the general inforfarance effects in par-

allel light. P is the polariser, 4 is the analyser,

tion and analysation. Here Q= < A P]_P taken 1;1 and dlf2 ttl;;: two et]laip;:’ic bst_at&s ﬂ;;ros?agatei 1?-
g changed in the crys eing the slower state.
to be positive if on looking from B t0 P, an -  (b) The case when all the states become linear.

anticlockwise rotation brings arc P P to P A
(@ is also equal to < PP, 4). Thus the analyserA transmits two beams of inten-
sities I, and I, with a phase difference A" between them given by .

L =cos?a,coslay, [Ly=sinesinea,, A'=4—¢. (63.3)
1 See M. BorN [4], p. 248 or DiTcHBURN [8], p. 512. ’
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Being in the same state of polarisation, the intensity obtained by the interference
of the resolved components will be

. I=L+L+2)LTcos4'. (63.4)
This can be written as

I=[L-+I,+2 )51 cos 9] —[2 )1, I,(cos ¢ — cos A4")]. (63.5)
The first term is the intensity transmitted if 4 =0 i.e. if the plate were absent
and hence must be equal to cos? 3 PA. Hence

I= 0052 P4 - 2VL1, sin — L Asin (A — ) . ) 63.6)

The first term which only depends on the relat1ve orientations of analyser and-.
the polariser is known as the “white term” and does not depend on the wave-
length, while the second term gives rise to the “subtraction colours” in white
light, since it depends on the retardation introduced by the plate and hence on
the wavelength. It may be noticed that when ¢ is changed to ¢ — & the sign of
the second term in (63.6) changes; the colour is therefore changed to a comple-
mentary hue. The colours will be most vivid when the states of the polariser
and analyser are orthogonal to one another when the white term vanishes, i.e.
@ =, and correspondingly the change from the original to the complementary
hue will he most striking.

In the particular case when a linear polariser and a linear analyser are used
and the medium possesses only linear birefringence, then o, and «, are the actual
(numerical) inclinations of the polariser and analyser to the faster linear state
OP, (Fig. 58b). Further since the states P and A lie on the same great circle
passing through P1 P, namely the equator, ¢ =0 or 7 according as the polariser
and analyser are in the same quadrant or in different quadrants In the general
‘case however @ can take values other than 0 or . This is true even in the case
of linearly birefringent media if the polarising and analysing states are not both
linear (or when we are comsidering the effect of superposed plates). The last
mentioned case can also be treated by the same formulae (63.3) and (63.4), since
the effect of two such plates on the incident light is that of a single plate showing
elliptic birefringence (see Sect. 74).

v) The phenomena in convergent light. Though the two classes of phenomena
in parallel and convergent light present very different appearances, they can
be explained on the same broad principles, the basic difference between the two
-phenomena being in the location of the interference effects. Each point in the
convergent light figure corresponds to a definite direction of propagation and
- theintensity I ata point will be that observed in parallel light for the correspond—

~.ing direction, being given by formulae (63.3) and (63.4). All the quantltles in
the formulae vary with the direction.

Considering for example the case of a plate cut approximately normal to the
optic axis, as we proceed outwards along directions normal to the curves of -
constant retardation, the retardation A increases rapidly and the corresponding
rate of variation of the intensity could usually be taken to be predominantly due
to a change in 4. Interference rings would therefore appear along the directions
in which the resolved components transmitted by the analyser are opposed in
phase. The curves of minimum intensity will be given by

A'=(2fn+1)n }
7+ Q.

=@2n+1)x (€3.7)
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It must be remembered that ¢ (which represents the phase retardation introduced
by the process of decomposition and analysation) is not a constant over the field
of view because the states P, and P, of the waves propagated depend on the
direction of propagation. The curves of minimum intensity would therefore, in
general, not coincide with the curves of constant retardation.

For a uniaxial crystal or a biaxial crystal of not too small axial angle the
curves of minimum intensity could usually be constructed in the following way.
The curve A = (2n +1) 7 is drawn and the radii vectors of this curve are increased
by amounts corresponding to the additional retardation @ (@ itself depending on the
azimuth). The intensity at any point of the curve of minimum intensity is given
by substituting A== in (63.4) and is

T i == €082 (o) + o) = €082 (07 + &3) - (63-8)

This is itself not constarit over the curve of minimum intensity as the states of
vibration of the beams propagated vary with the direction of propagation. The
rings appear darkest along zones which have to be determined for each specific
problem.

However in the particular case when the polariser and analyser are crossed
we have ¢ =+ and (o; +a,) =7/2. In this case the curves of minmum intensity
are perfectly dark and occur along directions for which 4 =2z as is also to
be expected from physical considerations.

There may also exist lines in the field of view containing directions for which
one of the states P, or P, propagated in the crystal coincides with the state of the
polariser (P) or the analyser (4) (ie. ¢ or a;=0). Along these lines and in a
narrow band on either side of them, the interference effects would clearly be
absent. If now the polariser and analyser are crossed with respect to each other
then P and A4 would coincide with the states P, and P, and along these zones
the intensity would now be zero. These zones are known as isogyres, and it is
clear that their position does not depend on the thickness of the crystal but only
on the state of polarisation of P and 4. If P and 4 are of the same state then
the isogyres will be bright. More generally, if 2 and A are of different states
two sets of isogyres will be observed. For an agproximate discussion of the inter-
ference rings, particularly near the optic axis, the retardation 4 introduced by the
plate can be taken to be proportional to the birefringence, the effects due to the
variations in the thickness traversed being comparatively negligible.

64. Interference phenomena in inactive crystals. a) Convergent lLight figures
under crossed nicols. Consider all directions as passing through the centre of a
sphere and defined as points of intersection with the surface (the portion of the
spherical surface under consideration can for qualitative purposes be approxima-
ted by the plane of the paper). Thus each point on the sphere corresponds to
point on the convergent light figure, which corresponds to a particular direction
of propagation. ~ )

Fig. 59 represents the rings and the isogyres for a uniaxial crystal near the
optic axis. The extraordinary ray is polarised in the radial direction. So the iso-
gyres occur along the two perpendicular diameters representing the polarising
and analysing states. The curves of constant birefringence are circles given by
sin? W =const [Eq. (34.8)]. Hence the interference rings at § =2nx are circles
whose radii are proportional to the square root of the natural numbers.

The case of a biaxial crystal where the optic axial angle is large and the plate
is cut normal to one optic axis NV, is illustrated in Fig. 60. The optic axial plane
is indicated by the straight line in the diagram and N, N, contains the z direction.

- Handbuch der Physik, Bd. XXV/1. 9
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The vibration direction of the faster wave obtained by the construction given in
Sect. 34, Fig. 39a is shown. The lines of like polarisation are again diameters.
‘When the crossed nicols have their planes along and perpendicular to the axial
plane, the isogyre lies along the axial plane and when they are turned, the iso-
gyre turns at twice the rate. Thus at the 45° position the isogyre is a vertical
brush, though it is slightly curved with the convex side facing the acute bisectrix
(Fig. 60). The curves of constant birefringence are, from (34.7) circles sin U, =
const and hence the curves of minimum intensity are circles whose radii are pro-
portional to the natural numbers. - o~

In the case of a biaxial crystal ‘cu_t normal to the actute bisectrix (Fig. 61)
the directions of vibration at any point are obtained by bisecting the angle sub-

Fig. 59. Conoscopic figure in uniaxial crystal (nonoptically Fig. 60. Conoscopic figure in a biaxial inactive crystal
’ active) in a section normal to the optic axis. (2V being large} when the plate is cut normal to the optic
axis.

<

tended at the point by the two optic axial directions (Fig. 39a) externally and
internally. The internal bisector represents the slower wave in a positive crystal.
The curves of like polarisation are rectangular hyperbolae passing through the
optic axes the vibration directions on any point of the hyperbola being parallel
. to the asymptotes. Conversely for any setting of the crossed nicols the isogyres
will be rectangular hyperbolae with the asymptotes parallel to the vibration
directions of the polariser and the analyser. The isogyres turn round in a peculiar
manner when the crossed polaroids are rotated. The curves of equal birefringence
are lemniscates with sin #; sin #,=const [Eq. (34.7)1. ’
B) The convergent light figures with a linear polariser and a civcular analyser.
Determination of the optical sign of a crystal. Let us consider the case when the
incident light is linearly polarised so that the point P (Fig. 62) on the Poincaré
sphere is on the equator and a left circular analyser (which is transparent for left
circularly polarised light L) is set after the plate. Such a circilar analyser is
obtained by a combination of a 1/4 plate backed by a linear analyser at the
suitable azimuth. In this case Fig. 58a gets transformed to Fig. 62 and we have

2a2=i—25— and ¢P=:i:% the upper or lower sign being chosen according as the
azimuth y of the faster state P, (; =|y|) with respect to the polariser is positive
(0 to %} or negative (0 to — %) Thus according to (63.3) the phase difference
A’ between the resolved components transmittéd by the analyser is greater or
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smaller than §* by =/2 according as the azimuth of the faster state P, with respect
to the incident vibration is (a) positive (0 to %) or (b) negative (0 to — —'}) .

Accordingly from {63.7) in the zones given by (a) (i.e. p=0to + g—) the curves

of minimum intensity occur at é =(2# +3%)  while in the zone (b) they occur
~at 6= (2n-+%) w. Thus the curves of minimum intensity shift by quarter of a
fringe in opposite directions with respect to the curves d =2ns, which would be
obtained without the /4 plate when the analyser is crossed with respect to the
polariser. However the curves are still lemniscates in each of the two zones (a)
and (b). The intensity obtained by substituting the relevant quantities in (63.3)
and (63.4) is given by _ '

I=3%[1—sin2psind]. {64.1)

Clearly there will be no interference along the zone of directions for which p =0.

g

Fig. 61. Conoscopic figui:e in a biaxial inactive crystal cut Fig. 62. Poincaré construction for convergent light figures
normal to the acute bisectrix. The directions of vibration observed in inactive birefringent crystals with a linear
at a point are indicated. _polariser P and a left circular analyser L{4).

The shift of the fringes mentioned above may be used to determine the optical
sign of a crystal. Consider for example the case illustrated in Fig. 63a, where a
biaxial crystal is viewed through a left circular analyser. For any setting of the
polariser, for regions in the field of view where the isogyres would normally
occur g =u;=0. Also, for any point in the field of view the vibration direction
which internally bisects the angle between the lines proceeding from that point
to the two optic axes represents the slower wave if the crystal is optically positive
and the faster wave if it is negative. Considering for example the former case,
let the polariser be at an azimuth 7z/4 with respect to the line joining the acute angle
between ‘the optic axes. The convex side of the line of line polarisation will
correspond to zone (b) while the concave side to zone (a) mentioned above.
Hence the rings would contract on the convex side of the line of like polarisation
(the band in Fig. 63a) and expand on the concave side. The reverse would be
true if the crystal is optically negative. If however the polariser direction is

at — % then the rings would contract on the concave side and expand on the
convex side for an optically positive crystal. |

1 Since the crystal is non-optically active, the relative phase retardation 4 of Sect. 63
is equal to 4.

9*
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It may be noticed that from Eq. (63.8) that the intensity at any point of a
curve of minimum intensity is cos? (% + |1p|) which vanishes only at p =4 %.

Hence in the neighbourhood of the optic axes the rings are perfectly dark along
an axial plane and they slowly fade away as we approach the curve of like polari-
sation on crossing which the shift of the ring system occurs.

In the above discussion we have considered the case when a left circular
analyser is employed. For this the quarter wave plate is with its fast axis at

f= —l—% with respect to the plane of analysation. We have not specified the

actual orientation of the analysing micol as it is quite immaterial. '

a ) b

Fig.63 aand b. Convergent light figure with linear polariser and left circular analyser. (2) Polariser - % to Ny N, and crys-

tal +veor polariser —-Z- to Ny N, and crystal —ve. (b) Pat % to Ny N, crystal —ve, or Pat —%to Ny N, crystal +ve.

If a right circular analyser is used the sign of ¢ (Fig. 62) would change and
the intensity at any point of the field wonld again be given by the same expression
" (64.1) except that a positive sign should be attached to the second term.

By a similar method the case of a circular polariser with a linear analyser
could be treated. It may be remarked that when the polariser and analyser are
crossed the effects observed on introducing a 4/4 plate at 45° above or below the
crystal plate are the same.

65. Convergent light figures in transparent optically active crystals. o) General
description of the phenomena. Transparent optically active crystals in sections
normal to the optic axes show a simple rotation of the plane of polarisation.
We have seen that this arises because along an optical axial direction, the two
" waves propagated are circularly polarised in opposite senses, the left circular
vibration being propagated with a greater velocity when the rotatory power is
positive (laevo rotation for an observer looking at the source). The general treat-

“~-.ment given in Sect. 63 8 for the colours appearing when a crystal is viewed between

a polariser and an analyser is equally applicable to the present case, with 4 =2y,
though for sections of usual thickness, the colour phenomena are only vivid in
the case of crystals like quartz which possess considerable optical act1v1ty While
in linearly b1refrmgent crystals, the dispersion of birefringence i.e. of {n,—#u,)
is usually negligible, in quartz the large dispersion of circular birefringence con-
tributes appreciably to the colour phenomenon. This is used in the biquartz
—the analogue of the Bravais plate—for a sensitive determination of the azi-
muth of a linear vibration.

In the biquartz the two halves are of left and right rotating quartz, the rotation
for yellow being 90°. When the linear analyser has been set parallel to the incident
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vibration, the two halves are matched showing the sensitive tint of passage. If
the analyser is rotated slightly in one direction the blue compomnent is cut off

. in one half and the red in the other, causing a noticeable difference in the tints.
With large thicknesses of quartz between polariser and analyser along the optic
axis, if white light is used, no- colours are visible, but the phenomena are still
present and the subtraction of colours of different wave lengths can be observed
in the channelled spectrum of the transmitted beam. It is interesting to remark
that the rotatory dispersion-of quartz was used by Woob! to separate the D,
and D, lines of sodium by choosing a suitable thickness of quartz for which the
difference in the rotation for the two wavelengths was fairly Iarge and cutting
off one of them by a linear analyser.

For directions other than the optic axis the waves propagated are in two
orthogonally polarised elliptic states. The major axes of the ellipses lie along the
two principal planes of linear birefringence, which are determined by the usual
construction for inactive crystals (Sect. 34, Fig. 39a). The ellipticity of the states
are given by the equation tan |2w]=2g/d, their relative phase retardation per .

unit distance being given by 4 =]/6+(2¢)%. In the neighbourhood of an optic
axis, if we may regard g as constant, the ellipticity remains the same along the
curves of constant linear birefringence. As we proceed away from the optic axis
the e]hpticity diminishes rapidly and the vibrations tend to become linearly
polarised as in an inactive crystal and 4 NJ smce the square of the ellipticity
may be neglected. -

Thus, in the optic axial figures in convergent light between crossed polar01ds
the isogyres appear dark only far away from the optic axis and fade away as
the optic axis is approached. However this effect is best observed only in the
case of a crystal possessing high optical activity. As we have seen in Sect. 63y
the curves of minimum intensity are perfectly dark and occur at 4=2nn. If
we regard g as constant in the vicinity of an optic axis, the curves of minimum
“intensity are circles very close to the 0pt1c axis and become leminiscates at larger
distances.

The optic axial direction 1tse1f usually appears bnght and it can be extinguished
by rotating the analyser with respect to the polariser. Hence the interference
figures observed when the analyser is not crossed with respect to the polariser
are of more interest here than in the corresponding case in inactive crystals.

B) Interference figures in quartz with lnear polariser and analyser in a general
setting. In this and the following sections we shall confine ourselves to the inter-
ference figures exhibited by quartz although the same treatment may be extended
in a straightforward manner to other crystals, ‘uniaxial or biaxial.

For any general setting of the polariser and the analyser the behaviour at
the border of the figure should approximate to:that of an inactive crystal. We
have seen in Sect. 63 that for an inactive crystal the phase difference — @ intro-
duced by the processes of decomposition and analysation is 0 or 7, the first
case obtaining when the polariser and the analyser directions are contained in
the same quadra.nt between the principal planes. Thus, in the acute sector in
the field of view defined by the two diameters parallel to the polariser and the
analyser vibrations P and 4, as also in the acute sector defined by two lines
perpendicular to these vibrations, the dark rings occur at 4=2#nz In the
remaining sectors they occur at 4 =(2# -+ 1) #. However, the elliptical polarisa-
tion of the waves manifests itself as we approach the optic axis and — ¢ is not
restricted to the two values 0 or z but varies continuously as we proceed round a

' R.W. Woop [13]. o RN
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circle described about the optic axis. As a consequence, the discontinuity in

the ring system is smoothened out and towards the centre ofthe field of view, the
rings take the form of squares with rounded corners. The directions at which -

the corners occur can be discussed using the Poincaré sphere. -

Along any direction represented by Q on the convergent light ﬁgure (Fig. 64)

two crossed elliptic vibrations are propagated. Let the polar coordinates of Q
P be 7,9 (where the origin O represents the optic axial

i dJrectlon and OP is parallel to the vibration direction

g .~ ofthe polanser) Then, since quartz isa positive crys-

» .~ tal, # is also the azimuth of the™major axis of the

¢ slower vibration P’. Hence if the ellipticity of this

S slower wave be & the state P’ will be represented on

7 ~ the Poincaré sphere by a point of longitude 28, while

O gl 0 ropresents T its latitude is numerically equal to 2¢, ¢ being posi-

cal line. Along any point Q on the . tive or negative according as the crystal is optically

gﬁ.éggiiﬁff(ﬁ‘iﬁﬁ;;’;:&ﬁ right or left handed. We shall first consider the case of

optically active birefringent erystal g right handed crystal in which case the point P’ liesin

the upper hemisphere (Fig. 652). In what follows the

main point to remember is that, as the representative point ¢ goes round a circle

described about the optic axis, the corresponding state on the Poincaré sphere

goes round a parallel of latitude. For a general setting 4 of the analyser we have

¢=< PP'A, and this is positive or negative according as the azimuth 9 of.

the analyser with respect to QP is negative (0 to — ?) or positive (O to 2),

Fig. 65 2 and b. Poincaré representations for computing the interference figure obtained in quartz with a linear polariser
and analyser in a general setting.

the former case being illustrated in the Fig. 65a. As the analyser is rotated in
a clockwise direction, ¢ increases and the rings will expand according to the
construction of the curves of minimum intensity given in Sect. 63y.

For a fixed setting of P and 4, in order to find the orientations of the maximum
and minimum radii of the quadratlc curves, we have to find the positions at which -
@ becomes maximum and minimum as P’ goes round the small circle. For this
we note that & P,P’A,= L PP'A=¢ while XA4A,PP=<LAPP,=n— @
The numerical value of ¢ attains a maximum for the position Py, P; indicated in
Fig. 65b for which the azimuths #; and &, of the major axes bisect internally
and externally the acute angle between the polariser and analyser vibration
directions. On the other hand, for positions P; and P, the supplement of |¢|
attains a maximum value, ie. || attains a minimum value. If the azimuth
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of the analyser is negative, ¢ is always positive. Hence to obtain the curve of
minimum intensity, we have to draw the circular curves A =(2#4-1) # and
increase the radii of the circles by amounts variable with direction. These in-
crements attain their maximum values along the internal and external bisectors
of the vibration directions of the polariser and the analyser and their minimum
value along directions inclined at 7/4 to the former. The “quadratic curves” in
“this case are i]lustrated in Fig. 66. On the other hand, when the analyser azimuth

is pos1t1ve (O to + with respect to the polanser) the greatest contractions

,p p . from circular form occur along the

former set of directions, while the great-".._
est expansions occur along the latter.

~"
Fig. 66. . Fig. 67.
Fig. 66. Quadratic curves in basal section of quartz.

Fig. 67. Pomcaré repmentatlon for intensity transmitted in a basal section of quartz with circular polariser (L) and a
5 linear analyser (4).

The intensity for different points on the curve of minimum intensity is given by
I, = cos?§ (204 + 205). . (65.1)

The quantity (2a;-+2as) has also its turning points at Py, P;, P; and P; as P
goes round the circle and it can be easily verified that the expression becomes
zero at P and P, and has a maximum value of cos? P P, at P/ and P;. Thus the
quadratic curves always appear darkest along the azimuths bisecting internally
and externally the angle between the polariser direction and a direction crossed
with respect to the analyser. For the same reason, when the optic axis is extin-
quadratlc curve.

It may be noticed that only when the analyser is at a positive azimuth with
respect to the polariser do the darkest portions occur at the corners of the qua-
dratic curves. Otherwise they occur at the centres of the sides.

All the above discussions apply to a right-handed crystal. For a left handed
crystal the point P’ will be in the lower hemisphere. It may be readily verified
that the figure exhibited at any setting of the polariser and analyser for a left-
handed crystal would be the same as that exhibited by a right-handed crystal
when the vibration directions of polariser and the analyser are interchanged.
In the case of the left handed crystal the rings expand for an anti-clockwise
rotation of the analyser. This is contrary to the behaviour of a right handed
crystal and may be used for the determination of the sign of the rotatory power.
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_ Corresponding results could be derived for biaxial crystals. The curves of
minimum intensity near an optic axis will be elongated in only one direction.
At the proper setting of the analyser the optic axis is extinguished by a single
bar instead of a crosst.

v) Spiral figures in a single basal section of quartz®. We shall discuss the case
When a left circular polariser represented by P (at L, Fig. 67) Is used and a linear
analyser (Fig. 64) is set behind a basal section of right handed quartz. As
the point P’ moves along the small circle in an anticlockwise direction, 2%

increases from 0 — % —>7 3—275 — 27 and correspondingly ¢ (< P P’ A) increases

from —-—n—>——72£—>0——>+~;1->+7z. e i
The curves of minimum intensity are given by (63.7) ~

A=2nm+(x+ ). (65.2)

Hence along the circle 4 =2#x the phase difference between the resolved com-
ponents falls short of (2# +4-1) z by an angle (s 4 @) which increases continuously
with the azimuth © and which in fact becomes exactly equal to fwice the azimuth

at ﬁ=m%. The curves of minimum intensity obtained by correspondingly

increasing the radii vectors of the circle 4 =2#x would therefore consist of two
mutually enwrapping left-handed spirals related to one another by a rotation
of 7z. The expressmn for @ could be obtained from the spherical triangle 4 P’ P
and this expression could be used to study the form of the spirals in greater detail.
Clase to the optic axis the point P’ would be nearer the pole so that g &~ — (m— 248).
Further the linear birefringence varies approximately as the square of the distance
7 from the optic axis. Hence close to the optic’axis the equations to the spirals
- using (5.2) and (65.2) are given by3

A=Vdrtag=2n7+29. 65.3)

If the spirals are extrapolated to the origin (where they actually fade away)
the common tangent at-the origin will be at an azimuth of —p (Fig. 68) [the
negative sign has to be attached as the spiral is left handed and at the azimuth
§ =m[2, it passes through the point A4 =m/2].

Towards the border, the figure must tend to the form which we have dis-
cussed in the case of inactive crystals (Sect.63y). The transition occurs by
way of a non-uniform rate of increase of the arm of the spiral, which manifests
itself as kinks along the vertical and horizontal directions. These assume the
form of discontinuities towards the border of the figure.

The variation of intensity along the splral may be studied with sufficient
‘accuracy by considering the variation of cos? (xg ) [Eq (65.1)] as P’ goes round.
the small circle, the arc 2ea; bemg constant. The arc «j acquires its minimum
value of 2¢ at 28 =0 and its maximum value of z—2¢ at 2¢ =n. Further the
sum 2y +2a; lies between the limits /2 and a for directions close to an optic

axis (Where 2s>£). Hence the arcs of the spirals appear darkest along the

1 The observation of a continuous expansion or contraction in the ring system as the
analyser is rotated is a very sensitive method of testing for optical activity of a biaxial
crystal.

2 S, PANCHARATNAM: Proc. Ind. Acad. Sci. A45 402 (1957).

3 Here A and g refer to the retardation and total rotation for the whole plate and not for
unit thickness as in (39.4) or (5.2).
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diameter perpendicular to the plane of vibration of the analyser. It must be
emphasised that this does not hold at greater angular distances, 2¢ <%, so that

towards the border of the figure the zones above which the rings appear darkest
are 45° to the plane of the analyser as in inactive crystals.

If the polarising state (L) is changed to its opposite state (R) and the analyser
is rotated to its orthogonal state there will be no change in the observed figure
since @ (in Fig. 67) remains unaltered and 203 and 20 are changed to their supple-
ments.

We may summarise the above results in a form applicable both to right and
left rotating sections of quartz The hand (left or right) of the spirals observed

~——

Fig.68. h Fig. 69.
Fig. 68. Spiral curves observed in a basal section of quartz with a circular polariser and a linear analyser.

F;g 69. AIRy’s spirals. Poincaré representation o prove that in parallel light two equal sections of quartz (first left-
handed and the second right-handed} superposed with the corresponding principal planes coinciding, is equivalent to a
- single optically inactive birefringent plate. '

‘with a circular polariser and a linear analyser is opposite to that of the quartz.
When the hand of the circular polariser is opposite to that of the quartz, the
common tangent to the spirals at the origin is at an azimuth—p with respect
to the analyser vibrations where p is the optical rotation of the basal section
measured with the usual sign convention. Close to the optic axis the spirals
appear darkest along the diameter normal to the vibration direction of the
analyser. A change in the hand of the circular polanser merely rotates the entire
figure through a right angle.

From Fig. 67 it is seen that when the polarising and the analysing states are
interchanged, only the sign of ¢ is altered. The same result is obtained by the
change of the sign of 28. Hence the spiral figures exhibited with a linear polariser
and a circular analyser may be derived from the figure obtained when the polariser
and the analyser.are 1nterchanged by reﬂectmg the latter about the plane of
vibration of the analyser ’

8) Airy’s spirals due fo two suj:erposed basal sections of quartz. Let us first
consider the case when parallel light is incident normally on two superposed
sections of quartz, the first being left handed and the second right handed; it
is further supposed that both plates are of the same thickness and cut at the
same angle to the optic axis, being superposed such that the corresponding prin-
. cipal planes of the two plates are in coincidence.

Referring to Fig. 69, the state of the faster elliptic vibration of ellipticity &
propagated in the first plate is represented by the point A4, of latitude 2¢. The
state of the faster vibration propagated in the second plate will then be represented
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by the point 4,, which has the same longitude as A4; but has a latitude —2e.
In order to combine the action of the two successive plates, we construct the
isosceles triangle 4,X A4, as indicated in Fig. 69, the base angles <4, 4, X and
< X A,A, being both equal to 4/2, 4 being the retardation of each plate. -

We now. apply the theorem for compounding rotations given in Fig. 8 of
Sect. 58. An anticlockwise rotation of the sphere about A, through twice the
internal angle at 4, (representing the action of the first plate) followed by an
anticlockwise rotation about 4, through twice the internal angle at 4, (represent-
ing the action of the second plate) is equivalent to a single-rotation about the
axis X lying on the equator (Fig. 69) through twice the external angle at X. In
other words, the combination is equivalent to a single optically inactive bire-
fringent plate of retardation d’, the faster vibration direction being at an azimuth
—a with respect to the common principal plane of the quartz plates (containing
the major axis of the faster elhpse propagated in each plate) From the spherical
triangle 4, X X, we have - (65.4)

We now proceed to consider the ccmvergent light flgures exh1b1ted by two super-
posed basal sections of quartz of equal thickness, the first being left handed and
the second right handed. Since for any particular direction of propagation the
combination behaves like an mactlve crystal between crossed micols, we should
expect the appearance of “isogyres” along the zones where the equivalent planés .
of the combination coincide with the vibration direction of the polariser and °
analyser. The “isogyres” would not however take the form of a unjaxial cross
since the equivalent principal planes for any particular direction of propagation
do not coincide with the principal planes of the individual plates. If the azimuth
of any point in the field of view with respect to the vibration direction of the
polariser be as usual denoted by ¢ (Fig. 64), then dark isogyres obviously occur

tan 2¢ = tan A sm28."‘_ '

where & =a or % -+ « so that the “isogyres” will occur at
: - . ,
: tan 24 =tan A sin2e. (65.5) .

This takes the form of four mutually enwrapping left handed spirals®. This may
be seen particularly for directions close to the axis where, as a first approximation
by setting sin 26 =1 in Eq. (65.5) the isogyres would be determined by [see

Ea- (53] A=VAR T hg=2nm+ 4. (65.6)

These dark curves consist of four left hand spirals, each of which is rotated by
90° with respect to the adjacent one. At the centre the spirals touch two perpendi-
cular lines inclined at an angle p/2 (since 4 =2p at the optic axis) to the planes
polarisation and analysation on the left hand; where p is the rotation of the plane
of polarisation produced by any one of the plates.

In addition we have the usual circular curves where the retardation &’ of the
equivalent plate is a multiple of 27 and it can be shown from Fig. 69 that these
will coincide with the circles A =2#nm. The sense of description of the Airy’s
spiral is reversed when the right handed plate is placed first, because the sign
of « in Fig. 69 would then be changed.

b) Absorbing iné.ctive crystals.
66. General introduction. Very remarkable optical phenomena are exhibited
by absorbing crystals in the vicinity of the optic axes. Thus BREWSTER discovered

1 See WALKER [§], p. 368.
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long ago that, when an extended source of unpolarised light is viewed through
a highly dichroic crystalline plate cut normal to one of the optic axes, two dark
brushes—the BREWSTER’S brushes—are seen. In the interference between
crossed polaroids the dark isogyres do not in general pass through the optic axial
directions as they do in the case of transparent crystals. These phenomena can
be broadly explained using the approximate theory mentioned in Sect. 43 where
the waves propagated along any direction are taken to be linearly polarised. We
have seen however that according to the rigorous theory the two waves are
really elliptically polarised with non-orthogonal states. Corresponding to this

we meet with phenomena which have no parallel whatsoever in the case of trans--

parent crystals. Thus, if the incident light is polarised, then even without an
analyser behind the plate, feeble interference phenomena—the idiophanic rings—
are seen. These arise because the two beams into which the incident light is

decomposed along any direction can directly interfere with one another as they ™

are not orthogonally polarised. More striking is the fact that, with an analyser

behind the plate, idiophanic interference rings appear even with the incident

light completely unpolarised. The explanation of this phenomenon leads us to

the concept of the partial coherence between the component non-orthogonal

beams into which the incident unpolarised light is split.

We shall not be dealing with the case of uniaxial crystals, because from the

" demands of symmetry itself the dichroism will necessarily be weak for directions

near the optic axis, and hence the phenomena ob-

served are usually not of such great interest. The g

interference phenomena exhibited by such crystals !

have been extensively dealt with by Szivessy [1],

Pockers [2]. 7

Consider all directions as passmg through the

centre of a sphere and defined by their intersec- )

tions with the spherical surface (Fig. 70a). The &

regions surrounding the optic axis N; which we ‘z *
o 1

take as the origin may be apprommated by the
plane of the paper, the plane N, N, representing the
axial plane. We shall be con51dermg the case when £
the optic axial angle is not very small although the

Fig. 70a. Figure illustrating the differ-
ent axes to explain convergent light

extension to that case is fairly straight forward?®.

N, has been enclosed in brackets as it is not capable
of being represented in the figure itself.

Let N, Q, and N, Q, be the traces of the major
and mindr"ﬁxe‘s of the section of the absorption el-

figures in absorbing biaxial erystals.
N, and N, are the optic axes, Ny @y, Ny
Q. the major and minor axes of seciion
of absorption ellipsoid, X, ¥, principal
planes of linear birefringence, Xz, Yz
prineipal planes of linear dichrojsm (par-
allel to NyQy, N; Q.) fora pomt z; N, &

and N,  lines along which major and
minor axes of sections of index ellipsoid
and absorption ellipsoid coincide.

lipsoid taken normal to the optic axial direction,
the angle Q; N; N, being denoted by K. These may
also be taken to be the principal directions of ab-
sorption for any other general point in the small range of directions con-
sidered2. The principal planes of absorption X}, Y, for the point z are parallel
to N;Q; and N, Q, and are indicated by dotted lines. On the other hand, the
principal planes of linear birefringence vary very rapidly with direction. We have
seen in Sect. 34 that for a point of azimuth « with respect to N, N, the slower

! S. Bocurowsgi: Ann. d. Phys. 44, 1084 (1914).

2 Thiswill not be the case when the optic axis is near the circular section of the abcorptxon
ellipsoid. In such a case the dichroism would be so weak that phenomena of imterest wiil
usually be not observable.

~
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vibration direction makes an angle i +5 T with respect to Ny N;. (The principal

planes of linear buefnngence X, Y are denoted by bold lines for the general
point z in the Fig. 70a.) Itis therefore clear that the major axes of the sections
of the index and absorption ellipsoid will coincide for points on N, &, which is
at an azimuth 2K— =z with respect to N, N,. We shall choose N;£ and the per-
pendicular direction N7 as the axes of coordmates since the phenomena we are
about to discuss exhibit a certain symmetry with respect to these axes.

It may be noted here that as the azimuth of z with respect to N, & isincreased,
the azimuth of X, increases at half the rate while X, remains all the while parallel
to NV, Q,. Hence it & is the azimuth of the point z with respect to N, &, y the angle
X, makes with X,, then

s —
=2 (66.1‘)-._

B) Phenomena explicable on the elementary theory.. Along the optic axes two
waves linearly polarised along the principal axes of linear dichroism N @; and
N, Q, are propagated, their absorption coefficients %, and %, being determined
by the lengths of these axes. Because of this the optic axial direction does not
in general appear extinguished between crossed polaroids (unlike the case of
transparent crystals) but shows two extinction positions as the crossed polaroids -
are rotated together. These positions occur when the vibration directions of the
polariser coincides with either N, Q, or N; Q,. At other positions of the polariser
the incident vibration is split into two linear vibrations which are differentially
absorbed and which are propagated with the same velocity. These compound
together to form a linear vibration whose plane of polarisation would bave turned
towards the less absorbed component. The correctness of this explanation is
shown by the fact that the optic axial direction can be extinguished by rotating
the analyser from the crossed position. In fact it is possible to compute the
-difference in the absorption coefficients between the two linear vibrations pro-
pagated along the optic axis from a measure of this rotation.

We have seen that, for directions not in the v1c1mty of the optic axis (Sect 43),
the waves may be regarded as linearly polarised as in transparent crystals, with
the additional property that they have different absorption coefficients deter-
mined by the intercepts that these vibration directions make with the absorption
ellipsoid. By assuming that these results continue to hold very close to the optic
axes (Mallard theory) an explanation of the phenomenon of Brewster’'s brushes
may be given. The clue to the explanation of this phenomenon lies in the fact
that in the neighbourhood of the optic axis the vibration direction for any point
in the field of view changes rapidly with the azimuth, leading to a corresponding
_ rapid change in the absorption coefficients. With unpolarised light of intensity I,
. incident, the intensity of the emergent light at any point will obviously be -

I=2 ™ 1) - (66.2)

where & and E” are the absorption coefficients of the two waves propagated
along that direction. Since we have already assumed that the section of the
absorption ellipsoid does not vary over the range considered, the mean of the
absorption coefficients may be considered constant for all directions (in the
angular range covered). This follows from the property of any two perpendicular
radii of an ellipse. Hence the emergent intensity I is the sum of two terms whose
product is a constant. From a well known theorem in algebra it acquires its
minimum value when the two terms are equal i.e. ¥’ =£", and its maximum value

ol
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when the absorption coefficients differ by the maximum extent. The latter will
occur for points in the plane N, since in this case the vibration directions lie
along the principal axes of the section of the absorption ellipsoid. On the other
hand, the absorption coefficients will be equal (and I will be a minimum) in
the plane N, 7 since the vibration directions will be inclinéd at 45° to the principal
planes of dichroism. This explains the occurrence of two absorption brushes
(intensity minima) on either side of the optic axis N, lying in the plane. The two
brushes do not pass through the optic axis because %" and 2" are practically con-
stant in the vicinity of the optic axis and there is no minimum in that region.
Since for any point on N, & the waves are linearly polarised along N, ¢, and
N, Q, i.e. the major and minor axes of the section of the absorption ellipsoid, the
two waves have-the least and the greatest coefficients of absorption for all the
points on the line N;£. Hence with a polariser or analyser set with its vibration
direction parallel to N, Q,, a dark brush passing through the optic axis forms in
the plane N, &, while if the vibration direction is parallel to N, Q; a white brush
appears in the same position. Incidentally, this also demonstrates directly the-
existence of dichroism along the optic axis.
It may be remarked that the above phenomenon will be simplified if NV} N,
_be a plane of symmetry or perpendicular to an axis of symmetry as will occur
in an orthorhombic crystal and can sometimes occur in a monoclinic crystal.
In this case the principal diameter of the section of the absorption ellipsoid
must be along and perpendicular to the axial plane. Then N, Q; will lie on the
axial plane. Hence the absorption brushes will lie in a plane perpendicular to
the axial plane.
The above simplified theory does not explain some of the important features
connected with this phenomenon. For example, when the plate is viewed between
crossed polaroids in a general setting it is not the optic axial directions alone
that remain unextinguished but the region of non-extinction extends over a finite
_ strip passing through the optic axis. In fact the extinction along the isogyre

“becomes perfect only at the boundary of the field of view. The isogyres however
are perfectly dark for the setting when they pass through the optic axis. These
facts by themselves are sufficient to show that while the waves may be linearly
polarised for the points on the plane N, &, this is not so for any general direction
of propagation. Again, the BREWSTER'S brushes show incipient traces of inter-
ference phenomena. These features can be accounted for only when the elliptical
polarisation of the waves propagated along a general direction is taken into
account,

67. Results of the detailed theory. According to Sect. 45 except when the
pnn01pa1 planes of linear birefringence coincide with those of linear dichroism
i.e. except along NV,§, the waves propagated will be elliptically polarised. The
two vibrations have their major axes crossed, possess the same numerical ellipti-
city and are descnbed in the same sense. For directions not too close to the
optic axis where the square of the ellipticity may be neglected, the major axes
of the ellipses may be taken to lie along the principal planes of linear birefringence,
their refractive indices and absorption coefficients being determined as though
they were linearly polarised. According to the results of Sect. 48 the common
ellipticity of the two waves propagated along any arbitrary direction is given by

k. .
6‘:——'5351112% (67.'1)
or &
&= +'§‘Slnﬁ ‘ (67-2)
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from Eq. (66.1). Here &, the superposed linear dichroism, which is taken to be
constant over the area of the figure, is therefore equal to the difference in the
absorption coefficients k,—&; of the waves propagated along the optic axial
directions. The linear birefringence 6 on the other hand, unlike %, increases as
we move away from the optic axis, being proportional to the angular distance
from N, (see Sect. 34).

Eq. (67.2) also shows that the sense of description of the ellipses on either side of N, &
will be opposite. Further, as we proceed along the circular curve of constant birefringence
described about the optic axis, the maximum ellipticity is obtained for points on N;n where
‘(c)}fxe4§§incip’al planes of linear birefringence and dichroism have the maximum inclination

Towards the border, the waves approximate to linear vibrations parallel to
the planes of linear birefringence. The continuous transition from this towards
waves polarised along principal planes of linear dichroism (along the optic axial
direction) is not revealed by the approximate formula given above, which is not
applicable for directions close to the optic axis.

"We now turn to the rigorous formula (47.5). We may first from simple
considerations determine the state of polarisation along N, & and N,#. Along the
former the waves are rigorously linearly polarised as the principal directions of
- linear dichroism and linear birefringence coincide. Along N;% however.they are

inclined at 45° for which 2y =— % Substituting this in Eq. (47.5) and con-.
sidering Fig. 45 we have for 2>0

b4
2(,'0 = 2
which gives
. . [}
sSin 2y =sin2g = Y
and for
T
5. >k, 2’(/) = —2’
giving ' :

. . k
s1112¢p=sm28=§.

Hence when we proceed from the optic axis along Ny, the two vibrations, ini-
tially polarised along the principal planes of absorption, open out into two right
elliptic vibrations and become two identical right circular vibrations at the point
C, for which the magnitudes of linear dichroism and birefringence become equal:
Further on, these split again into two elliptic vibrations, now with their major
axes in the principal planes of linear birefringence, tending to the form of two
orthogonal linear vibrations at the border of the field of view. A similar behaviour
holds for the  axis except that the waves are now left elliptically polarised since

=+
Again at the point Cy for which k=34, the two elliptic vibrations take the form
of one left circular vibration. C; and C; are the singular axes which are highly

characteristic of the behaviour of absorbing crystals. We have already discussed
the properties of the singular axes previously (Sect. 55).
For a general direction of propagation the orientation of the major axes and

the ellipticities are given by Egs. (47.7) and (47.8). However their variations
over the field of view are somewhat complicated, but have been discussed in
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some detail by VoieT! whose result we shall quote. These results are summarised
in Fig. 70b. . -

() The vibration ellipses of the two waves corresponding to the same direction
have constant ratio of axes along circles whose centres lie on the straight line
through C, and C;, and whose radii are such that all the circles cut the circles
described on C,(; as diameter orthogonally. The ellipses degenerate to circles
at C; and C; and become straight lines in the & axis. The direction of vibration
is of opposite sense on the two sides
of the & axis, though everywhere the
same for the two waves. -

(b) The orientations of the prin- .
cipal axes of the vibration ellipses is
constant along equilateral hyper-
bolae which pass through C; and €y
(indicated by the dotted lines), the
coordinate axes £ and % being special
cases of these hyperbolae. The orien-
tation of the axes of the ellipse cor-
responding to one segment of ome
hyperbola is indicated by an arrow
corresponding to the principal axis
of birefringence. It will be seen that

“these directions are not constant for
the entire hyperbolic branches but .
that they become rotated through  Fig 7ob. Convergent light figure (tue to Vorar) showing the
45° on passing through the points Gy e B e i am sbsorbing -
and C; of circalar polarisation. The  axial crystal cut 1 7 to one optic axis. C, and C, are the singu-
differences in the refractive indices fax axes assoclated with this optic axis.

and the absorption coefficients of

the waves given by Eqgs. (48.3) and (48.5). have also been plotted by Voicr as
a function of direction and he gives the following results.

{c) The difference in the refractive indices may be considered constant over
ellipses having the points C; and Cj as foci. This difference vanishes along the
straight line C; C; and increases as the ellipses open out. However they are prac-
tically circles as the angle between the singular axes is usually extremely small
in all cases. '

(d) The absorption coefficients %', ' of the two waves are constant over
hyperbolae having their foci at C; and C;. They have the same value along the
straight-¥nes C;C; and along any hyperbola have values which differ from &,
by equal amounts of opposite sign, the maximum difference of the absorption
occuring along the & axis.

68. The singular axes.—Experimental observations on iolite2. The existence,
even in an inactive crystal, of axes along which a circularly polarised wave is
propagated without change is most directly confirmed by observing the convergent
light figures between a circular polariser and a crossed circular analyser. Fig.71a
shows the figure observed with iolite, an orthohombic crystal, kept between a
left circular polariser and a right circular analyser. The eccentric spot just below
the axial plane obviously represents the direction along which the incident left

1 W. Voigr: Phil. Mag. 4, 90 (1902).
2 S. PANCHARATNAM: Proc. Ind. Acad. Sci. A 42, 235 (1955); A 45, 1 (1957).




144 G.N. RaMacHANDRAN and S. RamasesuAaN: Crystal Optics. Sect. 68.

circular vibration is propagated unchanged and crossed out by the analyser.

- That along this direction a circular vibration of opposite sense is not transmitted
unchanged (as would be the case in a transparent optically active medium) is
proved by observing the figure between a right circular polariser and a left
circular analyser. This is shown in Fig. 71b where the other singular axis (above
the axial plane) is extinguished.

c . d

Fig. 71 a—d. Optic axial interference figures in convergent light by the absorbing biaxial mineral iolite, the axial plane being

borizontal, (a) Left circular polariser and right circular analyser, lower singular axis extinguished. (b} Right-circular

-polariser and left-circular analyser, upper singular axis extingnished. (c¢) Left-circular polariser alose, dark rings in lower

half of figure correspond to bright rings in upper part of figure. Lower singular axis appéars darker than the other.
(d) Left-circular analyser alone; asymmetry with respect to axial plane reversed.

It is possible to show using an elliptic polariser and a crossed elliptic analyser
that for any point on the strip joining C, C; (Fig. 70b), the two waves propagated
are: elliptic vibrations of the same sense, with their major axes not lying coinci-
dent with the principal axes of birefringence, in conformity with the theory.
These experiments also show that as the singular axes are approached, the two
elliptic vibrations tend to the form of identical circular vibrations.

Since along the singular axis the only wave that can be propagated unchanged
is a circular vibration described in one particular sense, the following interesting
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question arises: What will happen if for example a left circular vibration is incident
along a singular axis where only a right circular vibration is propagated unchanged ?
It had been supposed by Voicr! that the light would be totally reflected, the
reflection being partial in practical cases. However the question can be put to
test by removing the circular analyser in the arrangement used for Fig. 71a, but
keeping the circular polariser. The result is shown in Fig. 71c¢ where it will be
noted that the upper singular axis where the incident left circular vibration cannot
be propagated unchanged actually appears brighter than the lower axis where
it can be propagated unchanged, disproving VoIGT’s conjecture. The explanation
has been considered in Sect. 49. It has been shown that, when left circular vibra-
tion is incident in the direction of a singular axis along which only a right circular
vibration is propagated unchanged, the incident vibration is propagated into the
medium with a progressive change of state of polarisation under the superposed
effects of linear birefringence and linear dichroism. Theory also predicts that
the state of polarisation which is not propagated unchanged has the smaller
absorption coefficient, as is actually observed. The state of polarisation of the
emergent light has also been found to be in conformity with theory.

69. Idiophanic rings without an analyser. It will be noticed in Fig. 74c that
feeble interference phenomena are observed even though no analyser has been
kept behind the crystal. This is also found to be the case when linear or elliptic
polarised light is incident. Such a situation cannot occur if the waves propagated
are orthogonally polarised as in transparent crystals, for orthogonally polarised
waves (even though coherent) cannot directly interfere unless brought to the
same state of polarisation by an analyser. But if the vibrations 4 and B are
non-orthogonal, then B can be resolved into two parts, one of state 4 and the
other in the orthogonal state 4,. The former can interfere with 4. Hence the
occurrence of interference phenomena without the use of the analyser proves
that the waves propagated along a general direction are non-orthogonally polari-

pronounced since the extent of the interference will
depend on the non-orthogonality factor. The for-
mula for the interference of - two non—orthogonal
beams is given by (Sect. 4) o

I= 11+I2+2|I1Izcos ABcosA' (691)/ :

where AB is the angular separa'aon of the states A
and B on the Poincaré sphere.. We shall for simpli-_
city confine ourselves to the case when the inci- .
dent light is left circularly polarised as in Fig. 71c. =

Two elliptic vibrations 4 and B propagated
along any directioh--@ave their major axes crossed = pig 72a. Doincaré representation for
and have the same ellipticity £ (which according wmp““ngtﬁeca‘::?fs%tﬁﬂfmﬁe‘i for
to the 51gn convention means that they are de-
scribed in the same sense). Hence on the Poincaré sphere the longitudes of 4
and B differ by & but their lattitudes' are the same, equal to 2¢ as drawn in
Fig. 72a.

When the incident vibration of mten51ty I in the state Li is decomposed into
two vibrations in the states 4 and B their mtens1t1es I, and I, are given by

1 W. Voier: An. d. Phys. 2, 1002 (1908). ,
Handbuch der Physik, Bd. XXV/1. o 10
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4.5 and 4.6 as o in2i BT : _
L=1 22 | (69.2)

=l— =, o (693)
where
BL—AL=7F _ Lag_= _
BL—AL—Z__ 2& and 2AB_2 2¢e. (69.4)

Their initial phase difference according to formulae 4.14 is For 7 accoiding as ¢
is positive or negative (As the three points 4 BR are coplanar the spherical excess
of the triangle A BR is 7 or 0 according'as ¢ is —ve or -+v¢). The waves have
different absorption coefﬁments and, on emerging from the plate, their intensities
I and I; being equal to I;¢2 and T, 2 €2 respectively the relative phase advance 4
of the first beam over the second is equal to 6 or = -6 according as ¢ is e
or —we. The minima occur when the phase difference 4’ between the interfering
beams is 7, 37z etc. In the lower half of the Fig. 71¢ ¢ is positive, ie., the ellipses
are left-rotating; hence A’= 6 and therefore minima occur for values 6 =, Jmetc.

On the other hand, in the upper half of the figure is negative and hence A'=4§--n.

Hence minima occur for 6 =0, 27, 4=, etc. The fringes in the lower half of the
figure would therefore be shifted by half a fringe width relative to those appearing

in the upper half. The fringes in the upper half of the figure should coincide with.
the fringes observed with crossed polariser and analyser and this may be verified

by comparison with Fig. 71b.

There is also an asymmetry in the average intensity distribution. The inten-
sity at any point in the field of view is obtained by substituting the values of
17, I; and A’ in (69.1) and will be given by

Ty

=m(e§+ e+ 2¢,6,5in 28 cos §). (69.5)
The expression for I becomes indeterminate for & =— % ie., along the singular

axis where only the right circular vibration can be propagated unchanged.
The propagation in this direction has, however, been considered in the last
section. When right circular polarised light is used, the sign of the third term
in (69.5) has to be changed and the assymmetry about the axial plane will be
reversed. This asymmetry of the figure when circular light is used is a clear proof
that the sense of description of the ellipses on either side of the ax1al plane is
different.

When linear polarised light is used, the interference figures do not exhibit
any asymmetry and the figures are clearest when the incident vibration is either
parallel or perpendicular to the axial plane. Further a dark band appears along
the axial plane (for orthorhombic crystals like iolite), when the vibration direction
of the polariser is set parallel to the vibration direction of the more intensely
absorbed wave propagated along the optic axes (i.e. O, Fig. 702).

All these phenomena can be explained by a procedure similar to that adopted
for circular polarised light; but we shall not deal with them here. For further
details, reference may be made to Pockers [2], VOIGTY, PANCHARATNAMZ

70. Phenomena involving partial coherence. «) Partial coherence. Fig. 71d
shows that faint interference rings observed when only a left circular analyser

1 'W. VoigT: Ann. d. Phys. 9, 367 (1902).
2 S. PancEARATNAM: Proc. Ind. Acad. Sci.'A 45, 1 (1957).
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is kept behind the plate without any polariser in front. In seeking for an explana-
tion of this occurrence of faint interference rings, even though the incident light
is unpolarised, we are led to the subject of partial coherence. As mentioned in
Sect. 11, two beams in different states of polarisation are-said to be incoherent
when they cannot be made to interfere even after being resolved into the same
state of vibration by the use of an analyser.

When unpolarised light is incident on a transparent crystal like quartz, and
itis viewed through an analyser alone, no interference figures are seen in convergent
light. This clearly proves that when unpolarised light is split into two oppositely
polarised beams, the component beams are incoherent. Simiarly, the experimental
test of the complete coherence of two polarised beams is that interference effects-.
of maximum clarity can be produced by the use of a suitable analyser. Since -
feeble interference phenomena occur in absorbing crystals, with the use of an
analyser alone, it may be concluded that the two non-orthogonally polarised
pencils into which an incident unpolarised beam is split, must be regarded as
partially coherent. As shown in Sect. 11, the general formula for the interference
of two partially coherent polarised beams is:

I=Il+12+2y]/mcochosé, T~ (70.4)

where y is the degree of coherence and 2C is the angular separation between
the two states on the Poincaré sphere.

The decomposition of unpolarised light into two non-orthogonal vibrations
in any two states of polarisation 4 and B (separated by an angle 2C in the
Poincaré sphere) may now be analysed. The unpolarised light may be replaced
by two incoherent beams each of intensity % I in the orthogonally polarised states
4 and 4, (see for example Fig. 72). The beam in the state of polarisation 4,
may in turn be decomposed into two coherent beams in the non-orthogonal
states of polarisation B and A. These latter two vibrations will have a phase
difference of 7z, since 4, lies on the greater segment of the great circle through 4
and B (Sect. 4). Their intensities will be respectively, _

#Tcosec2C and %7Icot2C,

as may be obtained by substituting = and ¢ =z — C in Eqs. (4.5) and (4.6).
Thus in a state of polarisation B, we have a beam of intensity 2 I cosec? C,
while in the state of polarisation 4, we have two incoherent vibrations, which
add to give a beam of the same intensity, I cosec? C. Of the latter beam,
however, an independent fraction comprising of intensity £ I cot® C, and hence
formifig™a fraction cos?¢, is completely coherent with the other beam and is
opposed in phase to it. We may summarise thus—when unpolarised light is
splitiinto any two non-crthogonal vibrations, whose states are separated by an
angle' 2C on the Poincaré sphere, the intensities I, and I, of the component
beams, their degree of coherence y and their effective phase difference ¢’ are
given by

Iy =1I,=1TIcosec®C, y=cosC, ¢ =an. (70.2)

B) 1diophanic rings with analyser alone. We may apply the results mentioned
above to discuss the idiophanic rings presented in unpolarised light by the use
of an analyser alone. For the sake of simplicity, we confine our analysis to the
case of a left circular analyser, used behind the plate as in obtaining the pattern
in Fig. 71d.

10*
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The intensities I; and 7; of the two beams in the states 4 and B emerging
along any direction from the crystal plate and their effective phase-difference 4’
are given by (see Fig. 72)

L=%1—1 __g )
TR i YAB b ; (703)
L=}1—1__¢g .
2T Gt (704
A=84+¢p,=6+m. y (70-5)
If I7 and I be the resolved components of the beam transmitted by the
analyser and A " the phase-difference between these components, then
IY=TI,cos?} AL, (70.6)
I”~I; cos?# BL, ‘ (70.7)
'=A" 4 @, (70.8)

where g, may be called the phase-difference introduced in the process of analysa-
tion. These resolved components, although in the same state of polarisation,
are partially coherent, their degree of coherence ¢ being cos 3 AB. The intensity
at any point in the field of view is therefore obtained from the general interference

formula (70.1), by substituting the value of the degree of coherence y =cos £ AB
and by putting cos C =1, (as the two resolved components on passing through
the analyser are in the same state of polarisation); thus .

I’1'+ Y+ 2 YI7T7 cos AB cos A”. (70.9)

Now the phase-dJﬁerence @, introduced by analysation will be equal to 0 or =,
according as L lies on the smaller or the greater segment of the great circle through
4 and B, i.e. according as ¢ is posifive or negative. Hence in the upper half of
the figure, where the ellipses propagated are rightrotating, minima occur at § =,
37 etc., while in the lower half of the figure they occur at § =2, 4% etc., being
shifted by half a fringe-width.

The intensity at any point in the field of view is obtained by substituting
in (70 9) from (70 6) to (70. 8) and (70.3) to (70.5) using (69.4):

To

I= 2(1— sin 2¢)

(ea +-e8 — 2e,eb sin 2& cos 6) . ~ (70.10)

Thus, the idiophanic rings with a left circular polariser are not the same as

- with a left circular analyser, but should be the same as with a right circular analy-
“ser, as may be seen from the fact that (70.10) goes over into (69.5) when 2¢
is replaced by — 2. However, it is found that the idiophanic rings with a Linear
analyser alone at a particular setting are exactly the same as those presented
with a linear polariser alone kept at the same setting. It can be shown that this
is a particular consequence of the fact that the two waves propagated along any
direction are two crossed ellipses, having the same ellipticity and decribed in the
same sense. This, however, is not the case in optically active absorbmg crystal
(vide Sects. 71 to 73).

It may be shown that the interference effects observed with the polariser P
alone have the same visibility as those observed with (a) a polariser P, alone,
(b) an analyser of state P alone and (c) an analyser of state P, alone. In the
former case, the interfering beams are completely coherent, but the extent of their
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interference is limited because of the non-orthogonality of the two waves pro-
pagated in the crystal. In the latter case, the interfering beams transmitted by
the analyser are in the same state of polarisation, but they are only partially
coherent, the degree of coherency being determined by the identical non-ortho-
gonality factor.

y) Phenomena with partially circular-polarised Light. In Sect. 11, it is shown
that when two non-orthogonally polarised beams are mixed together incoherently,
the result is a partially polarised beam. Hence, it
should be possible for the converse phenomenon to
occur under certain conditions. That is, for partially
polarised incident light, it may so happen that the
non-orthogonally polarised beams (into which the
incident light is split) may be completely incoherent
for some particular diréction, so that near this re-  pig 72b. Poincars representation for -

ion no interference effects should be observed, cogPwing the case disussed in
lejen if the beawms are vesolved by an analyser. This Sect- 70 (ustrated in Fig. 73)-
effect has been observed in iolite by PANCHARATNAM! with the incident light
partially circularly polarised—say, left-circularly polarised light.

If the degree of polarisation be $, the incident light will be represented by a
Poincaré vector of length p directed towards L (Fig. 72b). If the component
completely polarised beams A and B are to be completely incoherent, then the
following two equations must hold.

Ip=IA+1,B, (70.11)
I=I+1I, - (70.42)

Since.p must be contained in the acute
angle between 4 and B, such a resolution -
can occur only when the ellipticity e is
positive i.e., on the side of the axial plane
where the ellipses propagated are left rotat-
ing. From symmetry, the intensities /; and
I, of the component beams are equal to
one another and hence equal to 7 from
Eq. (70.12). Substituting this in Eq. (70.11),
and resolving the vectors along p, we see
that such an incoherent resolution can occur ~ F& 73 Incident Uent partialy teft clrenlatly pola
only when ' ) vertical. In the upper half of the figure the ring

. system fades away near the second and third rings
sin2eg =i7 (7013) and reappears further with a shift of half a fringe.

As we proceed outwards from the optic axis in a direction perpendicular to
the axial plane (on the side of the axial plane where ¢ is positive), the ellipticity
varies and near a particular region where condition (70.13) is satisfied, the vi-
sibility of the interference effect should become negligible. - For other directions,
the resolved beams will be partially coherent; the region defined by (70.13) is
a particular case where the degree of coherence vanishes and on crossing which
the effective phase difference changes by . This behaviour is confirmed by
experimental observation (Fig. 73).

When partially plane polarised light with the plane of polansatlon of the
polarised part at 45° to the axial plane is incident on a plate of iolite and it is

1 S, PANCHARATNAM: Proc. Ind. Acad. Sci. A 45, 1 (1957).
Handbuch der Physik, Bd. XXV/1. 10a
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viewed through a circular analyser, a beautiful spiral has been observed!. The
sense of the spiral does not depend on whether a right or a left circular analyser
is used, but it changes sign when the azimuth of maximum polarisation is rotated
by 90°. The phenomenon is also observed when the incident light is completely
polarised, but the spirals are not so continuous. It can be shown that as in the
case of transparent optically active crystals, the spirals arise because the sum of
the phase differences introduced in the processes of decomposition and analysa-
tion increases continuously with the ‘azimuth. -

: ~

c) Absorbing optically active crystals.

71. Phenomena along the optic axis when dichroism is weak. o) General
description of the phenomena. Little experimental work appears to have been
done on the optical behaviour of crystals belonging to this class. However in
one particular case, namely in amethystine quartz, which has an absorption in
the yellow green region, extensive observations, though of a qualitative nature,
have been reported? agreeing in detail with the theory presented in Sects. 50 to 55.
The observations have been made with intensely coloured sectors of amethyst?,
carefully selected so as to exclude .certain extraneous complicating features
(such as twinning etc.) which are very often found in this substance. Such sectors,
unlike quartz, are biaxial with the ¢ axis of quartz appearing as the acute bisectrix.
They show a pronounced dichroism near the axial directions, the elliptic section -
of the absorption ellipsoid having its major and minor axes lying respectively
parallel and perpendicular to the axial plane.

In blue light, which is practically outside the absorption range, the dichroism
is negligible and the interference figures observed between crossed polaroids are
as in transparent optically active crystals, the isogyres not penetrating to the
optic axial directions. The axial directions can however be extinguished by
rotating the analyser from the crossed position, the rotation of the plane of polari-
sation thus measured agreeing with that for colourless quartz.

In red light, which is on the other side of the absorption maximum, the same
sector exhibits a weak dichroism and the phenomena observed correspond to
the case when the optical activity predominates over dichroism ie. |2¢| >,
a case which has been dealt with in Sects. 53, 54. Here again the axial directions
are not perfectly extinguished byisogyres when observed between crossed polaroids
{(Fig. 74a). They can be extinguished by rotating the analyser (Fig. 74b) but
the rotation of the plane of polarisation thus measured is found to depend on
the azimuth of the incident linear vibration. This proves that the waves propagated
along the optic axis cannot be circularly polarised as in transparent active crystals.’
According to Sect. 53 the waves propagated along the axial directions should be
elliptically polarised, the elliptic vibrations being exactly similar in form and
orientation but described in opposite senses (The major axes of the ellipse

should be coincident, making an angle i * with respect to the axial plane accord-

ing as g is 4+ve or —we.) This was venfled to be true by viewing the crystal
between crossed elliptic analysers (Sect.214). In the present case the prmc1pa1
planes of the quarter wave plates are set at 45° to the axial plane. Thus the prin-
cipal axes of the incident elliptic vibration are at 45° to the axial plane. As the

1 For a discussion of this and other phenomena see S. PANCHARATNAM: Proc. Ind. Acad.
Sci. A 45, 1 (1957)-
2 S PaNcHARATNAM: Proc. Ind. Acad. Sci. A 46, 280 (1957); A 47, 201, 210 (1958).
3 The photographs illustrating thus section have been taken with right rotating amethyst.
Correspondingly much of the discussion and figures refer to right rotating specimens.
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ellipticity is altered by turning the crossed polaroids, it is observed that there
are two settings of the coupled polaroids (symmetrically situated with respect
to the principal planes of the 1/4 plates) where the optic axial directions are
completely extinguished, confirming the view that the two waves propagated
along this direction are elliptically po- -
larised. Fig. 74c illustrates one such
position, where the major axis makes
an angle of —45°. o in this case is ne-
gative. -

B) Measurement of the optical rotatory.
power in the presence of weak dichroism.
The variation of the rotation of the
plane of polarisation with azimuth of the
incident vibration may be explained by
using the results of Sect. §3. The plane
vibration is resolved into two elliptic
vibrations which are propagated with
different velocities but with the same
absorption coefficient. These bave to be

) ©n

Fig. 74 a—c. Biaxial interference figures exhibited by amethyst quartzin red light (2p < ). (a) Between crossed polaroids
with the polariser and analyser direction at 45° to the axial plane. The optic axial direction is not extingunished. (b) The
analyser rotated-to extinguish the optic axial direction. (The erystal is rotated to keep the polariser and analyser sym-
metrically oriented with respect to the axial plane.) (c) Optic axial directions extinguished between an elliptic polariser
. and a crossed elliptic analyser.
\ N

compounded after emergence from the plate. The actual rotatory power may be
calculated from the measured rotations o; and «, observed with the incident
vibration lying respectively parallel and perpendicular to the major axes of the
ellipses propagated along the optic axis. In the former case the incident vibra-
tion represented by a point M (on the equator) Fig. 75 will be decomposed into
two vibrations in states 4 and B which have the same longitudes as M. Since
M is equidistant from 4 and B, and it lies on the arc 4 B itself, the intensities
of the component beams will be equal and their initial phase difference will be
zero [according to Eq. (4.10)]. The waves, on emerging from the piate, will
have a phase difference ¢, but will still be of equal intensity because of the equality
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of their absorption coefficients. Hence they will compound to give a vibration
whose state will again be equidistant from 4 and B i.e. a linear vibration re-
presented by a point C; on the equator. If e; be the area of the triangle C,,BA4
where C,, is a point opposite to C; then 3¢ =m— . The spherical excess of
the right angled triangle C,,BM is given by

tant e =tanwtan i (w — 2a,) (71.1)
and so :
cot 3 ¢ = tanw cot ;. ’ (71.2)

4

AZ
7

% |
Fig. 76a. Fig. 76b.

Fig. 75. The Poincaré sphere representation for explaining the apparent variation of optical rotation with the azimuth
of the incident vibration in a biaxial crystal showing weak dichroism.

Fig. 76 a. Plate cut normal to an optic axis along which waves are propagated linearly polarised in non-orthogonal states
; and Aa.

Fig. 76 b. Convergent light figure depicting the variations of ‘the states of polarisation of the waves for directions of
propagation for particular zones in the field of view. 0, and 0, are the optic axes along which two non-orthogonal linearly
polarised vibrations are propagated unchanged.

On the other hand if the azimuth of the incident vibration is parallel to the minor
_axis, it is represented by the state M’. The two initial vibrations 4 and B into
“which it is split will have an initial phase difference of —z and a final phase

difference of ¢ — z. The corresponding linear vibration obtained by composition

being in the state C,. Hence @ should be equal to half the spherical excess of the .

triangle C,,4 B where C,, is the point opposite to C,. Proceeding as before

tan ¢ = tanw tano,. (71.3)
From (71.2) and (71.3) we get ‘
’ tan .
. tan? w= Ta.ﬁ_&_:- (7'1 -4)

and
tan?p =tana, tana,. - (71.5)
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From (71.5) we can calculate the relative phase advance ¢ gained by the faster
wave on passage through the plate. The relative phase difference per unit path
(p/d) is not directly equal to |2p]| since the waves are not circularly polarised but
is related to it by equation

1@ /. .
Pl Sm[2w]. (7'1.6)

S
I

e . ) d

N ..

Fig. 77 a—d. Convergent light figures in amethyst quartz. (a} and (b} show the only two settings between crossed polaroids

for which genuine isogyres passing through the optic axial directions are observed. The polariser and analyser settings

are parallel to 0”4, and 0’ 4, of Fig. 76(b). (c} and (d). The'optic axial directions crossed by turning the analyser from
the crossed position. The polariser and analyser make equal angles (4 59°, 4-844°) with the axial plane.

~..

The numerical e]]ip’;i\"élty |w] of the vibration propagated along the optic axis
which is to be substituted in (71.6) can be determined from (71.4) or may be
determined directly from the observations with the elliptic polariser and crossed
elliptic analyser, described above. In the case of amethyst rough measurements
show that the ellipticities determined by these two methods are practically the
same. Further the optical rotation determined is also of the order of rotation in
quartz.

72. Phenomena along the optic axis when dichroism is strong. The same
sectors of amethyst which exhibit the phenomena (described in the last section)
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associated with weak dichroism can be used to study the case when % >|2p]|
by using a wavelength which lies in the heart of the absorption band. In fact,
the dichroism for yellow light is so large that even the phenomenon of optical
activity can be only inferred indirectly. When the convergent light figures
are observed between crossed polaroids the optic axes in general are not ex-
tinguished. However there are two settings of the incident vibrations for which
genuine isogyres are observed passing unmodified through the optic axes (Fig.77a
and b). This has a certain resemblance to the phenomenon observed in inactive
absorbing crystals. But in this case the two settings of the incident vibrations
are not at right angles but are equally inclined to the line drawn at 45° to the
axial plane. Thus the waves propagated along the optic axes are not two ortho-
gonal linearly polarised waves as in inactive absorbing crystals, but are linearly
polarised along two non-orthogonal directions OA4; and 04, (Fig. 76). This
agrees with the deductions from theory in Sect. 53 7.

For any general setting of the incident vibration it is always found possible
to extinguish the optic axial direction by rotating the analyser from, the crossed
position (Fig. 77c and d). This shows that the two waves cannot differ in their
velocities but only in their absorption coefficient. The incident linear vibration
will then be decomposed into two non-orthogonal vibrations in states P’ and P”’
according to the parallelogram law. After being differentially absorbed the
vibrations emerging from the plate may be compounded {again by the parallelo-
gram law) to yield a linear vibration whose azimuth would always have turned.
towards the less attenuated state P’. Hence by noting the settings of the polariser ™
and the corresponding setting of the analyser at which the optic axisis extinguished,
a simple calculation based on the above explanation enables the difference in the
absorption coefficients (k' — ') of the waves propagated along the axjal direction
to be estimated. The linear dichroism can be determined from the formula

B’ — k' =kcos2y, (72.1)
and the optical rotatory power could be obtained from the formula
g ksin2y =p. (72.2)

Here again approximate measurements show that the rotatory power of amethyst
is practically the same as that of uniaxial quartz.

73. Other phenomena in the vicinity of the optic axis. o) Formation of isogyres
We have seen in Sect. 72 (Fig. 77a and b) that the optic axial direction appears
extinguished between crossed polaroids when the vibration direction of the po-
lariser is parallel to either O’ A4, or 0’4, (Fig. 76b). Consider for example the
former position. It is not the optic a.x1a1 directions alone that are extinguished
but all points on a dark isogyre, one branch of which coincides with 4,04,.
The isogyre would have occurred in the same position even in a transparent optic-
ally inactive crystal. Hence for any point on the isogyre one of the principal
planes of linear birefringence lies parallel to O’ 4,. For such a direction, a vibra-
tion parallel to 0’ A; will therefore remain unchanged for an infinitesimal opera-
tion of linear birefringence. The same vibration also remains unaltered under
the combined effects of the two succeeding operations of linear dichroism -and
optical rotation. (This is proved by the fact that it is propagated unchanged
along the optic axial direction where these two factors alone exist. It may be
remembered that the factors of linear dichroism and optical rotation are regarded
as constant over the field of view.) Hence for all points on the hyperbolic arc
A,0,A7 one of the waves is linearly polarised parallel to 0’ 4,, thus explaining
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the formation of isogyre when the polariser vibration is parallel to O’ 4,. By the
same argument for any point on the hyperbolic arc 4,0, 45 one of the waves is
linearly polarised parallel to 0’ 4,, thus explaining the formation of the isogyre
when the polariser vibration is parallel to 0’4;. By the same argument for any
point on the hyperbolic arc 4,0; 4; one of the waves is linearly polarised parallel
to O'4,. Hence when the polariser vibration is parallel to 0’4, a second set of
isogyres, one branch of which coincides with 4,0, 45 should be formed. This is
in accordance with experiment. Fig. 77 shows that one wave is linearly polarised
for any point on A,0,4; and 4,0, 4;. The other wave is elliptically polarised
approximating to a linear vibration at the border of the figure. Qualitative
observations with an elliptic polariser and a crossed elliptic analyser have con- "~
firmed these and other predictions of theory.

B) The singular axes. We have seen that singular axes occur where the prin-
cipal planes of linear birefringence and linear dichroism are inclined at 45° to-
one another and where 4 becomes equal to £ (Sect. 55). It can be shown that
they are located on either side of the optic axis along a line drawn perpendicular
to the axial plane. Two singular axes are associated with each optic axis. The
wave propagated unchanged along any singular axis is elliptically polarised.
This and other properties have been discussed in Sect. 55. Using a suitable elliptic
polariser and a crossed elliptic analyser, two singular directions, one associated
with each optic axis can be extinguished at a time.

y) Observations with polariser and analyser alome. It is clear that with a
polariser alone set in front of the plate the optic axial direction O, will appear
darkest when the polariser vibration is parallel to 0’4, i.e., to the vibration
direction of the more heavily absorbed wave propagated along the optic axis.
The absorption coefficient of all the plane polarised waves propagated along the
points on 4,0, 45 is the same since their direction of vibration makes the same angle
with0X;, 0Y,. Hence a pair of brushes appear at the same setting of the polariser,
passing through the two optic axes (one of the brushes being coincident with
A,043). The phenomenon is akin to the appearance of brushes in the case of
absorbing inactive crystals when the polariser vibration is set along the more
strongly absorbed linear vibration propagated along the optic axis. However,
as A; and 4, are not orthogonal (unlike the case in the inactive absorbing crystals)
the setting of the polaroid at which the optic axis appears darkest becomes dif-
ferent when the polaroid is placed behind the plate and used as an analyser.
In this case the analyser vibration has to be parallel to 0’ 47 so that it will be
crossed with respect to the less absorbed linear vibration O 4,, propagated along
- the optic axis. At the same setting of the analyser the less absorbed wave pro-
pagated.along any direction on the hyperbolic arc 4,0, 4; is also crossed out—
since it is also linearly polarised- parallel to 0’ Ay. Hence a pair of hyperbolic
brushes are formed (one of which coincides with 4,0, 47). Very simple arguments
show that the intensity of the brush observed in this case is the same as that
observed with the polariser alone with its vibration parallel to 0’ 4,.

It may be noted that in the two cases, not only do the settings (of the polaroid)
at- which the brushes occur differ, but also the positions of the brushes themselves.

Idiophanic rings also appear when the crystal plate is viewed with a polariser
alone or an analyser alone. The reasons for their appearance are broadly the same
as those in the case of the inactive absorbing crystals (Sect. 68) and may be fraced,
to the fact that the two waves that are transmitted along any direction are non-
orthogonally polarised. These can be analysed using the general principles out-
lined in Sect. 68 to 70. The effects presented with a linear polariser alone are
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in general not the same as those observed with a linear analyser alone at the same
setting (except for certain special settings). This again proves that the non-
orthogonally polarised waves propagated along a general direction cannot be of
the special type obtaining in inactive absorbing crystals.

0) Brewster’'s brushes. For directions not too close to an optic axis the squares
of the ellipticity of the waves may be neglected even if the first powers of these
quantities may not be negligible. For such directions we have already seen that
the absorption coefficients of the waves will practically be the same as in the
absence of optical activity. To this degree of approximation the formatlon and
the position of the BREWSTER’s brushes may be treated as for inactive absorbing
crystals. Tt may however be remarked that since the optic axial angle in amethyst
is small the discussion for the position of the BREWSTER’s brushes given in Sect. 668
(for iolite) for large optic axial angles must be correspondingly modified.

IV. Passage of light through birefringent plates.

74. General theory. The study of the passage of light through a system of
birefringent plates is of particular interest in two applications, namely the theory
of compensators and of birefringent filters. The general theory may be readily
worked out in terms of the Poincaré representation, followmg the methods out-
lined in Sect. 58.

The complete solution in the important case when all the plates exhibit ordi-
nary linear birefringence forms one of the oldest .applications! of the Poincaré
sphere but may be briefly described not only because of its elegance but because
analytical discussions of the problem are still not uncommon. Let §;,46,...6,
be the phase retardations introduced by the constituent plates, the orientation
of the fast axes being represented by the points 4,, 4, ... 4, on the equator,
‘the arc 4,,,, 4,, being denoted by 24,, (see Fig. 78). Consider the solid pyramidal
figure obtained by joining the centre 0 of the sphere to the vertices of a spherical
polygon A, A;A4; ... A, A’ drawn as indicated such that the angle at 4,,is (m — §,,)
and the side is equal to 24,,. The angle w— d at 4’ and the adjacent sides 47, 4;,.,
are automatically determined by constructing the polygon. We have to combine
successive rotations 4y, 4y, ..., §, about the equatorial radii 4,0, 4,0, ... 4,0.
This will ¢ause the pyramidal figure to be rolled on the equator, the vertices
A3, A3, ..., 4,,, A’ of the polygon being in succession brought to coincide with
A,,4,,..., 4,4, the figure coming to rest with 4,4’ resting on the equatorial
arc 4,A4. The final orientation of the pyramidal figure could equally well have
“"been produced by the following two successive operations: (a) an anticlockwise
rotation 2p about the polar diameter through the arc 4’4 which is the excess

of 27 over the sum of the sides of the polygon, and (b) a clockwise rotation ¢
~-about the axis A0 where arc 4 4,, is equal to the side 2# of the polygon.

Thus the combination is equivalent to an optically active plate of rotation g
followed by an ordinary birefringent plate of retardation 6, the orientation of
the slow axis being determined by the angle 29. It is more convenient (using
the formulae of spherical trigonometry) to determine 29, 6 and 24 by drawing
the polar polygon (Fig. 78b) ByB;B,... B, such that the sides B,,_; B, =0,
and the angle < B,,_,B,,B,i1=7n—23,. We then have §=B,B, and 28 =
<X B, 4B, B, while 29 is the spherical excess or area of the polygon—thus deter-
mining completely the two optical elements to which the combination is equi-
valent.

1 H. Poincark: Théorie Math. de la lumiére, Vol. I, p. 266. Paris 1892.
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If the » plates in the system are all non-dichroic, then the effect of each plate
is to rotate the point representing the state of polarisation on the Poincaré sphere
through an angle §; about some axis. If this operation is denoted by R;(d),
the resultant is again a rotation

R(0) =Ry(6y) ... Ri(3) ... R, (6,). . (74.1)

A

Fig.78a. e Fig. 79.

' Fig. 782 and b, Poincaré representation to calculate the effect of a series of linear birefringent plates.

Fig. 79. The Poincaré represeutatwn showmg the effect of reversing the direction of the light beam on the intensity
transmitted by an optical system.

Thus, the whole system is equivalent to a single plate exhibiting both optical
activity and linear birefringence, of appropriate thickness, or to a combination
of two plates, one of which exhibits pure circular birefringence, while the other
has only pure linear bu'efnngence and is oriented at a suitable azimuth!. If now
light traverses the system in the reverse direction, then the resultant operator is

Ru(—8,) .. Ri(— 8) 1Ry (— 8) = [R(O] = R(— 8. (74.2)

This result is, of colirse, true only if the optlcal act1v1ty present is natural, not
of the magneto-optic type.

A consequence of this result is that if the system is placed between a polariser
and an analyser, then the fraction of the intensity transmitted by the system is
the same when light traverses it either way, for all azimuths of the polariser
and analyser. If P is the state of the mc1dent beam (Fig. 79) and Q that of the

1 This result has been proved by the matrix method by H. HurwiIrz jr. and R.C. JonNEgs:
J. Opt. Soc. Amer. 31, 493 (1941). Some of the results proved below have also been obtained
by a modification of this method, using quaternions, by H.Y. Hst, M. Ricaartz and Y. K.
Liana: J. Opt. Soc. Amer. 37, 99 (1947). ool
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analyser, then the transmltted intensity m the first case is cos? P'Q Wh11e in
the second case, it is cos® 3 PQ Itis obv10us from the diagram that the arcs P’Q

and PQ are equal, making the two intensities equal. The transmitted intensities
are however unequal if the system of plates is alone reversed, keeping polariser
and analyser unchanged. If the polariser and analyser are crossed, then the
transmitted intensity is unchanged even when the system alone is reversed, which
happens because P and Q are then antipodal to each other on the Poincaré sphere.

Since rotations about non-coincident axes are in gerieral non-commutative
operators, it is not possible to interchange the order of two plates without affect-
ing the state of polarisation of the emergent beam. If, however, two successive
plates have their principal planes parallel {the fast directions of the two may
be parallel or at right angles), then they may be interchanged. This follows at
once from the fact that the corresponding rotations in Poincaré space are about
the same axis, but may be of the same or opposite senses.

The particular case of three doubly refracting plates kept between a polariser
and analyser is of interest in the theory of compensators. The azimuth of the
polariser is taken to be zero, and let those of the analyser and of the three plates
be @, 1, V2, ¥s- Then, the fraction of the incident mtens1ty transmitted by the
system is 7, given by the following formula: .

T3=C0s? @-+4sin 29, sin 2(p—7y,) cos 2(y,—9;) cos 2(y3—y2) sin? 61/ 2sin? §,/2sin? 63/ 2 P

+ sin 2y sin 2 (p — py) sin®8,/2 + sin 2y, sin 2 (p — y,) sin®0,/2 +

+ sin 2y;sin 2 (¢ — ) sin? 8/2 — sin 2y, Sin 2 (¢ — ) [c0s 2 (y2 — ) sin?6,/2 X
X sin 8, sin §; + sin? d,/2 sin §zsin §; -+ cos 2 (p; — y,) sin® Jy/2 sin 6, sin d,] +
+ 2[sin 2y, sin 2 (@ — y,) sin 6,/2 sin §,/2 {cos 61/2 €08 85/2 — Cos 2{y, — p1) X |
X sin §3/2 sin 8,/2} +

+ sin 2y, sin 2 (p — ys) sin 8,/2 sin 8,/2 {cos 62/2 €08 &,4/2 — €08 2 (s — ¥5) X
X sin §,/2 sin §;f2} +

~+ sin 2y,sin 2 (@ — 71) sin 85/2 sin 8,/2 {cos 63/2 cos 61/2 —cos2(y; —¥3) X
X sin 82 sin d,/2}].

For two plates and a single plate, these reduce to the expressions?: )
' Tp=cos?p-}-sin 2y, sin2 (p—yy) sin? 8,2+ sin 2y, sin 2 (p—yy) sin? G2+ :
~+2sin 2y, sin 2(p—y,) sin 6, /2sin.8,/2{cos 61/ 208 §,/2—c0s 2(y2—y1) sin d,/2sin 8,/2};

(74.3)

(74.4)

1,=c0s? p}-sin 24, sin 2 (p—y,) sin2 4, /2. (74.5)

We shall not consider the applications of these formulae further here.

If some of the plates in the system are also linearly dichroic (these may be
called as partial polarisers), then the following theorems hold?2:

(a) A system consisting of any number of partial polarisers and circu‘larly
birefringent plates is equivalent to a combination of two elements, one a partial
polariser and the other a circularly birefringent plate.

(b) A system consisting of any number of (linearly or circularly) birefringent
plates and partial polarisers is equivalent to a system containing four elements—
two linearly birefringent plates, a partial polariser and a circularly birefringent plate.

1 H.G. JERRARD: J. Opt. Soc. Amer. 38, 35 (1948).
2 For a proof see H. Hurwirz jr. and R.C. JoNEs: J. Opt. Soc. Amer. 31, 493 (1941).
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75. Birefringent filters. An interesting application of the propagation of light
through birefringent crystals and the interference phenomena exhibited in polarised
light is to the-design of narrow-band filters for obtaining monochromatic light.
The device, which is known as the birefringent filter, was first invented by Lvort?,
although one was constructed independently by Ommax? The filter is mainly
used for astrophysical purposes. A detailed account of the theory and practical
details have been given by LyoT?® and more recently by Evans4,

Suppose monochromatic light is incident normally on a uniformly—%hick
birefringent plate of thickness 7. If the polariser and analyser are kept parallel,
~at an angle of 45° to the principal planes of the plate, then it follows from (69.5)

that the transmitted intensity is just cos? —;— 0 where §= 2T“ n—n"yt= 3;— wt. ~

If we put —‘;—t =N, say, which may be called the order of interference, then the

transmission is 7,=cos?zN. If con- | |
tinuous radiation is used, the order \ /[\
of interference would vary with |

wavelength and one thus obtains

sinusoidal fringes with minimum
intensity zero in the spectrum of /\/\/’\
the transmitted light. The fringe b

width is given by r /j
ar=h ot gy | \ /\
¥ Im_, :
u 04

Suppose now a second crystal of \/\/\/\/
twice the thickness as the first is a

placed after the above system with
its principal planes parallel to the

first crystal and is backed by an

analyser parallel to the other two )

31131y53r5- Then the lntenSlty trans- Fig. 80. Trausmission curves for birefringent filters. (a) One

mitted by the system is element of thickness #. (b) One element. of thickness 2¢.
(c) Two elements £ and 22, {d) One clement 4¢.
(e) Three elements £, 2¢ and 4+,

€

Tp=cos?w N cos? 2z N. (75.2)

The transmission curves for 7; and 7, are given in Fig. 80 from which it will be
seen that there is appreciable transmission only near the maxima of 7;. Further
elements, composed of crystal plates of thickness 27¢ backed by polarisers, may
be added, and the effect will be to make the principal maxima sharper, while
at the same time suppressing the transmission in between them. If there are ]
such elements, the transmission of the filter is

7 =cos*x N ...cos? (m2'N) ... cos? (272 N). (75.3)

This expression can be put in a more elegant form as follows. Expressing
the cosines in terms of exponential functions and substituting zN by the

Ay

1 B. Lvor: C. R. Acad. Sci., Paris 197, 1593 (1933).
2 Y. OmmaN: Nature, Lond. 141, 157, 291 (1938).
3 B. Lyor: Ann. Astrophys. 7, 31 (1944).

4 J.W. Evans: J. Opt. Soc. Amer. 39, 229 (1949).
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from which it is seen that an interference filter composed of plates is similar
to a grating of 2 lines and the secondary maxima have relative intensities equi-
valent to those associated with such a grating.

If there is no loss by absorption or reflection, then the transmission at the
peak of the principal maximum is unity. Theoretically, therefore, there is no
loss of intensity. In practice, the peak transmission is of the order of 30 to 40%.

A birefringent filter has usually six to eight elements, which are cemented
together or immersed in oil to avoid multiple reflections. A typical example is
the one which has been in use at the High Altitude Laboratory at Climax, Colorado,
U.S.A.% Tt consists of six quartz elements with N =23, 4=1.677 mm, #g=53.658
mm and the peak has an effective width of 44 centered on the H, line (6563 &),
at a temperature of 35.5° C2. Since both the thickness and birefringence vary -

" with temperature, good temperature control is required. For quartz, the peak

shifts by—0.66 A per degree rise of temperature in the red region.

While the above theory is satisfactory for normal incidence, the order of
interference would obviously vary if the light traverses the filter at an angle to
the normal. The theory of such effects has been considered and it has been pos-
sible to design filters having a much wider field of view than the simple type
described above. The principle is essentially to split each element into two or
three parts and to choose the material and orientation of these parts in such a
way that the variations in N are compensated as far as possible. Details of
these may be obtained from Evans’ review mentioned above?.

It would obviously be a great advantage if the transmission peak of a birefrin-
gent filter can be adjusted. Control of temperature has been suggested and

- attempted by LyoT, but it is not very satisfactory. An alternative method is to

vary the thickness of each element, which may be made as a pair of wedges as
in the Soleil or Babinet compensator. A third method will be to have a phase
shifter capable of introducing a path retardation of upto one wavelength. This
may be either of the photoelastic or electro-optic typet. A one-Angstrém pass-
band filter has been constructed using ammonium dihydrogen phosphate (ADP),

1 J.W. Evans: J. Opt. Soc. Amer. 39, 229 (1949).

2 Other designs for a Lyot filter are given by A.B. GiLvare and A.B. SEverNvI: J.
Tech. Phys. USSR. 19, 997 (1949) and by L. BeErTi: Nuovo Cim. 9, 304 (1953)-

3 Methods of reducing the stray light are discussed by R.G. Giovanerit and J.T. JEFF-
RIES: Austral. J. Phys. 7, 254 (1954).

¢ B.H. Brrrings: J. Opt. Soc. Amer. 37, 738 (1947).
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which has a birefringence five times that of quartzl. For a 1-A band-pass filter,
the thickest plate would have to be nearly 24 cin thick, if made of quartz. With
ADP, a thickness five times less would be sufficient, but the tolerances are also
more severe (d4-0.6 micron). By using mica corrector plates, the tolerances are
" made less critical. The filter consists of seven elements and the thicker elements
are split in order to increase the angular field of view to 1°. The filter is tem-
perature controlled to work at (4040.05)°C and is also equipped with a Sénar-
mont compensator at each end, in order that the pass band may be adjusted,
over a range of about 3 A.

An entirely different type of birefringent filter in which all the plates are of
the same thickness, but their principal planes are rotated with respect to one
another has also been proposed?.

V. Miscellaneous topics.

76. HAIDINGER'’S rings in birefringent crystals. The interference rings observed
between plane parallel surfaces under diffuse monochromatic illumination are
of great importance in view of their practical applications in the construction of
spectroscopes of high resolving power. These rings were first observed by Hai-
DINGER in mica. Mica being a double refracting substance there should be two
systems of rings superposed on each other due to the beams that are polarised
at right angles to each other. This superposition causes regions of maximum
and minimum visibility in the field of view. This was first noted by RavyLeiGH?
in 1909 and this phenomenon was investigated in great detail by CHINMAYANAN-
pAM?% Later very beautiful photographs of this phenomenon have been published
by other authors?.

For an isotropic medium the path difference § between the two interfering
rays is  ==2#¢ cos » where £ is the thickness of the plate and # is the refractive
index and the dark rings appear when

0=2ntcosr =kA. (76.1)

In the case of a birefringent crystal the incident ray is split into two rays polarised
along and perpendicular to the principal vibration directions. And in a mica
plate where the acute bisectrix is practically normal to the plate there would be
two sets of fringes which satisfy respectively equations

Oy =2n,tcosry=ni,
Y 1 1 } (76.2)

8y =2mytcosr,=ml

where # and m are integers. The points of minimum visibility will correspond
to the case when thé-dark rings of one set fall on the points which correspond to
the bright rings of the second set i.e., when

8, =N1, }

76.
b= (M +3) 1 763)

1 B.H. BrLLinGs, S. Sace and W. Drarsin: Rev. Sci. Instrum. 22, 1009 (1951).

2 1. SoLE: Czech. J. Phys. 4, 53 (1954).

3 Lord RavieIGH: Phil. Mag. 12, 489 (1906).

4 T.K. CHINMAYANANDAM: Proc. Roy. Soc. Lond., Ser. A 95, 177 (1919).

5 A.H. Prunp: J. Opt. Soc. Amer. 32, 383 (1942). — B.H. Birrings: J. Opt. Soc. Amer.
35, 570 (1945).

Handbuch der Physik, Bd. XXV/1., 11
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where (N — M) is an integer. Hence a line of minimum visibility satisfies the
condition that the respective orders of the rings of two sets have a constant
difference N — (M +3). Hence the curve of minimum visibility is given by the
equation ’

P = 2¢(ny cOS ¥, — 7y COS 7,) (76.4)

which is the equation for the isochromatic lines in a convergent polarised light
for a plate of thickness 2¢ [see Eq. (63.1)]. This has been verified by experiment.
It must be mentioned that this analogy between the lines of minimum visibility
and the isochromatic lines in convergent polarised light is applicable only to
the case of crystals with the surface perpendicular to the axes of optical symmetry
and not to crystals cut in any random manner. Fig. 81 illustrates the Moiré or
scalar fringes observed. - )

CHINMAYANANDAM has discussed in detail the two cases when the optic axial
angle is large and small. In the case of a plate of calcite (uniaxial crystal) cut’
normal to the optic axis # will assume two values #, the ordinary index for the
vibration at right angles to the plane of incidence and #; given by

7t = [, 1] (ng COS*7 + g, sin®7)3]. (76.5)

Hence the two sets of interference rings will be given by

(76.6)

2%, Ny, COS ¥

2%, C087,=nA,
=ml }

B 1
[n2cos? 7, + n2 sin?7,]%

where the subscript w refers to the ordinary ray and & to the extraordinary ray.
The patterns will be independent of each other and a single linear polariser will
extinguish a large part of two opposite quadrants of the circles.

In viewing these fringes when the plates are not perfectly parallel Birrines
found that the technique developed by Ramax and RAJAGOPALAN! proves in-
valuable. They showed that the effects of irregularity in the specimen could be
effectively removed by using a very small section of the plate.

1 C.V.Ramax and V.S. Rajacgoraran: J. Opt. Soc. Amer. 29, 413 (1939). — Phil. Mag.
29, 508 (1940).
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77. Conical refraction. «) Gemeral. The phenomenon of internal conical
refraction was first observed in aragonite by HuMPHREY LiroYD!. But it may be
very much more conveniently observed with naphthalene? for which the angle
of the cone is 13°44' as compared to 1°52’ in aragonite; so much so that the conical
refraction can be exhibited in the same way as ordinary birefringence is by view-
ing a line of print through an appropriately cut crystal plate. To observe it
conveniently a plate cut approximately normal to one of the optic axes is kept
on the Federov stage. The lower face is covered with a screen with a very small
aperture. With parallel light incident from below a suitable adjustment of the
stage enables the circle of light to be seen through the microscope which is with-
drawn so that its focal plane lies above the crystal. The simple explanation of~.
this phenomenon has already been consideredin Sect. 33 using the index e]l1pso1d
and in Sect. 35 using the wave surface. According
to these results when the wave normal of the pencil -
entering the crystal is along the optic axial direc-
tion, there are not just two ray normals but an in- il )
finite number, lying in a cone with the optic axis as :
a generator.. Since the wave normals are practically
perpendicular to the second surface, they experience a)
no refraction and the emerging pencil of rays is
not a cone but a hollow cylinder (Fig. 82a). This
may be easily verified by raising the microscope .
when it is found that there is practically no in-
crease in the diameter of the ring of light. Further
with the analyser above the microscope, the polari- B
sation at each point is what is to be expected from . - for ob
the explanation given in Sect. 33 if we consider all serving (a) internal comeal refraction
directions of linear vibration to be equally probabie (b) external conical refraction.
in unpolarised light.

To observe the external conical refraction however, an extended source of
light is used and both the upper and the lower surfaces of the crystal are covered
up except for small apertures situated at the ends of the axis of single ray velocity.
In this case the emergent pencil forms a divergent cone as may be seen from the
expansion of the ring of light when the microscope is raised (Fig. 82b). Both
from the Fresnel ellipsoid and the wave surface we have seen that, when the direc-
tion of the ray normal is.along the direction of single ray velocity, there are an
infinite number of wave normals forming a cone with the optic biradial as one
of the generators. Nevertheless this simple explanation is not quite adequate.
For example, according to it, while internal conical refraction is shown only
when the wave normal is exactly coincident with the 0pt1c axis, for any slight
deviation ordinary double refraction should ensue. It is true that, when the
wave-normal is quite far from the optic axial direction, two points of light are
seen near two diametrically opposite points on the circle of conical refraction.
‘When the wavenormal is gradually brought towards the optic axis these two
points are drawn out into the form of two circular arcs, one approaching the
circle of conical refraction from the interior and the other from the exterior,
the intensity at any point on the two arcs at the same time diminishing; when
the setting is exact they run together to form a ring of light. Further,-POGGEN-
poRF and HAIDINGER under better conditions have observed two concentric

1 See Szivessy [I], PockELs [2] for earlier literature.

2 C.V.Raman, V.S. Rajacorarax and T.M.K. NEpuncapi: Nature, Lond. 147, 262
(1941).
11%
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rings of light separated by a fine line, the Poggendorf dark circle actually cor-
responding to the directions where we should expect true comical refraction
according to the elementary explanation.

The simple explanation of this phenomenon given by Voigt? is along the
following lines. We have to take into account the fact that we are concerned
with a pencil of rays with a finite divergence, any limitation even of a plane
wave-front leads in fact to such a divergence. Representing directions by cor-
responding points on the surface of the sphere, the small region in the vicinity
of the optic axis may be approximated by the plane of the paper in Fig. 83.

Here N, and R, represent the optic axis and the optic biradial, N R, being
the axial plane. Let the direction of P, the wave-normal close to the optic axis
be specified by its-polar coor-
dinates 7, ¢ with respect to the
optic axis and let the corre-
sponding directions of the ray
normal be specified. by R, @
measured with respect to the
optic biradial R,. The principal
planes S; P and S, P correspond-
ing to the wave normal P are
obtained by bisecting internally
and externally the angle be-.
tween PN; and the horizontal
line PN, which proceeds to the
other optic axis N,. Hence it

Fig. 83. Flgure illustrating the simple explanation of the Poggen- may ea,SﬂV be shown that S P
dorf circle. N,, N, optic axial directions (binormals);

R,, R, directions of the biradials. is inclined at an angle -—+ i to

the axial plane, the other plane S, P being at right angles. The pomts of
intersection of these two lines with a line through R, parallel to N; P will be
the direction of the ray normals S; and S, corresponding to the wave normal P.
This may be verified from the fact that S, P bisects the angle between S;R,
and S, R, where R, is the other biradial (Sect. 33). Then by a little geometry it
may be shown that R, S;=R,N,+7r and R, S,=R,N,—r. Thus the polar co-
ordinates R, ® of the two ray normals will be (y +7), = and (y—7), (¢ +=x),
where y =R; N, the semi-angle of conical refraction. For directions appreciably
inclined to the optic axis a small change in the direction of the wave normal will
cause a corresponding small change in the directions of the ray normals so that
a pencil of incident wave normals will emerge without appreciable change of
divergence. Even for this case the distortion of the bundle of rays due to astig-
" matism is well known (STOKES?). On the other hand in the present case a small
‘thange 7 dg in the direction of the wave normal causes appreciable changes
(x +7) dp and (y —#) dp in the position of the ray normal S; and S,. This lateral
extension is not compensated for by a radial contraction, a small change 47
causing an equal change 4R in the position of the ray normals. If we consider
a pencil of wave normals about the optic axis we will obtain a ring of ray normals
containing the circle of conical refraction. The portion of the incident pencil
having the divergence rdr dg will give rise to two sets of ray normals with
large divergences (y +7)d@dr and (y—7) de dr. Since energy must be con-
served the intensity will be reduced by the factor a~#/y. As 7 tends to zero the

1 W. Voigt: Phys. Z. 6, 673, 318 {1905).
2 C.G. Stokes: Sci. Pap. Cambridge 5, 6.
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intensity tends to zero, so that the exact circle of conical refraction is a region
of vanishing intensity. It is also clear that the vibration direction at any point
of the ring is parallel to the line joining that point to the optic axis.

B) Observations in naphthalenel. It is indeed remarkable that the above
geometric theory is able to explain most of the general features of the phenomenon
considering that the wave optical principles on which the very concept of the ray
for directions of singularity can be justified have to be critically examined. It
is therefore to be expected that the wave optical principles would furnish a deeper
understanding of the subject. For example similar arguments based on geometrical
optics could be used to explain the phenomenon of external conical refraction
and in this case one would get an infinite concentration of energy along the axis
of single ray velocity which would be physically inadmissible.

In any case, as RaMaN has emphasised, the practical method of. observing
the conical refraction ties up the subject with the question of aberration of images
viewed through biaxial plates. This is particularly the case with the arrangement
usually regarded as demonstrating internal conical refraction wherein an il--
luminated pinhole is viewed and focussed through a crystal plate by means of
a microscope or magnifying lens. Since the pinhole is backed by an extended
source of light, the phenomenon corresponds to nejther the internal nor external
conical refraction. The phenomenon in this case has been extensively investigated
by Raman and his collaborators and we shall describe some of these results. Using
naphthalene it is found that the Poggendorf circle is an ultrafocal phenomenon
completely disappearing in the position of best focus, the image being then a single
circular ring that is extremely sharp. It is well known (WALKER [6]) that there
are no fewer than four distinct positions of best focus for an image viewed through
a biaxial plate these being determined by the principal radii of curvature of
each of the two sheets of the wave surface. The image exhibits astigmatism
being drawn out perpendicular to the principal planes of curvature, one of the
principal radii of curvature of the wave surface is infinite along the circle of
contact. In the case of crystals for which the angle of internal and external
conical refraction are nearly the same, as is the case with most crystals including
naphthalene, the other radius of curvature is practically constant at all points
on the circle and changes only slowly as we move away from the circle along the
wave surface either towards or away from the conical point. Accordingly the
astigmatism of the rays emerging from the crystal gives rise to a particularly
simple form of image viz., a sharply focussed circular ring of the same diameter
as the circle in which the wave surface makes contact with the second face of
the crystal. When the microscope is raised, the Poggendorf circle develops and
when it is focussed on the second surface of the plate, a luminous point is observed
at the centre of the field of view showing the converse of the Poggendorf phenomenon,
namely the intense concentration of energy along the axis of single ray velocity.
In fact with the microscope focussed on the second surface, the field of view exhibits
as it were an illuminated picture of the wave surface of two sheets, their inter-
section appearing as an intensely luminous point and the circle of contact made
by the tangent plane as a dark ring. The dark circle and the luminous central
point can be traced to a considerable distance behind the crystal. The luminous
point is in effect an image of an original pinhole. This remarkable phenomenon
that a biaxial crystal cut normal to the direction of single ray velocity can form
an erect image of a luminous source was first observed by Raman? with aragnoite

1 C.V. Raman, V.S. RajacoraraNn and T.M.K. Nepuncapi: Proc. Ind. Acad. Sci.

A 14, 221 (1941).
2 C.V. Ramax: Nature, Lond. 107, 747 (1921).
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though it is better displayed with naphthalene. The image is in continuous focus
and can be seen at great distances from the crystal plate.

We have seen that for crystals having the angles of internal and external
conical refraction nearly equal, a position of perfect focus can be obtained in
which the Poggendorf circle vanishes. Thisis not the case in aragonite. A remark-
able photograph taken with a specimen of this substance appears in RamMAN’s?
paper with the microscope adjusted to as near a perfect focus as possible where
the two circles actually intersect! .

<

c

Fig. 84 a—d. Conical refraction in naphthalene. (a) Hollow cohe of external conical refraction. (b) Cylinder of internal

conical refraction. (Note the intense central spot which corresponds to the inverse of the Poggendorf phenomena.)

{c) Image of source seen in focus. Poggendorf circle not present. (d) Poggendorf circle appears when image of source is
out of focus.

78. Dispersion in birefringent crystals. Effects of dispersion on the optic axial
figures. Since the refractive index is a function of the wavelength of the incident
light, we shall briefly discuss the effects of dispersion with wavelength on ‘the
convergent light phenomena.

In uniaxial crystals, although the magmtudes of w and & may vary with wave-
length, the direction of the optic axis remains the same. There are a few uniaxial
crystals which become isotropic at a particular wavelength. Of special interest
is the case of the positive uniaxial crystal benzil whose birefringence progressively
decreases as one goes from red to blue?. In fact at A=4900 A the crystal becomes

1 C.V.Raman: Current Sci. 11, 44 (1942).
2 W.M.D. Brvant: J. Amer. Chem. Soc. 65, 96 (1943).
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isotropic and for still smaller wavelengths the .crystal becomes negative.
Since benzil is an optically active crystal the investigation of the shape of the
gyration surface when the index surface is a sphere would be of the greatest
interest.

In the case of biaxial crystals, the variations in the principal refractive indices
with wavelength may cause considerable changes in the optic axial angle—dis-
persion of the optic axes—which may even be accompanied by changes in the
optic axial plane itself (crossed axial dispersion). In the case of monoclinic and
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Fig. 85a. (a) Dispersion of optic axes in crystals. Orthorhombic crystals. (b) Monoclinic erystals. (c) Tficljnic crystals

4 Sposition

triclinic crystals for different wavelengths the orientation of the optical ellipsoid,
may itself alter with respect to the crystallographic axes (dispersion- of the
bisectrices).

In orthorhombic crystals, the axes of the index ellipsoid coincide with the
crystallographic axes since the optic axial plane contains « and y, the acute
bisectrix must be parallel to 4, b or ¢ axis. The bisectrices would therefore not
change with wavelength and the interference figures would be symmetrical with
respect to two planes that are at right angles to each other, their line of inter-
section being a bisectrix (Fig. 85a).

In monoclinic crystals one of the axes of the indicatrix («, § or p) must coincide
with the unique & axis, hence three cases are possible. When the b axis coincides
with the § axis the plane of the optic axis (plane of « and p) coincides with the
symmetry plane. The optic axial figures (with different wavelength) are no
longer symmetrical with respect to a plane at right angles to the plane of the optic
axes. When f§ and the acute bisectrix lie in the symmetry plane and the third
axis coincides with the crystallographic axis b, the plane of the optic axis will
lie at right angles to the symmetry plane. This is called the Horizontal Dispersion.
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Finally when the acute bisectric coincides with the crystallographic 4 axis, there
is no dispersion of the bisectrix and the figure has a twofold axis of symmetry
about the acute bisectrix. Fig. 85b illustrates these cases.

In the case of triclinic crystals the optic axial figure will show an unsymmetrical

Fig. 85b. Dispersion of optic axes in monoclinic crystal.

The plane of the optic axes contains the longest and the shortest axes of the
index ellipsoid. In certain crystals the principal refractive indices vary so uniquely
with wavelength that very peculiar effects arise. For example if in a particular
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Fig. 85¢c. Dispersion of optic axes in triclinic crystals,

crystal #, <C#,< n, (where the subscripts 1, 2, 3 correspond to the principal axes
of the index ellipsoid, then the optic axial plane would be the 7, 7 plane. As
the wavelength of the incident light is changed if for a particular wavelength if
n, =n, then the crystal becomes uniaxial while for a still further change of wave-
length if #,<<#, then the plane of the optic axes would get rotated to the ny7,
plane. The famous case that is often quoted to illustrate this phenomenon of
crossed axial dispersion is that of the orthorhombic crystal brookite where the
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optic axial plane for red light is parallel to (001), the crystal becomes uniaxial
for 215550 and the plane rotates to (010) for lower wavelengths. Again the
case of saccharo lactone (CgH,,O;s), an orthorhombic crystal which is also opti-
cally active and which exhibits this phenomenon, is of great interest.

It may also be remarked that in many crystals (particularly those having low
birefringence) the dispersion actually causes a change in the optical sign of the

crystall. /
D. Experimental techniques in crystal optics.

79. The polarising microscope? The polarising or the petrographic microscope
is an invaluable instrument for optical research and in recent years its application
has been extended to many fields of investigation. It was originally constructed
for the examination of rock sections and its design has undergone many changes
because of its varying uses. Stripped to its essentials, the polarising microscope
differs from an ordinary microscope in that it possess a revolving graduated stage,
a polarising device below and another above this stage. A removable auxiliary -
lens (called the Bertrand-Amici lens) is present between the upper polarising
device and the eyepiece. Fig. 8Ga represents the median section of a typical
polarising microscope. .

The polarising microscope is used in two ways. When the Bertrand-Amici
lens is not inserted, the optical system magnifies any object on the stage and the
microscope acts as an orthoscope. The paths of the light rays for this arrange-
ment is given in Fig. 86a. If however the Bertrand lens is inserted, it brings the
eyepiece into focus on a focal plane of the objective, thus bringing the entire
optical system to a focus at infinity. This enables one to observe simultaneously
all the bundles of parallel rays which pass in various directions through a plate
placed on the stage. This is known as the conoscopic arrangement and is used
for the examination of interference phenomena exhibited by crystals in ““con-
vergent light”. To make the convergence of the light entering the crystal large
enough, a converger.can be introduced above the condensing lens. The paths
of the light rays for the conoscopic arrangement is given in Fig. 86b.

Some microscopes are provided with means for bringing the axis of rotation
of the stage and the optical axis of the instrument into coincidence. This is
essential if the crystal is to remain at the intersection of the cross wire when the
stage is rotated. But this difficulty is avoided in most microscopes by having
a mechanism for rotating the polariser and analyser simultaneously, with the
crystal on the stage remaining stationary. The polarising microscope is provided
with all the diaphragms and stops to be found in ordinary microscopes. In addi-
tion there is a substage adjustable diaphragm below or above the polariser which
can decrease the convergence of the incident light and is particularly useful in
the measurement of the refractive index of a crystal by the Becke method.
Another adjustable-diaphragm in the upper tube helps to isolate the interference
figures in tiny crystals. This diaphragm if it is to be really effective for this
purpose, must be situated where the real image of the crystal is formed.

1 See W.M.D. BryanT and J. MrzcrELL: J. Amer. Chem. Soc. 63, 511 (1941); 65, 96
128 (1943). See also A.E.H. TurTon [12].

2 Several excellent treatises some of which are listed below are available which describe
the different parts and accessories of a polarising microscope. They also give full accounts
of the different uses described in this and the following section. F.E. WricHT: Methods of
Petrographic Microscopic Research. 1911, — A. JOHANNSEN [10]. — H. RosEnNBUsCH and
E. A. WurrinGg: Mikroskopische Physiographie der Mineralogie und Gesteine. 1924. —
N.H. HartsHORNE and A. StuarT [11].
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The eyepiece of the microscope can be replaced by oculars of other special
types for the measurement of different optical characters under the microscope.
These oculars amongst others include the scale, net grating, screw micrometer
and planimeter oculars for the measurements of lengths and area, the ocular
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Fig.86. The polarising microscope. (a) Light rays for orthoscopic arrangement. (b) Light rays for the conoscopic
arrangement.

goniometer for measurement of edge angles, Bertrand half shadow ocular (which
is actually a rotating biquartz (65«)] for determining the exact position of extine-
tion, ocular compensators of the quartz wedge and the Babinet types for the
measurement of small and large retardations, the dichroiscope ocular for estimat-
ing the pleochroism and so on. The microscope has also recesses for the insertion
of quarter-wave and full wave undulation plates, gnartz wedge, Berek compen-
sator, etc. for the determination of the optical sign and birefringence of crystals.

Additional devices are used sometimes for mounting the crystal or the slide
on the stage of the microscope. The mechanical stage is used for varying the posi-
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tion of the slide on the stage and is very popular with the mineralogists as the
movement of the slide can be adjusted to a nicety. The rotation apparatus (e.g.,
the Miers stage goniometer or its simpler modification) is most useful in the
determination of the optical characters of a crystal for different orientations.
Most of these devices involve the fixing of the crystal on a rotatable support
which in its turn can be attached to the revolving stage. The crystal can be
immersed in a liquid of the appropriate refractive index when necessary. The
most versatile of this type of rotation apparatus is the Federov Universal Stage
or its modification by EMMONs (Sect. 826). ‘
The microscope has usually linear polarising and analysing devices (either

nicols or polaroids). By the introduction of retardation plates at the proper posi-

tions the microscopes can be con- A
verted for observations with cir-

cular or elliptic polarised light S A
(Sect. 2168). Achromatic quarter . t}75

wave plates that have been de- |
vised® 2 should prove quite use-
ful in this respect.

Normally the microscope has 4
its tube axis vertical but it is

capable of being set with its

axis horizontal. Such a setting F 4 4 » =

is found to be very convenient |'| /\ | | /\ ;

for the study of stress optic and I ] ;\ - XV—-—- Z4

thermo-optic behaviour of crys- § | ! v !

tals. - G & @0
80. Polarising microscope for

reflected light3. It is obvious that {

the microscope described above e

can only be used for the studies iz 37 Schematic disgram of reflecting polarising microscope.
of light transmitted by the spe- S~stume F_filer fd, Capemoms O Coompemses, 1=
cimens. Since the important in- specimen, ST =sensitive tint, 4 —analyser, E — eypiece.
vestigations - of JamiNn% and
DRUDE?® on the problem of the reflection of light by conducting and non-con-
ducting materjals, it has been realised that a polarising microscope for reflected
light could be put to significant use particularly in metallography. Since the
pioneering work of KONIGSBERGER® and BEREK (see Sect. 60) in this field, various
types of reflection polarising microscopes have been designed but only recently
have thesé~designs been perfected. The most convenient set up for a reflection
polarising microscope is given in Fig. 87.

It ifc,' customary to replace the nicols shown in Fig. 87 by polaroid sheets when
visual observations are made. Owing to the anomalies that are likely to arise

* G. DesTtrIAU and J. PrRouTEAU: J. Phys. Radium 10, 53 (1949).

2 S. PaNncHARATNAM: Proc. Ind. Acad. Sci. A 41, 130, 137 (1955).

3 Several review articles on this subject have appeared which may be consulted for the
details of this important instrument, e.g. B.W. Mort: The Microscopy of Metals. London
1953. — G.K.T. Conx and F.G. Bapsaaw: Polarised Light in Metallography. London 1952.
B.W.MorTt and H.R. HaINEs: Research 4, 24, 63 (1951). — B.W.MotT and S. FORrD:
Research 6, 396 (1953).

¢ P. Jamin: Ann. Phys. 19, 296 (1847). )

5 P. Drupe: Wied. Ann. Phys. Chem. 32, 584 (1887); 36, 532, 865 (1889); 39, 481 (1890).

6 J. KONIGSBERGER: J.Zentr. Min. 1901, 195; 1908, 565; 1909, 245; 1910, 712.
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due to the pressure and strains in the lenses etc., the analyser and polariser are
placed as close to the vertical reflector as possible. Considerable research is being
done to get rid of this anomalyl. A further source of error is the ellipticity and
the rotation of the plane of polarisation introduced by the vertical reflector.
A large part of these errors have been reduced by coating the reflecting surface
of the glass plate with a highly refracting material like zinc sulphide and the other
side with magnesium fluoride to reduce
the effect of internal reﬂectlon inside
the glass.

Since most observations are made be-
tween crossed polarisers, these difficul-
ties have been avoided ifi S6me micro-
scopes by the use of the Foster prism?
and its principle is illustrated in Fig. 88a.
It consists of a calcite thomb which is
split and recemented with material of
the same refractive index as the extra-
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Fig. 88 a—c. Foster polarising vertical illuminator. (a) Dark field lumination. (b) Bright field illumjnation.
{c) A modification of the Foster prism.

ordinary ray so that the ordinary ray is totally reflected (exactly as in a nicol
prism) and absorbed on the blackened surface. The plane polarised extraordinary
._ 1ay is transmitted to the specimen and unless a change in the polarisation occurs
at reflection no light reaches the eyepiece. The unit therefore serves as a polariser,
vertical reflector and analyser all combined. The correctness of the angle of the
prism and the strain-free nature of the cementing medium are important factors
for making the microscope efficient. A bright field illumination can be obtained
by inserting a /4 plate between the objective lens and the prism (Fig. 88Db).

In another polarising vertical illuminator (Fig. 88c), the reduction of the aper-
ture of the objeétive present in the first prism is avoided. Unpolarised light passes
through a lens and enters the glass prism passing through a thin calcite plate

1 See for example B.W. Morr and H.R. HaiNes: Proc. Phys. Soc. Lond. B 66, 302

(1953).
2 L.V. FosTER: J. Opt. Soc. Amer. 28, 124, 127 (1938).
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and is reflected at the silvered surface of the calcite plate where a part of it vibrat-
ing in a plane perpendicular to the plane of incidence is reflected to the objective.
The other part is transmitted and absorbed at the lower part of the entering
face, which is blackened. The liglit reflected by the specimen passes back through
the objective and no light will be transmitted umless it is depolarised by the
specimen. There will be complete polarisation in all parts of the field since the
reflecting surface is the polariser and it is inclined at an angle sufficient to include
the angular field of the microscope.

While the Foster prisms are a very great improvement over other types of
polarisers in reflection microscopes, its chief disadvantage lies in that the con-
dition for crossed polarisers cannot be varied. The microscope can be used for
conoscopic observation by the use of an auxiliary lens.

81. The shearing interference microscopes. When a wave is incident on a bi-
refringent crystal plate placed between two polaroids, the two wavefronts emerging
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Fig. 89. Schematic diagram illustrating the principles of a shearing microscope.

from the system are in a position to interfere (see Sect. 63). This property has
been made use of in the design of certain microscopes for making objects which
are actually transparent but with a refractive index slightly differing from that
of the surrounding media, visible. We present only the most elementary ideas
about these microscopes and follow the treatment given by FraNCON. For greater
details the articles by Fran¢on?!, INGLESTAM?2 and the references given therein
may be consulted.

The basic principles of the shearing interference mlcroscope can be made clear
from Fig. 89. The object 4 is transparent with a region B whose refractive
index varies from that of the surrounding medium. This introduces a phase
change and the incident wavefront W, gets distorted to the form W,. The light
then passes through the birefringent system, P, and P, being two polarisers and
Q a birefringent crystal. The lens which can either be placed before or after the
birefringent system produces an image at B’. The distorted wavefront W, is
doubled to W, and W, by the birefringent system and, because of the polarisers P,
and P,, these waves Arg coherent and are in a position to interfere. If the doubling
is comparatively large then the two wavefronts can be pictured as in Fig. 90a.

In the regions (a), (c) and (e) where there is not much distortion of the wave-
fronts the path difference between the two wavefronts would be a constant given
by 4 and due to the interference between the two wavefronts the illumination
in these regions would be the same.

However in the regions (b) and (d), where there is a considerable distortion
of the wavefront, the situation would be entirely different. If § is the maximum

1 M. FrangoN: J. Opt. Soc. Amer. 47, 528 (1957).
2 E. INgrestaM: J. Opt. Soc. Amer. 47, 536 (1957 See also Vol. XXIV of this Ency-

clopedla.
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path difference variation due to B then the maximum path difference between
W, and W, at (b) would be (6 — A) whereas it would be (§ +4) at (d). Hence due
to interference effects the illumination at (b) and (d) would be different from
that of the background and the object would become visible but it would neces-
sarily be doubled. This doubling effect would be of no consequence if the object B
is completely isolated from other objects. However such a situation rarely arises
and it is usually arranged that the doubling is actually quite small with respect
to the width of the object (see Fig. 90b). Here again in regions (a) and (d) where
the path difference is the same the illumination is the same but in regions (b)

d and (c} where the path differ-

b NS ence changes the object be-

@ l [\ c / \ . comes visible. If 4 is the
y, A s M————— lateral doubling, the path dif-
‘{—-/ ference A’ in the region (b)
2 having a slope d is given by

, A"=oad if the two wavefronts
/  arein phase (i.e. if 4==0). If

/

74 however, the two wavefronts

’y; are not in phase the path

/ difference in the region (b) is
b

] A" =ad —A and in the region
Fig. 902 and b. The doubling of the wave front in a shearing microscope.  (C) it is A"=ad 4 4. The
(a) Large doubling. (b) Small doubling. object B therefore becomes
visible.
The first method of total doubling obviously corresponds to introducing a
path difference in a manner similar to phase contrast microscopy. The second
method obviously gives a differential method.

JamIin® was the first to construct a polarisation interferometer while it was
first applied to a microscope by LEBEDEFF2 JAMIN used two identical uniaxial
crystal plates (calcite) cut at 45° to the axis and oriented in the same way. A
half wave plate placed at 45° between the two calcite plates converts the ordinary
and extraordinary waves in the first plate into the extraordinary and ordinary
waves respectively in the second plate. There is therefore a compensation of
path differences in the two plates and observations can be made in white light.
_ The object is placed between the two plates when there is doubling. The dis-
advantages of this system are that (1) a calcite plate has to be introduced between
the specimen and the objective and (2) the half wave plate is usually correct
only for a narrow spectral range, (3) the system may not be useful for large-
macroscopic objects where large crystal plates have to be used.

All these disadvantages have been avoided in the arrangement suggested by
Francox where the two crystalline plates (made of quartz) are crossed—the
axis of the second plate makes an angle of 45° with the plane of Fig. 91a and
the projection of the axis is shown as a dotted line. The rays inside the plates
are also shown. While EQ is in the plane of the paper,0F is not in the plane but
is parallel to £O. The adaptation of this to a microscope is shown in Fig. 941b,
the part 0, P, Q, Q, P,0, forming the interference eye piece which may be used
with any microscope it may be remarked that the unit Q, Q, when it has a large
birefringence can be used for total doubling and from the hues present, a very
accurate estimate of the optical thickness of the object can be made. When the

1 Jamx: C. R. Acad. Sci., Paris 67, 814 (1868).
2 LepeDEFF: Rev. d. Opt. 9, 385 (1930).
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doubling is small the eye piece can be used with great advantage to observe
objects with slight differences in refractive indices. Since the doubling used is
quite small there is not too much loss of sensitivity. Using similar principles
differential refractometers have been made for measuring extremely small changes
in the refractive indices®.
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Fig. 91. FraNgoN’s polarisation interferometer.

82. Measurement of the refractive index2. o) Jmmersion technigue. With the
aid of the polarising microscope many of the optical constants can be measured
for crystals. We shall not describe all the techniques nor the experimental de-
tails, which are given in standard textbooks on the polarising microscope. We
shall content ourselves by describing some of the procedures.

The refractive indices of crystals are usumally determined by the immersion
method. The basic principle of the method is that when a transparent crystal
is immersed in a liquid having the same refractive index it becomes invisible.’
This will occur accurately only for one wavelength at a time, as the dispersion
of the refractive index of the solid and the liquid may differ. The immersion
medium employed is usually a liquid? and in rare cases a solid®. The variation
in the refractive index of the medium to attain exact equality with that of the
crystal is obtained by varying the relative proportions of two miscible liquids?,
or by varying the temperature of the liquid® or by varymg the wavelength of
observation? or by varying both.

A complete list of miscible liquids and the methods of determining their
refractive indices are given in most standard works on petrographic microscopy.
The last three methods given above make use of the property that the variation
of refractive index with wavelength or temperature of a liguid is in general much
greater than that of a solid.

Two methods are used to distinguish whether the refractive index of a crystal
is higher or lower than that of the immersion medium.

(a) The Becke method or the method of parallel illumination: With a high
power objéctive if the crystal is sharply focussed and if the objective is slightly
raised, a bright line (Becke line) will appear near the border and will move into
the substance having the higher refractive index. On depressing the tube the
phenomenon is reversed.

1 E. IncrEsTAM: J. Opt. Soc. Amer. 47, 536 (1957). — R. Barer: J. Opt. Soc. Amer.
47, 545 {1957). ]

2 See article by C.D. West: Physical Methods in Chemical Analysis, Ed. G. BErL, New
York 1950 and the references given therein.

3 F.E. WricHT: The methods of Petrographic Microscopic Research. Carnegie Inst.
Publ. No. 158, 1917.

4 E.S. Larsen and H. BERMAN: Microscopic determination of non-opaque numerals.
Bull. Geol. Survey, U.S.A. No. 848 (1934).

5 See for example JOBANNSEN [10].

6§ MerwiN and E.S. LarsEN: Amer. J. Sci. (4), 34, 42 (1912).

? R.C. EMMons: Amer. Mineral. 13, 504 (1928).
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(b) The Van der Kolk* or the method of oblique illumination: If one-half
of the incident light is cut off by inserting a card between the condenser and the
stage then a shadow appears on the same side of the crystal as that on which
the screen is inserted if the substance has a greater refractive index than the
medium. There are many methods of obtaining this inclined illumination but
perhaps one of the most sensitive methods is that given by SAYLOR? in which
two light stops are used, one at the focal plane of the objective and the other
above the low power component of the condenser. The limit of accuracy of the
immersion method is usually about 0.002 while with temperature controk it could
be increased to 0.0005. However, recently using the Saylor technique the ac~
curacy has been greatly increased to 0.00003 for optical glasses®...It may also be
remarked that for identification purposes measurements are usually made in
white light. :

For optically isotropic crystals refractive index measurements can be made
in unpolarised light, the isotropy being detected by the fact that crystals show
no restoration between crossed polarisers for all orientations.

The determination of the ordinary refractive index (w) for uniaxial crystals
presents no difficulty; the indicatrix being a spheroid w is one of the principal
refractive indices of every section. The measurement is made with the incident
light having its vibration parallel to the appropriate principal vibration direction
in the crystal section. For very accurate determination, a section perpendicular
to the optic axis, showing no restoration should be used. The principal extra-
ordinary index ¢ for a crystal lying on a slide with its 3, 4 or 6 fold axis (i.e.
optic axis) horizontal, can be measured directly using incident light with its
vibration parallel to this axis. However many uniaxial crystals are of such a
shape that the optic axis is never horizontal. Then the crystals are broken and the
two principal indices for a series of specimens are determined. It will be found
that while one refractive index (w) is always the same, the other continuously
varies. The limiting value (either maximum of minimum depending on the optical
sign of the crystal) of the other index gives the value of . It is best to make
measurements on crystal grains that show the highest polarisation colours.

For biaxial crystals also, advantage is usually taken of the morphological
relationship between the crystal axes and the axes of the index ellipsoid. It
may be possible, under favourable circumstances using a simple rotation apparatus,
to determine all the three indices for crystals belonging to the orthorhombic or
monoclinic classes. In the former class all the principal axes can be determined
from the morphology, while in the second at least one principal axis of the crystal
can be determined from the morphology.

In many crystals the refractive index v is so high that it cannot be determined
" by immersion techniques. A simple and accurate method for finding y has been
given by Woob and AGLIFFEY, when the directions of the three principal axes
can be obtained from morphology. The crystal is mounted on the needle of a
rotation apparatus so that 8 is parallel to the axis of rotation and the optic
axial plane (containing «, y) 1s normal to the axis of rotation. It must be possible
with this mounting to détermine «, # directly by the immersion methods with
the plane of the incident polariser in that of the optic axial plane. The crystal

! For a simple explanation and also the pit-falls in making measurements see R.C. Evans
and N.F.M. Hexry: Min. Mag. 26, 267 (1942).

2 Savror: J. Res. Nat. Bur. Stand. 15, 277 (1935).

3 A. Conrap, Farck and B. FoNororr: J. Opt. Soc. Amer. 34, 530 (1944).

4 R.G. Woop and S.H. AcrLiFre: Phil. Mag. (7) 21, 324 (1936).
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is now immersed in liquids of successively greater refractive index and it is
rotated until a match is obtained. If # is the refractive index of the liquid, then

1 1 1 1
=k (;? — ;2_) cos? (82.1)
where ¢ is the angle through which the « direction has to be rotated to get a
match. Plotting the known values of 1/#2? against cos?# one can get to a fair
accuracy an extrapolated value of y.

B) Measuremenis with convergent light figures. When the principal axes of a
crystal cannot be determined from the morphology, the help of convergent light
figures have to be resorted to.

Sectlons_gwmg ce‘ntred inter- Table 5.
ference figures which show the
principal refractive indices are Figure | Opticalsign Indices shown
listed in Table 5. . .

Hence using the usual im- Acute bisectrix ‘ + B

. i the refrac- Acute bisectrix — B

mersion :tec ques Obtuse bisectrix + B
tive indices could be deter- Obtuse bisectrix — o f
mined. Optic normal +ve or —uwe o«

From a knowledge of there- ~ Single optic axis tve or —ve #

fractive indices the optic axial
angle can be calculated. Also from a knowledge of two of the indices and the
optic axial angle the third index can be computed from Egs. (33.5) and (33.6)

cos? V(e) = L8 =)

B =’
2 V o? (2 — 67) v (82.2)
s V0) = por—ay

where 2 Vi{e) is the acute axial angle for a negative crystal (Sect. 835) and 2V ()
that for a positive crystal. The optic axial angle is also an important constant
for a crystal and its determination is useful for identification purposes. It must
be remembered that the angle between the axes which is observed under the
microscope is 2E, the apparent optic axial angle after refraction which is dif-
ferent from the real optic axial angle 2V inside the crystal. The relation between

2E and 27V is given by
sinE =@sin¥V . C (82.3)

where § is the intermediate refractive index 6f the substance.

Itis ea51est to measure the optic axial angle when both the metalopes i.e.,
the “eyes” of the convergent light figure appear in the field of view. Under the
usual conditions of observation (using the Bertrand Amici lens) several factors
contribute to make the measurement of the optic axial angle inaccurate. The
primary figure at the principal focus of the objective is formed on a curved surface
which is observed in an orthographic projection by the eye. The isogyres may be
so diffuse that the exact point of emergence of the optic axis cannot be found
accurately. The simplest method of determining the optic -axial angle is by
MarrarD’s method. The distance between the melatopes is measured with a
micrometer ocular and E is calculated from the formula

e ‘D=KsmE - ' - ' (82.4)
12

" Handbuch der Physik, Bd. XXV/1.
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where K is the MALLARD’S constant depending on the lens system, tube length
etc. D is determined by using a specimen of known optic axial angle under iden-
tical conditions. V is evaluated from the formula. {82.3) for which graphical
methods have also been developed.

SrAwsoN? has devised a method for measunng the angle between the melatopes
by using a variable diaphragm placed at the focal plane of the objective. This
can be calibrated to give the angular distance between the centre of the field -
to any point on the interference figure. This method is found to be better than
MarrLARD’s method, as all the errors due to Iength of the_ tube, position of the
lenses etc. are automatically eliminated. = =

‘When the apparent optic axial angle 2 Eis near about 90°, for a section normal
to the bisectrix the two melatopes will be outside the field of view. MicHEL LEVY,
WRrIGHT, DANA and JoHANNSEN [10] have evolved methods for estimating the opti-
cal axial angle under these conditions. In optic axial sections when only the iso-
gyre is visible, it is possible to estimate the value of 2V from the curvature of
this isogyre. In large random crystal sections it 1s most convement to measure
the optic axial angles directly on a universal stage.-

It is quite obvious that for many of these measurements it is necessary to
observe the convergent light figures in small crystal grains. When the grains
are comparatively large they can be isolated by using the iris diaphragm of the
tube. But perhaps the most satisfactory method is that due to JOHANNSEN.
When a small auxiliary lens (which is actually a spherical globule produced by.
heating a fine glass fibre in a flame) is held closely above the crystal grain and
viewed between crossed nicols, the interference figure is clearly seen. The use
of a converger is also not essential. For convenience the fibre with the globular
lens at its end may be fixed by means of wax to the stage so that it lies in the
centre of the field slightly above the slide, which may then be moved around
to bring the different grains beneath the lens.

v) A method for defermining the refractive indices of small crystals using a
simple rotation apparatus. We give here a simple method developed by Jorr2
by which using only one crystal, whatever be its habit, it is possible to get both
the orientation of indicatrix and also the magnitudes of the pnnc1pal axes at
the same time. One of the important advantages of this method is that it uses
only a simple rotation apparatus.

The crystal is mounted on a glass fibre at the end of a very simple one-circle

. goniometer which can be fitted on to a microscope stage and which. enables one
to rotate the crystal about the horizontal axis. A glass slide may be adjusted
such that the crystal may be completely immersed in a drop of liquid of suitable
refractive index. Now when the crystal is in a given position (on a polarising
microscope with the nicols crossed in parallel light), on rotating the nicols together,
two extinctions are observed which correspond to the major and the minor axes
of the section of the index ellipsoid by the plane of the microscope stage. For
each position ¢ of the goniometer there are two extinction directions #, and 4,
perpendicular to each other. These extinctions may be represented on a stereo-
graphic projection where ¢ =0 corresponds to the primitive great circle and ¢ =0
corresponds- to the polariser vibration parallel to the rotation axis. The gonio-
meter is rotated successively by small angles and the corresponding values of &,
and ¥, are plotted, each ¢ value corresponding to a great circle with the axis
of rotation on the line of intersection (Fig. 92a). During a complete rotation of

1 C.B.SrawsoN: Amer. J. Mineral. 19, 25 (1934).
2 N. JoeL: Miner. Mag. 29, 206 (1950); 29, 602 (1951).
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the indicatrix about its fixed but arbitrary axis, it is clear that every vector in
it will at some time or other come into the horizontal plane. Hence it is possible
to bring into the horizontal plane each one of the three axes in its turn.

As each axis of an ellipsoid is a twofold axis, every central section that
contains one of the three axes has this as the axis of symmetry. For example
as y along the Z axis is the longest vector in the ellipsoid it must be the longest
vector of any ellipse containing it and hence will be the major axis of that ellipse.
Same argument applies to the X axis, « being the smallest refractive index. Hence
it follows that when each of the three axes comes to the horizontal plane it corre-
sponds to an extinction direction and the points X, Y, or Z therefore lie on the™
curves of the extinction direction. The axes can be located if the position of -
one of them could be determined. This could be easily done by finding that

B

?
£

a b

Fig.92a and b. Stereographic projection showing JoEL’s method for determining the refractive indices using a simple
) rotation apparatus.

vibration direction for which the refractive index is a maximum or a minimum.
For this a drop of suitable liquid of known refractive index is used to immerse
the crystal. By successive rotations of the crystal and setting it for extinction
each time and using the Becke line technique it is possible to determine the
direction of vibration for which the refractive indices of the crystal and the lignid
‘are the same. It is now easy to discover the directions of rotation of the gonio-
meter for which the refractive index increases (or decreases) and by changing
the immersing liquid it is possible [usually within two or three attempts] to get
the vibration direction when the refractive index is a maximum (say). This
corresponds to the point Z. A great circle is drawn with Z as the pole and the
points of intersection of the direction of “extinction curve” with this arc is the
probable position of the X and Y axes. The choice of these axes is usuallyquite
unambiguous. For detajls and the mathematical treatment of the method the
original'references may be consulted. The possibility of determining the principal
axes of the indicatrix directly by graphical method from the extinction curves
have been discussed by Joer and Garay CoceEA'. The procedure as before
consists of drawing the curve for the extinction direction which consists of two
distinct parts—an equitorial branch and a polar branch. (It is better to immerse
the crystal in a liquid having approximately the mean refractive index of the
crystal'when plotting the extinction curves.) The next step consists of determining
the spherical triangle XYZ for which each side is a quandrant, the two of whose
vertices lie on the equitofial curve. Taking two points on the equitorial curve

1 N. Joer and I. Garay CoCHEA: Acta crystaliogr. 10, 399 (1957).
12%
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the pole of the great circle passing through these is marked. Taking a series of
such points the locus of the pole is drawn (Fig. 92b). The locus intersects the
extinction curves at two points one of which corresponds to the axis of the index
ellipsoid.

Two great circles can be drawn with-these points as the pole. Each great
circle intersects the equatorial part of the extinction curve at two points. We
therefore have two spherical triangles one of which corresponds to the “true” in-
dicatrix. In order to know which is the “true’” one and which the “ghost”, it
is sufficient to remember that one of the vertices of the “ghost™ triangle is 90°
away from P,, the goniometer axis. Hence it would be easily possible to distin-
guish the “ghost” triangle UV W from the “true” triangle XY Z.

2)

b)

Fig. 93. (a) The four axes of the Federov stage. (b) The five axes of the Emmons stage.

8) The unsversal stagel. This is an instrument which helps to orientate a
single crystal grain by rotation about a number of axes that are mutually per-
pendicular. This is particularly useful in the identification of a single grain by
optical means. The important principle underlying the method of examining
crystals on a universal stage is the recognition of the optical symmetry planes.
For example a uniaxial crystal may be recognised by the infinite symmetry
planes parallel to the optic axis and one symmetry plane perpendicular to it.
A biaxial crystal on the other hand is recognised by the three mirror planes of
optical symmetry the intersections of which define the three principal axes of
the triaxial ellipsoid, which are themselves two-fold axes of optical symmetry.
The biaxial crystal has also two optic axes. These symmetry planes can be

~readily recognised by a simple procedure using the universal stage. The Federov
stage has four axes of rotation while its improved version by EMMoNs® has five
axes. Fig. 93 give the arrangement of the axes of rotation in both the Federov
and the Emmons stages.

The axes A, 4; and 4, are parallel to the axis of the microscope (the last i.e.
A is the mlcroscope stage itself) when the other axes are in the zero position,
A, is a N-S axis and 4, is an E-W axis. The Emmons stage differs from that of
Federov in that there is an extra E-W axis which is usually denoted by 4,,
so that the same nomenclature can be used for both stages. This extra axis

1 A good summary of the techniques using the universal stage is available in the mono-
graph by P.R. J. Naipu: 4-axes universal stage. Madras 1958.
2 R.C. EmMmons: Amer. J. Mineral. 14, 441 (1929).
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considerably reduces the labour of determining each symmetry plane separately
and then finding the angular coordinates of the line of intersection by the stereo-
graphic projection method. But we shall not give the routine process by which
the optical indicatrix of a single grain is recognised and measured using the
phenomenon of extinction.

g) The prism method. The well known' minimum devmﬁon method can be
used for the measurement of the refractive indices of anisotropic crystals also.
In the case of uniaxial crystals a single prism will enable both w and & to be
determined provided it be cut so that either the refracting edge is parallel to
the optic axis or else perpendicular to it, with the optic axis lying in the
plane bisecting the refracting angle. In the case of biaxial crystals, two of the
three refractive indices can be obtained from a prism (60° say) in which the
plane bisecting the refracting angle contains two of the principal axes of the
index ellipsoid with one of these parallel to the refracting edge. Hence one
requires at least two prisms to détermine the three refractive indices. The making
of these prisms with the principal axes of the indicatrix in specified direction
becomes more and more complex as we proceed from orthorhombic (where the
crystallographic axes coincide with the axes of the optical elhpsmd) to triclinic
where there is no relation between the two sets of axes?.

£) Total reflection method If the crystal has one pohshed surface then perhaps
the most convenient method of determining the three principal refractive indices
is by the method of fotal internal reflection using an instrument corresponding
to the Pulfrich refractometer2—the crystal having a lower refractive index than
the adjacent medium. When the crystal is put in optical contact with the prism .
on the hemisphere of the refractometer two critical edges are seen (which are
linearly polarised). When the crystal is rotated in the plane of its surface the
critical edges move ‘and the four extreme positions of the two edges are noteds
Since the crystal is being rotated about a random axis all the arguments presented
in Sect. 82y in connection with JoEL’s method hold. Hence the maximum and
minimum values correspond to « and  while one of the two-inner extremalt
corresponds to 8. The ambiguity in f can be resolved by making measuremens.
on another non-parallel section of the crystal. When no other section is avilable
the method used is the followings3.

Where the crystal has been rotated into the position giving the maximum
reading y the other shadow edge provides a second reading say R. If the reading
associated with « is # and if p is the angle between the p051t1on at which these
occur then
ey (f2—1?) (B2~ Rz) ’ '

72 R%( Igz az) (ﬂ2 - - . (82-5)

From this the apprommate value of ﬂ can be computed and the extremal
corresponding to B recognized. Other methods usmg a polansmg cap have -also
been suggested.

83. Measurement of bzrefrmgence oc) The zletermmatwn of the “fast’ and
“slow’ axes in a crystal plate possessing only linear birefringence. These correspond
to the principal axes of the elliptic section of the index ellipsoid normal to the
direction of observation and are also the two privileged directions of vibration in
a crystal plate. It is worthwhile remembering that the ““fast” axis corresponds

cos? =

1 For details of the experimental methods see SzIvessy [1] or A.E.H. TurTon [12].
2 For a detailed description of the various refractometers see TuTTon [12].
3 E.J. BinBaGE and B.W. ANDERsoN: Min. Mag. 26, 246 (1942).
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to that direction of vibration which has the lower refractive index (minor axis)
and the “slow” axis to that with the higher refractive index (major axis).

When a crystal plate is observed between simultaneously rotated crossed <
polarisers, there are two positions, perpendicular to each other, where one gets
complete crossing. These happen only when the direction of vibration of the
incident light coincides with one of the two privileged directions of the crystal
plate. In all other positions the crystal exhibits polarisation colours, which arise -
due to the phase difference introduced by the crystal between the two waves
that travel inside it (see Sects. 63 and 64). The colours are e Tost vivid when the
incident vibration is at 45° to the privileged directions of the vibrations of the
crystal. For this setting colour charts giving the polarisation colours for different
values of phase retardation are available and are usually referred to as the New-
tonian scale of colours. If now a birefringent plate or wedge of known optical
characteristics is placed above or below the crystal with its principal vibration
direction coinciding with those of the crystalline plate, the colours seen through
the combination change. If for example the ““fast” axis of the test plate coincides
with that of the crystal plate, the phase difference between the two emerging
beams increases and the interference colours will rise in the Newtonian colour scale.
If on the other hand, the “fast’ axis of one coincides with the “slow” axis of
the other, the interference colours will fall in the Newionian scale. The test
devices used are usually (a) a mica 1/4 retardation plate, (b) a full wave retardation
plate made of gypsum or (c) a simple quartz wedge. These can be introduced in ™
a slot in the microscope tube but care must be taken to see that they are in a
proper orientation with respect to the crystal plate. The /4 plate is more useful
for examining crystals of relatively high retardation while the full wave .plate
is more suitable for the study of specimens with low birefringence.

B) Determination of the optical sign of & crystal. A uniaxial crystalis ““ positive™
(+) if e>w ie., the index ellipsoid is a prolate spheroid and is negative (—) if
&e<w. A biaxial crystal is positive if y is the acute bisectrix and is negative if o
is the acute bisectrix. If one gets the appropriate crystal sections it will be
possible to determine the optical sign directly by measuring the refractive indices.
The optical character can be easily determined by making observations on .the
interference figures. The determination of the sign finally resolves itself to find-
ing (a) whether the radial or tangential directions is faster in unjaxial crystals
and (b) whether in the acute interference figure the vibration in the optic normal
direction (B) is faster or slower than that in the line joining the melatopes in
biaxial crystals. This can be done by the insertion of a 4/4, a full wave retarda-
tion plate or a quartz wedge, at the proper angle. Fig. 94 gives the effect of a
quartz wedge on a centred uniaxial or biaxial figure.

The problem however is more complicated when the melatopes are not in
the field of view but many of the text books mentioned earlier give excellent
diagrams showing the actual movements of the fringes and these should prove
useful in such cases. The theory of these phenomena has been dealt with in detail
in Sect. 64.

v) The measurement of birefringence. The birefringence introduced by any
crystalline plate can be accurately determined by compensating it by a graduated
quartz wedge compensator or a Babinet compensator which have been dealt with
in detail in Sect.24. The former, which has a graduated scale etched on its
surface, usually gives the path difference directly in 1077 cm. Both these require
special oculars with a cap analyser. The compensator that is now very popular
with microscopists is the Berek compensator which can be introduced in the tube
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above the objective and which does not require a cap analyser or any special ocular.
A plate of calcite about 0.1 mm thick is cut normal to the optic axis and mounted
on a rotating axis in a metal holder. A calibrated drum controlling the rotation

Fig.94a and b. Effect of a quartz wedge on the interference figures due to -+ ve and —ve crystals.
(a) Uniaxial. (b) Biaxial.

r

measures the angular position of the calcite plate. To determine the birefringence
with this instrument, the crystal plate on the stage is rotated so that the trace -
of the vibration of the fast ray is parallel to the trace of the slow ray in the inclined
plate of the compensator. The angle through which the calcite plate is rotated
to reach compensation measures the path difference produced by the crystal
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plate. The Berek, the Babinet and the quartz wedge compensators can also be
used effectively in the determination of the sign of the crystal.

The dispersion of birefringence with wavelength can be measured from the
channeled spectrum observed in the beam transmitted by a crystal placed between
crossed polaroids when white light is incident on it. This method has been used
with success in the measurement of the dispersion of the stress birefringence in
crystal®.

84. The measurement of optical rotation. a) Along the optic axis. In a cubic
crystal for any direction of propagation, or in a birefringent crystal for directions
along the optic axes, the rotation of the plane of polarisation can be measured
very accurately using sorne of the well known techniques.of polagimetry. Very
good accounts of the experimental methods are given in various review articles?.
We shall not deal with them here. ;

B) Along directions other than the optic axes. The effect observed would be
the result of superposing the effects of optical rotation and birefringence (Sect. 39).
Most of the measurements that have been made are confined to the case of quartz
(a uniaxial crystal) and that-too for directions perpendicular to the optic axis.
‘We shall therefore deal only with this specific case, although the same methods
can be directly applied for the measurement of optical rotation along any direc-
tion in either a uniaxial or a biaxial crystal.

From the results of Sects. 38 and 39 one sees that if on a plate of quartz cut
parallel to the optic axis, a linear vibration is incident with the vibration direction
parallel or perpendicular to the optic axis, the emergent vibration is not linear
(as in an inactive birefringent crystal), but is slightly elliptic. If the ratio of the
axes of this ellipse is bj/a, then the emergent light may be represented by a point
on the Poincaré sphere whose latitude is 2w, where tan @ =58/a. The angle
would be a maximum for a thickness corresponding to a half wave plate and for
‘such a plate w,, has been measured to be 13* by Voict? for the D line of sodium
(for propagation perpendicular to the optic axis). This measurement alone is
quite sufficient to compute the optical rotation of quartz perpendicular to the
optic axis. This. comes out to be half the rotatory power along the optic axis
but the rotation is of the opposite 51gn

The next important experiment is that of WEVER® who, using a 60° prism
with its edge parallel to the optic axis, actually separated the two privileged
vibrations transmitted unchanged along any direction. He measured the elliptici-
ties of the vibrations and confirmed the values obtained by VOIGT.

Later the rotatory power of quartz has been measured accurately by two
groups of workers, BRUHAT and GRIvETS and Szivissy and MUNSTERS, using

_ slightly different techniques and we shall describe the general principles of these
- two methods. In both the methods a plane paraJlel plate of quartz cut parallel
“to the optic axis is employed.

In the first method, the plate is placed between crossed linear polarisers and
rotated till a minimum of intensity is transmitted. This is what BRUHAT et al.
call the-azimuth of minimum. Next a Nakamura biplate is introduced in front
of the analysing nicol. It is found that the two halves do not show equality.’

1 E.G. CoxEr and L.N.G. FroN: A Treatise on Photoelasticity. Cambridge 1957.
2 W. HeiLeR: Physical methods in organic chemistry, Ed. WEISSBERGER. New York:
Interscience Publ. 1949.
3 W. Voigr: Gottinger Nachr. 1903, p. 155. — Ann. d. Phys. 18, 645 (1905).
4 F. WEVER: Jb. Phil. Fak. Univ. Gottingen 2, 206 (1920).
5 G. BrumAT and R. Griver: J. Phys. Radium 6, 12 (1935).
~-8 Cr. MUNSTER and G. Szivessy: Phys. Z. 36, 101 (1935).
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The plate is again rotated in its own plane till the two halves of the Nakamura
plate show an equality of intensity. This position is called the azimuth of equality.
Now the total birefringence of the plate is measured using any of the well known
methods. These three measurements are sufficient to compute the rotation
perpendicular to the optic axis.

The theory of the method can be understood by referring to Figs. 95a and 95b.
Let P be the linear incident vibration. The effect of the crystal plate of thickness Z,
possessing both birefringence and optical act1v1ty would be a rotation ¢4’-= 4
about the axis FOF where the latitude of E i.e. 2¢ is given by .

—2 20
tan 29 = Py (84.1)
"
"
I3 £
[ A
[ =
20 i 4 'd
Pl
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Fig.95a and b. Poincaré representation to explain BrumaT’s method of determining the optical rotation of qiiartz

. normal to the optic axis.

.where ¢’ is the rotatory power in the absence offbirefringence and ‘¢’ is the hire-
fnngence in the absence of rotation. The total blrefnngence

t8 8
: = +( ?)2=‘ cos28 . cos 28 (84.2)
and since the ellipticity of the emergenr'eﬂipse is small, one could take
zﬁN%‘-’ and’ ANa (84.3)

The incident state P Would therefore be brought to the elliptic state M. The
effect of rotating the plate in its own plane would be to move the point E along
a small circle whose latitude is 2¢. Since the ellipticities are small the portion
of the Poincaré sphere could be approximated to a plane and this is shown in
Fig. 95b. For any general setting of the plate (a.xts of rotation EF) the intensity
transmitted by the analyser is

I_smzlPM'-'*_v : (84.4)

and since PM 2PE sm% I would be a minimum when PE is a minimum.

This will occur when E is at E, (latitude 2) on the same mieridian as P. Hence,
at the azimuth of minimum, the ellipses that are propagated unchanged correspond
to E; and the opposite e]llpse F,. (It may however be noted that the ellipse
emerging from the crystal actually corresponds to M;.) Now when a Nakamura
plate is used in front of the analysing nicol the two halves will not be equal.
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The crystal plate will have to be rotated in its own plane and the two halves will
become equal only when the emerging vibration M, is on the same meridian as P
so that E now occupies the position E,. - o ' /

Now PM,—48 (84.5)

and since E; lies on PM, the azimuth of equality E, differs from the azimuth
of minimum E, by an angle 2&,, given by (from the triangle PM,E,)

26y, — 29 cot izi— - ’ (84.6)

Here the approximation is made that the length of the small circular arc E, E, =
the great circular arc I-/’b - A

Since both A (measured using a compensator), and «,, are experimentally
determined, 4 can be calculated and hence g can be computed from (84.3).

BruUHAT and GRIVET using this technique have measured the optical rotation
of ‘quartz perpendicular to the optic axis for a series of wavelengths from A=
5461 A to A=2537 A. They used an accurate photoelectric method-for measuring
the azimuths of minimum. For the exact experimental procedure and the estima-
tion of errors the original paper may be consulted. The value obtained for g, /gy
was —0.51 for A=5461 A which increased to —0.57 for 1=2537 A. These
results confirm not only the values obtained by VoicT and WEVER but also.
their finding that the sign of the rotation perpendicular to the optic axis is opposite
to that parallel to the optic axis.

In the second method due to Szivessy and MUNSTER, the azimuth of mini-
mum is first determined using crossed linear polarisers. Then instead of a Naka-
mura biplate, a birefringent half shade (Bravais plate of small retardation) is
introduced before the final analyser. This consists of two birefringent plates of
exactly equal thicknesses but with their slow and fast axes interchanged. Hence
the two halves show equality only when Lnearly polarised light is incident on it
(see Sect. 20y). The quartz plate (cut parallel to the optic axis) is rotated in its own
plane till the Bravais double plate shows equality of intensity (i.e. plane polarised
light is emergent from the crystal). When the polariser and analyser are crossed
there are two positions in a complete rotation of the crystal plate in which the
emergent light is linearly polarised. The situation is illustrated in Fig. 96, the

‘point P representing the incident light on the equator is brought back to M;

on the equator by a rotation about E;0 F; where the latitude of E; is 248.

From the triangle PE,S, PS=2q the angle through which plate is turned -
from the azimuth of minimum to get a linear vibration emergent from it and

E,S5 =2 and hence y
tan 20 = sin 24 tan —-. (84.7)

Measuring the total birefringence ¢4, the value of ¢ can be determined from
which ¢ can be computed. It may be remarked that in the paper by SzIveEssy
and MONSsTER the formula is expressed in terms of 2 =tan &.

Using this method, g, for different wavelengths have been measured and the
value — 0.45 was obtained for p, /g, a value differing by about 10% from that
of BRUBHAT and GRIVET.

From Sect. 40 we know that the optical rotation power is determined by the
symmetric tensor which can be represented by the equation [cf. Eq. (40.1)]

’}’11”% + yoo 23 '*‘V:I;s %3 + 2yaa % %3+ 2ya1%3% + 2y1e e =1 (84.8)
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where g, #,, %3 correspond to the axes of coordinates. The sign in the right is
to be so chosen that the surface is real. In optically uniaxial crystals the gyration
surface represented by (84.8) is a surface of revolution! about the optic axes.
If the axial system (o4, %35 #3) 1s so chosen that % is along the optlc axis, then

yir=0 for i==k, ys,=yss and if we put y1; ==y, and yz,=yss=y; and s, =a
and #3 -+ =s? Eq. (84.8) reduces to

Yad +ysst=1. " (84.9)

Since in quartz y/ and y, are of opposite signs, the rotation surface has the shape
of two conjugate hyperboloids of revolution about the optic axis. .

ol anis

Fig. 96. Poincaré representation showing Szrvessy’s meth- Fig. 97. The section of the optical activity surface parallel.
od of measuring the optical rotation of quartz normal to to the optic axis in quartz
the optic axis.

The lines of the common asymptotic cone make with the optic axis an angle §
given by ) tan?f = — yL/y.. (84.10)

The meridonial section of the surface is shown in Fig. 97. The optical activity
in a direction making an angle 8 with the optic axis is given by

Ve = Va C08* f +ysin®
where v is the sealar parameter of gyration and here obviously ya and ¢ are the

measure of the activity along and perpendicular to the optic axis; Since yyfy; =
g1 /oy = — 0.45 the scalar parameter would be given by

Y= — M& (cos? f — 0.45 sin? f) (84.11)

where #n, is the ordinary refra.c’uve index.

Since-the-ratio of ¢ _L/Q" is practically independent of Wavelength it follows
that a plate cut at 56° 10" to the optic axis [from Eq. (76.10)] behaves as an
inactive crystal.
~ Szrvessy and MUNSTER have established by experiments that a quartz plate
whose normal makes an angle 56° 10’ with the optic axis behaves like an optically
inactive plate over the entire spectral region for a parallel beam of light at normal
incidence, thus confirming the predictions of theory. These anthors have there-
fore advocated that in making Soleil compensators and certain other half shades,
sections of quartz at 56° 10’ to the optic axis must be used if the measurements
are to be free from errors.

y) Along the optic axis in the presence of dichroism: This has been dealt with
in detail in Sects. 714 and 72.

1 This is not true for the tetragonal tetartohedral and tetragonal hemihedral classes.
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E. Variation of properties due to external influences.

85. General considerations. The external influences that could affect the
optical properties of a crystal could take the form of a scalar (e.g., temperature
or hydrostatic pressure), or a vector (e.g., electric field, magnetic field etc.) or a
tensor (a stress, strain etc.). The general effect of these external influences would
be to alter the optical parameters determining the propagation of light in a crystal.

These can for convenience be classified into those that relate to the refractive,
the gyratory or the absorptive properties of the crystals. The parameters thatare
usually chosen for the complete description of the effect of external influences
on crystals are the components of the index, gyration and absorption tensors.
In what follows we shall be referring mostly to. refractive properties (i.e:, the
changes in the index tensor) as a large amount of experimental and theoretical
work has been concentrated on this aspect of the subject. The methods indicated
can however be equally well applied to the case of the gyration and the absorption
tensors. The effect of the external agent would therefore be to alter each com-
ponent of the index tensor a,; by a small amount Ag;;. This would physically
correspond to the alteration of the magnitudes and directions of the principal
axes of the index ellipsoid.

One could to a first degree of approximation assume that the changes induced
in the optical parameters are proportional to the magniti®e of the scalar or are
a homogeneous linear function of the components of the vector or the tensor.
In such a case using the matrix notation we can write

(8 [da;] =Ia]S (Sisa scalar) .
(b) [da;;] =I[c;;:]4r  (Asis a vector), ’ (85.1)
(©) [da;] =Tcij 1) Bir  (By,is a tensor of the second rank)

- and so on. From a knowledge of the nature of the tensor whose components are
Aa;; and also the nature of S, 4, or By, one can determine the type of the tensors
611: 15,k or ¢, i, k1

For example since [a;;] is a symmetric tensor of rank two, [4a;;] would also
be a symmetric tensor. Hence [c;;] must be 3x3 symmetric tensor having
therefore 6 independent components However [¢;; ;] must be a tensor of rank 3
but symmetric in ¢ and j. Hence its elements can be written in the form of a
6x3 matrix with 18 components. If By, is a symmetric tensor of rank two as
in the classical case of homogeneous stress or strain then [¢;; ;] would be a tensor
of rank 4 but symmetric in ¢ and § and % and /. Hence its independent elements
can be represented by a 6 X6 matrix with 36 distinct constants for the most
general case. It is to be noted that ¢;; ;,; is 7ot symmetric for an interchange of
(¢7) and (1), since these indices refer to entirely different properties of the

. medium, e.g. optical and elastric properties. That this had been overlooked by

PockEeLs in his classical studies in photo-elasticity was pointed out by BHAGA-
VARTAM (see Sect. 92 below). The number of independent constants in all cases
would. be reduced by any symmetry in the crystal. :

If however the changes of the optical parameters are quadratic functlons
of the vector or tensor components we have -

(a') [A aw} = [czyklj Ak Al: }
. (b) I:A a”] = [Cuklmn] Bkl mn

and so on. In these cases also, the nature of the matrix descnbmg the change
may be computed. It may be remarked that, except in a very few substances,

(85.2)
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the quadratic effect is usually a second order effect. The changes in the optical
propertles which we are discussing do not relate to those assocrated with trans-
formations of crystal structures due to external influences.

I. Variation with temperature.

86. Changes in refractive indices and the optic axial angle. o) In the most
general case the number of constants necessary to describe the changes in the
constants of the index tensor [g;;] due to an alteration in the temperature is six

d Aa;; can be written as
an Y] : A ai]' == k,‘]-A t (86-'1)

where A¢ is the rise in temperature. It is convenient to choose the principal
axes of the index ellipsoid as the axes of coordinates. These coincide with the
crystallographic axes for cubic, tetragonal (trigonal, hexagonal) and orthorhombic
crystals. Hence for all these classes %;;(¢==j) =0. The effect of temperature
would therefore be to alter the magnitude of the principal axes of the index -
ellipsoid without any change in their orientation. In monoclinic crystals one
of the principal axes will continue to coincide with the unique axis, while the
other two may change their orientation, remaining all the while in the symmetry
plane. In triclinic crystals the temperature would affect the orientation and
magnitude of all the three axes of the index ellipsoid. The number of constants
necessary to describe the effect of temperature in dlfferent crystal classes is given
below.

Cubic Tetragona.l Orthorhombic  Monoclinic Triclinic
Trigonal unique axis .
Hexagonal . oy

By 0 O | [l O O [By O 0 | |By O Aug| |Byy Byp Fyg
(0 %1 0|10 %y O |0 kyp Of |0 £20 Fig kap Rog
0 0 Auf [0 0 Ryl |0 O Ful [k O huf ks Fos ko

"It is quite obvious that in the last three cases there would be an alteration
in the optic axial angle due to temperature. This can be computed using Eq. (82.2).
Perhaps the most interesting phenomenon connected with thermo-optics is
the Mitscherlish phenomenon. When a plate of gypsum which at room temper-
ature is a positive biaxial crystal is heated, the optic axial angle goes on diminish-
ing and at about 90°C, for A 5893, the crystal becomes uniaxial. Above this
temperature the crystal again becomes biaxial, but with its optic axial plane ro-
tated through a right angle. It has been shown in Sect. 33 that the optic axial
plane in any biaxial crystal is that which contains the directions of the minimum
and maximum principal refractive indices (namely y and «, where y > >u).
The condition necessary for exhibiting the Mitscherlisch penomenon in any biaxial
crystal is that two.g qi the principal refractive indices must be close to each other
(say no=f ~n =a) andZ—: > %’g—
ature n, could become equal to «, making the crystal uniaxial. At higher temper-
atures #, may become greater than #, so that », becomes « and #, becomes f§ and
the axial plane would be now that containing n, and #;. This phenomenon of
crossed axial dispersion can be most spectacularly exhibited in the case of crystals
in which all the three refractive indices are very close to each other, for in such
a case the optic axial angle would be large. This phenomenon has been observed
in many crystals but special mention! may be made of CsSeO4 in which within

1 A E.H. Turron [12]. e P T I

In such a case at some pafticular temper-
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the narrow range of 0 to 250° C each of the three axes of the index ellipsoid
becomes in turn the acute bisectrix. It must be remembered that in the case
of monoclinic and triclinic crystals this effect is accompanied by the rotation
of the axes of the index ellipsoid W1th respect to the crystallographic axes due
to thermal expansion effects. . - .~

Very few investigations have. been made of the variation of the absorption
or gyration tensor surfaces with temperature in a general biaxial crystal. Most
of these studies have been confined to isotropic or uniaxial crystals. In the
latter case the observations have been restricted to directions paralle] to the optic
axis.

Experimental methods. Very few measurements of the actual constants have

been made for crystals of symmetries lower than orthorhombic. For crystals for
which there is no rotation of the axes of the index ellipsoid, we have

1
a-n:';?
Hence :
. Au,',_- . 2 dn;
by G = — 5 00 (86.2)

The temperature coefficient of refractive index of a solid can be evaluated
from the measurements of the refractive index of the substance at different tem-
peratures by the well known prism method. The various details of the technique
can be obtained elsewhere!3. The disadvantages and the limitations of this °
method are obvious. The requirement of the experimental specimen in bulk,
the maintenance of these large non-conducting specimens at uniform temperatures,
the making of prisms from crystals that exhibit a layer structure are some of
the problems one is confronted with. Since the magnitude of dn/d¢ is of the
order of 1075, the prism has to be heated by 100° C to alter its refractive index
by one unit in the third place of decimals. Hence the accuracy of the method is
also not very high.

A much simpler way of measuring dn/d¢ is provided by the interference
method* where it is evaluated from the measurements of the shift with tempera-
ture of the interference fringes formed between the two surfaces of the crystal,
fashioned in the form of a plate. Either Newtonian fringes or Haidinger fringes
- can be used. In both cases, for normal incidence the bright fringes satisfy the
relation

2ml=N1, : ' (86.3)

where #; is the refractive index, I the thickness of the crystal and A is the wave-
length and N an integer. On varying the temperature the fringes will move past
a reference mark on the crystal. If AN is the number of fringes crossing this
mark for a temperature change A4¢ then

(86.4)

Am Al AN
l+2 ’At =2 At
EIVIng d A AN
”-
TRy TR (86.5)

1 MARTENS: In Vol. VI of WingELMANN’s Handbuch der Physik, 1906.

2 W.S. RopNEy:;and R. J. SPINDLER: J. Res. Nat. Bur. Stand. 49, 253 (1952).

3 SzIvessy [I].

4 See for example G.N. RamacEANDRAN: Proc. Ind. Acad. Sci. A 25, 266 (1947).
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where 7 is the length of the specimen and «; is the coeificient of linear expansion
along the direction of propagation of light. By this method, knowing «; one can
obtain the value of d#»,/d¢ with respect to vacuum. The shift of the fringes can
be determined either visually or photographically. It must be mentioned that
even though AN/A: may be determined to within 1%, the value of d#n/d¢ can
usually be obtained only to an accuracy of 5%, as the major contribution to
the path retardation change usually arises due to the thermal expansion. The
application of this method to birefringent crystals is obvious.

For the measurement of the variation of optical activity with temperature,
the method consists of measuring the rotations of the crystal at various tempera:_
tures using the well known visual, photographic or photoelectric polarimeters?, -
A fair amount of experimental data on the thermo-optic behaviour of crystals ~
has accumulated. These and a list of references on this subject may be found
elsewhere?. :

Phenomenological atomistic theories have been proposed to explain the ther-
mal variation of refractive index® and the thermal variation of optical activity
in crystals?. We shall not deal with these here. But for a list of references on
this subject reference 2 {foofnote below) may be consulted.

I1. Electro-optics.

87. Phenomenological theory. When a crystal is placed in an electric field,
there would be an alteration of the distribution of the electric charges of the atoms
and molecules, which constitute the crystal. These alterations in the charges
which give rise to the opposing polarisation field would affect the optical pro-
perties of the medium. It should be possible in principle to develop a consistent
picture of these electro-optical effects purely from an atomistic standpoint. But
in this section we shall present the simple phenomenological theory of electro-
optics. ’

The changes in the optical properties of the medium can be, as has been shown
in Sect. 85, best expressed as changes in the constants of the index ellipsoid.
With respect to any set of co-ordinate axes, the equation to the index ellipsoid
could be written as

A1 %2+ Ao y® + G332 + 2005Y2 + 283, 2% + 24155y =1. (87.1)

If one assumes that the constants of the undeformed cfystals are represented
by a; and those of the clectrically stressed crystal by «;; then to a first degree
of approximation it could be assumed that Aa;;[=a;;—a);] can be expressed
as homogeneous linear function of the components of either (a) the electric polari-
sation or (b) the electric field. The three components of the polarisation field
P,,P,, P, and the electric field E ,E;, E; along the principal electric axes are
related by the following equations, if one neglects second order effects.

p=2"lE (=123 (87.2)
47

1 See e.g. the article by W. HELLER, Physical Methods in Organic Chemistry, Ed. WE1ss-
BERGER. New York: Interscience 1949.

2 See article by S. RamasesHAN, K. VEpam and R. S. KRISENAN, in: Progress of Crystal
Physics, Vol. 1, Ed. R.S. KRISHNAN. Madras 1958. ’

3 G.N. RaMacHANDRAN: Proc. Ind. Acad. Sci. A 25, 266 (1947).

4 S. CHANDRASEXKHAR: Proc. Ind. Acad. Sci. A 39, 290 (1954).
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where &;’s are the principal dielectric constants of the substance. We therefore
have (writing the six components of the index tensor as 4;, 4,, ..., 4g)

7=123
Ad =a;— ZQU IR <¢='1t0 6) (87.3)
or
7=1,23
Aﬂ‘= '_a __Z ¥ig 7’ : (’1:='1t06> (87'4)

written explicitly in terms of the components of the polarisation field Eq. (87 3)
becomes .

“11_“11=_[911 1+ 012 P+ 013 Fs], —
ago— 88e=—[021 P1 + 022 P2 + 023 P3],
g3 — 833 =— (031 P + 032 5+ 033 Fs) , (87.5)
g — 835 = [00 P1 + 012 P2 + 023 Ps] s ’
51— a31=— [05: Py + 052 Pz + 053 Ps] »
My — Mo =— [061 1+ 052 P2+ 063 P3],
and in terms of the components of the electric field, Eq. (87.4) becomes
ayy— 1= [ Ex+ 1By + 73 Es], V
Ago— A3y = (70, By + 155 Es +755 Eyl,
— @8s = (131 Ey + 735 Es + 735 E5], )
o (87.6)
do3— s = (13 Ey + 740 Es+ 145 E5],
@y — a3, = (761 By + 752 By + 753 Eg]
@y — @3o=[1g1 E, + 742 Es+ 763 Eq],
and the two sets of constants g;; and 7;; are related as
7ii =i’;%1— Qij- (87.7)

It must be mentioned that although p;;’s are of greater theoretical importance
for the development of atomistic theories, the constants 7;; are the ones that are
most readily obtained experimentally. It is therefore customary to measure the
constants 7;; and then compute the values of g;; from a knowledge of the di-

" electric properties of the crystal. We shall call the constants #;; as the electro-
optic constants.

From Eqs. (87.5) and (87.6) we fmd that in the most general case, the number
of electro-optic constants that can exist is 18. However, if one uses the principle
that all expressions involving any physical constant of a crystal should be in-
variant when any symmetry operation of the crystal is applied, one can find the
number of electro-optic constants for the different crystal classes. The detailed
methods of computation have been given elsewherel»2. When this is done one
finds that there are only twenty groups (all non-centro-symmetric) for which
there are suviving constants. These are also.the groups that exhibit piezoelectricity.
The surviving constants for these 20 groups have been listed in Table 6. All
classes not listed have 7;;=0. The subscripts indicate the independent values

1 . BHAGAVANTAM: Acta crystallogr. 5, 591 (1952).
2 W. Capy: Piezoelectricity.” New York: McGraw-Hill 1946.
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Sect. 87.
of the coefficients. Since crystals that exhibit the electro-optic phenomenon are
also piezo-electric, we must take into account the changes in the optical property
caused by stresses or strains induced by the latter phenomenon. We know that
in a free crystal only strains can develop while in a clamped crystal only stresses
can develop. Hence the changes Aa;; in the coefficients of the index ellipsoid
due to both the electro-optic and the photoelastic effect (induced by the piezo-

Table 6. Electro-optic constants surviving in the diffevent point groups.

Triclinic Monoclinic Orthorhombic
C;=1 Cy=2 Cs=m D, =222 Coy=mm
18 constants 8 constants 10 constants ) 3 constants 5 constants
711 %12 Tig 0 0 74 7, %12 O 0 o0 o© 0 0 17,
¥a1 Yag Yag [¢] 0 7,3 ¥o1 Y22 O 0 0 0 0 0 753
Y31 ¥z 33 4] 0 733 ¥31 %3z O 0 o] 0 9] (O Y
Tar Yz Tas Ta1 74z O 0 0 74 a2 0 O 0 7, O
71 752 Tss ¥51 %52 O 0 0 75 0O #5, 0 - 75, 0O O
Ye1 Yez Tea 763 781 %2 O 0 0 743 0O o 0
Tetragonal
S, =% Cy=4 D,;=42m D,=422 Cyp=4mm
3 constants 4 constants 3 constants 1 constant 4 constants
0 0 73 0 0 74 0 0 o 0 0 o ) 0 7,
0 0 7, ) 0 7y, 0 o0 o o 0 o0 0 0 —7ys
0 0 1 0 0 7y 0 o0 o© o 0 o0 ) o 0
0 73 O 711 %1 O 7,2 0O ;py, 00 g1 —%1 O
5, 0 O Ts1 —7 O 0 753 0O 0 =7, O %1 7u O
0 o0 o 0o o o 0 0 7 o 0 o 0 0 7
Trigonal )
“« Cy=3 Dy=32 Cyy=3m
6 constants 2 constants 4 constants
) 11 ez %13 fiy 0 O 0 —733 755
—%1 Y2z 713 -7, 0 O 0 Y22 ti3
0 0 739 1] o o o] 0 733
751 %1 O 757, 0 O 0 7; O
%51 —%1 O 0 —745 O 751 0 O
—~2%, —27; O 0 —2r, O —2%5, 0 o]
Hexagonal
Cyn=05 Dyp=6m2 © Cg=6 Dg=622 Coy=6mm
2 constants 1 constants 4 constants 1 constant 4 constants
M
737 —%32 O ¥11 o O 0 0 73 o o 0 0 0 73
—7yy 720 O — 73 o 0 3] (o] Rt 0 o 0 ] Q 713
0o o 0 0 o O 4] "0 Y23 4] 0 0 o] 0 733
0 [ ) 0 - 0 0 LAY 759 O L7%Y 0o 0 0 -7y O
o] o 0 4] ~0 o sy —¥3 O 0 —743 O 751 O 0
—2%3, —2%3; O 0 —2v;; O 0 0o. .0 0o 0O 0 0 (o] 0
Cubic _
T=23 T;=33m
1 constant 1 constant
0 0 o0 0 0 O
o 0 O s o 0o 0
, 0 0 0 . "0 0 O
¥4y 0 O %1 0 0
0 7, O 0 75, O
0.0 73 =~ 7 0 07y x
13

Handbuch der Physik, Bd. XXV/i. ’ w
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electric effect) can be expressed in terms of the electnc fleld and the stresses or
strains in the crystal. Hence R T a I

Z Yij 1+Z%ka, ) . (87.8)

Py z "+ zm 5. (87.9)

where X, and x, are the components of the stress and «Strain respectively and
g; and ﬁ, » are the stress optic and the strain optic coefficients (see Sect. 91).
7;; and 7}; are the electro-optic coefficients for a clamped and a free crystal. The
relations (87.8) and (87 9) are not mdependent as .

" xk-—-ZSij +?d7kE Lo (87.'10)

where s,; and 4;; are the elastic and piezo electnc constants. Substltutmg
Eq. (87. 10) and (87 9) we have

Aaig(”+2mm,QE+Z{me%] (87.11)

Comparing Egs. (37.8) and. (87.44) we have [sce (94.10]
Gij 'kimsk,, (87.12).
Yij =1'£]~ +k§1?ikdfk-  (87.13)

One can see clearly that 7;;is the electro-optic coefficient associated with the direct
effect of the electrical field on the optical constants while #;; is the electro-optic
coefficient which represents the total effect of the electric field on the constants
of the index ellipsoid. In the early stages of experimentation it was thought
that the electro-optic effect was just. a secondary effect of the piezo-electric
deformation (i.e. 7;;=0). The classical experiments of PockELs! were the first
to establish the existence of 7;;, the direct effect of the electric field in the atomic
polarisability.

88. Changes in the optical behaviour of a crystal due to the electric field2. The
next problem that we shall consider will be the relative dispositions of the index
ellipsoids of the undeformed crystal and the electrically deformed crystal. If we
choose the principal axes 0X,, 0Y,, 0Z, of the index ellipsoid as the axes of
co-ordinates, then the equation to the index ellipsoid is

a3y 7+ a8 95+ s 28 =1 ' (881)
and that of the deformed crystal with respect to the same axis is
g1 %5 + B0V + 3978 + 295V 20+ 2051 % %o+ 2812 KoYo=1 (88.2)
and consequently in Egs. (87.5) and (87.6}
' a;;—a=a;; (for i=j). , (88.3)
Referring Eq. (88.2) to the principal axes 0X’, 0Y’, OZ’ of the ellipsoid we have
ayy %+ Az 2+ agg2® =1 : (88.4)

! PockELs [2].
2 See B.H. BrLrinGs: J. Opt. Soc. Amer. 39, 797 (1949).
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and the direction cosines relating the two sets of axes may be described by the
matrix (88.4a) where &, is the cosine of the angle between 0X, and OX’ and so on.

| x v z
Xo| oy o o (88.42)
B Be o )
Zolm ve 7s

From a knowledge of the #;; these direction cosines can be coniputed (see
also Sect. 93 on photoelast1c1ty) from which the magnitudes of af; of the mdex
ellipsoid after deformatlon can be computed from the formulae

Ayy = Gy OF + Bpg 0F + G5 03 + 2d95 0y 05 + 2457 Xa%y + 245 %y g, 3
A= 411.5% + a0 65+ “33_/3§ + 2853 85 B3+ 2831 Bafr + 24,5 1P, (88.5)
a3z =ay, 7%“' a2 Vi + U35 73 + 2823 V2 Yo+ 205 Vey1 1+ 201, 71Y2-

The data-available in electro-optics are extremely meagre and in 1o case has
the measurements been extended to cases of monoclinic or triclinic crystals where
the principal axes of the index ellipsoid do not coincide with the crystallographic
axes. We shall present some typical cases to exemplify the methods of computa-
tion. ~

In the case of the point group #2m or D,, to which a large number of signette
electric crystals belong, the number of surviving constants is two, viz. 7y, =75,

.and 74,. The crystals belonging to this class are uniaxial and so a3, =a}, giving

— a1 =0, fy—a3,=0, =0, :
@y — 411 22 22 33— a33 } (88.6)

tos=7nE,, an=ruxE, a,=rgE,.

Hence the\‘crystal becomes biaxial with the axis of the index ellipsoid rotated

with respect to those of the original ellipsoid. We shall consider the case of the

field being parallel to OZ in which case E,=E, =0. Here a,3=a3,=0 and the
equation to the index ellipsoid reduces to

af1(x®+ 9% + a5+ 27 E,xy = 1. {88.7)

From this one can conclude that 0Z" and 0Z, comc1de and the x and the y axes
rotate in the XY plane. This gives

— N1=V2= “3=_153= o (88.8)
-and since the rotation is in a plane
Y —w=F, wu=F. (88.9)
From the matrix given in (88.4) we ‘have
=ax+py, Y =cx+pY. (88.10)
Substituting the values from Egs. (88.8) and (88.9) we get
X=X — ¥, Y =ag¥ oy, T (88.11)
Introducing these in Eq. (88.7) of the index ellipsoid,
274 (0 :ocﬁ) E,xy=0. - (88.12)

13*
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Hence, if # is the angle of rotation,
cos2% =0 or 9= % . (88.13)

The angle of rotation of the x and ¥ axes is independent of the field. Since the
unstressed crystal is uniaxial one can observe the uniaxial figures along the Z,
axis. On putting on the electric field, sincé 0Z, and 0Z’ coincide, the c1rc1es
become ovals, the major and minor axes of the ovals being at 45° to the crystallo-
graphic axes. The lengths of the two axes of the ovals change with the field ;while
its direction remains constant. .
Substituting the values of the direction cosines in Eq. (88.5) we get =

a1 =41 — 7 E, o

Ago=a3; + 763 E,, (88.14)

g3 = a33. '

If n, and #, are the ordinary and extraordinary refractive indices

P 1 1
=g, =7, (88.15)
or
’ 24 -
g1 =Aa=— " = — 1, E,. (88.16)
Therefore the change in refractive index is given by
An =%undre, E, (88.17)
which gives i
. n;=nw+%'n21763Ez:
n;‘:naj—— %ngirﬁlez: (88'18)
Hy =9,

The birefringence of plane waves propagated along these axes will be
Bi=1n,—n,=n,— n,— 3nd 75 E,,
B,=mn;— ny,=n,—n,+ $13 rngz, (88.19)
B, =n,— n,=n3r, E, ) ’

and finally the angle 2V between the optic axes is obtained from (33.5) or (82.2)

“to be .
tan 2V =2, |/72’_°_=1f_  (88.20)

The rotation of the axes when the field is parallel to X or Y can be computed
in the same way. For this case

. a1 (#®+ 9% +aBs2 +- 274 E, yz =1, (88.21)
i.e., 0X,and OX’ coincide and the rotation £ of the axis in the yz plane is given by

274 Ex
tan 28 =— 2, 88.22
J a3z —aty ( )
.. For the tngonal class 32 (D3) to which guartz belongs the independent con-
* stants that survive are two, viz. 74,7y, With 7yy=—#;, 713—75:=75; and

740=—7,5. and hence a field: perpendicular to the optic axis is only effective in
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changing the optical parameters and since af,==4a3, for this class also

0 _ . o __ . SR S
1 — By =11 Ey;  agp—ali=—rE,;  a—a33=0,

ays=7uE,; an=—714E,; a=—rkE,

} (88.23)

the crystal becomes biaxial with a rotation of the axes.

For the orthorhombic class 222 (D, or V) to which Rochelle salt belongs
(above the Curie temperature) there are only three constants 7, 755, 743 giving

— a8, =0, ay,—a3;=0; —a3; =0,
@1 — %1 29 22 33 33 (88.24)

Ags=7p E; “3127’52Ey' a3 =7g3E,.

89. Experimental methods. The experimental methods in electro-optics consist
by and large of the measurement of the birefringence induced in a crystal plate
due to the electric field and determining the electro-optic constants using formulae
of the type (88.19). For the measurement of the birefringence the compensator
methods mentioned in Sect. 2 can be used. In most investigations the Sénaramont
or the Babinet compensator have been used. A variation of this method® is to
place the crystal between two plane polarisers parallel to each other, with a
half-wave plate after the crystal. The electric field is increased till an extra half-
wave retardation is introduced. At this position the emergent light is crossed by
the second analyser. This position can be accurately determined either by the
‘use of a half shade device in front of the analyser or by a photo-electric cell.

Some of the constants can be accurately determined from the measurement
of the optic axial angle?? and using formulae of the type given in Eq. (88.20).
The method has proved quite satisfactory in the case of tetragonal seignette
crystals.

In the case of certain directions where the retardation is large even in the
absence of the field, other methods have been resorted to. One is to fashion a

. wedge of very small angle (a few minutes of arc) so as to get a small number of
*Babinet fringes” between crossed polarisers. From the measurement of the
shift of the fringes with electric field the induced birefringence can be computed#.

Another novel method? is based on the measurement of the rotation of the
axis of the index ellipsoid induced by the field by electronic means. If 4 is the
retardation of the plate, and if  is the inclination of the fast axis of the plate
with respect to the initial polariser, the intensity transmitted through the systemis

I 1, 1., .
\ Ta—?—}-‘?sm’ nA»suT4oc
P ; i (for a uniaxial crystal) isa ré.pidljr varying function with
wavelength. For a sufficiently thick crystal, by using a broad continuous source,
sin?z A can be replaced by its mean value 4 which gives
— 4
I 4,1
TK = —2- -+ —4— Sin 4o

where 4 =

To detect this small modulaﬁon, an alternating voltage is applied to the crystal
and the intensity detected by a sharply tuned amplifier. Knowing «, the electro-
optic constant can be computed from a formula of the type (88.20).

1 R.Q. CARPENTER: J. Opt. Soc. Amer. 40, 225 (1950).

2 B.H. Brirings: J. Opt. Soc. Amer. 39, 797, 802 (1949).

3 PockEeLs [2]. .

4 B. Zwicker and P. ScEERRER: Helv. phys. Acta 16, 214 (1943).
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The following are some of the important crysta.ls in which the linear electro-
optic effect has been studied: NaClO;, NaBrO,, ZnS, CuCl, KH,PO,, KD BO
and similar seignette electric crystals, quartz and Rochelle salt.

The applications to which the electro-optic phenomena have been put are
multifarious. Of particular interest aré the tuneable interference filters in which
the narrow band of transmitted colour can be altered by changing the birefring-
ence of the crystals in these systems by adjusting the electric field®. Electro-
optic crystals have been used as light valves for which there are many unses2.
One of the optical problems in connection with these applications is that the
angular field of the light shutter is limited by. the natural retardation. Some
practical methods of diminishing this natural retardation have been suggested?.
Onme is to put another non-electro-optic crystal of opposite sign in series with
the crystal excited by the electric field. Another is.to use two identical crystals
with a 90° optical rotator placed between them. The use of ZnS and CuCl crystal
plates (which are cubic) have also been suggested4 .

One of the important experimental problems in electro-optics is that of the
-electrodes. When the direction of propagation of light is perpendicular to the
electric field, electrodes of either silver or gold either directly evaporated on to
the crystal or spliced on by a thin layer of liquid, like glycerine or oleic acid, is
found to work very well. In the case of the direction of propagation and the
electric field being parallel the problem is more complicated. Thin layers of
liquids, or semitransparent layers of gold have been tried. But a promising .
material is a commercially available thin conducting transparent layer of stan--
nous oxide which has been found very satisfactory®. The electrical and optical
problems associated with these types of electrodes have been ennumerated by
Birrings. Evaporated grid and ring electrodes have now been proved quite
suitable, particularly in the use of electro-optic crystals as light shutters$,

IIL. Magneto—opﬁcs’.

90. Faraday rotation in solids. o) Isofropic substances. When a transparent
substance is placed in a magnetic field, it rotates the plane of polarisation of the
light traversing it along the lines of force. This is known as the Faraday effect.
It differs from natural optical activity in that the sense of the rotation depends
on the direction of the magnetic field and not just on the direction in which
light passes through the medium. The rotation is proportional to the thickness
of the material traversed and the magnetisation intensity. For a diamagnetic
medium the magnetisation intensity is almost equal to the applied magnetisation
and so if it is placed in a uniform magnetic field the rotation is

a=VHLcos? (90.1)

where L is the total length of the specimen, H the magnetic field, & the angle
which the magnetic field makes with the direction of light propagation in the

1 B.H. Brrrings: J. Opt. Soc. Amer. 41, 966 (1951).

2 E. BursTElN, J.W. Davisson, P.L. Smire and J.E.Deewer: J. Opt. Soc. Amer.
41, 288 (1951). .
B.H. Brrrinegs: J. Opt. Soc. Amer. 42, 12 (1952).
C.D. WesT: J. Opt. Soc. Amer. 43, 335 (1953).
B.H. Brrrings: J. Opt. Soc. Amer. 39, 802 (1949).
J-G. JeraTis: J. Opt. Soc. Amer. 43, 335 (1953).
For detailed discussion see the article by W. ScHUTz in: Handbuch der Experimental-
physik, Vol. 16. 1936. — For other references and experimental data see article by S. Rama-
sEsHAN and V. SIVARAMAKRISHNAN: Progress in Crystal Physics, Vol. 1, Ed. R.S. KrisH-
NaxX. Madras 1958.

-
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medium. ¥ is the Verdet constant Whlch represents the rotation per unit length
per unit magnetic field.

Experiments on the velocity of hght in isotropic media have deflmtely estab-
lished that the Faraday rotation in an isotropic medium owes its origin to the
fact that plane polarised light splits up into two circular vibrations which are
propagated with different velocities in a magneto-optic medium. The rotation
is given by the Fresnel formula . '

V= (n —n,) ~- (90.2)

-where #_ and #, are the refractlve indices of the two circular components for_
the light frequency » and ¢ is the velocfcy of light. The measurement of the .
Faraday rotation in an isotropic medium is quite a straightforward process and
in fact most of the data available-in the literature relate to isotropic substances.

B) Magneto-optic rotation and bivefringence. Even the measurement of magneto-
optic rotation in isotropic solids is made very much more complicated by the fact
that most of these substances show a small residual birefringence which would
vitiate the results of measurements unless corrected for. It must be remembered
that when the magneto-optic rotation is measured in a solid with a small amount
of birefringence using a conventional apparatus, what is determined is the posi-
tion of the major axis of the emergent elliptic vibration with respect to the plane
of polarisation of the incident light. This could be called the apparent rotation ¢.
One should therefore be in a position to compute the value of true rotation from
the measured value of .

The theory of magnetic rotation in anisotropic media has been the subject
of a series of experimental and theoretical investigations. A medium exhibiting
magneto-optic rotation behaves similarly to one possessing natural optical activity.
The only difference is that the sense of rotation is different for opposite directions
of travel in_the former case while it is the same in the case of optical activity.
So long as one is interested in the propagation of light in a particular direction
the theory of prdpagation of light in an optically active medium can be applied
in toto, and used to evaluate the results in the case of magneto-optic rotation
when birefringence is present. When plane polarised light is incident on an
anisotropic medium placed in a magnetic field it splits up (as in the case of optical
rotation) into two elliptic vibrations of opposite senses lying crossed to each
other which travel with different velocities. The two being coherent, they com-
bine at every point to produce an elliptic vibration whose major axis is rotated
with respect to the plane of polarisation of the incident light. The magnitude of
this rotation and the ellipticity of the emergent vibration are determined by the
thicknessof the crystal, its birefringence and its magneto-optic rotation. Hence
the use of the Poincaré sphere representation would prove ideal for the evaluation
of the magneto-optic rotation in a birefringent medium.

CeAUVINT measured the rotation in directions slightly away from the optic
axis of calcite with the incident light polarised along a principal direction. With
increasing magnitude of birefringence the apparent rotation (which was actually
the azimuth of the emergent elliptic vibration with respect to the incident plane
polarised vibration) not only diminished in magnitude but actually reversed in
sign and exhibited several reversals in sign. This observation can be explained
from a simple geometric construction on the Poincaré sphere. Assuming o (the
magneto-optic rotation) to be a constant and ¢ (the birefringence) to increase

1 M. Crauvin: C. R. Acad. Sci., Paris 102, 972 (1886). See also WIENER: Wied. Ann. 1,
35 (1888). For further references see referenc% quoted previously.
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continuously the inclination 28 of the axis of rotation of the Poincaré sphere

continuously decreases since 2p/d is continnously decreasing while A = /82 +(20)2
the total phase retardation increases. Hence the final state of polarisation exe-
cutes a spiral shown in Fig. 98. The azimuth 1 of the major axis decreases from g,
reverses sign and oscillates with several reversals of sign finally tending to
zero as it should for a purely birefringent crystal.

L " In principle the evaluation of the Faraday
rotatiqn in an anisotropic medium reduces to
the accurate determination of the constants
of the emergent ellipse when the magnetic field
is on and off. RAMACHANDRAN and RAMASE-
sHAN! have made a detailed investigation re-
garding the exact methods involved. The general
method of determining the true rotation in the -
presence of birefringence is the following. Line-
arly polarised light is allowed to fall on the
medium at an azimuth « to the principal

" directions and one measures the apparent rota-
tion y by means of a half-shade at the analyser .
A end and the ratio of the axes (tan w) of the

Fig. 98. Poincasé representation showingthe  emorgent ellipse by a suitable method. From

variation of the azimmth g (apparent mag-

neto-optic rotation) in caleite for directions  this both § and 2p can be calculated from the
of propagation away from the optic axes. .

formulae y
tan 2y = [cos 2a — cos 2w cos 2 (« - y)]/sin 2w, (90.3)
cos 4 = — [(1 — cos 2w cos 2¢)/(1 — cos? 2y cos? 2a)], (90.4)
d=Acos2y, 20=Asin2y. (90.5)

This method may be used when neither 8 nor 29 can be measured independently.
But in Faraday effect studies the birefringence § can be measured. Then the
true rotation can be deduced from a measurement of ¢ alone. When both 2¢
and 6 are small from (90.3), (90.4) and (90.5) it follows that

if @ =0 or 90° 2y,=2p (1 — 5—?) (90.6)
and £y 5
x =45 2%5=241+3J, (90.7)

the error in using these approximations is less than 1% so long as J and 2p are
less than 30°. From these two equations one gets

e =% v+ (90.8)

This equation is correct to the third order in §. This is an extremely convenient
method of eliminating the effect of birefringence without measuring its value
when both 29 and § are small. N

In fdct this method can be used to make accurate measurements of the Fara-
day effect in isotropic solids which show residual strain. Fortunately most speci-
mens grown from melt or solution exhibit a preferred axis of strain and the
method suggested by Eq. (90.8) is of great utility in the accurate measurement
of the Verdet constant?. :

1 G.N. RamaceanDraN and S. RamasesHan: J. Opt. Soc. Amer. 49, 42 (1952).
2 S. RamasgsHAN and V. SIvARAMAXRISENAN: J. Ind. Inst. Sci. 38, 228 (1956).

-~
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7T T . .
The mean value of ¢ over a range — - o - is given by

29,, =20 (1 + %) . (90.9)

It may be mentioned that the procedure may be reversed and this method
may be used with profit to measure the small birefringence introduced due to
artifical stresses in isotropic media®. It has actually been used to measure the
stress-optic constants in glasses2.

It may be mentioned in this connection that RAMACHANDRAN and Rama-
SESHAN have proved several theorems (using the Poincaré sphere) which are
extremely useful when actual experiments are made on magneto-optic rotation.
Thus, when birefringence is present, the observed value of the apparent rotation
is very sensitive to small variations in the value of «, the angle between the
plane of the linear incident vibration and the principal axis of the specimen.
However if measurements are made for opposite directions of the magnetic field
and the mean is taken, as is usually the practice, then the errors arising due to
variations (is missellings) in « are practically eliminated. This result is of interest
in connection with measurement of magneto-optic rotation when residual bire-
fringence is present. In'such a case the principal axes are never exactly the same
throughout the specimen and they usually exhibit a variation of 5 to 10°. Con-
sequently it is very important to eliminate the errors arising from the variation
in o.

y) Faraday votation in anisotropic media. In an anisotropic medium the meas-
urement of the magneto-optic rotation along the optic axis is similar to that in
an isotropic solids and in the few cases of anisotropic solids that have been in-
vestigated, the measurements have been confined to the propagation along the
optic axis. However, in spite of the practical difficulties rotations have been meas-
ured for directions slightly inclined to the optic axis in calcite? and alumina%.
The analysis of the results using the procedures mentioned in the last section
indicates that within the limits of experimental error no sensible change could
be detected in the Verdet constant for these small inclinations. VoOIGT?® has
considered the problem of the variation of the Verdet constant with direction
from another point of view. Using the simple electron theory and the concept
of the anisotropic polarisability tensor he has shown that in certain types of -
monoclinic crystals in which the optic axes lie in the plane of symmetry, the
magneto-optic rotation along the two optic axes may be different for the same
applied field. Physically this arises because in such crystals, in spite of the fact

- that the refractive indices along the two optic axes are the same, the arrangement
and orientation of the molecules in the path of the light would in general be
considerably different. This was experithentally confirmed by VoigT in the case
-of cane sugar when he discovered that the magneto-optic rotation along the two
axes are significantly different. This is not surprising as the natural optical
activity along the two optic axes in this substance are actually of different signs.

VoiGT also foresaw the possibility of the Verdet constant varying with direc-
tion in paramagnetic anisotropic crystals, where, due to the perceptible magnetis-
ability, the external field causes internal fields of different strengths in different

1 8. RaMasesHEAN and V. CHANDRASEKHARAN: Current Sci. 20, 150 (1951).
2 S. RaMasesHAN: Proc. Ind. Acad. Sci. A 34, 32 (1951).

3 M. CrauvIN: C. R. Acad. Sci.; Paris 102, 972 (1886).

4 S, RaMasesHAN: Proc. Ind. Acad. Sci. A 34, 97 (1951).

5 W. Voigt: Phys. Z. 9, 585 (1908).
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directions. This effect was experimentally demonstrated by BECQUEREL! who

- showed in an ingenious experiment this variation of the Verdet constant with
direction in anisotropic paramagnetic crystals. -

- IV. Photoelasticity?. _

"91. Photoelastic constants. We shall consider only the phenomenological theory
of photoelasticity of solids in thls artlcle Th.ls is based on the fo]lowmg two
assumptions.

1. In a homogeneously deformed solid, all the laws of 1 propagation of light
derived for homogeneous anisotropic media are valid. The effect of the deforma- "
tion is only to alter the parameters contained in these laws of propagation. .

2. When the strain is within elastic limits, the variation of an optical para-
meter of the solid due to the deformation can be expressed as a homogeneous
linear function of the six stress components X, Y, Z , Y., Z,, X, or the six
strain components %, , ¥, %, ¥z, 3, %y :

The first assump’uon means that the effect of the deformatmn only leads to
a change in the magnitudes and directions of the principal axes of the optical
ellipsoid of a solid. The second assumption is a generalisation of the experimentally
observed BREWSTER’S law, according to which the magnitude of the double refrac-
tion induced by stress in an isotropic solid is proportional to the stress.

We shall represent the six stress components X,,Y,,Z,,Y,,Z,, X, by,
X, X5, ..., Xg. The six strain components %, ¥,, z;, Vs, %, %, are similarly ™
denoted by Xy, Kg, oey Kge

The stress is taken as p051t1ve when compressmna.l and negatlve when ex-
tensional. The strain however is considered positive for extension and negative
for compression. The stress and the strain components are related by the follow-
ing equations?. Xi=—cix;  x=—s; X (91.1)
where the ¢;; are called the elastic constants and the s;; the elastic moduli of the
substance*.- )

These two types of constants are related to each other by the following equa-
tions: 6 8
26is;=1 and Xcus,=0 i ik, (91.2)
=1 =1 '

.Since X; and x; have 6 components each, the tensor ¢;; (and s,;) have 36 com-
ponents each in general. In the classical theory of e1ast1c1ty, these tensors are
symmetric in ¢ and 4, so that :

: Cij ==Cjis  Sij =Sj; (91.3)
and there are only 21 independent constants of each type for the crystals of lowest

symmetry.
According to the recent ideas of RAMAN® and LAVAL the stress and strain tensors
are both not symmetric tensors for a general deformation, so that X, x; have 9 com-

1 j. BECQUEREL: Z. Physik 52, 342 (1929). — Le Radium 5, 116, 238 (1908).

2 For an article on photoelasticity, mainly written from the point of view of its en-
gineering applications, cf. H.T. Jessop, in Vol. VI of this Encyclopedia.

3 A E.H. Love: Mathematical Theory of Elasticity.

4 The two sets ¢;; and s;; are also called by some authors as elastic stiffness coefficients
and compliance coefficients.

5 C.V.RamaN: Proc. Ind. Acad. Sci. A 42, 1 (1955). — C.V. Ramax and K. S. ViswaNa-
THAN: Proc. Ind. Acad. Sci. A 42, 51 (1955). — C.V. Ramanx and D. KRISENAMURTHI: Proc.
Ind. Acad. Sci. A 42, 111 (1955). — J.Lavar: C.R. Acad. Sci., Paris 232, 1947 (1951): —
Y. Le Corre: C. R. Acad. Sci., Paris 236, 1903 (1953).
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ponents each and the tensors ¢;; and s;; should have 81 components in general.
However, they are symmetric in the indices referring to stress and strain, ie.,
c;;=¢;; and s;;=s;; ; so that there are only 45 independent components. The
consequences of thls theory for photoelasticity have not been worked out, and
so we shall not be considering it further in this article.

It is necessary now to choose a proper optical property of the medium that
alters with stress or strain to represent its photoelastic behaviour. As has been
shown in the previous chapters, the most satisfactory optical parameter would
be the index tensor [a] connecting D and E. In the case of a non-optically active

medium, ‘
' =[a]D o (91.4)
and the equation to the index ellipsoid is
‘ a11x2+6i2’25/2+a$322+2a'23y2+2a3lzx+2412xy='1 (91.5) -

where ;; are the components of the tensor [a] with respect to the co—ordinate
axes chosen We shall denote the value of a;; in the undeformed crystal by-a;

and if it changes to a;; on deformation, then the change Aga;;= (a;;— a};) can be

expressed as a homogeneous linear function of the stress or strain—components.
Denoting a4, dys, da3, @ag, 31, %45 by a; to a5, we may write the changes in the
optical parameters in terms of the strain components as

Aa;=a;—a) =3 pi; %, (1,7 =1 to 6) (91.6)
7

and in terms of the stress components as
Agy=a,— =3 —¢;;X;,  (i,j =1 to 6). (91.7)
Written out iﬂ full, these equations take the form:
in terms of the strain components as
ayy — aYy = D11 %t ProVy T Pra %t Pra Ve + bis 2+ Pre Xy
Qoo — 085 = Doy % + D22 Vy T Doz %+ Poa Vs +Pas 2+ Pas %y
Az — 033 = D3y %, + P30 Yy + Pas 2+ 15_34 Y+ Pas 2+ P36 Ky s

7

(ag— @g = Pay %x + Paz Yy + Pas + Paa Vs + Pas 2+ Puas %y 1.8)
— @81 = P51 %+ D32 Yy + Ps3 2 P5a Vs P55 2+ Pss %y
12 —“gzzﬁslx + Pes Yy + Po3 % T Pes Vo T+ Pes 2 T Pos Xy
and i in terms of the stress components as
<y — a1 = — [g1 X+ 912Y + @1 Z:+ QY.+ G152+ G X)L
\'4122_ a2 = — [¢o1 X+ 22 Y, +£7232z+924y;.+9252x+926Xy]:
Ugs — 083 = — [gss X Qoo Yyt G302+ Gss Y, F+ 935 2 + 326 X, ., (01.9)

Gos— 93 = — [q41 Xutqus Yy+ 94:;szl‘ 924 Y, + a5 2. + 16 X,),

Ay — 031 = — (@51 XoF+ G52 Yy + 052 2.+ 050 Yo+ 055 2o + 056 X, ]

dyg— ay = — (761 Xxt o2 Yy“f" G252 o1 %+ Go5 25 + Qo Xy] -7
The negative sign in Eq. (91.9) arises because of the convention that positive

strain corresponds to negative stress. The constants p;; are called the elasto-
optic constants, while g;; are called the piezo-optic constants. When either is
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to be referred to, we shall use the term photoelastic constant. They are also
sometimes referred to as strain-optic and stress-optic constants. The thirty-six
constants $;; or ¢;; completely define the photoelastic behaviour of a crystal
when subjected to known stresses or strains.

The constants p;; and g;; are related as follows:

s v 6
Pi; =2 dirCins ‘Zij=‘2 Din Siks
P=1 F=1

i,i=1 to 6)

(91.10)

where ¢;, and s;;, are the elastic constants and elastic moduli respectively.

Table 7. The number of optical, elastic and photoelastic constants in the 32 cfystdl classes.

Photo Constants
Crystal system. egsa;isc Crystal class Symmetry operation Optical | Elastic ]f:,{;:: ?c_
C s ' Ci—1 E 6 21 36
‘Triclinic I Ci—1 E i 6 21 36
Co—m E, o3 4 13 20
Monoclinic II Cy—2 E,C, 4 13 20
Con—2/m E,C,. 4,03 4 13 20
Cyy—mm E, Cy0,,0, 3 9 12
Orthorhombic | III D, —222 E, C,,Cq,Co 3 9 12
Dyj—mmm E, C,, C3, Ci, 03, 0y, 0 3 9 12
C,—4 E, 2C,, G, 2 7 10
v S,—4 E,25,,C, 2 7 10
C4h—4/m E,2C,,Cy,1,285,, 01 2 7 10
Tetragonal Cyp—4mm E, 2C,, Cy, 20,,20, 2 6 7
Dyg—42m E,Cy,C3,C5,0,,25,,0, 2 6 7
v D, —422 E,2C,, Cy,2C,, 2C5 2 6 7
Dy —4/mmm | E,2C,,C,,2C,,2C, 2 6 7
1,285,, 04, 20,, 20,
Vi G—-3 E,2C, 2 7 | 12
Se—3 E,2C3, i,2S6 2 7 12
Trigonal
8o Cyo—3m E,2G,, 30, 2 6 | 8
VII | D;—32 E,2C,, 3C, . 2 6 8
Dy;—3m E,2C4,3C,,14,2C,, 30, 2 6 8
Co—6 E,2Cq,2C,, Gy 2 5 8
B VIII | C3,—6 E,2C4,0,,25, 2 5 8
Con—6/m E,2C4,2C5, Cy 2 5 8
2,254,283, 0%
Hexagonal -
- Dyp—&m2 E,2C,,3C,, 03, 2S,, 20, 2 5 6
IxX Cgyp—6mm E,2Cq, 2Cy, Cy, 30, 30, 2 5 6
Dg— 622 E, 2C4,2C3,Cy,3C,,3C, 2 5 6
Dyp—6/m2am E,2Cq,2C3, Cy,3C,, 3C, 2 5 - 6
1,284,283, 0, 36,, 305 )
p:d T—23 E, 3C,, 8C, 1 3 4
Tp—m3 E,3C,,8C,;,4,30,85; 1 3 4
Cubic T;—%3m E, 8C;,3C,, 60,65, 1 3 3
XI 0-—432 E,8C,,3C,, 6C,, 6C, 1 3 3
O —m3m E,8C;,3C,,6C,;,6C, 1 3 3
4,8Cs, 30, 60,65,
Isotropic solids Spherical symmetry 1 2 2
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The various p;; and g;; are experimentally determinable, the methods for
which are given in Sects. 98 and 99. However the piezo-optic constants (g,;)
can be determined more directly by experiment, although the elasto-optic con-
stants (p;;) are more significant from the theoretical point of view. Hence it
is usual to determine the former experimentally and make.use of values of the
elastic constants of the crystal to determine the values of the latter.

92. Number of photoelastic constants in relation to symmetry of the crystal.
Unlike in the case of elastic constants, the tensors ;; and g¢;; are not symmetric
in 7 and 7 and consequently the number of constants in the general case is 36.
This number would however be less for crystals possessing various elements of
symmetry. This is so because all expressions involving the photoelastic constants
should be invariant when each of the symmetry operations is applied. Conse-
quently, it would be possible to derive relationships between some of the 36 photo-
elastic constants®* and the number of independent constants is thus reduced.

The number of surviving optical, elastic and photoelastic constants are given
in Table 7.

PockeLs found that the 32 point group can be classified into 9 classes accord-
ing to the number and nature of the surviving photoelastic constants. This has
been shown to be erroneous by BHaGAVANTAM? who showed that the 32 point
groups can be classified into 11 classes. These 11 classes are the same as the
so-called Laue-symmetry groups® and are what one would obtain if an additional
symmetry of inversion is introduced. This symmetry is possessed both by the
elastic and optical properties of a crystal, which do-not change their magnitude
when the direction of the stress and of light propagation are reversed.

The surviving constants in these 11 groups are listed in Table 8.

93. Changes in the optical behaviour of a crystal due to deformation. &) General
formulae. One of the important problems in this subject is to know the changes
in the magnitudes and orientation of the principal axes of the optical ellipsoid
of a crystal for various types of deformation. When the g;; or $,; are completely
known, these changes can be computed. In this section, we shall derive the formu-
lae for the general case. The formulae appear complicated, but the principle
of deriving them is simple and in practice only special directions of stress and
observation are employed, for which the formulae reduce to comparatively
elementary expressions.

Let 0X,,0Y, and OZ; be the principal axes of the optical ellipsoid of the
crystal in the undeformed state. The equation to the ellipsoid would then be

_ i ey e =1." (93-1)
On deforming the crystal the altered ellipsoid is given by the following equa-
tien, referred to the same axes 0X,Y,Z, '

., .
gy % + Az0 V8 328 + 2433 Y0 % T2 2 %+ 20 % Yo=1.  (93.2)

Let the principal axes of this ellipsoid be along 0X’, 0Y’, 0Z'. Referred to these
axes of co-ordinates, the equation to the altered ellipsoid becomes

A%+ e ¥+ aga 7t =1, (93.3)

1 The technique of working these out is discussed by JAGODZINSKI, in Vol. VII/1 of this
Encyclopedia. .

2 S. BuagavanTaM: Proc. Ind. Acad. Sci. A 16, 359 (1942). — Acta crystallogr. 5, 591
(1952). .. ‘

3 International Tables for X-ray crystallography, Vol. I, p. 30. Birmingham: Kynoch
Press 1952. - : R s
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) - Table 8. .
I. First group: Triclinic -system—- 36 coefficients.
P11 Pra P13z Pua Pis Prs 11 G12 F13 e D15 Y1
Par P22 Doz Pos Doy Pre 921 daz 928 92s 925 Y26
D31 Pa2 Pas Pse Pas Pse . 931 932 933 9ss 935 Y36
Pa1 Daz Dys Pas Pas Pus. Qa1 932 9as 9ae 9as Gas
P51 Pz Pss Psa Pss Pse 951 952 953 954 955 956
Pe1 ?sz.v 63 Pes Pss Pes .- oz de1 9e2 Tes 9ea 9ss Yss
IL. Second group: Monqcﬁnic system—zo coefgi\‘ménts.
Pun Pz P1s O O Py © 11 G2 f13 0 O gy
Pars Paz Pag O O Ppg ... a1 Gz Gas. O O dpe
Pg1 Pza P O O pgg 931 d32 933 O O g3
0 0 0 Py .Pgg 0 0 0' 0 gy g5 O
0o 0 o 3¢ P55 O 0 0 0 gy 4955 O
Pe1 Pez Loz O O Pyge de1 962 963 O O g
III. Third group: Orthorhombic System—-iz coefficients.
P11 P12 s O O O ) 11 Gz 1z O O O~
Pa1r Paz Pas O Y 0 921 922 923 O 0 0
P31 P2 P 0 0O O 931 932 933 O O O
0 0 0 P O O 0 -0 0 g 0 O »
0 0 0 0 pz O 0 0 0 0 g5 O
0 0 0 0 0 pggi=="" 0- 0 0 0 O g
IV. Fourth group: Tetragonal system—10 coefficients.
P11 Piz 1z 0 0 Py f11 T12 F1iz O O i
P12z Pz P O 0 —pi5 12 911 Tz O O —die
P31 P31 Pz O O 0 931 9a1 933 O O 0
0 0 0 Py Pys O 0 0 0 qag G5 O
0 0 0 —P45 Pas 0 o 0 O —ds5 Jas O
Pe1 —Ps1 O 0 0 g 961 — 961 O 0 966
V. Fifth group: Tetragonal system—7 coefficients.
Pz P1a Pz O o Y 11 d12 s O O 0
P12 Pux 1z O O 0 12 f11 13 O O 0O
51 P31 Pz O O 0 931 931 4933 O O 0
0 0 O g O O 0 0 O g O .0
6 0 0 0 Py O 0 0 0 O g O
0 0 0 0 0 g 06 0 0 0 0 g
VI. Sixth group: Trigonal system—12 coefficients.
P11 P12 Pis Pra—Pas  Pes . i1 Tz T1z T1a 925 2de2
P12 P11 Pis —Pra Pas —Pe2 12 F11 T1s —T1a 925 — 2962
Ps1 P31 Pz O 0 931 ds1 933 0
14 —Pa1 O Pas Pas D5z 941 —9s1 O  dag a5 2452
—Ps2 Pss O —Pus Pas Pua —d52 952 0 —das G4 2941
—Ps2 Doz O P2z Pra Pra—P1al2 —Gex 9e2 O 425 Gaa G111z
VII. Seventh group: Trigonal system—8 coefficients.
Hemimorphic, Enantiomorphic, Holohedral
P13 Pre Pz P O 0 11 Q12 Tz Tra O 0
P12z P11 Pris—P1a O 0 12 911 Y13 —%a O Y
Pa1 Ps1 Pz O O 0. 931 9s1 93 O O O
Par—Pax O P O 0 943 —921 O qag O 0
0 [ 0 P41 Pa 0 o o0 0 dag 244
v o o0 0 Py Pu—P/2 O o 0 0 14 Q11—
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Table 8. (Continued).
VIII. Eighth group: Héxzigonal system— 8§ coefficients.

Pri Pr2 P13z O O —Pg @11 Tz Gz O 0 —2¢gg
Pis P11 Pz O O Py 12 F11 Gz O O 2g¢
D1 Ps1 Pgs O 0 0 931 ds1 9ss O O 0

0 0 O Pgy Pas O o 0 0 g4y 245 O

0 O O —pPy5 Pga O 0 0 O —q5 944 O

1—?61_ 0 0 0 Pu—D12/2 Go1—ds O 0 0 11—

IX. Ninth group: Hexagonal system—6 Eoefﬁcients.

P11 P12z P13 0 OO 911 912 %12 O O O
P12 P11 P35 O O O 12 911 4 O O O -~
Ps1 P31 Pz O O O 931 951 s O O O
(4] 0 0 P44 O o] (o] 0 0 4gqg O o]
0 o 0 O P44 O 0 o 4] O qq4 O _
0 06 0 0 0. Py—h 0 0 0 0 0 43—
' X. Tenth group: Cubic system—4 coefficients.
Pir P12 1z O O O Gi1 “f12 13 O O O
Pis P11 P12 O O O f1is 911 % O O O
P12 P1z P O 0 0 B2 T1s 911 O O O
0 0 0 fg O O 0 0 0 gg O O
0 0 0 0 f © 0 0 0 0 g O
0 0 0 0 0 0 0 0 0 0 g
XI. Eleventh group: Cubic system—3 coefficients.
Pia Pz P2 O O O B1 D12 $12 O O O
D12 Puy P12 O 0 0 92 Q11 G12 O 0 0
P12 P12 P11 O O O Gz 12 9412 O O O
0] 0 O Py O 0 0 o] 0O qq O 0
0 [¢] o} 0 P4y O 0 0 0 0 guqg O
0- 0 (VI - 0 0 4] 0 S

0 ¢}

XII. Isotropic solids—2 coefficients.

Let the direction cosines of 0X’, 0Y’, 0Z’ referred to the system 0X,Y,, Z be
given by the following scheme:
|X Y zZ

Xolow op o . (93.4)
o|Br B2 Bs
e Zo i V2 Vs

One has now to determine the magnitudes of «;, Bi, v; and agq, 422 and a3, 1n
terms of the stress optic coefficients and the principal values aly, a3, and a3,

of the' undeformed crystal.
Referred to the old co-ordinate axes, we have the six relations

i3 = a1 0F + aho 7 + alsyE (¢=1,z,3),} )
@ = a3y 00+ age BB+ assviy;  (6,1=1,2,3)

where the é;i and a;; are known in terms of 4?; and the photoelastic constants.
There are in addition six relations between the direction cosines in (93.4)

of the form:
“iaf+ﬁiﬂf+?i)’6= 6; (.9)=1,2,3 (93-6)
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0;;=0 (i==7)
=1 @ =j).

From the twelve equations in (93.5) and (93.6), the twelve unknown guantities
namely the three principal values of the index tensor a31, 39, 435 and the nine
direction cosines «;, 8;, 7, can be determined in terms of the stress-optic coeffi-
cients.

It is convenient to express the transformation of 0X,Y,Z, to 0X' Y’ Z’
by the following angles. We shall represeftt the co-ordinate axes by the points
X,y,Y,,Zy and X', Y, Z' at which they intersect a sphere of unit radius drawn
with the origin as centre. Let the great circle passing through Z, and Z ifitersect
the great circles es passing through X, Y, and X'Y" at T, and T’. Let X, T =1,

XT' = =¢ and ZZ0 =3%. The dlI‘eCthII cosines «;, f;, y; are related to v, 9, p by
the following equations:

oy = — cospcosycosdP —singsiny,
By = —sinpcosycos P -} cos psiny,
= cosysind,

oty = — cos @ siny cos$ + sin @ cosyp, ' (93.7)
By = —sin ¢ siny cos# — cos g cosp,

Vo= sin'(p sinyp,

ag=cos@sind, fy=singsind, y;=cos?.

Substituting these in the 12 equations (93.5) and (93.6), the values of y are
obtained as the three roots of the equation. .

tan®y {ags (a8, — o) + g1 210 (@2 — 233)} +
+ta_1121p{a31 (A11—33) (A2 20— Aa5) — Ap3 @y 2 (2001 — g g —Az5) — 5 (2‘123“‘“31 “12)}-'- (
+tany{as; (2s0—a11) (011 3a3) — 51 A1 2 (2400 — 1y — Byg) — 23 (245, —aBs— af o) }+
@y 2@as (11 — Ba3) + a5y (433 — afs) =0.

There is however an ambiguity in the solution, since tan g is the same both for
p and z 4 but the effect is only a reversal of the appropriate axis, and the two
. are equivalent. Knowing o, # and ¢ can be obtained from _

fan 20 = o TmSRP =05y __ S .

3 (a5 —aq,) sin 2y +a,, cos 2y (93.9)
cos & {{ay; — @yp) Sin 29 — 2a,, cos 29} +

[cos? @ {ay; cos?y + @y, Sin®y — ag; + 4y, sin 297} ~ : 93.10)

" - 2sin®{ay, cosy — @3, Siny} ] (93 .

— sin 28 {ay9 Siny + ay; COSYP} + a1, 50 29 — ay; sin?y — g, cOSPP +-agg]

.. .
tan2¢ =

The values of a;, §;, y; are calculated usmg (93.7) and hence @11, @39, (43 ATE
obtained from the relations:

i = 05+ G0 B} + Gsp V] + 2005 Biyi + 200 Yoo + 200 (93-11)

B) Special cases. Simpler relations can be obtained from the equations qf the
* "last paragraph in the case of.biaxial crystals with not too small birefringence,

El

93.8)
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1e when Aan,Aazz,Aags,Au%,Aam,Aa,z are very much smaller than
ab, —ads, ads—als and a33—a11 Then it follows that

Sy, B, e (93.12)
o __A“L. ) ey Adag, | . _ day,
CBs=—7e g —gg ' 7.1— “3———%3_“11: oy == /31—_—“11 (93.13)

The transformation of axes from 0X,Y,Z, to OX'Y’Z’ is then equivalent to
three rotations through angles @,, @,, @, about the three axes of the undeformed
crystal, the values of which are given by
tan2®, :—ZAE,’ tan2 @, =iAﬁ“—, tanéd%::

gy G23 33— 11

(93-14)

By a proper combination of the three individual rotations @,, @, and @,,
one obtains the total rotation which the principal axes of a crystal experience
on deformation. In biaxial crystals, @,, @, and @, are in general small and
hence to a first degree of approximation the order of the successive rotations
does not matter. In uniaxial crystals the rotation about the optic axis would be
finite (as ;7 — 439~ 4;,), while D, D, will be small. In such cases, the rotation
about the optic axis must be carried out first.

94, Op%ical behaviour under hydrostatic pressure. In this case, X, =¥, =Z,
(=p say) and X,=Y,=Z,=0. Introducing these in Eq. (91.9) we have

Aoy =— (g1 + G2+ Ga) P

Aay=— (21 + 922+ ¢23) P

Adag=— (g31 + 32 + 930) P>

Aay=—(gs1 + %a2+ 913) P,

Aas=— o1 + G52+ 4sa) 2,

. Aag=— (ge1 + o2+ es) 2-

If the values of g;; are known, then the behaviour of the crystal ander hydro-
static pressure can be deduced. From the equations given above one finds that
the right hand side of the last three equations are equal to zero for all crystal
classes, excepting those belonging to the triclinic and monoclinic systems. This
is true in spite of the fact that in certain groups such as 4, 5, 6, 8 (Table §)
cross-coefficients of the type g,;, g5, are présent. In crystals of the monoclinic
and triclinic systems, the principal axes experience a rotation under a hydro-

static pressure. However, in no case is the crystal symmetry altered and the iso-
tropic, unjaxial or biaxial nature is always retained.

(94.1)

95. Effect of unidirectional stresses. If a stress P acts in any arbitrary direction
having direction cosines I, #, # with respect to the chosen crystallograpluc axes,
then the stress components are given by -

Xi=0PBP, X,=m*P, Xg=n*P, X,=mnP,
Xy=nlP, Xg=ImP,

If these values of the stress components are substituted in the fundamental
photoelastic equations, then the orientation of the optical ellipsoid of the deformed
crystal can be calculated by the method indicated in the Sect. 93.

It is very seldom that one would require the constants of the optical elhpsod
for an arbitrary stress direction.. Some special cases of interest are discussed

Handbuch der Physik, Bd. XXV]1, 14

(95.1)
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below. For instance, it is possible to distinguish between the different photo-
elastic classes by a study of the tilt, if any, of the principal planes when the
stress is along one of the principal axes of the optical ellipsoid.

We shall consider in particular a crystal not belonging to the monoclinic or
the triclinic system, in which the stress is along OX, and calculate the tilt of the
axes of the elliptic section when the direction of observation is OY or 0Z. Since
the stress is along OX, all components except X are zero. Thus

@ _“11——911X13 Ay3 =— 01 Xy,
Apo— B2 =—01:X;, Gi=—0nX;, ' (95.2)
. G335 — a3 0s=_'—91sX1a‘ “12=—931X :
The section of the deformed elhpsmd normal to OZ and OY are

17t 2339 F 20135y =1, (05.3)
M1 2+ agy B+ 285 28 =1. '
The tilt of the axes in the two_cases are respectively
tan 29, = 2a,, — _ 24s , .
T ap—ayy @t (95.4)
and R s o,
tan2g, =221 — 21 (95.3).

@y -=dgg 11— Y13

Such tilts in the axes can occur only when either gg,==0 or ¢;,==0. A tilting occurs
for both directions of observations only for crystals belonging to the point groups 3
and 3.

It is quite obvious that this gives a simple method for distingnishing crystals
belonging to different photoelastic classes in the trigonal, tetragonal and hexagona.l
systems.

B) In the case of cubic crystals also, it is possible to distinguish between the
two photoelastic classes by means of a similar observation. Thus, if the stress
direction is equally inclined to OX and OY (making an angle of --45° with 0X)
and the direction of observation OZ, then a tilt will be observed only in the
classes T and T,

In this case
P
X =X,=X= =
and _
X, =X,=X;=0. (95.6)
The equation to the optical ellipsoid of the deformed crystal is
A1 %t @gp 9 4 A2+ 24,92 =0 (95.7)
and its section normal to 0Z is -
A %%+ Az0y% + 281,y =0 (95.8)
where
ayy=a3— % (G1+ @) P
dgs=a3s— ¥ (13 + 911 P, . (95.9)
Gg=—7% Zaa P

1 S. BEacavanTaMm and D. SURYANARAYANA: Proc. Ind. Acad. Sci. A 26, 97 (1947). —
Nature, Lond. 162, 740 (1948). .
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The magmtude of the ma] or and minor axes of the elliptic section are given by
ay; = a;,c082 % + g9 SIN* P +4- 241, sin @ cos &

U553 = 1 SIN?H + a,, cos?? — 24,5 sin cos &
and the difference

11— A3p= (A1, — Ay,) COS 2% + 24, ,5in 2.

and

Thus

tan29 —-— 2% _ 29 N )
an 31 — Ggp 12 — T13 N (95.10)
For the photoelastic class No. 11, comprising of crystal classes 7,0 and Oy,
¢15=¢;; and therefore 9 =45°, and one of the principal axes coincides with™
pressure direction. For the other class No. 10, composed of T and T}, crystal
classes gy 5,=F¢;5 and so the principal planes are tilted with respect to the direction
of pressure. The magnitude of the tilt is (¥ —45°), where tan 2¢ is given by
(86.10).

Such a tilt has in fact been observed in a number of crystals belonging to
the crystal classes I" and T}, and this elegant method has been used to distinguish
crystals that belong to and T and T, classes from those of the T}, 0 and 0,
classest.

) In the case of isotropic solids, there are only two piezo-optic constants and
under unidirectional stress the solid becomes uniaxial with the optic axial parallel
to the direction of stress. The deformed solid behaves like either a positive or
negative uniaxial crystal according as (g,;—¢y4) is —ve or +ve.

96. Behaviour of cubic. crystals. For crystals belonging to the T, O and Oh
classes, the number of independent constants is three, i.e. ¢y, gy, and ¢,, and
Eq. (91.9) becomes:

@ —a° =— [q11— q1a) X1+ 012 (X + X, + X5)],

| gy —al=— [(r1— q12) Xo+ 12 (X + X+ X3)],
v a3y — a®=— [{g11— 12) Xz + 01.(X; + X, + X3)],
Aoy =—qus X4, U1 =—Gaa X5, Hp=—quX,,

where a§,=4a3,=a3;=0a" the value for the undeformed crystal. Consequently,
the stressed crystal becomes biaxial in general. Although the birefringence for
any direction of propagation is proportional to the stress, it is interesting that
the optic axial angle 2V depends only on the direction of the pressure and is
independent of its magnitude. The value of 2V is given by

(96.1)

— 2 — _”’IL“?E.
sin V= i—d (96.2)
1

: 1 1 s .o
where ——== — — are the principal refractive indices. It is readily seen
. Va1 * Vazs * Vags P -

that (a33—ass) and (a1;—4ass) are homogeneous linear functions of the stress
components, so that their ratio and hence the optic axial angle is independent
of the magnitude of the stress. The orientation of the optic axial plane depends
on the ratio y=g,4/¢1;— ¢1» and ong may classify crystals belonging to this
photoelastic class into four types according to the magnitude and s1gn of this
quantity:

G x>1, (@) o<y <<, (@) —1<g<o, i) x<—1.

1 S. BeacavanNTaM and D. SURYANARAYANA: Proc. Ind. Acad. Sci. A 26, 97 (1947). —
Nature, Lond. 162, 740 (1948).
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The optical behaviour of the four types for various stress dlrectlons parallel to
the cubic and dodecahedral planes have been worked out by Pockerst.

Cubic crystals belonging to T and T, classes. The ‘phenomena in these cases
become more complicated 'as the number of surviving constants is four, i.e.
G11; F12, Q13 30d ggy- These crystals therefore become biaxial even for compression
along a cubic axis. Thus, if P is the magn.btude of the stress along the x-axis,

ap—a®=—qy P
“22_“02_912P:
Gaa— a®=— g3 P

Ap3 =g = a15=0.

196.3)

It is obvious from these equations that the principal axes of the optical
ellipsoid coincide with the cubic axes of the crystal. The optic axes occur in
the X0Z plane if ¢,,> ¢35, and the axial angle is given by

Gin2 Ve f12" s
F11— Y13

Here again, one notices that the optic axial angle is independent of the magnitude
of the pressure. This can be proved to be true for any direction of pressure in
this photoelastic class also. :

The only direction of pressure for which the crysta.l becomes uniaxial is
when it is parallel to a cube diagonal [111]; for all other pressure directions it
becomes biaxial. This is because these are the only directions in the crystal
which have a symmetry axis of order greater than two. Of particular interest
is the fact that for stress along the dodecahedral direction, the crystal becomes
biaxial as in the previous case, but with one important difference. No principal
axis of the deformed ellipsoid coincides with the direction of stress. (Again
this is because this direction is not a two fold axis in crystal class T and T,.)
It must however be remembered that this angle between the axis of the optical
ellipsoid and the pressure.direction can only be detected experimentally when
observations are made along proper directions. For example when the stress
is along a dodecahedral direction [110] and observations along a cubic axis [001],
then the major axis of the elliptic section normal to [001] is tilted with respect
to the stress dn'ectmn by an angle & given by -

B —_2dss h

tan24 PR (96.4)
(.However for the same stress direction, if the observation is along [1 10] the -
major axis of the elliptic section coincides with the stress direction.

In these crystals, if the stress is along one of the cubic axes (0X), the
birefringence observed for directions of observation OY and OZ are different,
these being proportional to {g,;,—¢;,) and (g,;— ¢15). Thus, we get the interesting
result that in a cubic crystal, for which the three axes are equivalent in the -
unstressed state, the stress birefringence for pressure along OX is different for
observation along the other two cubic axes OY and 0Z. However, the equi-
valence of the three cubic axes under the operations of a three-fold axis along
the cube diagonal is seen from the fact that stress along OX and observation

- 1 F PockeLs [2]. A summary of the photoelastic behav1our of cubic crystals is also glven
by types I and II. G. Szivessy [1].
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along OY is equivalent to stress along OY and observation along OZ and to
stress along OZ and observation along OX. Similarly, the other three combina-
tions of stress and observation directions are equivalent.

97. Behaviour of uniaxial crystals. In cubic crystals it is found that a pressure
along any trigonal or tetragonal axis of symmetry makes the crystal optically
uniaxial with the pressure direction as the unique axis; a pressure applied along
_any other axis makes the crystal biaxial!. This rule is found to be valid for
uniaxial crystals also. From the Table 6, it is seen that for a unidirectional pres-
sure along the Z axis since ¢,3==¢5;=¢¢;=0 there will be no rotation of the axes.
And as ¢gy3=¢;5 the principal components of the index tensor &, and &, of the
deformed crystal will be the same. For any other direction of pressure these
two constants will not be the same, showing that for any unidirectional pressure
a uniaxial crystal becomes biaxial unless the pressure direction coincides with
the optic axis. If the pressure direction is perpendicular to the optic axis (i.e.
0Z,) and if it is parallel to 0X, then the optlc aXlal angle exhibited by the de-
formed crystal is given by

sin? V=_{ o P} (97.1)
g A

where #,, and #, are the ordinary and extraordinary indices of refraction. Unlike

in cubic crystals the optic axial angle is proportional to the square root of the

pressure. For all crystals excepting these belonging to group V of Table 7 the

acute bisectric of the deformed crystal will not coincide with the optic axes of

the undeformed crystal but would be rotated by an angle determined by the

first two equations of (93.14). Further if ¢,, <{q,, the optic axial plane is parallel

to the pressure direction for a positive uniaxial crystal and perpendicular to the

pressure direction for a mnegative uniaxial crystal. For ¢;; >¢;, the behaviour’
would be just the opposite.

"98. Experimental methods. The photoelastic constants of a crystal can be
evaluated from observations in specimens of suitable orientation of the absolute
and relative retardations induced by stress. These retardations arise firstly due
to the change in the refractive indices due to the photoelastic effect and secondly
the change in the thickness of the specimens caused by the stress. The magnitude.
of the last effect must be known before the photoelastic constants can be computed
from the observed values of the retardations. We shall briefly mention the
various methods available for measurmg the retardatlon before dealing with
the methods of computation.

The crystal specimen is subjected to a umform unidirectional stress and the
_ relative retardation produced between tays with electric vectors parallel and
perpendicular to the stress is measured by any of the compensator methods.
The Babinet compensator has proved by far the most useful instrument for these
measurements. Recently a magneto-optic method (see Sect. 90) has been evolved
for measuring small birefringence usually encountered in photoelastic experi-
ments and the method is particularly useful for the measurement of the disper-
sion of the photoelastic constants with wavelength. This method consists of meas-
uring the decrease of the apparent Faraday rotatlon with stress and is normally
applicable to cubic crystals. T
- The absolute retardation measurements can be made using two identical
crystals in a Jamin interferometer, one being subjected to a longitudinal stress

1 S. Buacgavantam and D. SUrRvaNaravaNa: Proc. Ind. Acad. Sci. A 26, 97 (1947).
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while the other is notl. Another extremely accurate method for determination
of the retardation has been described?. Light passes through three specimens
each placed in front of a slit. A precise exploration of the Fraunhofer pattern
with and without the central crystal stressed yields an accurate measure.of
the variation of the optical path of the central beam. Another convenient method?®
is to measure the shift with stress of the Newtonian fringes formed between two
surfaces of the crystal specimen.

For a pressure change AP, if AN fnnges cross a ﬁdumal mark in the crystal

then the change in refractive index . =~ N
Anm _ 4 AN i
ap =1 apF “Map (98.1)

where in the last term % j—; represent; tl;»e‘ elastic modulus along the direction of

propagation. AN and AP can be measured very accurately. However, in general
the experimental position in photoelasticity is quite unsatisfactory, as in most
of the methods of measurements the major part of the path retardation arises
due to the change in thickness of the specimen. These changes cannot be ac-
curately found out as the elastic constants are not precisely known.

We shall now take the case of an orthorhombic crystal to exemphfy the
computation®. Here

apy—dh=— (g X, + 0. Y, + s Z,), \\»
yp— a3s=— (g1 Xz + 22 ¥, + 25 Z3), (98.2)
g3 — 083 =— (a1 X+ 32 Y+ G35 Z1) -
Apa=—as, %, Gu=—q557Z,, ) A3 =" geeXy
and the strains etc. are given by
Xp==— (811 X, + S12 Xl +813Z,),
Vy=— (521X, 4 832 ¥, + 555 7)),
=— (551 X+ 532 ¥, + 533 Z,),
yz=——s44lf;, zx=—'—355 Z, %

and along any direction making direction cosines!, m,» with the axes, the
dilatation is given by

and

(98.3)

= SGGYx:

ATL = %P4y, m* + zm?+ yomn - z,nl -+ x,lm (98.4)
for a unidirectional stress along x, .
—ai=—u P,
gy =033 =—¢n P, (98.5)

33 —433=—931Px:

since a%y =1/n2, aly=1/n3 and adg=1/n% for observation along the z axis for
light with electric vector parallel to the direction of pressure

) 3
An,=Tlnk (98.6)

R. ErPENDAHEL: Ann. d. Phys. 61 (4), 591 (1920).

B. Virroz: Helv. phys. Acta 26, 400 (1954)-

G.N. RamacuanpraN: Proc. Ind. Acad. Sci. A 25, 208 (1947).
K. Vepau: Proc. Ind. Acad. Sci. A 34, 161 (1951)-
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and for the localised fringe method described, the retardation for one fringe shiftis

MPlt=niq; — 2m,514 (98.7)
where P}l is the pressure (in dynes-cm?) necessary to bring about one fringe shift
for light vibrating parallel to the direction of pressure. Similarly

MPAt =ndgy — 2my5 L (988)

for light vibrating perpendicular to the direction of pressure and relative retarda-
tion when measured with a Babinet compensator is

A 1 s
2z [f:‘lr - 7:;1] =3 (311 — #5qz1) + S5y — 7). (98.9) °

The factor of 2 being due to the fact that the light travels through the crystal
only once when the Babinet method is used and not twice as in the fringe method.

B) Optically active medium. We shall consider the case of a cubic crystal
possessing optical activity for which this method has been worked out®. If light
of any state of polarisation represented by P
on the Poincaré sphere (Fig.99) is incident on the
unstressed crystal (of thickness #), the emergent
light will be in the state P, obtained by a rota-
- tion about the axis LR by an angle 2o¢ where
g is the optical rotation per unit length of the
crystal. If now the crystal is stressed, the emer-
gent light would be represented by a point @
obtained by rotation of

4 =t + (20)? (98.10)

%

about an axis S S’ which makes an angle ¢ with
LR given by 5 Eg. Qét P;i?hcaré representa'tion to compute
tan @ = EE (98'1 'l) cafl; acteige cr;st:laev}higzergj;;gbf;:;nsﬁ:&:
where § is the birefringence introduced in the plate due to the stress. If now
we are able to measure the state of vibration of the emergent vibration, then A
can be easily computed, from which é can be calculated since 2 is known. The
analytical expression when P is any general vibration is rather complicated but
the problem can be solved graphically on a stereographic projection with the
-aid of a Wulff net.

Howevef when the incident vibration is linearly polarised the analytical
expressions are comparatively simple. If the major axis of the emergent elliptic
vibration makes an angle p with the vibration direction of incident light and
if the axial ratio &/a is given by tan w =b/a then

sin 2w
cos 2o —cos 2w cos 2(x+ ) ’

tan Q= (98.'12)

1.— €cOS 2 COS 29
1 —sin® @ cos?a
where « is the inclination of the plane of vibration of the incident light to one
of the principal vibration directions of the crystal: ¢ and « can be directly deter-

cos 4 ¥-1 — (98.13)

1 G.N. RaMaACHANDRAN and V. CHANDRASEKHARAN: Proc. Ind. Acad. Sci. A 33, 199
(1952).
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mined using a Babinet compensator. In addition it is necessary to determine
the principal vibration directions of the rotatmg birefringent crystal. This can
be done by determlnmg the azimuth of minimum, the method due to BRUHAT
(see Sect. 84) using crossed nicols. The azimuth at which the transmitted inten-
sity is a minimum gives the principal vibration direction. This method is not
accurate unless 2p/d is small. Otherwise the minimum is not marked. However
the use of the analysers described in Sect. 21 would be of great help. Knowing «,
- and o it is possible to compute both A and ¢.
The birefringence introduced ma§ be calculated from the formula (98 10) o
from the equatmn .
d=4sing.’ oo

For 2 =0 or z/2 formulae (98.12) and (98.13) reduce to
=0 tan ¢ = sin 2w/1 — cos 2w cos 29,

sin A = cos 2w sin 2y/cos @,
e (98.14)
20 =x/2 tang =tan2ow/sin2y,
cos A = cos 2w/cos 2.

Another extremely simple method of determining the birefringence is to
determine the ellipticity of the elliptic vibration that is propagated without any
change in the stressed optically active crystal. The experimental method is
identical with the technique described in Sect. 71 for the measurement of optical
activity in the presence of absorption using an elliptic polariser and a crossed
elliptic analyser: If the ratio of the axes of the ellipse is given by B/4 then

i(=n B
tng (3 —9)=7
and ]
0 =2ptang. (98.15)

. Using these techniques, by stressing the crystals along [100] and making
observations along [010] and [001], ¢;;— ¢ and ¢,,— ¢35 Were determined and
by stressing the crystal along [111] and making observations along [110] and
[112], g4, Was determined for sodium chlorate a crystal which belongs to the
T class.

99, Ratio of the photoelastic constants in cubic crystals using ultrasonics,
- MuELLER? has developed an elegant method for measuring the ratio of the elasto-
optic constants in cubic crystals by studying the optical characteristics of the
.. light diffracted by ultrasonic waves passing through a single crystal. The details
.0f the theory are beyond the scope of this article but we shall mention only the
physmal basis of the method. Raman and Natr?2 have given a very satisfactory
theory of the diffraction of light by ultrasonic waves in a liquid. The theory
is based on the simple concept that the changes in phase due to changes in the

refractive index at each point of the liquid due to sound field, has the effect of

corrugating the wave-front of a plane parallel light wave incident on it in the
transverse direction. In liquids it can be easily shown that if the incident light
is polarised all the components of the light diffracted by the ultrasonic waves
have the same polarisation as the incident light. However in the case of a cubic
crystal the case is slightly different. Under the influence of the strains in the

1 H. Mostrsr: Z. Kristallogr. A 99, 122 (1938).
2 C.V.Ramax and N, Nata: Proc. Ind. Acad. Sci. A 2, 406 (1935).
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solid every volume element in the crystal becomes 'birefringent and for light travel-
ling in the z direction the birefringence can be characterised by the index ellipse
which is the section of the index ellipsoid normal to the z axis. The ellipse has
its axial direction at an angle & and 90 +J with the x axis where tan 24 — 202
Qg2

(Sect. 95). But the important point is that these directions do not vary 111 time
and are also the same for every volume element for a cubic crystal. Hence if
the incident light is at any arbitrary polarisation, its amplitude can be resolved
into two components E; and E;; along the major and the minor axes of the index
ellipse. Hence two diffraction patterns with different amplitudes are obtained
if the Raman-Nath' theory is applied to the case of solids. Since both these
amplitudes originate from the same incident light by diffraction on the same
elastic wave, they must be coherent and consequently the two resultant ampli-
tudes must be added vectorially to get the resultant vibration. The result can
be stated as follows. For plane pola.nsed incident light all diffraction orders
produced by a progressive sound wave in an optically isotropic solid are plane
polarised. However, the direction of polarisation is different for different orders
and differs from that of the incident light. In the case of birefringent crystals
for any general direction the diffracted light is in general elliptically polarised.
By measuring the rotation of the plane of polarisation of the light in the different
orders with respect to the light in the zeroth order it is possible to evaluate the
ratio of the elasto-optic constants in isotropic solids and cubic crystals. This
method has been extended to the case of cubic crystals which possess optical
activityl. . -
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