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A. Polarisation of light. 
1. States of polarisation of light: Poincare sphere. a) Light is a transverse 

electromagnetic wave and the nature of the vibration of the electric displacement 
vector in the plane normal to the direction 
of wave propagation defines the state of 
polarisation of a light beam. In a com- 
pletely polarised beam1, the vibration 
may be either linear in any azimuth at 
right angles to the propagation direction, 
or elliptical, with the major axis at  any 
azimuth. The ratio of the axes of the 
ellipse can have any value and the sense 
of the ellipse may again be right or left L 

Z 
handed. The two limiting cases of elliptic 
vibrations are linear and circular vibra- 
tions. Correspondingly, the light beam 
would be said to be elliptically, linearly 
or circularly polarised. 

A general state of polarisation can 
thus be described by two quantities: 
(a) the orientation of the major axis of Fig. I. Elliptically polarised light. 
the ellipse, which may be specified by 
the angle A which it makes with a given direction in the wave front and (b) the 
ratio of the axes of the ellipse (bla, b< a). The sense of the ellipse could be speci- 
fied by making the axial ratio positive for left-rotating ellipses and negative for 
right-rotating ellipses. The terms right and left-rotation are with respect to an 
observer looking towards the source of light. If the electric displacement vector 
rotates clockwise with progress of time, then i t  is right-rotating. At any instant 
of time the terminus of the electric displacement vector therefore forms a right- 
handed scr-in space for a right elliptically polarised light beam. 

Throughout this article, we shall imagine the light to be propagated along O Z  
(when not specified otherwise), which is taken to be horizontal (Fig. 1). The other 
two axes are taken horizontal (OX) and vertical (OY), the three together forming 
a right-handed system of co-ordinates. 

The orientation of the major axis of the ellipse is given by the angle (A) which 
it makes with the horizontal (OX) measured in the counter-clockwise direction, 

The descriptions of unpolarised and partially polarised beams of light are given in 
Sects. 8 and 21 .  
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as seen by an observer looking towards the source. The ellipticity is defined 
by another angle o, given by tan o = b/a. The two angles 1 and w, which we 
shall denote by azimuth and ellipticity1, uniquely specify the state of polarisa- 
tion of a beam of light and all possible states of polarisation are covered by the 
range 0 to n of 1 and the range - 4 4  to 3-44 of o (taken together). 
/I) Poincard sphere. The states of polarisation of a light beam can be uniquely 

represented by a point on the surface of a sphere of unit radius, whose latitude 
and longitude have the values 20 ,21 .  This representation may be called the 
Poincar6 representation and the sphere, the PoincarC sphere, after H. P O I N C ~  
who first suggested this idea2. The range of values of 2 1  and 2 o  required for 
describing all possible states of polarisation are therefore 2 1 = O to-2 n, and 2 o  = 
- 4 2  to 4 2 ,  which covers the surface of the sphere completely. Thus all possible 

0 states of polarisation are represented by 
L points on a sphere, there being a one-to- 

one correspondence between the points on 
the sphere and the various states of polari- 
sation. A reversal of the direction of the 
major axis changes 1 by n and therefore 
2 1  by 2n. I t  is the same state as before 

'l 
4 

and is represented by the same point on 
the Poincarc sphere. 

Fig. 2 gives a picture of the PoincarC 
sphere. The points H  and V represent 
horizontal and vertical linearly polarised 
light. Both are on the equator (2o =0) 
and are at an angle n apart. L and R 
are the poles of the sphere and represent 
left and right circular vibrations. AU linear " 

Fig. 2. The POINCARE sphexe. A point P of longitude 
2 1  and latitude 7.0 represents an elliptic vibration of States of polarisation are 

azimuth a and ellipticity W. polnts on the equator H C V D ,  the longi- 
iude being equal to twice the angle made 

with the horizontal. The points C and D, which are 4 2  away from H and V 
thus correspond to linear vibrations at & n/4. All elliptical states having the same 
orientation (4 of their major axes are represented by points on the meridian 
(L PR) of longitude 21. All ellipses having the same axial ratio (b/a = tan o) 
are represented by points on the latitude circle (EPF) of latitude 2w. 

We shall, in general, call a beam of polarised light, whose state is represented 
by a point P on the PoincarC sphere, as light of polarisation state P. Similarly, 
a device which produces light of polarisation state P will be called "polariser P". 
A device which transmits light of polarisation state P completely is then called 
"analyser P". As will be seen later, it will be necessary to consider the ortho- 
gonal co-ordinate axes 0 UVW in the space of the Poincark sphere. These axes 
are respectively parallel to HV, DC and LR. 

In crystal optics, we shall be interested in the changes produced in the state 
of polarisation of a beam of light traversing an anisotropic medium. The Poincar6 
representation is admirably suited for this purpose, and we shall therefore deal 
with some of the fundamental properties of the PoincarC sphere in this chapter. 

In spite of its ambiguity it has been decided to use the term "ellipticity" for the sake 
of convenience in preference to such terms as angle of ellipticity etc. When the "ellipticity" 
is small the ellipse is highly elongated, and it becomes a line in the limit when the "ellipticity" 
is zero. 

H. POINCAR*: Theorie Mathkmatique de la Lumihre, Vol. 11, Chap. XII. Paris 4892. 
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A knowledge of spherical trigonometry is required for this purpose, which may be 
readily obtained from the books listed in footnote1. Wherever possible, a per- 
spective diagram of the sphere will be given, but for some purposes, the stereo- 
gaphic projection is more convenient. Details regarding the stereographic 

and its properties will be found in any textbook on crystallography, 
and the books listed in footnote2 may be referred to in particular. The pole L 
is taken to be above the plane in all the projections; points on the sphere below 
the plane of the paper are indicated by a circle around the symbol representing 
the point, e-g. 3. 

In spite of its elegance and simplicity, the Poincar.6 sphere representation of polarisation 
states is not discussed in most textbooks and works of reference on optics. An account of 
the Poincare sphere and its use in the study of the transmission of light in optically active 
birefringent crystals is contained in POCKELS' Lehxbuch ([Z], pp. 11-13 and 309-313). 
Since then, a fair number of original investigations appear to have made use of this represen- 
tations. The advantages of the Poincar8 representation in studies on crystal optics and 

L 
analysis of polarised light were pointed out 
in a recent paper of RAMACHAND- and 
RAMASESI~LN~. A review of some of the 
application of the Poincar.6 sphere has been 
given by JERRARD, more-recently =. 

b 

R 0 X 
a b 

Fig. 3 a and b. Light of state P is incident on an analyser A. Fraction of intensity transmitted is W S * ~  PZ. 

2. Intensity transmitted by an analyser when light of arbitrary polarisation is 
incident on it 6. In Fig. 3, let the analyser be represented by. the state A, (2 AA, 2 ~ ~ ) .  
We wish to determine the fraction of a light beam of polarisation P, @Ap, 2wp) 
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tions to spherical geometry. London 1897. - I. TODHUNTER and J. G. LEATHEM: Spherical 
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S.L. PENFIELD: Amer. J. Sci. 11, 1, 115 (1901) ; 14, 249 (1902). - E. BOEKE: Die An- 
wendung der stereographischen Projection bei kristallographischen Untersuchungen. Berlin: 
Bornwager 1911. See also C. S. BARRETT: Structure of Metals. New York: McGraw-Hill 
1943. 
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Y. BJORNSTAHL: Phys Z.42,437 (1939). - Z. Instrumentenkde. 59,425 (1939). - 0. SNELL- 
MAN and Y. BJORNSTAHL: Kolloid-Beih. 52, 403 (1941). - M.F. BOKOTEIN: J. Techn. Phys. 
USSR. 18. 673 (1948). - G.N. RAMACEANDR.~ and V. CHANDRASEKRARILN: Proc. Ind. 
Acad. Sci. A 33, 19q (1951). - S. RAMASESHAN and V. CHANDRASEKHARAX: Current Sci. 
20, 150 (1951). - S~RAMASESHAN: ROC. Ind. Acad. Sci. A 34, 32 (1951)- - J. Ind. Inst. 
Sci. 37, 195 (1955). - S. PANCHARATNAM: Proc. Ind. Acad. Sci., A 41, 130, 137 (1955) ; A 42 
86, 235 (1955) ; A 44, 247, 398 (1956) ; A 45, 402; A 46, 1, 280 (1957). - G. DESTRIAU and 
J. PROUTEAU: J. Phys. Radinm 110, 53 (1949). 

G.N. RAMACHANDRAN and S.  RAMASESHAN: J. Opt. SOC. Amer. 42, 49 (1952). 
H.G. JERRARD: J. Opt. SOC. Amer. 44, 630 (1954). 
U. FANO: J. Opt. SOC. Amer. 39, 859 (1949). - G.N. ~ A C H A N D R A N  and S. RAMA- 
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which is transmitted by this analyser. It is well known that a 214 plate with its 
slow axis OA, (Fig. 3 b) at azimuth A,, followed by a linear analyser N at  an 
angle wA to the slow axis, constitutes an elliptic analyser A. The action of the 
114 plate is to reduce the ellipse A into a linear vibration parallel to the linear 
analyser and the ellipse A, (antipodal to A) to a linear vibration perpendicular 
to it. When light of polarisation P is incident on this analyser it is easily seen 
that the light transmitted by it does not depend on the construction of the ana- 
lyser, for an elliptic vibration P can be resolved into two qrthogonal vibrations A 
and A, in one and only one way, the intensity of the former component being 
transmitted by the analyser A. Hence without any loss of generality we may 
use the specific analyser described above for deducing the magnitude of the 
fraction transmitted. 

This is done by resolving the gcident light into two linear components P, 
and P, parallel to the axes of the ellipse, the latter lagging in phase by 42 .  Thus 
the displacements along these two directions are for unit intensity 

. . 
up, = cos wp, = - z sin cop. (2.1) 

The incident light resolved along OA, and OA, (the axes of the quarter wave 
plate) is therefore given by 

' 

coswpcos~ +isinwpsin5, 

%A,= coswpsin6 - isinwpcosE (2.2) 

where (Fig. 3 b) 
5 = (AP- AA) - 

On passage through the 214 plate a phase retardation 4 2  is introduced between 
the vibrations along 0 A, and OA, and finally the linear analyser resolves the 
vibration into the plane ON giving the intensity transmitted by the analyser as 

'UA = 'UA, cos WA + i uA, sin w,. (2-3) 

Thus the intensity transmitted by the analyser is 

1 uAI2 = cos2 5 C O S ~  (wA - up) + sin2 5 sin2 (wA + w,) . 
This can be transformed, after some manipulation, into the form 

1'UA]'=g+ [ ~ s ~ ~ ~ w ~ s ~ ~ ~ w ~ + & c o s ~ w ~ c o s ~ w ~ c o s ~ ( ~ ~ - A ~ ) ] .  

From the spherical triangle L P A  of Fig. 3 a we have the quantity within the 
square brackets to be equal to cos FA, so that - 

$+&cosPA - 
1uAI2 = cos2& P A .  

Thus, the fraction of the intensity of light of the polarisation state P  which 
is transmitted by the analyser A is cos2 FA where PT is the length of the arc 
joining P  and A on the Poincari: sphere. This elegant result has a number of 
important applications, as will be seen below. 

In particular, it is seen that if ~2 =A, i.e., the states of polarisation P and A 
are represented by opposite points on the Poincark sphere, then no light is trans- 
mitted. Thus, these two states are orthogonal to one another. An analyser A 
transmits completely light of state A, while it completely cuts out light of state 
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A,, A,  being the point antipodal to A. When arc ~2 varies from 0 to ?G the 
transmitted fraction decreases from unity (P coincident with A) to zero (for P 
opposite to A).  In particular, if A is a linear vibration, then the state A, cor- 
responds to the perpendicular linear vibration. If A is a left circular vibration 
corresponding to L, the orthogonal state is a right circular vibration, then A, 
correspondd to R. If A corresponds to a general ellipse, then the orthogonal 
state A, is the corresponding "crossed" ellipse which has its major and minor 
axes interchanged with respect to the former and has also the opposite sense of 
description. 

In many applications, one is interested in the variations in the intensity of 
light- transmitted by an analyser set close to extinction. In such a case, it is , 

more convenient to consider the smaller arc f i ,  rather than the larger arc ~2 
which will be nearly ?G in value. The fraction of the intensity transmitted is then 
given by - 

t, = sin2 PA,.  (2.6) 

3. Effect of linear birefringence represented on the PoincarC sphere, In crystal 
optics a common problem that occurs is the following: When a beam of particular 
state of elliptic polarisation (PJ is incident on L 
a crystal plate, what will be the intensity and 
the state of polarisation P, of the emergent 
light. The crystal resolves the incident light 
into two specific polarised beams in different 
states of polarisation which are propagated with 
different velocities and, if the crystal is absorbing, 
with different absorption coefficients. In the 
case of a transparent crystal, the component 
beams will be in opposite states of polarisation 
A, A,. When the specific states of opposite 
polarisation are linear, circular or elliptic, we 
shall refer to the medium as linearly, circularly 

R or elliptically birefringent. One of the important 
Fig. 4. Effect of l inearbV~ence .  results of the Poincark representation, which a,,,, s, introaucd between two linear 

makes it so useful in crystal optics, is that the gth,"~ti"~c&~",~&f&~~~en~~e 
state P, of the emergent light can be obtained 8' about the faster state M. 

from the state PI of the incident light by the 
simple geometrical operation of rotating the sphere about the axis A A ,  through 
an angle A, where A is the phase advance of A over A, introduced by the 
crystal. We shall first consider the case of a linearly birefringent medium. 

Let t B ~ t w o  linear states of polarisation which are propagated unchanged 
through the medium be H and V (Fig. 4) and let the phase difference introduced 
between them due to the passage through the medium be 6, H leading V by 8. 
Suppose unit intensity of linearly polarised light at azimuth /3 represented on 
the equator by Po (HP, = 2/? in Fig. 4) be incident on the crystal. This may be 
resolved along H and V giving the components cos/? and sin/?. Let this be 
converted into an elliptical beam represented by the point PI as a result of the 
phase difference 6 introduced. Let this ellipse have an azimuth A and ellipticity o. 
Resolving the vibration along H and V, we have, for unit intensity, the two 
amplitudes to be 

~ ,=coscocos I  +isinwsinI ,  (3 .4)  
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while their phases 8, and s2 are given by 

t a n ~ ~ = t a n w t a n A ,  (3-3) 

tans2='- tanwcot1. (3.4) 

The amplitudes of the two components must be equal to cos ,9 and sin ,9, so that 
we have 

cos2 ,a = c0s2 O C O S ~  A f sin2 o sin2 1 ,  

sin2p =c0s2wsin21 +sin2w c0s21. 1 (3.5) 

The two equations are equivalent and can be put in the form I--- 

C O S 2 8  =cos2wcos2a. (3.6) 

The phase difference between the two is given by 

6 = E ~ -  E ~ ,  9 

so that 
2tanw 1 tan (gl - Q) = - (tan 1+ cot 1) 

1-ta19o 2 (3.7) 
and 

tan 6 =tan 2w/sin 21. (3.8) 

We thus have two relations (3.6) and (3.8) between the quantities w, 1 and @, 6. 
They can be interpreted very simply by saying that the point PI is obtained from 
Po by rotating it about the axis H V through an angle 6. Both Eqs. (3.6) and (3.8) 
can be verified to hold between the elements of the right angled spherical triangle 
HP1 K (Fig. 4). 

Thus, starting from the linear polarisation state Po, the effect of introducing 
a phase difference 6 between the components H and V (H leading V by 6)  is to 
rotate the representative point about the axis H V  by an angle 6, measured 
anticlockwise looking from H to V .  It follows from this that, if the initial state 
is represented by a point PI, now considered as a general point, then the effect 
of a phase difference 6' between H and V is to bring Pl to P, by a rotation through 
an angle 6' about HV.  

So also, if the phase difference 6' is not between the linear states H and V 
but between the two states of linear polarisation of azimuth a and a + 4 2  re- 
presented on the PoincarB sphere by points M  and N,  of longitude 2a,  n + 2 ~  
on the equator, the representative point is rotated by an angle 6' about the 
axis M N  (from P, to Pi). 

Similarly, if a phase difference 6 is introduced between left- and right-circular 
vibrations, the effect can readily be shown to be equivalent to rotating the sphere 
through an angle 6 about LR. Suppose the incident beam is linearly polarised 
parallel to OX, represented by the point H on the equator. Following FRESNEL, 
we may resolve $he linear vibration into two circular vibrations (which are in 
phase along OX). If the left rotating circle (L) is advanced in phase by 612 while 
the other (R) is retarded by 612 (phase difference =a), it may be shown that 
the two together will produce a linear vibration at  azimuth 612. The correspond- 
ing representative point remains on the equator, but is at  longitude 6. I t  is 
obtained from the original state by a rotation through an angle 6 about LR. 
The proof is directly generalised to any linear vibration. Considering any ellipse 
as made up of two linear vibrations at right angles but with a phase difference 
of 4 2 ,  it will be seen that both components will be rotated by 612 by introducing 
a phase difference of 6 between L and R. Thus the axial ratio of the ellipse is 
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wlaffected, but its azimuth is rotatedl by 612; the latitude of the representative 
point on the Poincar6 sphere is unchanged but its longitude increases by 6. This 
is equivalent to rotating the point through an angle 6 about LR. 

Thus, the effect of linear or circular birefringence, and the consequent intro- 
duction of a phase difference 6 between two orthogonal linear or circular states 
of polarisation, can be determined by finding the effect of a rotation of the 
Poincar6 sphere through an angle 6 about the appropriate axis of rotation. These 

are in fact consequences of even more general properties regarding the 
addition of any two orthogonally poIarised beams (see Sect. 4). 

4. Coherent addition of polarised bearnsz. a) Direct interbence of two polarised 
beams. Suppose we have a pair of orthogonal analysers A and A,. Then it follows 
from the results (3.4) and (3 - 5) that the inten- 
sities transmitted by the two analysers would 
be constant for all states of polarisation (P) for 
which the arc P^A (and therefore also the arc 
~2,) is the same. Thus, the locus of points on 
the PoincarC sphere representing the states of 
polarisation for which a definite fraction f is 
transmitted by the analyser A is a small circle of 
centre A and radius PT where 

cos23PA = f .  (4-1) 

For all these states, the analyser A, will transmit Fig. 5. Coherent additionof b-. 
a fraction When a beam of intensity I and any state P - is decomposed into two beams in the states 

c o s 2 ~ P A , = s i n 2 ~ P ~  = 1  -6. P, and P,, theirintenslties I, and II are given 
by Eqs. (4.5) and (4.6) ; ths phase difference 
is the supplement of half the area of the 

The above result mav be used to work out triangle P, P. P, . 
the resultant of the coherent addition df two 
beams of polarised light, say 1 and 2, whose states are represented by points P, 
and P, on the Poincar6 sphere (Fig. 5) and whose intensities are I, and I, re- 
spectively. The resultant is the state P. Denote the arcs PP,, PP,, and PIP2 
by 2a, 2 b, 2c respectively, and similarly the arcs Pa P, and P, P, by 2af ,  26' re- 
spectively. Let 3, be the state opposite to 4 and resolve the beam 2'into the 
state PI and PI,, the intensities of which will be I, coszc and I, sin2 c respec- 
tively. The intensity of the resolved component of the combined beam along P 
may be obtained by the usual formula for combining two vibrations in the same 
state. The resultant intensity is 

I ~ ~ = I , + I ~ C O S ~ C  + 2 ~ c o s c c o s d .  (4.2) 

The intensity of &k-lresolved component of the combined beam in the state Pla is 

IP*. = 12sin2c. (4.3) 

Since the beams of intensity Ip, and I&. are orthogonal, the resultant intensity 
is just the sum of the two, independent of the phase difference between them. 
Thus, 

I = I ~ + I , + ~ ~ / ~ ~ c o s c c o s ~  (4.4) 

This uses the fact that the phase difference betmeen the components is unaltered by the 
operation of rotation. We shaII not prove this, as a general proof for elliptic birefringence is 
given in Sect. 4. 

S. PANCHARATNAM: Proc. Ind. Acad. Sci. A 44. 247 (1956). 
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and we may conveniently refer to 6'as the phase difference between the two 
beams themselves though they are in different states of polarisation. 

Now, the intensities of the resolved component of the resultant I in the state 
PI, and of I, also in the state Pla must be equal, since P, is orthogonal to PI,. 
Hence 

I s i s b  = 12sin2c 
or 

I, = I sin2 b/sin2 c . , . (4.5) 
Similarly, 

I - I sin2 alsin2 c . 
Hence l - ~  (4.6) 

I - I, - I ,  sin2 c - sin2 b - sin2 a 
cos 6 = - 

2 cos 2 sin a sin b cos c 

- - 1 - cos2 c - cos2 b' - C O S ~  a' 
2 cos a' cos b' cos c 

or 
cos 6 = cos $ E' (4.9) 

where 'E' is the spherical excess or area of the spherical triangle PIP2 Pa which is 
colunar to the triangle PPIP,. Thus 

S=Z&$E ' .  (4.10) 

In particular, when 6 =0, &&'=z or the spherical excess is 2n. The points P 
and Pa must then lie on the great circle passing through Pl and P,, P lying on the 
shorter arc PIP2. 

Thus, given 11, I, and 6, one can first calculate I from Eq. (4.4) and then the 
spherical arcs a and b from Eqs. (4.5) and (4.6) which immediately fix the re- 
presentative point P of the resultant, except for an ambiguity in the sign of 6, 
which is present also in Eq. (4.10). The ambiguity can be removed by a consider- 
ation of the combination of orthogonal states and a comparison with the conven- 
tions adopted in Sect. 3.  

Suppose P, tends to the point PI, i.e., 2 c - t ~ .  Then, the triangle PIPP, 
becomes a lune in the limit (Fig. 6a). Denote the angle between the great circles 
PIP, PI, and Pl P Pl , at P as A. Then the spherical excess of the colunar tiangle 
is E' = r! (5t - A). Thus, we have 

A = f  6. (4.11) 

Further since the beams are orthogonal 

1=11+12 (4.12) 
and 

11/1 = sin2 b = cos2 a,  

I,/I = sin2 a = cos2 b . 1 (4.43) , 
,,< 

If the phase relationship is kept constant and 1,/11 is altered, the resultant state 
moves along the locus for which A is constant i.e. along a great circle (e.g. Pl PP,, 
of Fig. 6a). On the other hand, if the ratio 1,/11 is given and the phase difference 6 
is varied, then the resultant occurs in a small circle whose axis is Pl P, (i.e. PI PIJ. 
It is however necessary to define the condition when the two have the same phase, 
which may be done by taking some great circle through PIP, as the standard 
of reference (say the one marked 6 =0 in Fig. 6a). Then, for any given 6, the 
resultant P Lies on a great circle rotated from the standard through'an angle 6. 
Thus two position are possible corresponding to A = & 6. 
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We have already shown (Sect. 3) that for the case of linear birefringence the 
upper positive sign is to be taken if PI leads P2 in phase. From considerations of 
analytical continuity the same must be true for adjacent axes of rotation and 
hence for any axis of rotation of the PoincarC sphere. We have thus proved the 
proposition stated in Sect. 3 namely that the effect of any elliptic birefringence 
is represented by an anticlockwise rotation about the point representing the faster 
state. 

This result for orthogonal vibrations may be used to resolve the ambiguity 
in (4.10) for the case of non-orthogonal vibrations by the method of analytical 
continuity, giving 

a = n - & E '  (4.14) 

Fig. 6 a and b. Imcus of the resultant state of polarisation P when the ratio of the intensities of two beams P, and P, 
or their phase difference is varied the cther remaining constant. (a) States PI, P, of the combining beams are orthogonal. 

(b) States PI, P, non-orthogonal 

where E' is to be counted positive if the sequence of points PIPUP, (and therefore 
the sequence PlP2P) is described in a counter-clockwise sense on the surface 
of the sphere. 

The necessity for defining the condition of zero phase difference occurs only 
in the case of orthogonal vibrations because one cannot be "resolved" into the 
other. When Pl and P2 are not orthogonal, then the resolved component of one 
along the other can be compared for specifying their phase difference. The result- 
ant intensity is then a maximum, when the phase difference is zero as seen from 
Eq. (4.4, and the resultant state of polarisation lies on the arc PIP2 directly join- 
ing P, and P,. When the two beams are opposite in phase, the intensity is a mini- 
mum and the resultant state lies on the greater segment (PIPaP,) of the great 
circle thr%ii& Pl and P,. 

It follows from Eqs. (4.5) and (4.6) that, when the phase difference between 
the two beams is altered without altering the ratio of their intensities, then 
sin2a/sin2b is a constant. The locus of P is then a s m d  circle, with its centre 
on the great circle through PI and P2 (Fig. 6b). On the other hand, if the ratio 
of the intensities is altered, keeping the phase difference constant, then E' is a 
constant, and the locus of P is again a small circle, but passing through PI and P2, 
with its centre of the great circle which is the perpendicular bisector of the arc 

P .  (Fig. 6b). When PI and P2 are orthogonal, the former family of small circles 
are all perpendicular to the diameter PIP, and the latter all become great circles 
passing through Pl and P2 (Fig. 6a). 

18) Interference of two beams after resolutio?i by an analyser. Given a vibration 
in state Pl (Fig. 5) its resolved components in the orthogonal states P and Pa 
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can be said to be in phase by choosing the arc P P2 Pa as the standard arc defining 
the zero of phase difference for two orthogonal states. Considering a second 
vibration in state P2, let us also resolve it into its components in the states P 
and Pa. Let 6' be the phase advance of the P-component of the vibration in state 
P2 over the P-component of the vibration in state PI; and similarly let 6" be the 
difference in the phases of the Pa-components of the vibrations in states P, 
and PI respectively. Then from a consideration of the results of the preceding 
sub-section, 

6'- 6" = p  (4.1 5) 

where F is the angle P,@P,, counted positive if (on looking from.2 to Pa) an 
anticlockwise rotation brings arc PPl to arc P P,. 

The result of the last paragraph may be used to discuss a problem of common 
occurrence in crystal optics (see e.g. Chap. C). Two beams 1 and 2 initially of 
intensities Il and I, and in states of polarisation Pl and P2-the first having 
a phase advance 6 over the second-are made to interfere after transmission 
through an analyser which resolves them to the same state of polarisation P .  
(Note that in the present context P does not represent the resultant state obtained 
by directly compounding the beams 2 and 2.) The P-components of the beams 
of polarisation PI and P2 will have intensities Il cos2b and I2 cos2a respectively 
and our main problem in this section is to determine their phase difference 6'. 
The intensity transmitted by an analyser P is then given by 

Ip = Il cos2 b + Iz C O S ~  a + 2 1m2 cos a cos b cos 6'. (4.1 6) 

Similarly the P,-component of the resultant beam will have an intensity 

The intensity I of the resultant beam, obtained by directly compounding 1 and 2, 
is obtained by adding (4.16) and (4.1 7) using (4.1 5 )  : 

1 = 1 , + 1 ~ + 2 ~ ~ ~ { c o s a c o s b c o s 6 ' +  sinasinbcos (6'-F)). 

By applying the standard expressions for the spherical excess of a triangle this 
reduces to 

I =I,-/- I ~ + ~ ] ~ ~ c o s c c o s ( ~ ' + ~ E )  (4.18) 

where E represents the area or 'spherical excess of the triangle P PI P2 itself (counted 
positive if the sequence of points P ,  PI, P2 describe the periphery of the triangle 
in a counter-clockwise sense). 

Comparing (4.18) with (4.4) we obtain the interesting result that if two beams 
initially have a phase difference 6 then after passage through an analyser their 
phase difference becomes 

g = 6 - L s  z ,  (4.1 9) 

i.e., an additional phase difference - QE is introduced in the process of analysa- 
tion. The intensity transmitted by the analyser (i.e., the intensity obtained by 
the interference of the resolved components) is obtained by substituting (4.19) 
in (4.1 6) : 

Ip = I, cos2 6 + I2 cos2 a + 2 ym cos a cos b cos (6 - & E) . (4.20) 

The limiting case when the states of polarisation P, and P2 become oppositely 
polarised is of particular importance (Fig. 6a). In this case, if the beams have 
been originally derived by the decomposition of a beam in state P', we must 
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take the great circle P,P'P, as defining the condition of zero phase difference. 
~t follows from (4.19) (since E becomes now the area of a lune) that on passing 
through an analyser P the resolved component of the first beam lags behind 
that of the second by an angle A which denotes the angle P P, P' (measured posi- 
tive in a counter-clockwise sense). Thus, for example, when two circularly 
polarised beams in opposite states are incident on a linear (or elliptic) analyser, 
the phase difference between the transmitted beams is altered by 26 when the 
azimuth of the analyser is rotated (as a whole) through an angle 6-a result which 
finds application in certain types of phase-contrast microscopes which use 
crystal-optic elements1. 

5. Propagation of light through an optical system (no absorption). a) Non- 
absorbing o$tical elements of infinitesimal thickness. We wish to investigate the 
change in the state of polarisation of a beam of light of polarisation state P as 
a result of its passing through a number of optical elements. Each element is con- 
sidered to be either (a) a parallel plate of birefringent material, with principal 
planes oriented at  an arbitrary azimuth, or (b) an optically active material, which 
only rotates the azimuth of the elliptically polarised beam. Systems of this type 
were considered by JONES making use of a matrix calculus and his papers may 
be referred to for examples and for further details. The matrix method of JONES 
is also discussed in Sect. 12. The overall effect can however be readily worked 
out by the use of the Poincark sphere. 

Before proceeding to the general case we shall first consider a special case 
of such combination, which is of particular interest, viz., when the effect of each 
optical element is infinitesimai i magnitude. An example is that of a birefringent 
optically active crystal. Although strictly the medium must be considered to 
have the properties of both birefringence and optical activity and should be 
treated as such in a rigorous theory (see Chap. B), one may also picture the crystal 
to be made up of alternate infinitesimal layers of equal thickness exhibiting 
alternately, only linear birefringence and only optical activity. A thickness dz  
of the optically active birefringent medium can on the above picture be regarded 
as a linearly birefringent element producing a retardation d6 = 6' dz, and an 
optically active element producing a rotation de =p' dz  where 6' and Q' define 
respectively the retardation per unit thickness in the absence of optical activity 
and the optical rotatory power in the absence of linear birefringence. Suppose 
the principal axes of the birefringent element are at azimuth u and u +n/2, 
represented by M and N (Fig. 7) of which M is the faster axis. Then the effect 
of passage through these two optical elements is to rotate the Poincarh sphere 
through angles dd and 2de in an anti-clockwise direction about M N  and LR 
respectively (Fig. 7). The addition of two infinitesimal rotations follow the law 
of vectorial addition and the resultant is independent of the sequence and is a 
rotation through a i  angle dA = l/(d 6)2 + (2de)2 about the axis EF which is in 
the plane of MN and LR and makes an angle 2~ with NM where 

For unit thickness of a birefringent, optically active crystal; the resultant effect 
is an anti-clockwise rotation of the Poinear6 sphere through an angle 

A' = v m  (5.2) 

See e.g. BENNETT, OSTER~ERG, JUPNIX and RICHARDS: Phase Microscopy, Chap. 3. 
New York 195 1. 

R.C. JONES: J. Opt. SOC. Amer. 31, 488, 493, 500 (1941). 
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about the axis EF, where the elliptic state E is propagated with the faster 
velocity. . . 

Thus, the most general type of non-absorbing crystal (or optical element) is 
one which leads to a rotation of the Poincark sphere about an axis EF, which 
is neither the polar'axis LR nor does it lie in the equatorial plane. Analogous to 
the purely birefringent crystal, in which linear vibrations parallel to its principal 
directions are propagated unchanged, and the purely optically active crystal 
without birefringence, in which L and R are propagated unchanged, light of 

polarisation states E anM, will be propagated 
unchanged in this crystal. This is so because a 
rotation of the sphere about EF leaves E and F 
unchanged. These states are bvo crossed ellipses 
which are orthogonal to each other. 

In such a crystal, incident light of arbitrary 
state of polarisation Po is split up into the two 
orthogonal elliptical states E and F, which are 
propagated unchanged in state, but with a re- 
lative phase retardation A' per unit thickness. 
On emergence, they recombine, and the resultant 
state P is obtained from Po by a rotation o\f the 
PoincarC sphere about the axis EF, as shown -in 
Sect. 4. The optical phenomena in such crystals, 
are treated in Chap. B. \\ 

Since the emerging waves are orthogonally 
polarised they do not interfere and the emergent 

N ktensity will be the same as the incident inten- 
sity. The crystal will therefore be transparent 
as is to be expected. Vice versa, the operation 
for a thin layer of any non-absorbing optical 

R 
Fig. j. Effect of a =on-absorbing crystal element must necessarily be a rotatio; through 
exhibiting b i i e n c e  and optical activity. an infinitesimal angle ad = A f d z  about some 
If 8'is the phase difference due to birefrin- 
gence and Q, the rotationin axis EF. This can be resolved into three in- 
the absence Of b i i e w  dtant finitesimal rotations dA,, dA,, dA, about the effect is a rotation of the Poincar.6 sphere 

though an angle d' about the axls EF. axes H v, CD, and LR respectively. These axes 
correspond to the co-ordinate axes 0 U, 0 V ,  0 W 

in PoincarC space (Fig. 2). Thus, the effect of a general infinitesimal (non- 
absorbing) optical element on the state of polarisation of light passing through 
it is describable by means of three infinitesimal rotations about 0 U, 0 V and 0 W. 

,3) Combined effect of a series of traasparent plates. We now return to the 
problem stated at  the beginning of the section, viz., the passage of polarised 
light through a series of transparent parallel plates of finite thickness. For a 
linearly birefringent plate producing a relative phase retardation 6, the effect 
is to rotate the PoincarC sphere about an axis in the equatorial plane through 
the angle 6. The orientation of the axis is known from the orientaqon of the 
principal plane. So also, if p is the rotation produced by the optically active plate 
(p is positive for left-rotation), then the effect is to rotate the sphere through an 
angle 2p about LR. (If the system also contains plates possessing both linear 
birefringence and optical activity, the effect of any such plate is to rotate the 
sphere about a given axis EF through a givenangle A.) 

The resultant of two successive rotations about two axes is again a rotation 
about some other axis of the sphere which may be determined either analytically 
or graphically by the construction ilIustrated in Fig. 8. The combined effects 
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of the successive rotations of the PoincarB sphere may in this manner be replaced 
finally by a single rotation about some general axis in Poincark space, i.e., the 
combination will be equivalent to a single elliptically birefringent plate (of the 
type discussed in the preceding sub-section), which shows differential retardation 
for two orthogonally polarised elliptic states. Alternatively, the resultant single 
iotation of the sphere can be resolved into two rotations about perpendicular 
==-the first may be about LR and the other will then be about some axis 
in the equatorial plane which may be determined by the construction of Fig. 8. 
Thus the combination is equivalent to a system con- 
taining two elements, one a rotator and the other a 
retardation plate. 

Since rotations about non-pardel axes are non- 
commutative operations, it is necessary to specify the : exact sequence of the various elements. Interchanging 
any two of them would in genera1 lead to a change in 
the final state of polarisation. The complete solution Z4 
in the important case when all the plates exhibit only 
linear birefringence is given in Sect. 74. - 24 

Fig. 8. Canstruction for the wm- 
6. Effect of absorption and dichroism-no birefrin- 

f , " ~ ~ a ; ~ U , " ; ~ ~ U ; i  &% 
gencel. The effect of an isotropic absorption would the internat angle at A followed 

only lead to a reduction in intensity, without any ~ ~ , " e ~ ~ & b ~ t ~ e  y;f% 
change in the polarisation state. On the other hand, ~ $ P ~ & , ' " t ; c ~ ~ ~ e x ; ~  
if the medium exhibits linear dichroism, with the angle at C. 

principal planes along M, and Nk (Fig. 9), then the 
absorption coefficients for the linear vibrations Mk and Nk will be different. Let 
these be k, and k,  say for amplitude. In consequence, if a general elliptic vibration 
is resolved along Mk and Nk, then the components would be attenuated differently 
during the passage through the crystal plate, and on emergence the polarisation 
state would be changed. 

If Fke and Gkn are the arnfilitudes of the resolved components of the incident 
beam of the unit intensity along Mk and Nk, then it follows from Eq. (2.5) that 

Fk, = cos qO, Gko = sin % (6.1) 

where 2q0 is the angular distance between Po and Mk on the PoincarC sphere. 
Thus 

Gk,lq0 = tan qo . (6-2) 

As a result of absorption, the amplitudes of the two components are reduced by 
factors e-KTGd e-kz" and in consequence the resolved components on emergence 
are 

Fk = Fko e-?+ P, (6.3) 

Gk = Gko e-k*z, (6-4) 

and if P is the state of polarisation of the emergent light and 2q is the arc P%&, 
then 

tan 7 = tan q, e(kl-kz)Z. (6.5) 

If we consider a medium exhibiting pure linear dichroism i.e., with no birdking- 
ence, the relative phase difference between the M, and N, components of Po is 

S. PANCH;ZR~TNAM: Roc. Ind. Acad. SC~.  .h 42, 86 (1955). 
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unaltered. This restricts the locus of P to the great circular arc MkPoNk (as 
shown in the discussion in Sect. 4). Hence the position of P is as indicated in 
Fig. 9. It moves towards the less absorbed component, i-e., towards or away 
from M, along the arc Mk Po Nk, according as K, is > or < k,. 

The infinitesimal operation of linear dichroism corresponds to the passage 
through an infinitesimal distance dz. If we put k = (h- k,) and denote the 

L length of the arc MkPo by s, then it follows from 

tan (q + dq) = tanq ekdz 

= tanq (1 + k-a* 
kdztanq =d(tanq) =sec2qdq. 

dsk = 2dq = k sin s, dz. (6.6) 

Thus, the arc pSk becomes larger if k is positive,. 
and vice-versa. 

Similarly, if the medium exhibits circular 
1 dichroism i.e., the two circular vibrations L and 

Fig. 9. Effect of dichroism on the state of 
,-tion. If Mk and Nk are the R are differently absorbed, then the effect on 
axes of linear dichism, the initial state PO the polarisation state of a beam of light is de- moves to P towards the less absorbed wm- 
~ n e n t  along a great we. IU the case of scribed in a manner similar to that given above 
circular dichroism, it moves to F along the 

meridian of longitude. (on the Poincare sphere). Let k be equal to 
(kL-kd. Then, if SL is the length of the arc 

LP,, then on passing through an infinitesimal thickness dz, the point Po moves 
along the great circular arc LPoR by a distance 

asL= ksinsLdz, (6.7) 

an equation exactly analogous to Eq. (6.6). 
The most general case possible is one in which the medium exhibits differential 

absorption for two crossed ellipses, say E and F. In this case, the state Po goes 
to the state P as a result of passage through the medium, and if kE and k, 
are the absorption coefficients for light of polarisation states E and F and k = - 
(kE - k,) and s~ =arc E P then 

dsE = ksins,dz (6-8) 

and P lies on the great circle E PF. In all these cases it is assumed that the medium 
exhibits no birefringence. 

Analogous to Eq. (6.5), one could also obtain an equation for the position 
of the final state of polarisation P for a finite thickness also in the cases repre- 
sented by (6.7) and (6.8). J 

7. Propagation of light through an optical system with absorption. It was 
mentioned in Sect. 5 that the infinitesimal operation in the most general case of 
birefringence is a rotation through an angle dA about a general axis, which could 
be resolved into three components dA,, dA2, dA, about 0 U, 0 V ,  0 W respectively. 
From the vectorial law of addition of infinitesimal rotations it can be shown that, 
if P, Q, R, are the direction cosines of the direction EF referred to 0 U, 0 V, 0 W, 
then 

, dA,= PdA,  ad,= QdA, dA,=RdA (7- 1) 
so that 

(dA)2 = (dAJ2 + (dAJ2 + (dAJ2. (7.2) 
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A closely analogous result can be derived from the infinitesimal operation 
of dichroisml.. The operation, as seen from Eq. (6.8), is a movement of the re- 
presentative point P away from E by an amount ds proportional to sin E? =dk 
(say), where d k stands fork ds. This may be shown to be equivalent to the resultant 
of three such elementary operations of dichroism associated with 0 U, 0 V,  0 W 
and of strength P dk, Q dk, R dk respectively. Thus, the point P is displaced 
away from 0 U in the great circle U P  U' by an amount 

Similarly, ds, = Qdksin V? = d k , s i n T ~ ,  
h 

(7.3) 

d s , = ~ d k s i n ~ ~ = d k , s i n W ^ P ,  

and the resultant of these three displacements (which is independent of the 
sequence, with infinitesimal operations) is equivalent to 

ds =dksin~^P.  
It also follows that 

= (dU2 + ( d u e  + (d$I2. 

The most general type of optical medium will be both birefringent and dichroic. 
In such a case, for an infinitesimal thickness, the effect of birefringence is given 
by the three quantities d A,, dd,, d A, and that of dichroism by d h ,  d k,, d k .  
Thus, six quantities have to be specified to describe the variation in the state of 
polarisation of the transmitted light. In addition, two more quantities are 
required to describe fully the light beam, namely its amplitude and its absolute 
phase. The changes occurring in amplitude and phase while passing through 
an infinitesimal thickness of the crystal may be defined by a mean absorption 
coefficient K and a mean refractive index n. These two quantities cannot be 
represented on the PoincarB sphere, which only represents the state of polarisa- 
tion, without spec+g the amplitude or the absolute phase. 

It can be shown that an infinitesimal layer of such a medium exhibits dif- 
ferential absorption and differential retardation with respect to two non-ortho- 
gonal elliptic states (see Chap. B in Sect. 52). Hence the propagation through 
a finite thickness of a homogeneous medium of this type can be handled by the 
application of the results of Sect. 4. However, the propagation through an optical 
system of elements, which are of finite thickness and some of which are absorbing 
cannot be conveniently worked out by means of the Poincark sphere-at least 
no geometrical analysis of this method appears to have been worked out. The 
problem can however be analysed by matrix methods (Sects. 12 and 13) partic- 
ularly by the method introduced by JONES. 

8. Incoherent adhition of light beams. Partially polarised light2. The discussion 
so far had been confined to completely polarised beams of light and the decomposi- 
tion and coherent addition of such beams which occurs during passage through 
an anisotropic medium. We shall now consider the state of polarisation of a 
mixture of two perfectly polarised incoherent beams, whose states of polarisation 
are different. 

1 We are here considering the case of orthogonal dichroism, i.e. that in which the different 
absorbed states are oppositely polarised. It can be shown that non-orthogonal dichroism 
can be resolved into orthogonal birefringence together with orthogonal dichroism for infini- 
tesimal operations. 

U. Fmo: J. Opt. Soc. Amer. 39, 859 (1949). - G.N. RA~ACHANDRAN: J. Madras Univ. 
B 22, 277 (1952). - See also Sect. 17. 
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This is best discussed by using the intensity formula (2.4). Suppose P, and P, 
are the states of the two completely polarised beams whose intensities are in 
the ratio of f , : f ,  and that these two beams are mixed incoherently. Thus, there 
is no phase correlation between the two, and if we allow the beam to pass through 
the analyser A, then the total intensity is just the sum of the intensities of the 
two beams transmitted by A. Remembering that the intensity of the resultant 
is the sum of the components, it follows from Eq. (2.4) that the fraction of the 
resultant beam which is transmitted by A is \ 

If we indicate unit vectors along OP, and OP, by PI and P, and that along OA 
by A, then we have 

t A = + + + ( f l q - f - f 2 P 2 ) . A  
= & + & p . A  I (8-2) 

where 
~ = f l P , + f , p , -  . (8.3) 

Obviously, Eqs. (8.2) and (8.3) hold for any analyser A, and (8.2) is the generalised 
form of Eq. (2.4) which in our present notation may be written in the f o y :  

t A = ) + $ P . A  (8.4j. 

where P is now a unit vector parallel to O P .  The intensities transmitted by an 
analyser of two beams having the same P will be identical and following STOKES, 
we may assume that these beams are identical in all other respects. The generalised 
equation for an incoherent mixture of two completely polarised beams is (8.3), 
and the magnitude of the vector p is given by 

. lpl = I P I + P ~ I I A + P ~ = ~  
where 

p,=f,P, and p ,=f ,P , .  (8.5) 

Thus, the state of polarisation of the mixed beam may be defined by the vector p ,  
whose magnitude $ < I .  In PoincarC space, the state may be represented by 
a point within or on the swface of the sphere of unit radius. If it is on the surface, 
then it represents completely polarised light. 

We shall now examine the nature of the light beam represented by a point P, 
not lying on the surface of the PoincarC sphere (Fig. 10). Let the length of the 
vector 0 P be 9, whose magnitude is less than unity. If we examine this light 
beam by an analyser A,  then from Eq. (8.2), the fraction of the intensity 
transmitted by it is 

tA=&+Q+cosa  (8.6) 

where a is the angle between O P  and OA. Obviously, this is maximum and 
minimum corresponding to cos a = 1, i.e. a = 0 or z. The corresponding posi- 
tions of A are shown in Fig. 10 as A,  and A,, and in both cases, 09, or OA, is 
parallel to O P ;  only they are directed in opposite senses. The maximum and 
minimum values are: 

t -I + & p  and t A p = + - + p .  (8.7) 

Thus, unLike with completely polarised light, there is no complete extipction of 
the light beam at any setting of the elliptic analyser, nor is there complete trans- 
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mission. Such a beam of light would be called partially polarised. Since the 
maximum and minimum of transmitted intensity occurs at the orthogonal set- 
tings A, and A, of the analyser, one may say that the polarised part of the light 
beam has the state represented by A, and that there is in addition an unpolarised 
component. The relative proportion of the two is readily worked out from 
Eq. (8.6), which may be put in the form: n- - 

Here, 8 + $ cos c i  is the fraction of the intensity 
of a completely polarised beam of state re- 
presented by Al, which would be transmitted 
by an analyser A. Thus, the beam consists of 
a fraction @ of completely polarised light of the 
state A, and a fraction zc = (1 - 13) of unpolarised 
light, half of which is transmitted by any 
analvser. 

fhis then is the description of partially f $ & ~ ~ 6 ~ ~ ~ ~ t i ~ ;  :f ~$2; 
polarised fight, of degree of polarisation f i .  If polarised beam is represented by the h i n d  

vector p whose length 9 is the degree of p = 0, we get completely unpolarised light; the po%atioo and whose orientation A, re- 
corresponding representative point coincides ~ ~ ~ e l , " & ~ t ~  221g;Etzf12; 
with the centre of the Poincark s~he re  and anv ~a l led  the Stokes vector. 

analyser would transmit half of its intensit;. 
The state of partially polarised beam can be represented by a point P within 
the PoincarC sphere of unit radius, the two limiting cases being a com$letely 
polarised beam, represented by a point on the surface and an unpolarised beam, 
represented by the centre. 

9. Stokes parameters. The geometrical representation in Poincarh space of 
partially polarised-fight discussed above can be given an analytical form by 
taking the components of the PoincarC vector along the three co-ordinate axes 
0 U, 0 V, 0 W. If these components are denoted by u, v ,  w then obviously, 

The intensity I of the light beam and the three components of the vector I p  
namely Iu,  IZI,  Iw are called the four "Stokes Parameters" of the beam of light. 
They are respectively denoted by the symbols 

The vector I p  may be called the Stokes vector 2 of the light beam. 
The above parameters were first introduced by  STOKE^^ in connection with 

his studies on polarised light more than a century ago. Many of the theorems 
discussed below were proved by him even then. In fact the concept of unpolarised 
and partially polarised light which he put forward so long ago is remarkably 
modem and is consistent with quantum mechanical concepts. The Stokes para- 
meters have however found very few applications until recently. SOLEILLET~ 
used them for a study of fluorescence, while PERRIN~ developed a general theory 
of the polarised components in light scattering in terms of Stokes parameters. 

1 C. G. STOKES: Trans. Cambridge Phil. Soc. 9, 399 (I 852). 
P. SOLEILLET: Ann. Phys., Paris 12, 23 (1929). 

3 F. PERRIN: J. Chem. Phys. 10, 41 j (1942). 
Handbuch der Physik, Bd. XXV/I. 2 
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It was C H A ~ ~ D R A S E K H A R ~  who drew pointed attention to the advantages ot these 
parametzrs in optical studies. MUELLER, has made a systematic use of these 
parameters in a course on optics but unfortunately this treatment has never 
been published zlz extenso. Since then, Stokes parameters have figured in several 
papers3, some of which are mentioned in the later sections. The relationship 
between the PoincarC sphere and Stokes parameters is discussed by FA NO^ and 
RAMACHANDRAN~ while a few reviews have also appeared recently6. 

I t  is obvious that 
1 2 4 - i F g q 3 ,  (9-3) 

the equality occurring only for completely polarised light. --- 
The most interesting property of the Stokes parameters is that, if  two light 

beams are incoherently added, then their Stokes parameters are additive. This 
follows from a result analogous to Eq. (8.3), which holds for the incoherent 
addition of partially polarised beams. If pl and p ,  are the Poincar6 vectors of 
the two beams and fl and fi are the fractions of the intensity contributed by the 
two beams, then the intensity of the resultant beam of intensity I which is 
transmitted by an analyser A is 

IA=-rfI(+++Pl.A) +I f , (&+*p, .A)  
= + I  [ I  + ( f l ~ l +  f z ~ , )  . A1 (9.4) 
= & I [ 4 + p . A ]  

where 
P = f i ~ l +  f,p,- (9.5) 

If now I ,  and I ,  are the intensities of the two beams, and the resultant is I, 
we have 

I =I1+I2  
and 

, (9.6) 

I P  = I f l ~ l +  I fZP,  =I,% + IZP, 
giving 

(9.7) 

M=Ml+M,,  C=Cl+C,, S=S1+S,.  (9-8) 

The result can obviously be generalised to the incoherent addition of any number 
of light beams, and each Stokes parameter of the resultant beam would be the 
sum of the corresponding parameters of the component beams. 

The intensity formula (9.4) can now be put in terms of the Stokes parameters. 
Suppose the elliptic analyser A corresponds to an azimuth jZ of the major axis 
and an ellipticity w. Then the latitude and longitude of A are 2 0  and 22, and 
its three components along 0 U, 0 V, 0 W are 

'-. 

cos2~cos21,  cos2wsin2il, sin2w. 
Thus, 

- - I A  = + [ I  + M cos 2 0  cos 2 1  + C cos 2 0  sin 21  f S sin 201. (9.9) 
S. CHANDRASEKHAR: Astrophys. J. 105, 424 (1947) - Radiative Transfer, pp. 24-37. 

London 1950. 
H. MUELLER: M.I.T. Course (8.26). Spring 1945. - J. Opt. Soc. Amer. 38, 661 (1948). 

3 B.H. BILLINGS and E.H. LAND: J. Opt. SOC. Amer. 38, 819 (1948). - B.H. BILLINGS: 
J. Opt. Soc. Amer. 41, 966 (1951); 42, 72 (2952). 

U. FANO: J. Opt. SOC. Amer. 39, 859 (1949). 
5 G.N. RAMACHANDRAN: J. Madras Univ. B 22, 277 (1952). 
6 M. J. W-ALKER: Amer. J .  Phys. 22, 170 (1954). - W.H. MCMASTER: Amer. J. Phys. 

22, 351 (1954) - G.V. ROZENBERG: Uspekhi Fiz. Nauk 56, 77 (1955). 
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This formula gives the intensity transmitted by a general elliptic analyser of 
light having the Stokes parameters I ,  M,  C, S and its variation with the azimuth 
and ellipticity of the analyser. 

Various methods could be worked out for determining the Stokes parameters 
of a beam of light by making use of the variation with co, jZ of the transmitted 
intensity. A straightforward method, however, follows from Eq. (9.4)l. Suppose 
one determines by a photometer the intensity transmitted by the following ana- 
lysers: a linear analyser set at angles (a) o", (b) go0, (c) 45 ", (d) - 45" and (e) a 
left circular analyser and (f) a right circular analyser. Let the measured intensities 
be respectively denoted by I,, I,,, I&, I-&, I' and I,. Then we have from (9.2) 
and (9.41, 

I,=+(I +M) ,  Ig0= +(I  - M), 
I , = $ ( I + c ) ,  I -45=*(I-c) ,  I (9.10) 
I L = * ( I f S ) ,  & = i ( I - S )  

so that 
M=(Io-Igo) ,  C=(145-I-G)9 S=(IL-I,), , (9.11) 

Actually, only four of the six measurements are independent, but the others 
serve as a check. 

10. Incoherent addition and decomposition of polarised beams. When two 
partially polarised beams are incoherently added, the resultant PoincarC vector 
is given by Eq. (9.5) and the Stokes parameters are additive. More generally, 
if p is the Poincark vector representing the state of polarisation of a beam obtained 
by incoherently adding fractions fj of a number of beams of state pi ((j = 1 to n), 
then 

* 

since the magnitudes of all the vectors pi 5 1 and 2 f ,  = 2 ,  i t  follows that p 5 1 
as it should be. What is more interesting is the fact that 

which follows from Eq. (10.1). Thus, the degree of polarisation of the resulting 
beam is less than the mean degree of polarisation of the component beams. In 
other words, the degree of polarisation aIwa3s decreases on mixing light beams 
incoherently. In the special case, when the polarised components of all the added 
beams are of the same state, there is no change. 

A particularly vivid example of this is obtained when two completely polarised 
beams are mixed. Idthe two are not of the same state, the resulting beam is 
only partially polarised:, If the two are orthogonally polarised, then PI = - P,, 
so that on mixing equal proportions of the two, p = %PI + iP, = o i.e., the beam 
has zero degree of polarisation, or it is unpolarised. Thus, unpolarised light can 
be obtained by incoherently superposing any two orthogonally polarised beams 
in equal proportions. If the two are not mixed in equal pi-oportions, then a 
partially polarised beam is produced, the state of the polarised part being that 
of the stronger component. 

Conversely, suppose we wish to resolve a beam of partially polarised light 
represented by the PoincarC vector p into a sum of two incoherent oppositely 

1 U. FANO: Phys. Rev. 93, 121 (1954). 
2* 

- - -- . .- - 
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polarised beams. This can be done in one and only one wayl. If Pl and P2 are 
the Poincar6 vectors (modulus unity) into which the vector p  is to be resolved 
then obviously PI, P2 and p  must be coplanar. Consequently, if Pl and P2 are 
oppositely directed, then all the three vectors must be parallel, which makes the 
resolution unique (except when p =O). Also, if fl and f, are the fractions of the 
total intensity of the two resolved beams, then 

This together with fl+ f2= 1 gives 

. fi=&(1+@), - .. f 2 = &  (I-$)- (10.4) 

If fi = 0 then fl= f,= & and therefore completely unpolarised light can be resolved 
into two equal beams of any pair of orthogonally polarised beams. 

If the restriction that the two components should be orthogonally polarised 
is removed, then the resolution of an arbitrary state of polarisation (p )  into an 
incoherent sum of two completely polarised beams of states PI and P, is not 
unique. In fact, the only condition is that PI, P2 , p  should be coplanar and p 
should be contained in the angle between P' and P2. Thus, one has the interesting 
result that, while two polarised beams combine to produce a partially polarised, 
beam whose state can be uniquely specified, the resolution of the latter beam' 
into two completely polarised beams is not at all unique (unless the state of one 
of the component beams is given). 

11. Partially coherent light beams. a) Interference of h o  @artially cohereat 
beamss. The most general case of the interference of two completely polarised 
beams of intensities I, and I, occurs when they are Partially coherent, i.e., when 
there exists only a partial correlation between the fluctuations in the absolute 
phases and intensities of the beams. The correlation may be expressed in terms 
of a degree of coherence y and the effective phase advance S of the first beam Pl 
over the second, or alternatively, in tenns of two correlation parameters C' and S'. 
The former parameters are defined by 

while the latter are defined as . 

where <a> stands for the average value of a. 
Here 4 and i, are the instantaneous intensities of the beams in the states of 

polarisation PI and P, and 6, is the instantaneous phase advance of the first 
vibration over the second. The state of polarisation of the vibration obtained 
by their composition will obviously be fluctuating rapidly, giving us a new 
picture of a partially polarised beam-into which we must briefly digress. 

1 G.N. R A a a a c ~ m w :  J. Madras Univ. B 22, 277 (1952). This result was first proved 
by an analytical method by C. G. STOKES [Mathematical and Physical Papers, Cambridge 
3, 233 (1901)l. 

For more details, see U. FANO: J.  Opt. SOC. h e r .  39, 859 (1949). An example of such 
a resolution occurs in Sect. 70y. 

S. PANCH.~RATX.~M: PTOC. Ind. Acad. Sci. A 44, 247. 398 (1956); A 45, 1 (1957). 
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Let 6 be a vector (drawn from the centre of the Po'mcar6 sphere) whose length 
is equal to the instantaneous intensity of the resultant (partially polarised) beam, 
and whose point of intersection with the Poincar6 sphere defines the instantaneous 
state of polarisation. Then the parameters which are observable in usual experi- 
ments are 

I =<i>. Z = < B > .  -. (1 1-3) 
The relation that the present representation (I, 2) of the state of a partially 

polarised beam bears to the representation introduced previously, is made ob- 
vious by writing down the expression for the intensity Ip transmitted by an.\ 
analyser P which will be the average of the instantaneously transmitted intensity : 

- 

If we write Z = Ip, then p is the Poincu-6 vector representing the state of polari- 
sation of the beam, which had been introduced by a simpler procedure in Sect. 8 
[see e.g. Eq. (8.2)]. Thus 2 is the three-component part of the Stokes vector, 
which we shall for brevity refer to as the Stokes vector of the light beam. The 
component of the Stokes vector parallel to any direction is given by a formula 
of the type (9.1 1) since we have from (11.4) 

Returning to the problem of the addition of two completely polarised but 
partially coherent beams, the resultant intensity may be obtained by averaging 
a formula of the type- (4.4) for the momentary intensity, using (1 1.2) : 

where 2c is the angle between Pl and P,. 
The intensity transmitted by an analyser P if introduced in the path of the 

interfering beams is similarly obtained by averaging a formula of the type (4.20) 
for the momentary intensity transmitted using (1 1 .I) ; and hence I$ will be given 
again by the expression (4.20) except that the third term will be multiplied by 
the degree of coherence y. The Stokes vector of the resultant beam obtained by 
directly compounding two partially coherent beams in states P, and P, may 
now be determined by using (1 1.5) to find the x, y and z components of S-by 
taking x, y and z to lie successively along these coordinate axes. Referring to 
Fig. 11, we take the x-axis along the direction of (Pl -PJ -which bisects extern- 
ally the angle between PI and P,; the y-axis is taken along the direction of the 
internal bisector (Pl + PJ and the z-axis along the perpendicular direction (PI x Pa). 
I t  can thenbe shown that 

2=Z1+22-k&2 (11.7) 

where dl= I,P, and Z,= I, P, are the Stokes vectors of the two interfering 
beams and XI, is a vector arising because of the interference of the beams [cf. 
e.g. Eq. (9.7)] ; the vector El:,, is given by 

(&&= 0, 
(& ,), = 2y 7m2 cos 6 = C' , (1 1.8) 

(Z,,), = 2y m2 sin 6 sin c = S' sin c . (c) 

On the basis of the above discussion it may be shown that just as a partially 
polarised beam may be regarded as a mixture of completely polarised and un- 
polarised light, so also two partially coherent (but completely polarised) beams 
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may be p'ktured in the following way: an independent fraction y2 of the intensity 
of one beam may be regarded as completely coherent with the whole of the 
second beam having a phase advance 6 with respect to it. 

The result in the limiting case when the two interfering beams become ortho- 
gonally polarised may be deduced either as a special case of the problem discussed 
above, or independently. Here PI and P, lie respectively along the positive and 
negative directions of the x-axis, the arc PI Y P, being taken as defining the arc 
of zero phase difference for the orthogonal states PI and P,. The resultant partially 
polarised beam (I, 22) is now given by 

A beam (I, 22) in any state of polarisation can always be decomposed into 
two completely polarised beams in any given state though the component beams 

will in general be partially coherent; for example 
even unpolarised light can be decomposed into 
two non-orthogonal polarised beams which will 
then be partially coherent with one another 
(see Sect. 70). We shall not however quote the 
results for the general problem which is the 
converse of that discussed above. 

8) Partial coherence and partial polarisation. 
1 I t  is seen from (1 1.6) that the visibility of fringes 

obtained by the interference of two completely 
polarised beams is affected in a similar manner 
by two factors namely the degree of coherence 
y and the factor cos c, which specifies the 

~ ~ : k ~ ~ $ ~ f ~ ~ ; ~ , " ~ ~ ~ ~ g ~ , " ~  difference in the states of polarisation. Never- 
of the resdtant p d ~ a y  pohrlsed beam 1s theless these two factors must be carefully 
the sum 

ZI+Z.+G~. distinguished; for example two orthogonally 
polarised beams can never give rise to interference 

in intensity and yet may be completely coherent (combining to yield an elliptic 
vibration). Similarly two beams may be in the same state of polarisation and 
yet at  the same time be completely incoherent. In general the beams can be 
tested for partial coherence after transmission through an analyser which resolves 
them into the same state. It is convenient to adjust the setting of the analyser 
so that the intensity of the transmitted beams are equal. The degree of coherence 
is then given by the visibility of the fringes, 8. The latter is defined by 

and the relation y = V is readily obtained from Eq. (1 1.6) remembering that the 
interfering beams are in the same state of polarisation (cos c =I). Here I,,, 
and 1- correspond to the cases when the phase differences of the final beams 
are respectively 0 and n. Similarly by direct interference experiments, without 
resolving the beam through an analyser, the factor y cos c may be determined, 
being equal to the visibility of this system of fringes. Since y is known from the 
previous experiment, the non-orthogonality factor may be separated out. The 
physical interpretation of the degree of coherence y is that an independent 
fraction y2 of the intensity of one beam is completely coherent with the other 
beam (having a phase advance of 6 over the other). 
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As an. example of two partially coherent pencils we may mention the two 
completely separate pencils emerging from a calcite rhomb when a partially 
polarised pencil is incident on the first face. This example leads us to the relation 
between partial polarisation and partial coherence. When a partially polarised 
beam is resolved into two orthogonally polarised beams, the component beams 
can only be incompletely coherent. In particular the state of partial polarisation 
of a beam could itself be specified by regarding it as the sum of two partially 
coherent beams which are linearly polarised in two orthogonal states H and V. 
This forms the basis of the conventional presentation of the Stokes parameters. 
In fact the Stokes parameters of a beam with reference to axes on the wavefront 
corresponding to H and V are then defined as the values taken by the quantities 
on the right-hand side of Eq. (11.9). However in such a representation the in- 
variant character (namely the state of partial polarisation) of the given beam 
is not immediately evident since the degree of coherence of the component beams 
itself varies with the orientation of the two orthogonal axes. For example, at 
one extreme the given partially polarised beam can always be resolved into two 
orthogonal states which are completely incoherent and at the other extreme, if 
the orthogonal beams are chosen such that the component beams have equal 
intensity, their degree of coherence will be a maximum, being equal to the degree 
of polarisation of the beam. By picturing a partially polarised beam as one in 
which the instantaneous state of polarisation fluctuates (as in Sect. 11u) the 
Stokes vector may then be directly obtained using the PoincarC sphere without 
recourse to the concepts of partial coherence. Alternatively the Stokes vector 
may be introduced as in Sect. 9 where only the extreme concepts of coherence 
and incoherence and of completely polarised and unpolarised light are used. 

12. Propagation of light through an optical system. Changes in the state of 
polarisation. a) Use of Stokes representation. Although Stokes parameters have 
been introduced essentially to represent unpolarised or partially polarised light, 
they may be used equally well for completely polarised light. In this case, 

so that the Stokes vector 22, or its three components M, C, S can be used to re- 
present both intensity and the state of polarisation. Consequently in this case, 
all statements regarding the transformation of the Stokes vector will be equally 
valid for the Poincar6 vector, provided the medium is transparent. 

The effect of passage through a finite thickness of a transparent birefringent 
plate has been shown to be a rotation through an angle A about some axis OR 
in the PoincarC space. The corresponding operator may be represented by a 
matrix R=TUT-1  (12.2) 

where T is the operator for the transfondation of axes which brings 0 U to OR 
and U is the operat0.r for a rotation through an angle about 0 U. 

\ Explicitly, U takes the form 
1 0  
o cosd -sinA 
o sinA cos A 

which for an infinitesimal rotation dA takes the form 

( %  E ; A ) .  
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The matrix of the operator in the case of dichroism is not so simple and is not 
independent of the polarisation state of the incident beam. In fact the total 
absorption also depends on the state of polarisation of the incident beam [see 
Eq. (12.5) below]. 

When the medium exhibits both birefringence and dichroism, then the effect 
of an infinitesimal thickness on the polarisation state may be expressed by a 
product of two matrices, one representing the operation of linear birefringence 
and the other the operation of linear dichroism, the product being independent 
of the order when both are infinitesimal. It appears t h t ,  in the Poincar6 re- 
presentation, problems are best worked out by means of geometrical methods, 
rather than by the use of matrices given here. 

p) Mueller matrices. The matrices discussed above relate only to completely 
polarised beams, and for coherent additions of such beams. When incoherent 
mixtures of light beams are considered, then the resultant beam is partially 
polarised, and in such cases, the Stokes parameters I ,  M, C, S should be used 
to denote its intensity and state of polarisation. The effect of the passage of 
light through a depolarising system (i.e., a system in which the components of 
the emergent light are not perfectly coherent) may then be described by a 4 x 4 
matrix 82 having 16 elements. -If B is the column vector with components 
I, M, C, S, then, 

B'=!JJtG. (12.4) 

We shall call the matrix !JJt the Mueller matrix, after Professor MUELLER~ who 
advocated the systematic use of these matrices, although the relation (12.4) had 
been used earlier by other workers2. s. 

The matrices could also be used even in the case when the system introduces 
depolaisation. For example for the infinitesimal operation of dichroism the 
Mueller matrix is given by 

where the notation of Sect. 7 is used, K representing the mean of the absorption 
coefficients for the two crossed elliptic states. 

The Mueller matrices have 16 coefficients; actually one more is necessary 
to define the absolute phase. If there is no depolarisation, then 12 = M2 + C2 + S2 

-and i t  can be shown that 9 identities occur between the Mueller coefficients, so 
that 7 independent coefficients are required to describe the change in the state 
of polarisation. 

The Mueller matrices in the general form are useful in the study of the polarisa- 
tion and intensity of light scattering4. 

13. Jones matrix method5. JONES has developed a different matrix method 
for studying the propagation of light through an optical system, of the type 

H. MUELLER: J. Opt. SOC. Amer. 38, 661 (1948). 
2 I?. PERRIN: J. Chem. Phys. 10, 415 (1942). - S. CHANDRASEKHAR: Radiative Transfer, 

London 1950. 
R.C. JONES: J. Opt. SOC. Amer. 37, 107 (1947). 

* F. PERRIN: J. Chem. Phys. 10, 415 (1942). 
R.C. JONES: J. Opt. SOC. Amer. 31, 488, 500 (1941). 
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discussed in the previous section. The method is based on the idea that any 
elliptic vibration can be represented as the resultant of a coherent addition of 
two linear vibrations at right angles (e-g. OX and OY) with appropriate amplitudes 
and phases. The elliptic vibrations can be then represented completely (amplitude, 
phase and polarisation state) by the column vectors 

where A, and A, are the resolved components of the electric displacement- vec- 
tor D along OX and OY, and are in general complex numbers. The intensity is 
I = I A, 1, + I A,I2 while the complex ratio A,/A, describes its polarisation state. 
The azimuth il and the ellipticity w of the ellipse are related to A, and A* as 

1-4 I follows: If tan a = 2 and 6 = q - E, where E, and E, are the phases of A, 
and A, then 1 AaI 

tan 2il = cos 6 tan 2a,  

sin 2w =sin 6 sin 2a. 
t13.2) 

The effect of an optical component, e.g., a birefringent, absorbing or dichroic 
plate, or a combination of such plates, would be to change both A, and A,, so 
that the effect may be represented by a 2 x 2  matrix with complex elements 

For a non-absorbing plate, there is no change in the intensity and the matrix M 
is therefore unitary i.e., det M =?, which makes ID'] = ID I .  Suppose that the 
plate exhibits only linear birefringence (retardation plate) and the principal axes 
are parallel to OX and OY. If R, g,, are the phase retardation for vibrations 
parallel to OX and OY respectively and we set g, = 4 (y1 + y,) and y = 4 (cp, - y,), 
then obviously M takes the form e" G, where 

If we are only interested in the state of polarisation of the emergent beam, then 
exp ig, may be omitted. 

If the principal axes are inclined at angles b and j3+ to OX, then the 
matrix is 

.--- M(b) = S(P) GS(-P) . (13.5) 

where S(P)  is the rotation matrix 

If the plate exhibits only circulw birefringence (rotator), then the effect is 
to rotate the plane of polarisation. If the rotation is p, and the mean absolute 
phase retardation is y, then the matrix is simply ei" S(p) and the effect of the 
plate on the state of polarisation of the light beam is completely represellted by 
s (el. 

JONES has used the components of the electric vector E for this purpose. In anisotropic 
media, i t  is the displacement vector D that should represent the light vibrations. 

- 
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I t  can be readily shown1 that for light of a given wavelength, an optical 
system containing any number of retardation plates and rotators is equivalent 
to a system containing only two elements-one a retardation plate and the 
other a rotator. This has already been shown from the Poincar6 representation 
in Sect. 5. 

In fact, it follows from the group theory of three dimensional rotations that 
any unitary 2 x 2 matrix with unit determinant may be associated with the rota- 
tion of a sphere in a unique manner2. Thus the Jones matrix method is identically 
equivalent to the Poincark sphere representation, as far as the polarisation state 
of a light beam is concerned. 

Suppose the optical element is linearly dichroic, with its principal-axes parallel 
to O X  and O Y  (partial polariser). Then, its matrix is eiq P where 

For a perfect polariser one of the p's will be zero. The more general dichroic 
element will be discussed in Sect. 14. 

The matrix representing the combined effect of a succession of optical elements 
would be the product of the matrices representing the effects of the individual 
elements (taken in the proper sequence). Using these results several elegant equi- 
valence theorems of the type given above have been derived by JONES (see 
Sect. 74). 

14. Experimental determination of the Jones matrix3. Explicitly written, the 
Eq. (13.3) takes the form 

where %, m,, m,, m, are complex numbers. The following is a procedure which 
may be used to determine the real and imaginary parts of these four numbers. 
I t  is assumed that the state of the light beam is completely reversed, if it traverses 
the system in the reverse direction. 

(i) Use incident light linearly polarised parallel to O X  (i.e., A, = 0) and deter- 
mine the state of polarisation of the emergent light by an elliptic analyser. This 
gives the ratio A;/A; = c, (say). Then 

(ii) Use incident light linearly polarised parallel to O Y  and determine the ratio 
Ai/A; = c, (say). Then 

c 2 = m , .  
m4 

(14.3) 

(iii) Reverse the system and repeat the procedure (i) with this. Let the ratio 
be c,. Then 

c,=%. (14.4) 
nz, 

See H. HIJRWITZ jr. and R.C. JONES: J. Opt. SOC. Amer. 31, 493 (1941) for a proof by 
the matrix method. 

C. ECKART: Rev. Mod. Phys. 2, 305 (1930). 
R.C. JONES: J. Opt. SOC. Amer. 37, 110 (1947). 



Sect. 15. Differential matrix operators. 27 

As a check, the procedure (ii) may be repeated in the reverse position giving 

This is not an independent determination, for 

However, it provides two checks, namely for the real and imaginary parts of 
Eq. (14.6). 

The matrix M may then be written in the form 

where c is a complex number. 
(iv) Determine the transmitted intensity for unpolarised light (Tun,,). This 

is given by 
Tunpol = *,z 1 m~ 1 (14.8) 

so that 

(v) Determine the absolute phase of the transmitted light. This serves to 
determine the real and imaginary parts of c, and completes the determination. 

It may be mentioned that each of the measurements, under (i), (ii) and (iii) 
consists of two determinations, namely the orientation and ratio of the axes of 
the ellipses or the real and imaginary parts of the ratio c ,  so that in fact the five 
determinations give (3 x 2 f 2) i.e., 8 parameters. 

Even if the principle of reciprocity does not hold for the system, all the 
matrix elements can be determined by replacing procedure (iii) by the following: 

(vi) Use incident light linearly polarised at 45" to OX, i.e., A,=A, ,  and 
determine c, = A;I/AI. Then 

so that 

As a check, a determination may be made with incident light linearly polarised 
at - 45" to OX, which gives 

Then 
Ge--C1 - C? - C1 
G2 - C6 5 - 

each being equal to c3. 

15. Differential matrix opqatorsl. In the previous section, we considered the 
effect of optical elements of finite thickness. We may now define a differential 
operator N, such that M is an integral of N: 

R.C. JOXES: J. Opt. Soc. Arner. 38, 671 (1948). 
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Since ME,$ = MiIMZ we have 
N, = lim M", - M* *'+. 2'-a Mkl 

Integrating this equation, one obtains the formal result 

I t  may be readily verified that the N matrices transform exactly like the M ma- 
trices when the optical element is rotated. Thus, if  N becomes N' by a rotation 
through an angle then 

N ' = S ( P )  N S ( - 8 ) .  (15.5) 

The differential operators are very useful for discussing the case when the 
medium exhibits both general birefringence (linear as well as circular), as well 
as general dichroism. Now, a general 2 x 2  matrix requires eight quantities 
to spkcify it completely, namely the real and imaginary parts of its four elements. 
Let us suppose therefore that a thin slice of the plate of thickness r(<<l) is 
made up of 8 laminae, each of thickness *r, and each having a different property 
as listed below. The differential matrices of the eight laminae are denoted by Nk 
and let 0, = * Nk. Then, we have 

M, = exp (y) = exp (ek r) . (1 5.6) 

Thus, the matrix of the operator corresponding to the passage through all the 
eight laminae is 

8 

M =M8M, ... M,=1 +z@k~+@[t2] (1 5.7) 
k = l  

in the limit when r-4, 
8 

M = I  + ~ O k r = l  + N t  (say) (1 5.8) 
1 

where N is the differential matrix operator of the sandwich of eight plates. Thus, 

The eight matrices, corresponding to the eight elementary operations may be 
defined as shown in Table 1. 

I t  is obvious that any 2 x 2 matrix N whatsoever can be written in the form 
(1 5.9) by choosing suitable values for the eight parameters 7, k, go, g,, , Q, $, , $,, 
and p. Of these, the first two represent the changes in phase and amplitude of 
the beam, while the other six denote the changes in the state of polarisation. 

Although the six elementary operators of birefringence and dichroism, viz., 
O, to O, take a simple form in the 2 x 2 matrix representation, their physical 
content is best understood in terms of the PoincarC representation. Thus, it 
appears as if an unusual type of resolution is involved in representing the linear 
birefringence of a crystal plate with its principal axes kept at an arbitrary azimuth 
u. If g is the birefringence, the N matrix is 

i g cos 2u 
N = (  

igsin2a -igcos2a 
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Table 1. The eight elementary O matrices. 

I 
The parameter 7 is the propagation constant, or the phase retardation 

per unit thickness, and is thus related to the index refraction n by 
9 = 232 nl12. 

The parameter k is the amplitude absorption coefficient to the base e 
per unit thickness, and is thus related to the extinction coefficient x 
by k = a n  15/12. 

i 0 
q= go (, -i) 

The parameter go is a measure of that part of the linear birefringence 
which is parallel with the co-ordinate axes. It is eqnal to one-half of. 
the difference between the two principal propagation constants. ~ e . ,  
go= )(qr -7,) and is thus positive when the fast (smaller index) 
a d s  is parallel with the x axis. 

q =g4, (p i) 
The parameter g4, is a measure of that part of the linear birefringence 

which is parallel with the bisectors of the co-ordinate axes. I t  is 
equal to one-half of the difference between the two principal pro- 
pagation constants, i.e., g4, = $ (7-, - a,) and is thus positive when 
the fast axis bisects the positive x and y axes. 

j The parameter p is a measure of the circular birefringence. and is 
equal to  the rotation (in the positive direction) of the plane of linearly 

o -I 1 polarised light, in radians per unit thickness. It is equal to half of 
0 5 = @  ( 3  0 the difference of propagation constants for right add left circularly 

polarised lights, i.e. g = )(Q - qL) and is positive for crystals which 
are laevo-rotatory. 

The parameter Po is a measure of that part of the linear dichroism 
which is parallel with the co-ordinate axes. It is equal to one-half 
of the difference of the two principal absorption coefficients, i.e. 
po = ) (k - k,) and is thus positive when the more highly transmit- 
ting axizis parallel n i th the x axis. 

which is to be com~ared with 

f9,=pr ( y  A) 

0 -  0 - "  
8-P (, ) 

g , = g c o s 2 ~ ,  g4,=gsin2cc and g2=l-. 

The parameter p4, is a measure of that part of the linear dichroism 
which is parallel with the bisectors of co-ordinate axes. It is equal 
to one-half of the difference between the two principal absorption 
coefficients, i.e. p4, = $ (k-&, - k4,) and is thus positive when the 
more highly transmitting axis bisects the positive x and y axes. 

The parameter p is a measure of the circdar dichroism, and is equal 
to half of the difference of the absorption coefficients for left and 
right circularly polarised lights, i.e., ,u = ?(An - kL). The parameter 
is positive for crystals which are more transparent for right polarised 
light. 

In  the PoincarC representation, the points representing azimuths 0 and 45" are 
actually at right angles, so that the resolution given by (15.12) is very natural. 

The six elementary operators 0, to 0, can be divided into two groups, the 
first three representing birefringence and the second three representing dichroism. 
The following identification with the operators mentioned in Sect. 7 is then 
obvious : 

0, 0, 0, -t rotations d A, d A, d A,, 
0, 0, 0, -t displacements as, as, ds,. 
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Thus, thcre is a one to one correspondence between the matrix method of JONES 
and the PoincarC representation and the associated matrix method involving 
Stokes parameters which was discussed in the first part of Sect. 12. However, 
in both matrix methods, the formulae are simple only for elementary operations. 
The problem of the passage of light through a finite thickness of medium exhibit- 
ing both birefringence and dichroism is best discussed by using the geometry 
of the Poincark sphere. This is done in the succeeding chapters of this article. 

The Jones matrices are applicable only for completely polarised beams. Of 
the eight coefficients which occur, one represents the absolute phase, leaving 
seven to describe the change in state of polarisation. This is also the number 
of independent coefficients in the Mueller matrices in the correspmdkg case. 

16. Quantum mechanical description of polarisationl. The "state " of electro- 
magnetic radiation can be described in quantum mechanics by a wave function, 
whose variables are the amplitudes of each of the basic states of a complete set. 
For a particular frequency and direction of propagation, the complete set consists 
of just two states of opposite polarisation. They are orthogonal, since light in 
one of the states (say P) is completely admitted by the analyser P while if the 
beam is in the other state Pa, then it is completely rejected by it. Any two 
opposite states of polarisation can be taken as a basic set. We shall however 
choose them to be states of linear polarisation parallel to OX and OY, and designate 
the normalized wave function by g?,, 97,. Then, a beam of completely polarised 
radiation may be represented by the wave function: 

where A, and A,  are complex. If we set I A,\, and I A,\, equal to the intensities 
of the two components, then lyI2 gives the intensity of the beam. JONES' re- 
presentation is identical in content with this quantum mechanical picture. If 

we represent the wave function y by the column vector 

method of Sects. 13 and 14 can be carried over in toto for the quantum mechanical 
description. 

Consider now the 2 x 2 matrix 

This matrix also has four components, analogous to the four components of 
A, and A,, and they are the observables of the system. However, the absolute 
phase is lost by the multiplication with complex conjugates, and only three of 
them are independent, there being one linear relation between them, namely 

Det eii = 0. 

The four Stokes parameters are just linear combinations of the four matrix ele-- 
ments ei j2 .  In fact, 

1 For a detailed account of quantum mechanical theory of elliptically polarised photons, 
see G. ARAKI: Pfogr. Theor. Phys. 1, 125 (1946); 2, 1 (1947); Phys. Rev. 74, 472 (1948) and 
the references given therein. 

2 D.L. FALKOFF and J.E. MCDONALD: J. Opt. SOC. Amer. 41, 861 (1951). The applica- 
tion of Stokes parameters for the treatment of polarisation in quantum mechanics is discussed 
by U. FANO: 15hys. Rev. 93, 121 (1954). 
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This may be proved as follows. Suppose the state of polarisation of the beam 
is an ellipse of amplitude A, with azimuth A and ellipticity w. Then 

A,= A (coso cosii-isinwsinii), 

A z = A  (cososin1 -isinwcosA). (16.5) 

This gives 
ell + eZ2 = \All2 + IA2l2 = A2 = I ,  
e12- ez2 = IA,lz- IA212= A2cos2wcos2R = M ,  

p12 + eal = Al A: + A2AT = A2cos2wsin2ii = C, I (16.6) 

i(ezl-elz) =i(A,A? -A,AX) =Azs in2w=S.  

For a completely polarised beam, the condition Det ejj = O  gives 

The additivity law of Stokes parameters for incoherent addition of light beams 
follows from the result that the @-matrices are additive for incoherent super- 
position of states. Suppose we have N completely polarised beams described 
by the wave-functions 

. ya=gyl+c;y2 ( a = 1  to N). (16.8) 

Then, for incoherent superposition, we have 

Hence 

By a direct application of the Schwarz inequality, it follows that 

Det <pi?> 2 o 
so that for the resultant beam 

1 2 2 M 2 + C = + S 2 ,  

a result which we have already seen. The equality holds in (16.11) and (16.12) 
only when all the beams are in the same state; when it is not so, the resultant 
beam is only partially polarised. 

The generalisation of the additivity law (16.10) to the incoherent superposition 
of partially polarised beams is obvious, and thus, STOKES' theorem (Sect. 9) 
follows also from the quantum mechanical formulation. 

The intensity fon&a (8.4), namely 

may also be derived from the quantum mechanical representationl. This how- 
ever represents only the mean fraction of the photons in the beam accepted by 
the analyser A. A discussion of the fluctuations in the number of photons passed 
by the analyser is more complicated2. 

17. Nature of unpolarised and partially polarised light. It was mentioned earlier 
that natural or completely unpolarised light may be obtained by incoherently 

1 G. ARAKI: Phys. Rev. 74, 472 (1948). - U. FANO: J. Opt. SOC. Amer. 39, 859 (1949). 
See also R.H. DALITZ: Proc. Phys. Soc. Lond. 65, 175 (1952). 

2 U. FANO: J. Opt. SOC. Amer. 41, 58 (1951). See also the references given therein. 
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superposing equal proportions of oppositely polarised radiation. Any pair of 
oppositely polarised beams may be used and they aII lead to the same state, 
namely unpolarised light. It follows from this that any analyser transmits exactly 
half the intensity of a beam of unpolarised light. 

Although the above picture of unpolarised light is perfectly consistent and 
in conformity with quantum mechanics, it may be worthwhile to consider some 
of the earlier ideas. BREWSTER supposed that natural light is made up of two 
plane polarised waves, with their vibration directions at right angles and being 
propagated independently. FRESNEL put forward the hypothesis that natural light 
consists of plane polarised light in which the azimuth of polarisation varied rapidly 
and assumed all possible values. It is obvious that the point representing its 
polarisation state would then rapidly move along the equator of the Poincark 
sphere. The resulting state would be represented by the centre, asis to be expected. 
A slightly better picture would be to assume that all directions of linear vibration 
are taken up at  random, but with equal probability. In any case, as has been 
discussed in Sect. 11, provided the variations occur in a time much less than the 
period of observation, the beam would exhibit all the properties of natural light. 

An attempt was made by LANGSDORF and Du  BRIDGE^ to verify the Fresnel- 
hypothesis. They obtained interference fringes with unpolarised light using a 
biprism, and then introduced in the paths of the two beams optically active media 
which rotate the plane of polarisation by +4s0 and -45" respectively. The 
fringes then completely vanished and the field of view had only uniform ilIumi- 
nation2, and continued to remain so even if viewed through a linear analyser 
at any azimuth. The latter observation can be explained because in both beams 
only the components with vibrations parallel to the analyser would be transmitted 
by the analyser. The vibration directions of these were however, originally at 
right angles, so that the phase difference between them will vary at random and 
no interference fringes would be formed. The same result also follows from 
FRESNEL'S picture, as was shown by LANGSDORF and Du BRIDGE. 

On the other hand, if we resolve the unpolarised beam into its two opposite 
circularly polarised components L and R then the optically active media in the 
two beams would not change the state of polarisation, but would introduce a 

relative phase difference of If according- as it is L or R. Consequently, the 

fringe system would be presentif observed through a circular analyser L or R, 
but would be displaced by & P fringe from the appearance when the two liquid 
cells were not there. This is actually what was observed. 

These beautifd experiments clearly show that the various alternative methods 
of decomposing an unpolarised light beam are all valid. However, it must be 
mentioned that all possible orientations of elliptic vibrations of definite ellipticity 
(bla) would not lead to unpolarised light, but only to partially (circularly) polarised - 
light. Only if both senses of rotation are equally probable would the resultant 
behave as unpolarised light. Similarly, i f  all possible (elliptical) states of polari- 
sation are occupied with equal probability, i.e., the representative points on the 
Poincark sphere are uniformly distributed over its surface area, then again the 
resultant is unpolarised light. 

A. L.~~TGSDORF and L.A. Du BRIDGE: J. Opt. SOC. h e r .  24, 1 (1934). 
A similar observation was made as early as 1864 by STEFAN who obtained Talbot bands 

with a plate of quartz of thickness 5 ram cut perpendicular to the optic axis and found 
the bands to vanish in the orange region, for which the optical rotation was go0. See R. W. 
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Thus, an unpolarised light beam occurs in what might be called a "mixed" 
state in the quantum mechanical sense. Consequently, one would obtain uniform 
results for experiments made on such a beam only if the period of observation 
is large compared with the time over which coherence exists. I t  is Jmown that 
in any atomic system, the light emitted as a result of a transition between two 
precisely defined quantum states must be completely polarised. Consequently, 
if a system emits unpolarised, or partially polarised light, then this must be at- 
tributed to (a) the fact that a number of closely spaced levels are involved in 
the emission, and (b) the fact that the individual emitters may be oriented dif- 
ferently. If the gas is subjected to a strong magnetic field, then the different 
components can be separated spectroscopically and then each is found to be 
com~letely polarised. 1n such a case, eachcomponent corresponds to a transition 
between two precisely defined states of the atom. 

Thus, complete polarisation of the emitted light is observed only if the states 
of the emitter are precisely defined both before and after emission. If either is 
incompletely defined, then the light emitted is also incompletely polarisedl. In 
fact, if a beam of light is precisely monochromatic, then it must also be completely 
polarised. Even if it consists of several components derived from different sources, 
and not expected to be connected with one another, the phase relationships 
between the components beams remain the same for all time if the frequencies 
are identically equal. Consequently, the resultant must have a unique state of 
polarisationz. For the same reason, a beam of unpolarised monochromatic light 
would appear to be elliptically polarised if it is observed over a period of time 
small compared to the reciprocal of the frequency width A v  of the line. I t  is 
immaterial if the small line breadth is due to the characteristics of the source, 
or if it is obtained by means of a narrow band filter. The state of polarisation 
would however change with time and if one makes measurements over time 
intervals large compared to I/Av, then all possible states would be occupied, and 
only average values would be observed. I t  is interesting to note that not only the 
state of polarisation, but the intensity also should fluctuate with time. A detailed 
discussion of the statistical properties of unpolarised light is given by HURWITZ~, 
based on the conventional decomposition of elliptically polarised light into two 
linear states at right angles, viz., OX and OY. They however follow much more 
simply from the PoincarC representation, and two of the interesting results are 
derived below. 

As mentioned earlier, unpolarised light is represented by a point at the centre 
of the PoincarC sphere, and this would be true on the average if all points on the 
PoincarC sphere are occupied with equal probability. . Assuming this to be the 
case then-it is obvious that the quantity sinZ o is uniformly distributed between 0 
and 1. Now, 

which last function has been shown by HURWITZ to be uniformly distributed 
between o and 1. So also, if we consider ellipses of varying ellipticity, then the 
median value of co is that value which divides the area of the sphere into two 
equal halves, i.e., sin 2co = 3, which gives 2 0  =30° or co = 15". The correspond- 
ing axial ratio of the ellipse is 0.268, a rather surprising result, when not pictured 
in terms of the Poincari: sphere. 

1 U. FANO: J. Opt. SOC. Amer. 39, 859 (1949)- 
H. HURWITZ jr.: J. Opt. SOC. Amer. 35, j 2 j  (1945). 

Handbuch der Physik, Bd. XXV/I. 
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18. Production of polarised light1. or) Production of $lane ?olarised light. Com- 
pletely polarised light may be obtained from unpolarised light or partially polari- 
sed light by using one of three methods: (a) passing it through a strongly dichroic 
crystal, (b) removing by suitable means one of the two polarised components 
into which a beam of light is split up in a birefringent medium, and (c) by re- 
flection from a surface at a suitable angle or by refraction at oblique incidence 
through a pile of plates. 

(a) In a dichroic crystal, two orthogonal states of linear polarisation are 
absorbed differently, sometimes with very different absorption coefficients. Con- 
sequently, one component may be reduced only by a small fraction. Eo-rmtance 
a crystal of tourmaline, cut parallel to the optic axis and of thickness one milli- 
meter, transmits very little of the component with its vibration direction parallel 
to the optic axis. HERAPATH~ found that crystals of iodoquinine sulphate was 
even more strongly dichroic, a thickness of 0.1 rnm being sufficient to absorb 
almost completely one of the components, but this did not receive any practical 
application until recently. I t  was only some twenty years ago that large crystals 
of herapathite could be growna. 

However, it is possible to obtain an oriented deposit of colloidal herapathite 
crystals in a transparent base of nitrocellulose or plastic and this works very 
well as a polariser. Other materials, even more dichroic than herapathite have 
been prepared, and in this way polarisers useful for various spectral ranges, 
even going up to 2.8 p in the infrared have been ~ r e p a r e d ~ , ~ .  We shall refer 
to such polarising filters as polaroids though this is a commercial name given 
to one particular brand. 

b) The difference in the refractive indices of the two polarised components 
in an anisotropic medium may be used to obtain total reflection of the component 
with the lower index. This is used in the well-known Nicol prism and similar 
polarisers like the Glan-Thomson prism. Sometimes, the two components are 
separated by refraction, as in the so-called double image prisms. 

(c) Complete polarisation can be obtained by reflection at the Brewsterian 
angle from an isotropic material=. The corresponding transmitted beam must 
also be completely polarised. This method is useful in the infrared region. Using 
selenium, which has a high refractive index (about 2.9), a degree of polarisation 
of nearly 99% is possible for an angular range of incidence 59 to 77''. 

Another method is to use a pile of plates, so that the degree of polarisation 
of the transmitted beam increases as it passes through successive plates. Usually 
four. or five plates are sufficient. This method has been used in recent years 
for obtaining polarised infrared rayss, using selenium, tellurium and silver 

A good review of the earlier work related to the production and measurements of polarised 
light is available in the articles of SZIVESSY [I] and details of apparatus are given in this 
article and in that by SCHULZ [9]. Only the principles are discussed here. A more recent 
account is by W. HEUER in the chapter on Polarimetry in "Physical Methods of Organic 
Chemistry". Ed. A. WEISSBERGER. New York 1949. 

W.B. HERAPATH: Phil. Mag. 3, 161 (1852). 
F. BERNAUER: Fortschr. Min. 19, 22 (1935)- 

* E.H. LAND: J. Opt. SOC. Amer. 41, 957 (1951). 
The characteristics of the optimum polariser is discussed by C.D. WEST and R.C. 

JONES: J. Opt. SOC. Amer. 41, 976, 982 (1951). - The spectral properties of high extinction 
polarisers are discussed by L. BAXTER, A.S. MAKAS and W.A. SCRURCLIFF: J. Opt. SOC. 
Amer. 46, 229 (1956). 
' W. KONIG: Handbuch der Physik, Vol. 20, p. 141. 1928. . , 

' A.H. PFUND: Astrophys. J. 24, 19 (1906). - J. Opt. Soc. Amer. 37, 558 (1947). 
A. ELLIOTT, E. J. AMBROSE and R. TEMPLE: J. Opt. SOC. Amer. 38, 212 (1948). 
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chloride1. With eight thin films of selenium, each 3 p thick, a degree of polarisation 
of 99.8% is obtained. 

In a polaroid, the transmitted beam suffers no lateral deviation, but this 
difficulty is present in most of the other polarising devices. A method of avoiding 
this with the pile of plates, by using two sets of plates producing opposite dis- 
placements, has been suggestedz. 

/I) P~oduct ion of elli#tically #olarised light. It is possible to produce elliptically 
polarised light of any desired azimuth, axial ratio and sense from a linearly 
polarised beam by the use of a linearly birefringent plate. With a given azimuth 
of vibration of the plane polarised beam N (Fig. 12), any state of polarisation P 
may be obtained, provided a suitable thickness of the birefringent plate is avail- 

able. The orientation a, cr + : of the slow and fast axes of the plate with reference 

to that of the linear polariser and the required 
phase retardation E may both be determined 
from the construction shown in Fig. 12. The 
former are given by the longitudes 2a, i a  + x 
of the points where the great circle bisecting the 
arcPN cuts the equator. If 20, 21' are the 
latitude and longitude of P with respect to 
N. then. 

1 - COS 2w COS 2 X  Fig. 1 2  Principle of the elliptic pokriser. t an2a= cos zh sin 2 X  > (18.1). Alinear vibrationNis brought to the elliptic 
state by the action of a plate of retardation - 

E whose slow &is is E. 
sin E = sin2co/sin2a. (18.2) 

With a given retardation plate, if the azimuth of both the polariser (N) and 
plate (E) can be arbitrarily varied, then a wide range of ellipticity can be obtained. 
However, there is an upper limit to the axiaI ratio bla, i.e., of 2w which can be 

obtained, namely 1 2 0  1 1 E 1, which leads to - 5 tan $. This may be readily I: I 
proved from the construction in Fig. 12 by aho&ng E to vary, keeping N fixed. 
Thus all possible states of polarisation can be obtained with a single birefringent 
plate and incident linearly polarised light only if the relative retardation is 3-42, 
i.e., i t  is a quarter wave plate. 

If a quarter wave plate is used, then ~ = n / 2 ,  so that we have from (18.2) 
sin 2w =sin 2u and from (18.1) 2w = f 21'. Thus the fast or slow axis of the 
quarter wave plate must be parallel to the major axis of the ellipse and correspond- 
ingly the polariser must be set at  an angle A'= +w to the fast axis. This is also 
clear from Fig. 12. 

Owing to the dispersion of refractive indices, the phase retardation varies 
with wavelength and. the settings calculated from (18.1) and (18.2) hold good 
only for a definite wavelength. In particular, a quarter wave plate prepared 
for one wavelength is not useful for other wavelengths. An achromatic quarter 
wave plate, whose phase retardation is a constant over the visible region may 
however be obtained by combining three plates of micas. 

1 A review of infrared polarisers is given in Cahiers de Phys. 38, 26. The theory of "pile" 
polariser, including multiple reflections is discussed by G. K.T. CONN and G. K. EATON: 
J. Opt. Soc. h e r .  44, 546, 553 (1954). 

A. S. MAKAS and W.A. SCHURCLIFF: J. Opt. SOC. Amer. 45, 998 ($9 j5). 
The design of this, as well as of an achromatic circular polasiser, was obtained employ- 

ing the Poincar6 representation, by S. PANCHARATNAM: ROC. Ind. Acad. Sci. A 41, 130, 137 
(1955). See also G. DESTRIAU and J. PROUTEAU: J. Phys. Radium 10, 53 (1949). 

3* - -- -- - - 
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The retardation between two perpendicular components could be produced 
not only by a birefringent plate, but also by total internal reflection. In 
the Fresnel rhomb two successive internal reflections at  the appropriate angle 
(calculated from the refractive index) are used to produce a total retardation of 
722 SO that system acts like a r2/4 plate. The advantage of the Fresnel rhomb is 
that it is practically achromatic. However it displaces the incident beam, though 
arrangements have been suggested to get ,over this deficiency by employing more 
than two reflections. i - '  

' a, 19. Measurement of elliptically polarised light. Themeasurement of elliptically 
polarised light requires the determination of three quantities, namely the orien- 
tation of the major axis, the axial ratio and the sense. These are given respec- 
tively by the longitude (24, the latitude (1 2w 1) and the sign ( f )  of the latitude 
of the representative point on the Poincar6 sphere. \ ,  

The principIe of determining these quantities is in essence the reverse of what 
was discussed in the last section. The elliptically polarised light is converted 
into linearly polarised light by a retardation plate set at the proper azimuth, 
and the orientation of the resultant plane vibration is determined by means of 
a plane analyser. In practice, the azimuths of both the retardation plate and 
analyser are adjusted until complete extinction is obtained. Then the azimuth 
and axial ratio of the elliptic vibration may be obtained by inverting Eqs. (18.1) 
and (18.2). This method, in which a retardation plate with arbitrary phase 
retardation is used, is originally due to MACCULLAGH~ and  STOKE^^ and it i s  
discussed in Sect. 21. It is obvious that if E is the phase retardation of the plate, 
then ellipses with axial ratio I b / a l z  tan 42  cannot be measured. On the other 
hand, all states of polarisation can be measured by means of a single retardation 
plate if it is a quarter wave plate. The use of a quarter wave plate is originally 
due to S~NARMONT~ and this method is usually called after him. A defect in 
methods requiring the use of quarter wave plates is that such a plate will not 
have a relative phase retardation of n/2 for all wavelengths. 

The analysis of elliptically polarised light is of interest in two types of ap- 
plications: (a) determination of small relative retardations introduced by doubly 
refracting media (having natural birefringence), birefringence produced by stress, 
or flow birefringence, @) measurement of the parameters involved in the reflection 
of light from surfaces. According to the particular application, simplifications 
in the method as well as special techniques of high accuracy have been evolved. 
Some of these will be discussed below, particularly with respect to the general 
principles involved4. 

AU the methods are based essentially on the intensity formulae (2.4) to (2.6), 
namely that the fraction (tA) of the intensity of light of polarisation P transmitted 
by an analyser A is 

This may be directly used tb determine the azimuth 1 of the ellipse. As the orien- 
tation of the analyser is varied, A travels along the equator, the arc ~2 varies 

1 J. MACCULLAGH: Collected works, pp. 138, 230. Dublin and London 1880. 
2 C.G. STOKES: Mathematical and Physical Papers, Vol. 3, p. 197. Cambridge 1901. 

H. DE S~NARMONT: Ann. Chim. Phys. Paris 73, 337 (1840). 
Two excellent review articles have appeared recently by H. G. JERRARD: J. Opt. SOC. 

Amer. 38, 35 (1948) and by M. RICHARTZ and H.Y. Hsu: J. Opt. Soc. Amer. 39, 136 (1949). 
They contain a survey of all the methods so f a r  proposed, with full details of theory and prac- 
tice. An earlier descriptive article is by G. SZIVESSY: Handbuch der Physik, Vol. 19, p. 926. 
1928. 
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and is obviously largest when A lies in the same meridian as P. The point A, 
is then nearest to P, and the minimum intensity transmitted is simply sin2 w. 
If we denote by j? the azimuth of the analyser and byp,, the setting for minimum 
intensity, then clearly, 

20. Determination of azimuth. In practice, i t  is difficult to judge the setting 
for minimum intensity accurately, and consequently what are known as half- 
shade devices are used. In these, the field of view is divided into two parts, the 
intensities of which will vary differently and the correct setting is one in which ' 
both are equally bright. The optimum intensity of the field of view at equality 
varies with the observer, and it is therefore desirable that this should be capable 
of adjustment. So also, the difference in intensity between the two halves should- 
rapidly increase with a slight missetting of the analyser. If J' and J" are the 
intensities in the two halves fo? a rnissetting specified by the parameter dB, 
then the sensitivity s of the device may be defined as follows: 

For small values of Ap,  this gives 

Obviously, s should be large for high accuracy. The three types of half-shades 
commonly used are discussed belowl. In all the three cases, if the devices are 
used for the direct determination of the azimuth, the sensitivity decreases with 
increasing angle of ellipticity. This defect can be removed by arrangements 
described in Sect. 21. 44 

a) Double field analyser. Two linear analysers are used in the two halves of 
the field of view, the azimuth of the two being rotated with respect to each other 
by a small angle 7. The arrangement is originally due to JELLETT~ but several 
improvements have been made3. It consists of a Glan-Thomson prism from 
which a wedge-shaped piece has been removed and then cemented together. 
When the double field analyser is rotated, the intensities in the two halves will 
be equal when the major or minor axis of the ellipse is parallel to the internal 
bisector of the angle between the vibration directions of the two analysers. Of 
these, the latter is the more sensitive position, as the intensity will be less. The 
setting is shown on the PoincarC sphere in Fig. 13 and the condition for equality 
of intensity*-~Yp = A ~ P  which gives 

If ,B is th& azimuth of the internal bisector (A in Fig. 13) then 

independent of the ellipticity. 

Experimental details and a fuller account will be found in the articles by 0. SCHBN- 
ROCK, GEIGER-SCHEEL: Handbuch der Physik, Vol. 19, p. 749, 1928; SCHULZ: Handbuch 
der Experimentalphysik, Vol. 18, p. 420, 1928; W. HELLER, in Physical Methods of Organic 
Chemistry, Ed. A. WEISSBERGER, Vol. 1, Part 111, p. 1531. 1949. 

J.H. JELLETT: Rep. Brit. Assoc. 30, 13 (1860). 
A. CORNU: Bull. SOC. Chirn. 14, 140 (2870). - 0. SCHONROCK: Handbuch der Physik, 

Val. 19, p. 750. 1928. 
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The half-shade angle is not variable in the Jellett prism, but is adjustable in 
the arrangement due to LIPPICH~. In this, a smaller Nicol prism is put in front 
of the large analysing prism, with its azimuth at an angle g to the analyser. 
While g can be varied in this way, the transmissions of the two halves are different, 
the ratio of the two being cos2 g. If the incident light is linearly polarised, then 
its azimuth can be accurately determined with respect to a standard orientation. 
If q is small, the azimuth 1 of the linear vibration is given by (20.4). If g is not 
small, it can be shown that 

where 
tanu = &tang. 

There is only a constant difference (a- &g) from equation (20.4), which does 
not matter. However, this is not so for a general elliptic vibration, since the 

V condition for equality of intensity is - - 
sin2iA1,P =sin2QA2,Pcos2g. k20.7) 

If P is not o: the equator, the difference of the 
solution for 2 from Eq. (20.4) is not the same for 
all states, but depends on the ellipticity, and so a 
small systematic error is introduced. 

In both arrangements, the sensitivity de- 
creases with increasing angle of ellipticity. 

j?) Rotating bi+late2. This consists of two thin 
plates of quartz (thickness about 0.05 mm) cut 
perpendicular to the optic axis, one dextro- and 
the other laevo-rotatory, and is known as a 

Fig, 13. of the double field "biquartz" or Nakamura plate. Each covers 
analyser. (Stereographic projection.) half the field of view and the arrangement is 

put before the analyser. If &g  is the rotation 
of each, then one half is transparent to linear vibrations making an angle 
- 47 with the plane of the linear analyser while the other half is transparent 
for h e a r  vibrations at azimuth +*g. The arrangement is therefore equi- 
valent to a Jellet prism of angle 7. The intensities of the two halves will 
be equal and darkest o@y if the setting of the analyser is at 4 2  to the azimuth 
of the major axis of the incident ellipse. The Nakarnura biplate is preferable to 
some other arrangements in which a plate of optically active material covers 
only one-half of the field of view. Because of the asymmetry, the loss of light 

-due to reflection and other causes wiII be different in the two halves, and so 
precise measurements are not possible with the latter type. 

A combination of two half wave plates, with their axes inclined at an angle 
gr  can be seen to be equivalent to an optically active plate producing a rotation g. 
In Fig. 14, the effect of the two half wave plates EIF, and E2F, is to bring the 
point Po to Pl and then to P2, the movement from Po to P, being equivalent to 
a rotation about LR through an angle g. Such a combination may therefore be 
used instead of the quartz plate in each half of the Nakamura biplate3. 

1 F. LIPPICH: Wien. Ber. 91, 1059 (1885). 
2 S. NAKAMURA: Zbl. Min. 267 (1905). The Nakamura half shade has been used to deter- 

mine the principal directions in a doubly refracting medium of small phase difference: H. G. 
JERRARD; J. 06t. SOC. Amer. 42, 259 (ig56). 

- 

M. RICHARTZ and H. Hsu : J. Opt. Soc. Amer. 39, 136 (1949). 
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y )  Doubly refracting half shade. The simplest form of this, originally due to 
LAURENTI and CHAUVIN~ consists of a half wave plate kept in front of the analyser 
covering half the field of view, with one of its vibration directions at an angle 
Q 9 to that of the analyser. The portion covered by the mica has its maximum 
transmission for linear vibrations at  an azimuth 9 with respect to the analyser 
vibration. Tlie arrangement is therefore equivalent to a Jellet prism. The half- 
shade match is achieved when the vibration directions of the half-wave plate 
are parallel to the axes of the ellipse. By varying 9, the sensitivity may be altered; 
but in common with the other two types, the sensitivity of this device also de- 
creases with increasing ellipticity. Further, the device cannot be used for dif- 
ferent wavelengths, as the retardation of the plate can be made exactly equal 
to a half-wave only for a definite wavelength. 

A very thin sheet of mica embedded in 
Canada balsam and covering half the field of view 
is a very useful half-shade for measuring the 
azimuth of linearly polarised light, obtained for 
instance in the Stokes-MacCullagh method after 
passage through the retardation plate. This is y H 
known as a Brace half-shade and is widely used 
in the measurement of the elements of elliptically 
polarised light. Its principle is described in the 
next section. A symmetric modification of this 
is a biplate composed of two equally thin bire- 
fringent plates with their fast directions at a 
small angle to each other3. Another modification Fig. 14 TWO half-wave plates with their axes 
of the birefringent half shade consists of two ~ ~ $ , " ~ ~ e ~ ~ ~ ~ " , ~ ~ ~ ~ ~ ~ t ~ , " n T  
equally thin birefringentplates (usually of mica) (Stereographic projection.) 

with their fast and slow directions interchanged. 
When such a plate is placed in front of a linear analyser the system will show 
an equality in the two halves only when linearly polarised light is incident on it. 
This system is found to be of great use in the analysis of elliptically polarised 
light (see Sects. 21, 23). 

21. Determination of ellipticity: Direct methods. The methods which have 
been proposed for the determination of ellipticity generally require a knowledge 
of the azimuth, although in some methods both are determined by suitable tech- 
niques. The main application of the measurement of ellipticity is for detennin- 
ing the phase retardation introduced by a birefringent medium. In such a case, 
the principal directions of birefringence are known, and i t  is the phase difference 
between the two waves which must be determined. Instruments designed for 
this purpose are knqwn as compensators. By having auxiliary devices to deter- 
mine the azimuth of the ellipse, these can also be used to determine the ellipticity 
of a polarised beam. In this section also, we shall only discuss the broad principles 
and give only one or two examples. A complete review is available in the 
publications mentioned in Sect. 20. 

a) Sknarmont and Stokes-MacCullagh methods. If a quarter wave plate be 
set with its axes parallel to the principal axes of an elliptic vibration, the emergent 
vibration will be linearly polarised at  an azimuth a with respect to the slow axis, 
where u determines the ellipticity of the incident vibration, i.e., tan a is the ratio 

L. LAURENT: C. R. Acad. Sci., Paris 86, 662 (1878). - J. de Phys. 3, 183 (1874). 
2 M. CHAWIN: Ann. de Toulouse 3, 30 (1889). 
a G. SZIVE~SY and W. HERZOG: 2. Instrumentenkde. 58, 229, 345 (1938). 
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of the two principal axes of the incident ellipse parallel to the slow and fast axes 
of the retardation plate (taken with a negative sign if the incident light is right- 
elliptic). This is the principle of the original SBnarmont method, in which the 
azimuth of elliptic vibration may be first determined by finding the setting of 
a linear analyser at' which the intensity transmitted is a minimum. 

As has been previously mentioned, the azimuth cannot be determined accu- 
rately in this manner when the ellipticity is not small. But if the principal axes 
of the 4 4  plate are not exactly coincident with those f the incident elliptic 
vibration, the emergent vibration not being linearly polaris~~eannot be completely 
extinguished at any setting of the linear analyser placed after the retardation 

plate. -Hence the deficiency of the simple method 
can to a large extent, be over-come by a method 

- of successive approximations due to STOKES~ 
and MACCTJLLAGH~, which has the added ad- 
vantage that i t  can be used even when the re- 
tardation of the plate is different from n/2. 
The procedure is to find by trial and error 
that particular setting of the retardation plate 
at which the emergent light can be completely 
extinguished at some setting of a linear analy- 
ser. The azimuths of the principal axes of the 
retardation plate are noted as also the orienta-,\ 

Rg. i 5. The Stokes-MacCuUagh method. The 
tion a with respect to these principal axes of a 

incident state P. cart be reduced to a linear direction crossed with respect to the linear 
vibration A on the equator by a suitably 

re;ardation phte slow and analyser. If the retardation of the plate is 
fast axes are E and F, and whose effect is to exactly n/2 the constants of the incident elliptic 
produce a clockwise rotation s about the 
diameter EF. A symmetrical setting wit6 vibration are immediately obtained. When the 

~ t i t i ~ = s , " ~ ~ ~ O ~ a ~ ~ ~ ~ S ~  
retardation of the plate is E (+n/2) the re- 

to the equator at A&. quired setting of the plate is explained in 
Fig. 15 using the PoincarC sphere. In the setting 

illustrated, the major axis M of the elliptic vibration will not coincide with the 
slow axis E of the retardation plate but will be inclined to i t  at an angle y (arc 
E^M=2y). Since the analyser setting A is adjusted to cross out the emerging 
linearly polarised state, the latter coincides with A,and therefore ET0 = ~2, = 2 a. 
From the spherical triangle POME 

Hence the azimuth y and the ellipticity w may be calculated if a is measured, 
provided, E is known. However even a knowledge of the retardation is unnecessary 
if by the method of successive approximations another setting of the retardation 
plate and analyser at which no light emerges is obtained. This is clearly a sym- 
metrical setting (see Fig. 4 9 ,  the fast axis F' of the retardation plate being such 
that F ~ M  = E ^ M = ~ ~  while the anticlockwise rotation E about F' brings P, to - 
A:, where F'A:=2a. The bisector of the angle between the slow axis at  first 
setting and the fast axis at  the second setting determines the azimuth of the major 
axis of the incident elliptic vibration. Having thus determined y, the ellipticity 

C.  G. STOKES: Mathematical and Physical Papers, Vol. 3, p. 197. Cambridge 1901. 
J. &&C~ULL.~GH: Collected Works, pp. 138, 230. Dublin and London 1880. 
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is obtained from the spherical triangle POME as 

cos2w = cos2crsec2y. (21 -3) 

[It may be noted that the unknown retardation E of the plate may also-be now 
determined from (21.2) -a principle used in some compensators-see e.g. Sect. 23 .] 

Though the oldest method, we have referred to this in some detail not only 
because of its great simplicity but also as most other methods are only minor 
modifications attempting to improve its accuracy. The following drawbacks 
in this method may be noted. The Sknarmont method has the apparent advantage 
that there are two independent operations (namely of determining the azimuth-. 
and then the ellipticity) but is inaccurate in its elementary form for reasons 
mentioned. The Stokes-MacCullagh method, though more accurate, requires a 
procedure of successive approximations. Further in neither of the methods is 
the half-shade principle incorporated. We shall discuss three modifications which 
have been suggested for incor- 
porating the half-shade principle 
in the adjustments. 

p) The Tool half-shade method. 
TOOL has devised an elegant half- - 
shade method1 making use of a 
Jellet prism to whjch is attached 
a Brace elliptic half-shade. The - 
principal planes of the Brace 

72 

4 -1 d plate are at f - to the internal Fig. 16. Twl elliptic anal-. A = JeJlett double prism, B =Brace 
half-shade, C = Compensator plate, A,, A, =Two halves of 

bisector of the angle between the Jellett prism. 

vibration directions of the analy- 
ser, and the plate is kept so as to cover one-half of each half of the analyser. 
The arrangement is shown schematically in Fig. 16. 

The setting for-equality of intensity in all the four quadrants is obtained by 
successive approximations. The compensator and the combined analyser half- 
shade system are first rotated together to obtain a match for the birefringent 
half-shade. With the compensator fixed, the analyser system (with the attached 
Brace-plate) is rotated for a match of the two parts of the Jellet prism, which 
now affects the match already obtained for the birefringent half-shade. The two 
procedures are then repeated successively. Fig. 17a explains the final setting 
on the PoincarC sphere. In this figure E, F, EB, FB represent respectively the 
principal axes of the compensator and the Brace birefringent half-shade; PI 
and P, are the states incident on the upper and lower halves of the Jellet prism; --- 
A, and A, represent the azimuths of the left and right halves of the Jellet analyser 
and A their internal bisector. The Brace plate is attached to the Jellet prism 
such that arc Â F~ is a quadrant. 

The actual formulae for the parameters 3' and co of the incident ellipse clearly 
involves, in addition to the setting of the compensator and the analyser system 
and the phase retardation of the compensator, also the phase retardation 17 of 
the Brace plate. These are not given here but may be obtained from the paper 
by  SKINNER^. Fig. 17b gives the corresponding figure when a symmetrical 
birefringent half-shade is used in which the two halves consist of equally thick 
birefringent plates but with their fast and slow axes interchanged. In this case 

A. Q. TOOL: Phys. Rev. 31, I (1910). The theory of the instrument is discussed, making 
use of the Poincari representation by C.A. SKINXER: J. Opt. SOC. Amer. 10, 191 (1925). 
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a method of successive approximations is not required when the compensating 
plate is set properly (i.e., such that Po is brought to a point P on the equator), 
since whatever be the setting F, of the birefringent half-shade, the states PI 
and P, emerging from its two halves will be symmetrically above and below the 
equator, and consequently the birefringent half-shade will appear matched. The 
formulae in this case are clearly identical with those for the Stokes-MacCullagh 

a b 

Fig. 17  a and b. Tool elliptic analyser at correct settmg. (a) The incident state Po is brought to PI hy the compensator; P1 is 
altered to P, by the Brace plate m the lower half of the field, P, and P, being symmetrically above and below the equator. 
The brefringent half-shade is matched since A=P,=A:P~ and A ~ P ~ = A ~ ~ ;  while the two halves of the JeUett 
prism are matched since  AT^ = A Z 1  and = A ~ P ~ .  (b) MoMied symmetric form. Here P. is brought to P 

on the equator and then converted to P, and P, respect~vely by the two halves of the birefrhgent half-shade. 

method, with the added advantage of the half-shade. The retardation of the 
half-shade does not enter into the formulae, and a knowledge of the retardation E 

can be rendered unnecessary as in that case. 
y)  Double half-shade methods. RICHARTZ~ has devised a simple, at the same 

time accurate, modification of the Sbnarmont method for determining all the 
elements of an elliptically polarised beam. Half the field of view is covered by 

Q r J A  
a quarter-wave plate and behind 
this is kept a Nakamura rotating - bi-plate, with its dividing line at -,, 1 [@ right angles to the edge of the 
quarter-wave pkte (Fig. 18.) The 
system is backed by an analyser. 

Initially a principal axis of 
- - the quarter-wave plateis adjusted 

to be perpendicular to the vibra- 
Fig. 18. Richartz double half-shade analyser. Qzquarter wave tion-direction of the analyser by 

plate, N = Nakamura hiplate, A =linear analyses. keeping the combined half-sha- 
dow plate between crossed nicols 

and rotating it so that both pairs ,of the fields of view are equally bright. The 
elliptically polarised light is then allowed to fall on the elliptic analyser, and 
the whole system is rotated until the lower halves not covered by the quarter- 
wave plate appear equally bright. The axes of the quarter-wave plate are now 
parallel to those of the ellipse. The azimuth of the plane polarised light 

M. RICHARTZ: 2. Instrumentenkde. 60, 358 (1940). A sensitive half-shadow device 
for use with a quarter-wave plate has been devised by JERRARD: J. Opt. SOC. Amer. 44, 
289 (1954). This paper may be referred to for detailed references to literature on the subject 
of compensators. 
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emerging from the 214 plate is determined by rotating the analyser done until 
equality of intensity is obtained in the top quarters. 

The polarisation states of the light emerging from the four quadrants of the 
half-shade system at the correct setting of the quarter wave plate are indicated 
in Fig. 20a by PI, P., P,', Pi, P being the state of the incident light. I t  will be 
noticed from this that the first setting for the determination of the azimuthof P 
will not be sensitive if the ellipticity is large (see also Sect. 19). This in turn 
affects the accuracy in measuring the ellipticity, although the second setting 
in the above arrangement is by itself 
very sensitive. 

This points to the need for devising 
a half-shade system by which both the 
azimuth and ellipticity can be measured 
accurately. RAMASESHAN~ has made 
a careful study of this problem and he 

9; jL@ 
has suggested anumber of arrangements 
for achieving it. The essential idea is to a) 

have a system by which the point P' 
is accompanied by four points Pi, P,', x t ?  
Pi, P,' forming a cross with it, as shown 
in Fig. 20a. Then, at the correct setting, 
there will be equality of intensity in 
both the half-shade pairs only if P' is 
exactly on the equator and if the 
analyser is set at azimuth P,', antipodal Fr: 0 @  
to PI. In fact, if this could be achieved, ' b) 
then the setting of the quarter wave 
plate can be made for any arbitrary 
setting of the analyser (although the 
sensitivity is maximum when it is at  
Pk), by adjusting for equality of inten- 
sity in P,' and P,'. The analyser is then 
adjusted for equality in P,' and P,'. The 
measurement does not require the use of 
successive approximations and the first 

111 N c) @ 
setting can be n-lade independent of the 

Fig. 19B--C. Different pwjbl ma ngements in second. sssam's d y s e r .  Q= quarter wave plate, N= Nakamura 
perhaps the simplest way of ac.iev- biplate, B = b i e n t  half-shade consisting of two plates 

of low, but equal retardation (2 to So), mth their fast 
ing the cross of points, when a quarter and dew axes interchanged, A =hear = ~ a l w .  

wave plate is used, is to have the 
quarter wave plate '(q of Fig. 19a) covering the whole field and having one 
Nakamura biplate in front covering the top half, and another Nakamura 
biplate behind it covering the bottom half. The states of polarisation of the 
light emerging from the upper two quarters are then represented by P,' and 
P,' (Fig. 20a) and of light emerging from the lower two quarters by P,' and Pi. 

Two other possible types of arrangement are shown in Figs. 19b and 1 9 ~ .  
In Fig. 19b, the upper half consists of a Nakamura biplate kept before Q, while 
the lower half is a double-refracting biplate, B, which is also kept before Q, but 
whose axes are at &45" to those of the quarter wave plate. The way in which 
Pi, P,', Pi, P,' are produced is shown in Fig. 20b. 

S. RAMA~E~EAN: J. Ind. Inst. Sci. 37, 195 (1955). 
- 
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In Fig. 19c, on the other hand, both the biplates are kept after the quarter 
wave plate. Here, the Nakamura biplate forms the lower half and leads to the 
points P,', P,' on the Poincar6 sphere. The upper half consists of a double-refract- 
ing biplate, but its azimuth can be varied by rotating the half-shade system. 
The separation between Pi and P,' produced by it is maximum when its axes 
are at 45' to the analyser setting. Fig. 20c has been drawn corresponding to this 
setting. 

Fig. 20 a- 

n ~ )  

-c. nwry of the double half-shade arrangementsin Figs. 18 and 19. (a) corresPdnds to Figs. 18 and ig a, 
19b and (c) to fgc. 

In all the three arrangements, the adjustments of the quarter wave plate Q 
and the analyser A can be made in.a straightforward manner. First Q is adjusted 
for equality in the upper half-shade (Pi and Pi) and then A is adjusted for equality 
in the lower half-shade (P,' and P,') . The sensitivity of the first setting is maximum 
when the second is correctly adjusted, and vice versa and therefore a second 
adjustment of both Q and A is desirable. 

In the arrangements 19a and 19b, the effective "half-shade angle" i.e., the 
angular separation of the points P,' and P,' and of P,' and P,' is not a constant, 
independent of the ellipticity. In both, g e  decreases with increasing ellipticity. 
So also, they are not suited for use with compensator plates whose retardation 
is not exactly 3-42, for then the four points Pi, P,', P,', P,' do not form a rectangular 
cross. The last arrangement (204, on the other hand, is ideally suited for this 
case, since it is the final state P' which is split up into four parts with different 

-VF-U an-- -axxrvr: O r r ~ r n ~ T m  prarc, =prim G p- On r;ne 
stage m between the polariser and the orthogonal elliptic analyser. Both the 
P-system and the Q-system are adjusted until crossing is obtained. Then the 
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azimuth and ellipticity of the state propagated unchanged is the state of the 
light incident from the polariser and may be obtained from the settings iip and jEQ. 
In certain experiments it is necessary to have the incident vibration of constant 
ellipticity, but of variable azimuth. This can be obtained by setting Ap-'i, 
equal to co and rotating the P- and Q-systems together. If more general sections 
of the Poinc~C sphere have to be explored it would be necessary to use a pair of 
crossed birefringent plates of equal retardation 6 +90°. 

22. Compensators. In the above methods, the compensating plate which con- 
verts the elliptical vibration into a linear vibration has a fixed retardation and 
only its azimuth is varied. On the other hand, one could employ birefringent 
plates of fixed orientation, but of variable retardation.. Such a pllateis known 
as a compensator and may be obtained by using a wedge-like plate, or a 
combination of wedges, with their fast and slow. directions interchanged. The 
two types most commonly used are the Babinet compensator (Fig. 214 and 
the Soleil compensator (Fig. 2lb)l which are usually made of quartz plates 

b) 
Fig. 21. (a) Babinet compensator. (b) SoIeil compensator. 

cut parallel to the optic axis2. In the Babinet compensator, the path retardation 
varies linearly over the breadth of the plate, while it is a constant over the whole 
area in the Soleil compensator. In both, the retardation may be varied by moving 
one of the plates, and the relative phase retardation may be varied over a few 
cycles in the usual designs. 

In all methods involving the use of such compensators, it is necessary to know 
the azimuth of the elliptic vibration beforehand, as the principal directions of 
the compensator must be kept parallel to the axes of the ellipse. This may be 
done by using one of the half-shadow methods discussed earlier. However, by 
far a major part of the applications of compensators is for finding the retardation 6 
produced by a crystal plate or birefringent medium. This may be measured by 
keeping a linear polariser a t  n/4 to the principal planes, when the ellipticity of 
the resulting ellipse is given by tan +a. The axes of the ellipse will be parallel 
to the principal directions of the crystal plate, and so the orientation of the 
compensator presents no problem. 

In the Babinet compensator, a series of dark and bright fringes will be observed 
in the field of view, when linearly polarised light at azimuth 4 4  is incident and 

an analyser is set at azimuth -&:. The setting of the andyser does not affect 

1 For details, see G. S m s s y  [I] and H. G. JERRARD: J. Opt. SOC. Amer. 38, 35 (1948). 
This particular orientation is however not essential. See also G. SZIYESSY and CL. 

MUNSTER: Phys. 2. 36, 101 (1935) for eliminating errors due to optical activity of q u d z .  
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the position of the fringes, but they are clearest at -+$ and vanish at 0 and G .  
If now a crystal plate is introduced with its principal directions parallel to thoLe 
of the compensator, then the fringes wiJl shift by an amount proportional to the 
retardation 6 introduced. The shift may be directly measured, or may be com- 
pensated by moving one of the wedges. The instrument is calibrated by measuring 
the band-width or the movement necessary to shift the fringes through one band, 
which corresponds to a phase retardation of z. 

The Soleil compensator is very similar to the Babinet, except that the field 
of view is uniform in intensity and the adjustments of the compensator are made 
for extinction. The calibration is done by measuring the movement of the wedges 
from one setting for extinction to the next. In view of the Iarge field of view, 
half-shadow devices could be used in combination with it1. 

The problems connected with the accurate adjustment and the calibration of the 
Babinet and Soleil compensators have been discussed by JERRARD 2. A birefringent 
compensator having a field of view about 25 times that of the'Babinet and suitable 
for use in strongly convergent light, as in microscopy, has also been developed3. 

23. Compensators for measuring small ellipticity. A type of compensator, 
suitable for small ellipticities, may be obtained by compressing or tensioning a 
plate of optical glass, whereby it develops birefringence with the principal planes 
parallel and perpendicular to the direction of the tension. Uniform phase retarda- 
tion may be obtained over the field of view with proper arrangements, and its 
value may be varied by adjusting the tension. This method is particularly used 
for measuring very small retardations of the order of 40-5 - 292. Balf-shade 
arrangements using such a compensator have also been described4. 

A particularly accurate arrangement, making use of two retardation plates, 
one as a compensator and the other as a half-shadow device has been devised 
by BRACE 6. Several modifications of this have been suggested by various workers, 
and full  details may be obtained from JERRARD'S review. 

Here, we shall consider the typical arrangement. The polariser is kept at 
5214 to the principal planes of the crystal plate under study, producing a phase 
retardation 6, and the emergent elliptical light passes through a retardation plate 
producing a phase difference E of about 2~150. Behind this is kept another bire- 
fringent plate with a retardation of about 27c/200, which covers half the field 
of view (Brace half-shade of Sect. 20). As mentioned in Sect. 21, a more satis- 
factory arrangement would be to have a biplate, of half the thickness, each 
covering half the field of view, but with their fast and slow directions interchanged. 
We shall develop the theory for the latter arrangements. Behind the half-shade 
is the linear analyser. 

With the polariser and andyser crossed, and keeping the principal directions 

of the hdf-shade at  -J--, the setting of the compensator for equality of intensity 

is indicated in Fig. 22; 

H. G. JERRARD: J. Sci. Instrum. 28, 10 (1951). 
H.G. JERRARD: J. Sci. Instrum. 26, 353 (1949); 27, 62 (1950); 27, 164; 30, 65 (1953). 
If. FR.AN$ON and B. SERGENT: Optica Acta 2, 151 (1955). 
A. DEFOREST PALMER: Phys. Rev. 17, 409 (1923). - H.A. BOURSE: Phys. Rev. 46, 

187 (1934). 
D.B. BRACE: Phil. Mag. 7, 320 (1904). - Phys. Rev. 18, 70 (1904); 19, 218 (1904). - 

G. SZIVESSY: 2. Instrumentenkde. 57, 49, 89 (1937). 
The use of the PoincarB sphere helps one to appreciate the simplicity and symmetry 

of the arrangement discussed here. In the theory of the Brace compensator, worked out by 
analytical methods by the earlier workers, the formulae are highly complicated, because of 
the unsymmetrical nature af the two halves of the device. 
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The half-shade is kept at  4 4 ,  but the compensator azimuth k can be varied, 
and if this is such that the elliptic vibration Po is converted into alinear vibration P, 
then there would be equality of intensity in the two halves of the field of view 
(Fig. 22a). The setting is independent of the position of the analyser, but the 
sensitivity can be greatly increased by bringing the analyser close to the setting 
orthogonal to P i.e., A, coinciding with P. Let the azimuth of the analyser 

for this condition by y f -2- i.e., 2y is the longitude of P. 
2 

Alternatively the half shade plate may be kept in front of the compensating 
plate and the setting of the compensator for match determined. This is indepen- 
dent of the polariser setting but the field will appear darkest when the polariser 

Fig. 22 a and b. Diagrams (a) and (b) illustrating two possible arrangements for the Brace compensator. The rotations of the 
Poincard sphere are highly exaggerated. 

is turned through an angle j3 such that the state P,, of the light emerging from the 
test plate represents a state which, if the half shade had been absent, xvould have 
been crossed out by the elliptic analyser composed of the compensator plate 
backed by the nicol (Fig. 22b). 

The values of y and for the two cases, as also that of the phase retardation 6, 
in terms of the compensator setting k and its retardation E are given by the 
following equations. They may be derived from the appropriate spherical triangles 
in Figs. 22a and 22 b. 

I -sec& tan 2 y = -- -- -- . . .- . 

cot 2h  + t a n  2k sec E ' 

(b) sin 2P = sin 4 k sin2 4 2 ,  1 
sin B = sin E sin 2 kjcos 2/3 \ 

- sin 2 k  sin E 
- 
l/iyG&Tki~Gyfi I 

The setting of the compensator for match of the half-shade is first determined 
approximately with the polariser and analyser crossed. The value of y or B as 
the case may be is calculated, the polariser or analyser is kept at  that position 
and the compensator is carefully reset for match. A second setting of the com- 
pensator is also possible, shown by E'F' in Figs. 22a and 22b, for which y and P 
have respectively the same values as in the previous case, except for a change 
of sign. Two more settings can be obtained during a full rotation of the compen- 
sator at  an angle n away from the above two settings. The best method of utilis- 
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ing these four readings is discussed by SZIVESSY~. Very accurate measurements 
can be made in this way and an accuracy of one percent or better is claimed for 
measuring phase differences of the order of 1 x 1 0-4 . 2 n. As may be verified 
from Fig. 22 and the equations for 6, the setting of the polariser or analyser has 
no effect on the setting of the compensator for match of the half-shade, although 
i t  affects the sensitivity. The settings y and /3 are only those for maximum sen- 
sitivity. 

Several modifications may be made in the above arrangement e.g., by inter- 
changing the position of the compensator and the half-shadow plates, or keeping 
either the half-shadow plate or the compensator 
plate, or both, in either order, before the crystal 
plate whose retardation is to be measured2. No 
special advantages seem to be present for any of 
these arrangements over the case considered above. 

.A simple method, making use of a single bire- 
fringent plate both as a compensator and a half- 
shade has been proposed by SZIVESSY 3. This is 
particularly useful for small ellipticities. The bire- , 
fringent plate, whose phase retardation 71 is chosen 
to be slightly larger than twice the expected 
phase difference 6, is fixed to cover half the field 

Fig. 23. Principle of SZIVKSSY'S com- of view. The analyser is initially kept a t  right pensator half-shade. The incident state 
angles to the major axis, and the compensator plate ~ ~ S f i ' , ~ ~ ~ ; " , ~  t;YPt~,",","P~'~t~f.  
is rotated until equality of intensity is obtained. half-shade whosefast axis isF,. The two 

halves are matched when P, and P are 
The setting for this is shown on the Poincark sphere ,mmebically above and below the equa- 

in Fig. 23. and it will be seen that there \vill be tor." beingthe.anal~sersettingforwhich 
the field is darkest. Rotations of the 

four possible settings of the fast axis during a Poincarb sphere are exaggerated. 

rotatibn of ;-t, mar&ed by F , ,  F,, F;, F,' in t h e  
figure. The latter two are not of interest, because they correspond to the settings 
when the principal directions of the half-shadow plate are parallel and per- - 
pendicular to the analyser. If k, 2- -k  are the settings corresponding to F, 

2 
and F,, then the relation between B and k is 

tan 6 = sin2ktanQt7. (23 -3) 
Modifications of the above method, and of the Brace compensator have been 

suggested by SZIVESSY and HERZOG~. A detailed study of the Sknarmont com- 
pensator and of its modification~ has been made by GABLER and SAKOB~. 

24. Photoelectric methods for the &nalysis of elliptically polarised light. cr) Meth- 
ods using comfiensators. Visual methods cannot be employed for the regions 
of the spectrum outside the visible, and so other methods have to be used. Photo- 
graphic methods are useful, particularly in the ultraviolet 6. The main purpose 

G. SZIVESSY: Z. Physik 54, 594 (1929). 
For details see H. G. JERRARD: J. Opt. Soc. Amer. 38, 35 (1948). 
G. SZIVESSY and A.  DIERKESMAN: Ann. Phys., Lpz. 11, 949 (1931). 
G. SZIVESSY and W. HERZOG: Z. Instrumentenkde. 57, 305 (1937). 
F. GABLER and P. SAKOB: 2. Instrumentenkde. 58, 301 (1938); 61, 298 (1941). - 

2. Physik 116, 47 (1940). - Phys. Z. 42, 319 (1941). 
M7.V01GT: Phys. 2. 2, 303 (1901). - R.C. MINOR: Ann. Phys., Lpz. 10, 581 (1903). - 

G.  BRUHAT and BI. PAUTHENIER: Rev. #Opt. 6, 163 (1927). - G. SZIVESSY and C. MUNSTER: 
2. Physik 70, 750 (1931). - G. SZIVESSY, A. DIERKESMANN and C. MUNSTER: 2. Physik 
82, 279 (1933). - 2. Instrumentenkde. 53, 465 (1933). - J. BOR and B. G. CHAPMAN: Nature, 
Lond. 163, 182 (1949). 
Handbuch der Physik, Bd. XS\'/I. 4 
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of such studies have been the investigation of the optical properties of absorbing 
materials, from the state of polarisation of the light reflected from the surface. 
The relationship between the polarisation state and the optical constants,' both 
in isotropic and anisotropic media, will be found elsewhere1. Here, we shall 
consider the main principles involved in the non-visual methods which have 
been proposed for measuring the characteristics of an elliptically polarised beam. 

All methods use some type of detector for measuring the intensity of radiation. 
We shall use the term photocell for this device, although other types of detectors 
may be employed actually. In polarimetry, where only thqazimuth of a linearly 
polarised beam is to be determined, the photoelectric me tha  is in principle the 
same as the visual methodz. The s e t 9 g  of the analyser for minimum intensity 
gives the azimuth directly, or the method of symmetric angles may be used, in 

L 
- which the' settings an either side at  which the 

intensities are equal are determined, the mean 
giving the setting for minimums. The dark current 
of the photo-cell may be suppressed by modulating 
the incident beam, e.g. by an intermittent chop- 
per, and using a tuned amplifier4. 

BRUHAT and G ~ T  were the first to use the 
photoelectric method of analysing elliptically po- 
larised light. However, they did not use the prin- 
ciple of modulation. KENT and LAWSONG havq 
suggested a very ingenious method in which the' 
ellipse is converted into a circular vibration by 

R means of a quarter-wave plate, instead of into 
Fig. 24. Principle of the Kent and Lawson a linear vibration as in the usual methods. If the 
photwiectri~ anal-. m e  state of PO- emergent light is fed through a rotating linear 
larisation P is brought to the circular state 

by a rotation =bout E ~ .  N~~~ that p, analyser to a photo-cell, then there would be no 
is b w h t  to by the same -tion- a.c. signal if the light is circularly polarised. Other- 

wise, it is obvious that there would be a fluctuating 
component in the intensity of twice the frequency of rotation of the analyser. 
By using a narrow band amplifier, the signal-to-noise ratio may be greatly 
increased. 

The principle is indicated in Fig. 24. The point representing the state of 
polarisation of the incident light may be brought to L (or R as the case may be) 

' by rotating it through an angle E about EF, where the longitude of P is + 2 A. 
Thus, the principal planes of the compensator must be at 55 to the axes of 

the ellipse, and the phase retardation 8 of the compensator must be variable. 
If the azimuth A' and the retardation E are adjusted so as to obtain circularly 

1 See the article by J. FRIEDEL m d  J. BOR: Vo1. XXV, Part 2 of this Encyclopedia. 
Z G. BRUHAT and P. CRAPELAIN: C. R. Acad. Sci., Paris 195, 370 (1932). - G. BRUHAT 

and A. GUINIER: C. R. Acad. Sci., Paris 196, 762 (1933). - D.H. RANK, J.H. LIGHT and 
P.R.YoDER: J. Sci. Instsum. 27, 270 (1950). - G.B. LEVY, P. S ~ D  and D.FERGUS: 
Rev. Sci. Instmm. 21, 693 (1950). 

An account of this and other special techniques in photoelectric polarimetry is given by 
W. HELLER, Ref. 1, p. 34. 

4 Such a method has been used recently for the measurement of Faraday rotation, the 
modulation being obtained by running a mercury discharge lamp from 50 cycles a.c. V. SNA- 
RAMAKRISHNAN: Proc. Ind. Acad. Sci. A 44, 206 (1 956). See also L. R. INGERSOLL and 
D. LLEBENBERG: J. Opt. SOC. Amer. 44, 566 (1954). 

5 G. B R ~ A T  and P. GRNET: C. R. Acad. Sci., Paris 199, 852 (1934). 
6 C.T. KENT and J. LAWSON: J. Opt. SOC. Amer. 27,117 (1937)~ 
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polarised light, then 3c 7s 
- X i  1 2 0 1 = - - ~  2 (24.2) 

So that If 1 = ] t a n 0 1  =cot?. 2 (24.2) 

I t  is clear that the.sense of the ellipse cannot be determined, since there is no 
way of distinguishing whether the state of the circularly polarised beam is L 

I 

- 
Brid e 

to bo%nc@ fined 
onf@bose ompffifl 
synuh CR ll - 
b 

Fig. 25 a and b. Photoelectric method for analysing ellipFally polarisedlight. (a) Using modulated light source. (b) Using 
rotatug analyser. 

or R. Thus there is an ambiguity between two orthogonal states in this method. 
A practical difficulty of the rotating analyser method1 is that the photoelectric 
effect is dependent on the azimuth of the plane polarised light, so that the photo- 
cell is not equally sensitive for all azimuths. This difficulty may be avoided by 
fixing a quarter-wave plate behind the analyser at  the appropriate azimuth, the 
two being rotated together, so that circularly polarised light is always incident 
on the - photocell. -- 

13) Methods withod com$ensating $dates. Two interesting methods have been 
suggested for the analysis of elliptically polarised light using a stationary double 
image prism and two photocells2. In both, tuned amplifiers are used and a 
matching circuit, which can compare the two outputs, either in phase or anti- 
phase, is utilized for making the adjustment. 

The first is a simple application of the visual3 and photographic4 methods, 
using a double image prism. The principle is shown in Fig. 25 a. The double 

The sources of error in this methoa are discussed by J.F. ARCHARD, P.L. CLEGG and 
A.M. TAYLOR: Proc. Phys. Soc. Lond. B 65, 758 (1952). 

J.F. ARCHARD, P.L. CLEGG and A.M. TAYLOR: Research, Lond. 3, 339 (1950). - 
Proc. Phys. Soc. Lond. B 65, 758 (1952)- 

L.R. INGERSOLL and J.T. LITTLETON: Phys. Rev. 31, 489 (1 910). 
G. PFESTORF: Ann. Phys., Lpz. 81, 906 (1926). 

4* 
__-I- 
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image prim separates two perpendicular linear vibrations, and may be considered 
to be a double field analyser (Sect. 20) with a half-shadow angle of 5712. The 
two fields will be equally bright when the two bisectors of this angle are parallel 
to the axes of the ellipse. I t  may be shown that the sensitivity of the device 
is a maximum when the half-shadow angle is nl2, but this condition is not utilised 
for visual methods, since the intensity in the field of view will be too high. In 
a photocell, this presents no difficulty because the constant intensity may be 

removed by having a chopper rotating at a fre- 
quency f and observing only the components of 
frequency 2 f. 

Having obtained the azimuth of *-ellipse, 
the double image prism is then rotated through 
44 ,  so that the axes of the prism are parallel to 
the axes of the ellipse. The ratio of the intensities 
in the two fields then gives b2/a2. Using a Wollaston 
double image prism, it is possible to match the 
two fields by means of an auxiliary analyser be- 
hind the prism. Its azimuth at equality gives 
directly the ellipticity w (=arc tan bla) of the 

Fig.26. Theory of thephotodectncelliphc 
analyserof Fig. 25 b. Light of polmation 
statePispassedthrougharotatingllnear The other method is rather ingenious. Here, 
analyses and then through a double 
image prism Fzd resdVe5 it into states no chopper is used, but a rotating analyser is placed 
Dl Da- The intensities in Dl and in front of the double image prism (Fig. 25 b). D, will be in anti-phase onIy when Plies 

on the meridian through D, and D,. Imagine all azimuths to be measured from the 
major axis of the ellipse to be determined. Let /3, 

j? + be the azimuths of the two axes of the double image prism and p that of 

the rotating analyser. Then the fraction of the intensity received by the photo- 
cell I is, referring to Fig. 26 

t, = (1 + cos A?) [$ (1 + cos A%)] 
= & (I + cos 2p cos 2w) [1 + cos 2 (p - /!?)I. 1 (24.3) 

SimiIarly 
t,=*(l +cospcos2o) [I - cos2(p-/!I)]. (24.4) 

Thus 
G , , = ~ [ I  + ~ c o s 2 w c o s 2 p ~ c o s 2 ( p - ~ ) ~  + I (24.5) + cos 2p cos 2w cos 2 (p - ,5)] . 

If f is the frequency of rotation of the analyser, then the second term is of fre- 
quency 2f while the third is of frequency 4f. By means of a tuned circuit, the 

' latter is eliminated. Considering only the second term, the two intensities are 

t;, = (cos 2w f cos 2/?) cos 2p f sin 28 sin 2p. (24.6) 

I t  is seen that only if ,L? = 0 are the two exactly in anti-phase and the ratio of the 
I two is then 

d - - 1 - COS 2 0  = - tan2o. 
t; - - 1 + c o s 2 0  

(24.7) 

Thus, the setting of the double image prism for this condition gives the orientation 
of the axes of the ellipse and the ratio of the two signals give -b2/f .  As in the 
first method, an a d a r y  anaIyser may also be used to give directly o. 

Both the methods do not give the sense of the ellipse. Unlike in KENT and 
LAWSON'S method, the ambiguity in these methods is that the sign of u, is 

-- -- 
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indeterminate, while A is definitely fixed. The alternative choice of P is shown 
by P' in Fig. 26. Such an ambiguity is unavoidable if no compensators are used, 
and only measurements of intensities are made with analysers represented by 
points on the equator of the PoincarC sphere. On the other hand, these methods 
do not require any calibration of the compensator plates. 

The photocell method has been utilised for the analysis of elliptically polarised 
radiation in the infrared, particularly in connection with the determination of 
optical constants by reflection1. 

25. Depolarisers. A depolariser is an arrangement which converts a beam of 
light of any state of polarisation into an unpolarised beam. Such a device finds 
an application for instance if the relative intensities of two differently polarised 
components have to be compared after passing through an instrument such as 
a spectrograph, where refraction through optical surfaces occur. 

In the PoincarC representation, unpolarised Light is represented by a point 
at the centre of the PoincarC sphere. Thus, if the vector p represents the state 
of the beam emerging from the depolariser, then it must change in such a way 
that its mean value is zero, i.e., 

J p d s = 0  (25.1) 

where s is some parameterz. This must happen independent of the state of 
polarisation of the incident beam. Since any light beam can be considered to 
be made up of a mixture of an unpolarised part and a completely polarised part, 
it is only the latter that has to be rendered unpolarised by the depolariser. Our 
discussion may therefore Be confined to completely polarised incident light. 

The effect of an optical element is to rotate the point on the PoincarC sphere 
about some axis. Suppose the crystal plate exhibits varying path retardation 
over its surface extending over a number of wavelengths. Then P would be 
rotated over a number of complete revolutions about the axis concerned. If 
the incident beam is plane polarised and the plate is optically active, the point P 
is rotated around the equator, and the mean value of p for an integral number 
of rotations is zero. However, if the incident light is elliptically polarised, such a 
plate will not render it unpolarised. In general, rotation about any one axis alone 
will not be sufficient to depolarise an incident beam, irrespective of its state of 
polarisation. However, if  the instrument produces, in effect, rotations distributed 
evenly over a range of 232 about two perpendicular axes in PoincarC space, the 
rotations being uncorrelated, then it would act as a depolariser. This is so because 
any point on the sphere would be evenly distributed over its surface area by 
this process. 

I t  is also possible to achieve this by means of correlated rotations about two 
perpendicular axes3. If the ratio of the two rotations is Y, then the resultant 
PoincarC vector czq~ be shown to be zero if r is an integer equal to, or greater 
than 2. The simples% case with r =2 was adopted by LYOT~, who obtained the 
effect by using two plates of quartz, one twice the thickness of the other, both 
cut parallel to the optic axis, but kept one behind the other, with their axes at  
45" to each other. The resultant rotations are about H V  and CD which are a t  
right angles. LYOT used this with white radiation and the thickness was quite 
large, so that small variations of wavelength introduced the varying phase retar- 
dations. If a similar arrangement is to be used for monochromatic light, e.g., 

1 G.K.T. CONN and G.K. EATON: J. Opt. SOC. Amer. 44, 477, 484, 546 (1954). 
2 G.N. RAMACEANDRAN: J. Madras Univ. B 22, 277 (1952). 
3 B.H. BILLINGS: J. Opt. SOC. Amer. 41, 966 (1951). 
* B. LYOT: AM. Obs. Astron. Phys., Paris 8, 102 (1928). 

' 
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in the study of scattering of light or the Raman effect, then two wedges, one 
with twice the angle as the other, but with their principal directions at  45' may 
be used. Here, the transmitted light would be unpolarised when averaged over 
the area of the depdlariser. BILLINGS has suggested the use of the electro-optical 
effect to construct a depolariser. The electric field which is applied to the crystal 
(like KHJ?OJ through which the light is transmitted is varied in a saw tooth 
fashion at a high frequency. The transmitted light would be unpolarised if ob- 
served for a period much larger than the period of one cyue; 

1 

B. The theory of propagation of light in anisotropic media. 

I. General considerations. 
26. Electromagnetic equationsl. The four field vectors E, D, H and B where 

E is the electric field 
D is the displacement or the electric induction 
H i s  the magnetic field 

and B is the magnetic induction 

define the electromagnetic field in any medium and they must satisfy MAXWELL'S. 
'equations2. If in a medium the charge density is Q and the current density is j 
then ~ M A x T . ~ L L ' s  equations are given by 

and one also has the scalar relations 

When a non-conducting medium is placed in an electric field, the distribution of 
electric charges that constitute the atoms and molecules is altered and this 
alteration produces a dipole moment per unit volume described by a polarisation 
vector P. There would also be quadrupole moments (Q) and other higher order 
effects induceds. The induction D is given by. . ' . 

We shall not deal with these atomistic causes but shall present the propagation 
of light in material media purely from the phenomenological point of view. The 
only a fwiori condition that one can impose is thet D must be a linear vector 
function of E. This implies that D and E need not necessarily be in the same 
direction. 

We shall restrict ourselves in the present Chapter to the case of electrically 
non-conducting media which are also at the same time "non-magneticu--i.e. 

1 Several excellent treatises on crystal optics are available, which present the details 
of the various ~henomena observed in crystals e.g. [ I ]  to  [ 8 ] ,  List of References a t  the end of 
this article. 

* Throughout this article, we shall be using Heaviside units for electromagnetic quantities 
so that factors like 4x wiU not occur in the equations. 

3 See L. ROSEWELD: Theory of Electrons. Amsterdam: North Holland Publ. Co. 1951. 
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ones in which the magnetisation cannot follow the rapid optical oscillations. For 
such media 

j = O ,  e = O  and B = H 1  

and MAXWELL'S equations (26.1) and (26.1 a) reduce to 

In what follows, we shall be dealing essentially with the propagation of plane 
electromagnetic waves in a material medium. We are therefore interested in . 
the solutions of MAXWELL'S equations (26.3) of the form 

where o (=2nv )  is the circular frequency, c is the velocity of light in vacuum, 
n is the refractive index, s is the unit vector along the wave normal and r is 
the vector distance of any point from the origin. The refractive index TZ measures 
the ratio of the velocity of light in vacuo to the phase velocity of the wave in 
the medium. I t  is convenient to take the velocity of light in vacuo to be unity, 
so that the phase velocity v is related to the refractive index by the equation 
n = 1lv. 

In most problems, we would be interested in the diverging bundle of rays 
emerging from a point source or a source of finite size. In such cases, we assume 
that the light disturbance can be represented by a system of mutually independent 
plane waves. TGs assumption can be fully justified from the theory of Fourier 
transformation, for any arbitrary disturbance can be represented as a sum of its 
Fourier components, each' of which may be identified with a plane wave. 

Thus, if u(x, y, z, t )  is the light amplitude at a point x, y, z at  time t and 
v (K, , K, , K,) is the amplitude of its plane wave components with wave vector 
E(K,, K,, K,; IKI = l/A), then u may be put in the form 

If now uo (xo , yo, z0) is the light disturbance at time t = 0, then v's can be connected 
with uo by inverting (26.5). Thus, --- 

+w 

v(K,, K,, K,) = JJJao(xo, yo, zo) e2niK'r~dx o d Y O ~ ~ O -  (26.5 a) 
-m 

~ e n c e :  given the light field at t=O,  that at any later time may be obtained 
by combining the above two equations. Thus, 

+m +w 

(x, y, z, t) = Jfl JU uo (x, , yo, zo) e2Xi[vt - "' ('- dxo dyO dz, dK, dK, dK,. (26.5 b) 
-m -m 

It may readily be verified that u, as defined by (26.5 b), satisfies the wave equa- 
tion 

1 2% VZu---=O 
c2 2p 

See however Sect. 36 on Optical Activity. 
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with c =v/K and obviously also satisfies the initial conditions at t =O. Thus, a 
superposition of plane waves satisfies the wave equation because of (26.5) and 
can be made to fit any required initial conditions by means of (26.5 a)l. 

It must however be mentioned that Eq. (26.4) represents a disturbance which 
is propagated in a homogeneous isotropic medium. We shall however assume 
that the plane wave representation holds equally well in a homogeneous aniso- 
tropic medium. It is also supposed that there is no change in the state of polarisa- 
tion. This is true in general, but not so along certain singular directions in absorb- 
ing crystals (see Sect. 56). Plane wave solutions of a more general type have been 
dealt with by R. C. J O N E ~ ~ .  

I t  will be seen that the operator is equivalent to maltiplicatiop_~y ia, 
a and the operator - to multiplication by - i o n  %. Substituting these, one has 

ax 

Le aD - - = ; O D  at 
and 

12 
curlE = i w T E x s  

and Eqs. (26.3) become 

LZ n H x s = D ,  
s 1 (26.6) 

Fig. 27. Relation between vectors mn- r t E x s  = H .  
nected with Qlectmmagnetic wave pro- 

~%&~~$en&~a&. %,",er' Eliminating I3 from the two equations in (26.6) we 
is perpendicular to E, while E,D, p get and s are coplanar. His normal to the 

plane of the paper. D = - n z ( E x s ) x s = n 2 { E - ( E . s ) s ) .  (26.7) 

If the z axis is along the direction of propagation, Eq. (26.7) takes the elegant form 

Dz=nzEz, Dy=n2Ey and D,=O. (26.8) 

From Eqs. (26.6) one can deduce3 that (a) H i s  perpendicular to D, E and s and 
hence D, E  and s are coplanar; (b) the wave normal s is perpendicular to D 
and not necessarily to E (s being perpendicular to E in vacuum) and from Eq. (26.7) 
we find that (c) D is equal to the product of n2 and the component of E along the 
wavefront. 

The direction of ray propagation is the direction of travel of a marked element 
on the wavefront. In Sect. 27 we shall be considering from a wave-optical stand- 
point the relation between the ray and wave propagation. Here we may identify 
the direction of ray propagation with the direction of energy propagation, the 
latter being defined by the Poynting vector E x H .  The ray therefore travels 
along Q which is the unit vector perpendicular to E  and coplanar with E, D 
and s. These results are illustrated in Fig. 27. It is clear from the diagram, as 
E, D, Q and s are coplanar, that if s and Q are at  an angle a, D and E  also make 
the same angle with each other. 

It is worthwhile at  this stage to give the relation between the wave and ray 
velocities4. If at  time t =o, the points of constant phase lie on a plane A B  

1 Attempts to justify the plane wave representation were made by L M ,  for erastic 
waves in his "Lepons sur la thkorie mathhatique de l'6lasticitC", Paris 1852, and these were 
extended by V. VOLTERRA, Acta math. 16, 153 (1892). 

2 R.C.  JONES: J .  Opt. SOC. Amer. 46, 126 (1956). 
a We are here describing the simple case when the solutions are plane polarised waves. 
4 See also Sect. 27. 
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(Fig. 28) and later, on a plane A' B' at  time t, then the nom'al distance between 
the two planes will be proportional to vt ,  where v is the wave velocity. The 
marked element of wavefront on the other hand will be propagated along Q 

making an angle a with the wave normal If the ray velocity is v,l then from 
Fig. 28, 

v,cosCc = v (26.9) 
and the ray index is 

1 - -nl=ncosu. 
vr 

(26.10) 

Now Eq. (26.7) can be written in the form A/ I / I' 

Hence, we have the inverse relation A V 6 
Fig. 28. Relation between rap velocity and 

2 1 wave velocity. A B  and A'B' are planes of 1 E I =------I D I COS U = - I D I COS a (26.12) constant phase. s is the wave normal. p is n2 cOsZ C( *I" the ray direction along which a marked element 
or is propagated. 

IE1 =v;IDIcosa. (26.43) 

Since a vector of length ID I cos a along E is from Fig. 27 equal to D - (D . Q) Q ,  
this gives for the vector E the equation 

which is exactly analogous to Eq. (26.7). 
Eqs. (26.7) and (26.14) may be taken as the ffindanaental equations for develop- 

ing a consistent theory of the optics of homogeneous media. 

27. The wave surface, the wave velocity surface and the ray velocity surface 
for an anisotropic medium. In the last section the distinction between the direc- 
tions of the wave normal and the ray normal was introduced specifically as a 
consequence of the electromagnetic theory. This was done by assuming that the 
direction of the ray normal-i.e. the direction of travel of a limited portion of a 
wavefront-may be identified with that of the Poynting vector which gives the 
direction of energy flux. This assumption is not without exception even in the 
case of isotropic media2 and in any case the direct evaluation of the Poynting 
vector becomes complicated in the more complex class of crystals (e.g. those 
which possess optical activity). I t  is therefore worthw6il'e considering how the 
ray direction may be obtained independent of the idea of the Poynting vector. 
In fact, the considerations given below are valid for any type of wave, not neces- 
sarily an electromagnetic wave. 

As we have seen in Sect. 26, the propagation of waves arising from an arbitrary 
source distribution iri-a..medium may be represented by a superposition of plane 
waves. It then follows that the disturbance emanating from a point source may 
be represented by a series of plane waves, all proceeding from the same origin 
in various directions, the velocity of propagation along the wave normal being 
however different for different directions if the medium is anisotropic. 

Consider the disposition of the wave fronts after unit tiine, which will be 
as shown in Fig. 29. The envelope of the planes is shown by the thick line in the 
figure, which obviously would form a closed surface in three dimensions. It will 

Measured taking the velocity of light as unity. ' See e-g., F. ZERNICKE: J. Opt. SOC. Amer. 47, 466 (1957). 
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be noticed that, at a point such as Q, which is not on the envelope, the different 
waves reaching it have varying phases. On the other hand, at a point like P on 
the envelope surface, waves having their propagation directions close to that of 
the tangent plane at P will al l  have very nearly the same phase, and therefore 
there will be a concentration of intensity at  P. Thus, at time t =I, there is a 

concentration of intensity on the en- 
velope surface, which we may call the 
wave sw/ace.at time t = 1. This sur- 
face is defined-by the condition that 
the length of the normal from the ori- 
gin to a tangent plage is equal to the 
wave velocity (v,) along the normal. 

We may also plot another surface 
passing through points, such as R of 
Fig. 29, i.e., the feet of the normals 
from the origin to the tangent planes, 
or the wave fronts at time t = 1. 
This surface (Fig. 30a) is called the 
wave velocity surfacel, since the length 
of the radius vector from the origin 

Fig. 29. ~ I l s t ~ c t i o n  for obtaining the wave surface. The wave 
surface is the envelope of the plane waves proceeding invarious to any point on this surface is equal 

-ti*. to the wave velocity along that df- 
rection. 

I t  is obvious from the construction of Fig. 29 that the shape of the wave 
surface will be the same at any instant t, only the size increasing proportional 
to t. So also, it is clear that if we mark a small element ds at P (Fig. 30b), then 
the marked element would go to the corresponding element ds' at P', and that P' 
would lie on the line O P  produced. We shall call the "ray" direction as that 

I / 
along which a marked por- 
tion of the wave surface 
would proceed. Hence, ev- 
ery radius vector of the 

ji? wave surface is a ray direc- 
tion and the distance of its 
tip from the origin would 
be proportional to t. There- 
fore at time t = 1, the 

/'S lengths of the radii vectors 
b of the wave surface would 

Fig. 30. (at Relation between the wave surface and the wave velocity surface. 
be equal to the ray velocity 

(b) Relation between the wave normals and the ray direction p. (vr) along different direc- 
tions. The wave surface at 

t = 1 is thus also the ray velocity s.urfacd2, using a terminology similar to the wave 
velocity surface. It must be noted that the direction of the ray velocity is not 
normal to the marked element of the wave surface. I t  is along the radius vector, 
i.e. along the unit vector Q of Fig. 3Ob. The wave velocity on the other hand is 
parallel to the normal i.e. along the unit vector s. 

I t  is obvious from the construction shown in Fig. 30a that the wave velocity 
surface is the "pedal surface" of the ray velocity surface. 

I This surface is also sometimes called the "normal surface". 
Also sometimes called the "ray surface". 
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28. Light propagation in an anisotropic medium-formulation of the problem. 
Eq. (26.7) or alternatively its simpler form (26.8) may be regarded as the form 
which MAXWELL'S equations assume for a plane wave field-the properties of 
the medium not having been introduced in their derivation (except B = H). 
There are however other constitutive relations between the field vectors D 
and E imposed due to the properties of the medium viz. its particular polaris- 
ability characteristics. It is clear from the discussion in the last section that our 
basic problem reduces to the following: To determine the states of polarisation D 
of the plane waves that can be propagated along an arbitrary direction Oz in 
the medium as well as their wave velocities. The reason why only specific plm6 
wave solutions can be obtained is that they have to be consistent with the field 
equations and the properties of the medium. Since the solutions depend on the 
relations between D and E, these relations completely determine the optical 
properties of the meditun i.e. whether it will be birefringent, optically active, 
absorbing, etc. We shall deal with these cases individually in the sections that 
follow. 

11. Non-absorbing and non-optically active crystals. 
29. Dielectric and index tensors. It has been mentioned earlier p a t  B is a 

linear vector function of E and this in the most general case can be written as 
D = [ E ]  E (29.1) 

where [E]  is a tensor of rank two. The tensor [ E ]  is called the dielectric tensor. 
Written explicitly in terms of the three 'orthogonal axes x, y and z fixed in the 
medium 

D ~ = & 1 1 E x + E 1 2 E y + & 1 3 E z ,  

D y = & z ~ E x +  & 2 2 E y  + & 2 3 E x ,  1 (29.2) 

Dz ='31 ~ 3 2 ~ ~  + ~ 3 3 ~ ~ .  

The tensor [ E ]  will vary with the frequency of the incident light. We shall at 
present confine ourselves to considering the effects for a monochromatic beam. 

We shall now show that the dielectric tensor for a non-absorbing optically 
inactive crystal is symmetric, taking as our starting point POYNTING'S theorem 
which states that at  any point of an electromagnetic field the rate of flow of energy 
is described by the Poynting vector G given by 

G = c ( E x w .  (29.3) 
From MAXWELL'S equations, by taking the scalar product of H  with (26.3~) 
and of E with (26.3 d), and combining we get 

--- - c d i v ( ~ x ~ )  = ( E . D + H . @ .  (29.4) 

The flow of energy into a volume t through the bounding surface CT is thus 

7 T .  

where n represents the unit normal to the surface element do. This should be 
equal to the increase in the electric and magnetic energy in the volume plus the 
energy that may be dissipated. Expressing by We (E) and W, (H)the electric and 
magnetic energy densities and by Wf the dissipation function appropriate to the 
medium (representing the rate at  which work is performed by the electromagne- 
tic field against dissipative forces), we have 

- J G - n d o  =$!~JK+w.) d r  + J ~ d r .  (29.6) 
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Comparing (29.5) and (29.6) and identifying the magnetic energy density (which 
should be a function of state of H alone) with *Hz, we obtain 

d We d t + q = ~ . ~ .  
Hence 

dW,+Wfdt = E  - dD.  (29.7) 

In this chapter we shall only consider non-absorbing crystals for which Wf = 0. 
We then obtain 

d W e = E - d D .  (29.8) 

The type of linear vector relationship that can subsist between D antrz-is nbw 
restricted by the condition that We is a function of the state, i.e. dW, should be 
a perfect differential. We again restrict our attention to media in which D  depends 
on E  alone and not on aE/at [with the use of complex periodic functions this 
means, because of (29.1), that the components of the tensor must all be real 
and cannot take complex values]. Then 

d w , = r , ~ ~ ; E ~ d E ~  +Cz ( E ~ ~ E ~ ~ E ~  f ciiEidE2). 
i i j 

(29-9) 
i*i 

This is a perfect differential only if E~~ =.zji showing that the dielectric tensor 
must be symmetric. Then 

d W e = * z z ~ i i d ( E i E i ) .  (29.10) 
i j 

Integrating the electric energy per unit volume for the particular type of medium 
considered1 

W e = & C 2  E . - E . E .  27 2 7 =&EiDi  

= * [ E ] E - E = & E . D .  
(29.11) 

Hitherto we have expressed D as a vector function of E  using the dielectric tensor. 
If now we take the opposite view and express E  as a linear vector function of D  
then 

E  = [a] D 

where [a] is a tensor of the second rank-the index tensor-which must necessarily 
be symmetric since 

[a] = [ E ]  -l. (29.13) 
Written explicitly 

= x = % l D x + % , D , + % , ~ , ,  
E Y = a ~ , D , + a 2 , D , f a 2 , D , ,  I (29.14) 

Ez = a3,D, + q , D , .  

Consequently with aii=aji the ai is in (29.14) can be obtained in terms of the 
components of the dielectric tensor by substituting the values of D from (29.2). 
Thus one obtains 

where sii is the minor of si in the determinant I E 1 . 
It is not implied that We = 3 E - D for all types of media since i t  has been assumed that 

the dielectric tensor is real and that there is no dissipation. The case when the dielectric 
tensor is complex even in a non-dissipative medium is considered in the section on optically 
active crystals (Sect. 36) while the general case is met with in Sects. 43 and 50. 
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Associated with the index tensor [a] we can define a tensor surface without 
any reference to a co-ordinate system in the following manner. From a chosen 
origin, lay out radii vectors of length r in alI directions, the reciprocal of 72 
being equal to the "magnitude of the tensor property" in that direction, in this 
case the ratio of the resolved component of E in the direction of D  to the magni- 
tude of D  which produced it. Thus, 

If I,, I,, 1, are the direction cosines of the vector D  referred to a co-ordinate system 
and the co-ordinates of the tip of the vector of length r are x, y, z, then 

and therefore the equation to the surface traced by the tip of the vector of length 
r is 

4,x2+ a 2 2 ~ 2 + a 3 3 z 2 + 2 a 2 3 ~ ~ + 2 a 3 1 2 ~  + 2 % 2 ~ y  =I- (29.16) 

The surface is thus an ellipsoid, and as it is associated with the index tensor it 
may be called the iadex ellipsoidl. 

It will be noticed from (29.16) that if we denote the vector (x, y, z) by Do 
and the corresponding E by E,, then E D .  Do = 1 .  This relation can be used to 
find both the magnitude and direction of E when D  is given, by means of a geo- 
metric construction on the ellipsoid. This is discussed in Sect. 30. 

In the same way, we may associate another ellipsoid, the Fresnel eZli+soid, 
with the dielectric tensor [ E ] .  The equation to the Fresnel ellipsoid is thus given by 

Thus, we see that the coefficients of the equation to the tensor ellipsoid with 
respect to any coordinate system are also the components of the tensor with 
reference to the same coordinate system. I t  is useful therefore to recall the 
manner in which the coefficients in the equation to an ellipsoid transform with 
a transformation of coordinate axes. Let O X ,  OY, 0.2 be the coordinate axes 
taken along the principal axes of the ellipsoid, i.e. for which the equation to the 
ellipsoid is- 

- 

Then, if we transform to the axes O x ,  0 y, O z  whose direction cosines are given 
by the scheme 

'\\ 

y Pl ,492 ,493 

YI Y2 Y3 
we have 

1 This is also called by various other names such as the indicatrix, Fletcher ellipsoid and 
reciprocal ellipsoid. 
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30. The complete solution of wave propagation: Geometrical method. a) T h e  
index eZli$soid. By proving that the dielectric tensor is symmetric we have 
proved that in any non-absorbing non-optically active crystal there exists for 
a particular wavelength three orthogonal directions OX, OY, O Z  called the $&- 
cipa2 electric axes for which 

Dx= E ~ E x ,  
Dy= EYEY,  (30.1) 
Dz = cZEZ 

where .sX, E~ and EZ are called the principal dielectric constants. In most cases 
for discussing the problem of the propagation of waves it is more important to 

express E as an explicit function of D. This can 
be done by rewriting (30.1) as 

- - -- 
EX = ax&, 
E y =  a y D 7 ,  (30.2) 

1 Ez= azDz 

~ig. 31. Por~sor's ccnstluction on the index where ax, a Y and az are called the principal 

~ C ~ d d ~ ~ o ~  gF;J","t8 p$$z",,4 components of the index tensor and are respec- 
pendicular to the tangent plane at P. Hence tively the reciprocals of the corresponding prin- 
the wave is propagated in the plane of O P  
aPa OQ and being the mve normal and cipal dielectric constants. The electric vectq 
raydtiom. If themagnrtudeof D i s O P ,  will be parallel to the displacement vector only 
then that of E is i / O Q .  More g e n d y ,  

/ E J - - / D ] ~ O P X  OQ. when the latter is along one of the principal 
electrica1 axes. For other directions of the dis- 

placement vector, the corresponding directions and magnitude of the electric 
vector can be obtained by a simple geometric construction from the i ndex  
ellipsoid. This ellipsoid we define by the equation 

a x X Z +  ayY2+ azZ2=1. (30.3) 

Suppose now we choose the displacement vector D to be equal to the radius vector 
0 P of the ellipsoid, then Dx, D,, DZ are also the coordinates X, Y,  Z of the tip 
of the vector and hence using (30.2) the equation to the ellipsoid can also be 
written as 

E . D = I  = C a x D $ = f ,  say. (30.4) 

The normal to the ellipsoid at the tip of D would have direction cosines pro- 
af af af portional to ax, =, i.e. to axDx, a y D y ,  aZDz, and is therefore parallel 

to E from Eq. 00.2). Hence E lies along the perpendicular to the tangent plane 
of the ellipsoid at the tip of D. Further the magnitude of E will be equal to the 
reciprocal of this perpendicular length since from (30.4) we have 

By this construction which is known after POINSOT (Fig. ?I) ,  if D is the radius 
vector of the index ellipsoid, then E  is the normal from the originto the correspond- 
ing tangent plane. Consequently, given the vector D, the plane containing D 
and E can in general be uniquely determined. From Fig. 27 and Eq. (26.6) we 
know that a wave can be propagated along a direction perpendicular to D, only 
in the plane of D  and E. Consequently, given D, by virtue of the Poinsot con- 
struction there is in general a unique direction of wave propagation inside an 
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anisotropic crystal. This is in sharp contrast to the case of the isotropic solid 
where the wave can be propagated along any direction perpendicular to D (since 
the directions of D and E coincide). 

The converse problem of determining the orientation of the vector D for any 
given direction of propagation is of considerable importance in crystal optics. 
Let us consider the propagation of a wave along an aribtrary direction which we 
take as the Oz direction. The section of the index ellipsoid by the x y plane will 
be an ellipse shown in Fig. 32. The vibration of any wave propagated along Oz 
must be in the plane of this 
section. It is clear that only --.. 
that D vibration for which 
E lies on the (D,z) plane can 
be propagated along Oz. 
And this happens only when 

- 

the D vector coincides with - 
the principal radii of the 
elliptic section. This is a 
property of any triaxial 
ellipsoid which can be 
proved as follows. Let the x 
axis be taken along the D 
vibration. We wish to de- 
termine the orientation of Fig. 32. Given a direction of wave propagation OE, two waves can be 

the axis for which the propagated, and these have their D vectors parallel to the principal axes of 
the central elliptic section of the index ellipsoid perpendicular to OE. Their 

above conditi0ni.e. E lies in refractive indices %, n, are equal to the principd radiiof this section. , 
the DOz plane is satisfied. 

If the equation to the ellipsoid is 

the equation to the elliptic section would be 

The normal at any point x, y, z of the ellipsoid has direction cosines proportional 
at a f  a f  to--, -, -. Hence the condition that the normal at the tip of the radius 
a x  a y  a~ a i  vector along the direction should lie in the xz  plane is that - =O at  x =O, 

y = O  i.e., a~ 
a,.2=o. (30.8) 

This signifies that the x axis and hence the D vector must be taken along one of 
the principal axes of the elliptic section. Hence we get the proposition: Given 
the di~ection of the wave normal s two waves can be propagated with their vibrations 
linearly polarised along the princi+al axes of the elliptic section of the index eltipsoid 
normal to s I. 

It now remains for us to determine the refractive index corresponding to any 
direction of vibration of the D vector. We have shown in (26.7) that D is equal 
to the product of n2 and the projected components of E on D i.e. 

. . 
Extremely elegant geometric proofs of this and many theorems in crystal optics using 

the index ellipsoid have been given in G. SALMON, Analytical Geometry of three dimensions, 
Dublin I 881. 
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which from (29.15a) is equal to f/rZ, where r is the radius vector of the index 
ellipsoid. Hence, the refractive index 

n = r  (30.90) 

where r is the length of the radius vector of the index ellipsoid1. Thus, for a n y  
given direction of the D vector the refractive index i s  equal to the length of the radius 
vector of the ilzdex ellipsoid drawn fiarallel to the D vector. The above results are 
illustrated in Fig. 32. 

The vector E corresponding to any one of the I) vibrations is obtained by 
POINSOT'S construction and in general makes an angle with D. Consequently 
the ray direction Q ,  which is coplanar with D and s but perpendicular to E would 
in general be different from the direction of wave propagation s. Sincefor any 
direction of wave propagation there would in general be two directions of vibra- 

Fig. 33a and b. Relation between ray and wave propagation. (a) For each direction of the wave normals, two waves 
.! and 2 are propagated with different ray directions p, and pL- El, Dl, s, p1 are coplanar and so are E,, D,, s, p,. 
The two planes are perpendicular to each other. (b) Similarly, for every direction of ray propagation p there are two 

directionss, ands, of the wave normal and two velocities of ray propagation. 

tion, there would also be two directions of ray propagation, respectively in the 
planes (Dl, s) and (D,, s) (Fig. 33 a). The ray direction corresponding to each 
one of the D vibrations is parallel to the intersection of the D, s plane with the 
tangent plane touching the index ellipsoid at the tip of the corresponding prin- 
cipal axis of the elliptic section (Fig. 31). 

Any elliptically polarised vibration can be regarded as the sum of two linearly 
polarised vibrations along the principal vibration directions of the crystal. Since 
these two vibrations will be propagated with different velocities, the elliptic 
vibration cannot in general be transmitted through the crystal without change 
of form. Hence though we have sought for and obtained only plane polarised 
solutiorfs it is quite clear that there cannot, in general, be solutions for any other 
states of polarisation (in transparent, optically inactive crystals). 

f i )  The Fresnel ellipsoid. Just as (29.14) expressing E as an explicit function 
of D may be described by means of the index ellipsoid so also the relation (29.2) 
which expresses D as an explicit function of E may be described by the FresneZ 
ellipsoid whose equation is 

cxX2$.  zyY2+ &&-Z2= 1. (30.111 

If the radius vector of this ellipsoid represents in magnitude and direction the E 
vector, then the equation to the ellipsoid can be written from (29.17) as 

D - E = I .  (30.12) 

Given E, the vector D can be obtained from the Fresnel ellipsoid by the POINSOT'S 
construction described in the previous paragraph. Since Q the direction of ray 

Hence the name index ellipsoid for this tensor surface. 
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propagation is perpendicular to E and it lies in the plane of D and E, we get the 
that given E, we have in general a unique direction of ray propagation. 

Further E is equal to the product of v: and the component of D along E [Eq. (26.14)j 
Hence we can by using all the geometric arguments presented in the previous 
paragraph show that for a given direction of ray propagation, two E vectors 

to the principal axes of the elliptic section of the Fresnel ellipsoid, normal 
to the ray direction) are propagated with ray velocities equal respectively to the 
semi-principal axes of the elliptic section (Fig. 33 b) . 

The vector D corresponding to any one of the E vibrations in general makes 
an angle with E. The direction of wave propagation s lies in the plane of E and g 
and is perpendicular to D (see Fig. 33 b) and would therefore be normally dif- 
ferent from the direction of ray propagation. Hence for any direction of ray 
propagation there would be usually two directions of wave propagation. The 
wave direction of any one of the E vibrations is the intersection of the E, Q plane 
with the tangent plane touching the Fresnel ellipsoid at the tip of the correspond- 
ing principal axis of the elliptic section. 

From what has been stated above it is clear for every property to be derived 
from the index ellipsoid there is a corresponding property to be obtained from 
the Fresnel ellipsoidl. It follows that the variables occurring could be written 
in two rows: 

Any relation that is valid for the members of one row remains valid when all 
the corresponding members of the second row are substituted. 

31. Analytical solution of wave propagation along an arbitrary direction. We 
have proved from geometric considerations that given the direction of propaga- 
tion, all vibration directions transverse to it are not permissible in an anisotropic 
medium. We have shown that in general, only two directions of vibrations are 
possible corresponding to two orthogonal states of linear polarisation-these 
vibration directions and the corresponding refractive indices being determined 
by the index ellipsoid. We now give a simple analytical proof of the same results. 
We present this as we shall be extending the same method for the systematic 
presentation of the features of the propagation of light in a more complex class 
of crystals. 

We mav choose the direction Oz of a set of orthogonal coordinate axes 0 x, 0 y, 
Oz to be aiong the direction of propagation. Then Dz=O as the vibration direc- 
tion must be perpendicular to the direction of propagation. We wish to find the 
orientation of the vector D in the x, y plane for which the wave is propagated 
unchanged. The orientation may be specified by the ratio DJD,. Then the 
section of the index ellipsoid normal to the direction of propagation lies entirely 
in the x y  plane and is an ellipse with its major and minor axes not coinciding 
with Ox  and 0 y. Without loss of generality we may for convenience choose the 
axes 0 x and 0 y to be the axes Ox' and 0 y' which lie along the principal axes 
of the ellipse. Then the equation to the ellipse becomes . 

a;lx'2+aL2y'2=i .  (31.4) 

1 It has been remarked in SOMMERTELD'S "Optics" [6]. "What is involved hese is the 
same duality that exists in projective geometsy between the coordinate spaces of points and 
planes. " 

U=ndhnch der Physik, Bd. XXV/I. 5 
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We have already proved in Sect. 29 that the coefficients ai;s which occur in the 
equation to the ellipsoid are also the components aii of the tensor [a] referred 
to the same axes. By our choice of axes we have made 4,=0 and D,=0 and 
hence Eq. (29.14) which gives the relation between E and D yields - .  

Now if n is the refractive index for the wave with the vector D then it follows . 
from Eq. (26.8) that -.. 

1 1 E,=aDd; Ef=-;E;i.Wv. (31.3) 

Combining the two equations (31.2) . .  . and (31.3) we have 

These two equations must simultaneously be satisfied for wave propagation along 
the Oz direction. 

'. 
The two solutions of (31.4) are 

1 
DY=0 forwhich %=ail, 

I ,  D,=o forwhich --=a,,. nz 

We get the result that given the direction of wave propagation (a) the direction 
of vibration of the two D vectors coincide with the direction of the principal 
axes of the elliptic section of the index ellipsoid normal to the direction of pro- 
pagation, (b) the refractive indices are e q d  to the lengths of the major and 
minor axes, i.e., velocities of propagation along the given direction are proportio- 
nal to the reciprocal of the two principal axes of the elliptic section. If we define 
the plane of the D vector and s the direction of propagation as the plane of polari- 
sation of the light, we find that all plane waves (monochromatic) travelling in a 
crystal are completely linearly polarised in directions determined by the major 
and minor axes of the elliptic section. 

32. Crystal symmetry and the index ellipsoid. a) General consideratiolzs. Since 
the index tensor is a second order symmetric tensor, it can be defined by six 
parameters. Correspondingly, the index ellipsoid also requires six parameters 
for its specification, which may be taken to be the lengths of its three principal 
axes and three "angle" parameters to specify its orientation with respect to the 
crystallographic axes. The principal axes of a triaxial ellipsoid are two-fold 
axes of symmetry and its principal planes are mirror planes of symmetry. It is 
therefore necessary that if a crystal possesses certain elements of symmetry, the 
disposition of the optical ellipsoid in the crystal must be in accord with these 
symmetry operations. The conditions imposed by such elements of symmetry 
may be readily worked out1 and may be summarised as in Table 2. 

Any combination of these symmetry elements existing in a crystal will lead 
to the restrictions corresponding to each one of the elements. As a consequence, 
the crystals occurring in different crystal systems may be classified as in the 

See for instance, the article of H. JAGODINSKI in Vol. VII, Part 1 of this Encyclopedia. 
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Table 2. Effect of crystal symmetry on the index ellifisoid. 

Element of symmetry 1 Restriction on index ellipsoid 

Centre of inversion (TE i) 

2-fold axis (21 

Mirror plane (Z E m) 

n-fold axis or n-fold alternating axis with 
- n 2 3 ( n , q  

- 

None 

One principal axis parallel to the %fold axis 

One principal axis normal to the -or plane 

One principal axis is parallel to the axis and 
the two axes in the perpendicular plane 
are equal, i.e., perpendicular section is a 
circle --. 

Table 3, according to their optical behaviourl. Thus, in a monoclinic crystal, since 
the orientation of one of the axes is fixed, only 4 parameters are required to specify . 
the index ellipsoid, three to give the magnitudes of the three principal axes and 
the fourth to specify the azimuth of the major axis in the a c  plane with respect 
to the crystallographic axis a (say). In the other cases, the number may be 
readily deduced from the data in Table 3. 

- 

Table 3. Optical behaviour of crystals belonging to different crystal systems. 

Variation with 
wavelength, temperature 01 

isotropic pressure 

General 

Orientation of one 
principal axis al- 
ways along b 

No change in orien- 
tation, but only in 
length of principal 
axes i.e., in n, /I, y 
'(or n,, ny. n,) 

Optic axis always 
along c, but n, and 
n, may vary 

Ophcalbehavio~ 

Biaxial, optic axes in 
general directions 

Biaxial, optic axial 
plane either 11 or I 
to b 

Biaxial, optic axial 
plane 11 to ab, bc or 
ca, acute bisectrix (1 
to one of the crystal 
axes 

Optic axis 11 c 

No. of Nature and orientation of the Crystal system 1 2z& 1 opticalellipsoid 

Isotropic Always isotropic, but 1 n may change - 

Triaxial, principal axes 
in general direction 

Triaxial, one principal 
axis I I b, other two I b 

Triaxial, all three prin- 
cipal axes along a, b 
and c 

Uniaxial, spheroid with 
unique axis parallel to c 

--- 

Triclinic I 6 

,Obviously the elements of the index tensor would in general vary with the 
wavelength of light, the temperature of the crystal and also with hydrostatic 
pressure. The nature of these variations is listed in the last column. The optical 
axial angle in general varies with these factors in a biaxial crystal, but the plane 
of the optic axes is not arbitrary except in tricIinic crystals. 

8) Uniaxial crystals. In crystals belonging to the trigonal, tetragonal and 
hexagonal systems the index ellipsoid must clearly become an ellipsoid of revolution, 
the axis of revolution OZ being coincident with the n-fold crystallographic axis 

1 Reference may also be made to the article by C.D. WEST in "Physical Methods in 
Chemical Analysis", Ed. BEE, New York 1950, p. 438, wherein he has pointed out the 
inadequacy of the Hermann-Mauguin (International) or the Schoenflies symbols in con- 
nection with crystal opt~cs. 

5* 

Isometric (cubic) I sphere 

Monoclinic 
(b-axis unique) 

Orthorhombic 

Rhombohedral, 
Tetragonal, He- 
xagonal (c axis I I 
to  3,4 or 6-fold 
axis) 

4 

3 

2 
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of rotation. The normal to the circular section of the uniaxial ellipsoid viz., 
the O Z  direction is defined as the optic axis. The crystal is termed positive 
or negative according as the index ellipsoid is a prolate or an oblate spheroid i.e., 
according as ns the refractive index for the D-vibration parallel to the optic 
axis is greater or smaller than P J ~ ,  the refractive index for any vibration per- 
pendicular to the optic axis. 

The features of propagation in uniaxial crystals may be obtained by a con- 
sideration of the results of the previous section. Referring to Fig. 34a it will 
be seen that 0 Y will be normal to the ellipsoid at Y, so that the E and D vectors 
coincide for this direction of vibration as for an isotropic medium. Thus a D 
vibration parallel to OY can be propagated along any direction lying in theplane 

z 
u 

x. X 

a b 

Fig. 34 a and b. Propagation of Iight in a uniaxial crgstaL (a) Section of theindex elhpsoid whicbis an elhpsoid of revoluhon 
about 02. For propagation along 8, the two D vecton are Dl in the plane of the paper and D, normal to it. The two 
refractive Indices are %=OP and ~t,=nru. (b) Section of the Fresnel ellipsold which 1s alsq an ellipsoid of revolution 

about 02. The two ra$ velocities along p are u, and uw,  which are used for Costnrcfing the wave surface. 

of the paper. Conversely if we consider an arbitrary direction of wave propaga- 
tion s which we may, without loss of generality, suppose to be in the plane of 
the paper, one of the D vibrations is normal to the principal plane containing 
the optic axis and the direction of propagation. This is known as the ordinary 
wave since it has a constant refractive index n, and for it the wave normal 
and the ray direction coincide (since D is parallel to E).  The second wave-the 
extraordinary wsve-which can be propagated along s must have its D vibration 
perpendicular to the first, i.e., lying in the principal plane defined by the optic 
axis and the direction of propagation. The actual orientation of the vibration 
is along the radius vector of the ellipsoid drawn perpendicular to s in the plane 
of the paper (see Fig. 34a). The extraordinary refractive index n given by the 
length of this radius vector depends on the inclination 6 that the direction of 
propagation makes with the optic axis. The expression for n is readily obtained 
by writing the equation for the section of the index ellipsoid by the plane of the 
paper as 

or2 y2 - 1 
-+q-." fi: (32.1) 

where a and y are the direction cosines of any radius vector of the ellipse. Hence 
we have 

(32.2) 



Sect. 33. Biaxial crystals-singular directions and conical refraction. 69 

It will be seen from Fig. 34a that for the extraordinary wave, the D vector 
obtained by POINSOT'S construction does not coincide with D. This leads to the 
most interesting property of this wave, viz., that the ray-direction deviates from 
the wavenormal, always lying however in the principal plane defined by s and 
the optic axis. 

Along the optic axis itself any linear vibration lying in the circular section- 
hence a wave in any state of polarisation-can be propagated unchanged with 
refractive index n,, the ray and the wave normals being also coincident. 

The wave surface for a uniaxial crystal may now be obtained by using the 
fact that it is identical with the ray velocity surface (Sed. 27). The extraordinary 
ray velocity v, for any direction of ray propagation Q (Fig. 34b) in the plane of 
the paper may be determined from the section of the Fresael eZZi$soid. This 
is done in the same manner as the extraordinary wave index corresponding to 
the wave normal s has been obtained from the section of the index ellipsoid. 
Remembering that the lengths 
of the semi-axes of the Fresnel 
ellipsoid along OX and 02  are 

i 1 - - and v = - we have 4-,i * (  ,I 
corresponding 1 e% to Eq. d (32.2) a flJ) 

T = ; ~ + T -  (32-3) negufive p05ifim 
Fig. 35. Wave surfaces of uniaxial crystals. (a) for a negative 

The extraordinary ray velocity crystal, (b) for a positive crystal. 

surface is traced by the tip of 
the radius vector whose length is equal to the extraordinary ray velocity v, 
corresponding to the particular ray direction (see Fig. 34 b). The equation to 
its section is therefore obtained by setting 

V,=r, X = p x r ,  Z = e , r  
in Eq- (32.3) giving 

On the other hand since for all directions of Q in the plane of the paper, the E 
vector perpendicular to the plane of the paper is propagated, the section of the 
ordinary ray velocity surface is a circle of radius v,. 

Thus the complete wave surface of a uniaxial crystal consists of a spheroid 
and a sphere touching at points Z = Jc vu . This is illustrated in Fig. 3 5 a and b 
for positive and negative crystals. 

33. Biaxial crystals-singular directions and conical refraction. For crystals 
of lower symmetry tEan those considered in the previous section, the index ellip- 
soid is a triaxial ellipsoid. We shall choose the axes of coordinates OX, OY, OZ 
such that nx< ny < nz where nx, 1 ~ y ,  nz are the lengths of the principal semi-axes, 
being also the refractive indices for vibrations parallel to X, Y, 21. The cor- 
responding light velocities are called the principal light velocities being given by 

1 v+ a* = - 
nk ' etc. (33.1) 

1 The three principal refractive indices are often referred to  as a, 8, y in the mineralogical 
literature, a < ,!? < y. 
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Considering any direction of propagation, in the XZ plane (Fig. 36) one of the 
vibrations propagated must be parallel to the Y direction (since the radius vector 
in that direction meets the surface of the ellipsoid normally), the corresponding 
refractive index being 9. The other vibrations must necessarily lie in the X Z  
plane, normal to the direction of propagation, having therefore a refractive index n 
intermediate between nx and nz. As in (32.2) n is given by 

i c0s28 sin2@ -- 
n2 -7 +T (33.2) 

where 6 is the inclination of the direction of propagation tb the Z axis. 
Clearly, there will be two directions ON, and ON, (Fig. 36) for which lz would 

be equal to n, and where the sections normal to these directions would be circular. 
These directions are called the optic axes (also some- 
times called binonnals), and they would be symme- 
trically inclined to the Z direction. The optic axial 
angle 2 V is determined by substituting V for 6 and ny 
for n in Eq. (33.2) giving 

ay = ax cos2 V + az sin2 V (33.3) 
or 

aY - az Sin2 v- ax - aY cosz v= - 
ax  -a2 ' ax - az (33-4) 

and 
1 - 2 -  

ax - a y  - n$ - n2y tan2 V = ----- - 
Fig. 36. Central section of theindex a ~ - a ~  1 - I ' 

(33.5) 
elhpsoid for a b i a a l  crystal normal 
to 0 Y. P, q and P, P; are the two n-5 
circular sections of the ellipsoid and 
the d+ctions N l O T  and NzOi%' The expressions for cos2V and sinaV could similarly normal to them are the two optic 

axes, whichaein 6 3  plane. be written in terms of the principal refractive in- 
dices. 

A crystal is said to be a positive or a negative crystal, according as 2V is 
acute or obtuse, i:e., according as the acute bisectrix coincides with OZ or OX 
(these directions correspond respectively to the maximum and the minimum 
refhctive index). 

Since the section perpendicular to an optic axis is circular, any state of polari- 
sation is capable of being propagated along it with a single refractive index nY . 
The optic axes are therefore sometimes called the axes of isotropy, but actuaIly 
all directions of the D vibration lying in the circular section are not equivalent 
as far as the corresponding ray directions are concerned. We have seen that 
OY lies on the circular section and since OY is also normal to the ellipsoid at Y, 
the D and E vectors will coincide for this vibration. Hence for a D vibration 
parallel to OY, the ray direction coincides with the wave normal which in the 
present case is the optic axis 0 N, . However, for a D vibration lying on the cir- 
cular section perpendicular to OY (i.e. parallel to OP,, Fig. 37), the E vector 
obtained by POINSOT'S construction would make an angle with the D vector 
giving rise to a ray direction OR different from ON,, but lying in the X Z  plane. 
For other directions of the D vector, the deviation between the ray and the wave 
normal will be less. In fact, it can be shown that as the D vector occupies all 
possible directions parallel to the radii of the circular section, the corresponding 
ray directions will describe a cone, the optic axis itself being one of the generators1. 

1 See G. SALMON : Analytic Geometry of Three Dimensions. Dublin 1881. 
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This phenomenon is known as the internal conical refraction. Each point 
of the circle of rays observed with unpolarised light corresponds to a specific 
direction of vibration of the D vector. The phenomenon is considered in greater 
detail in Sect. 77. 

With an identical treatment, it is clear that the Fresnel ellipsoid will have 
two circular sections, the normals to which will be the directions of single ray 
velocity. These are also called the optic bi-radials. These wiIl again lie in the 
X Z  plane symmetrically about the 2 axis. To obtain the angle 2V, between them, 

1 1  1 
we'note that the principal semi-axes of the Fresnel ellipsoid are z, lay and -- m7 

<. - - 
instead of nx, I Z ~  and n, as is the case 
of the index ellipsoid. Hence, corre- 
sponding to Eq. (33 .9 ,  we have 

Z R 

Fig. 37. Fig. 38. 

Fig. 37. Int-al conical refraction. When the vibration direction is along 0 Y, D and E coincide and the ray is along 
ON WhcnD is along OP,, in the circularsection,Eis 0 Q d the ray d t i o s  OR. For orvarious other directions 
of d'in the circular section, the ray directions form a. conc The vihradon directions ior diiiercnt drections in the cone 

are marked in the expanded diagram at the top. 

Fig. 38. Section of the index ellipsoid n o d  to a general direction of propagation. R, and Rs are the traces of the circular 
section in this plane. 

This formula shows that the directions of single ray velocity do not coincide with 
the optic axes. In the circular section of the Fresnel ellipsoid, as the direction 
of E varies, one gets different directions of wave propagation for the same direc- 
tion of ray propagation. This phenomenon is known as the external conical 
refraction and will be considered again in Sect. 77. 

34. Formulation of results in terms of optic axial directions. I t  is of impor- 
tanGW%i practice to be able to determine the vibration directions and refractive 
indices corresponding to any specified direction of wave propagation. Geometri- 
cally the problem is to obtain expressions for the orientations and the magnitudes 
of the principal semi-axes of the elliptic sections in the plane of the wave front 
(i.e. normal to the direction of wave propagation). The results are more elegantly 
expressed if the direction of propagation is specified by the angles it makes with 
the two optic axes rather than by its direction cosines with respect to the principal 
electric axes. 

Let us now consider any direction of wave propagation which we may con- 
veniently take as normal to the plane of the paper (Fig. 38). The central section 
perpendicular to O z  will be an ellipse and the major and the minor axes of this 
elliptic section will correspond to the directions of vibrations D' and D" of the 
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waves propagated along Oz. The two circular sections of the index ellipsoid will 
intersect the elliptic section along I1, and R,; these must be equally inclined to 
the principal axes of the elliptic section since we must have R, =R2. Further 
since R, is perpendicular both to Oz and to the optic axial direction ON,, it 
must be perpendicular to the plane defined by Oz and ON,. Similarly R, is 
perpendicular to the plane defined by Oz and the other optic axial direction 
ON,. The plane N,Oz and N,Oz will intersect the elliptic section in r, a n d r ,  
where r, is perpendicular to I1,, and r ,  to R,. Hence r, and r, must be equally 
inclined to the principal axes of the elliptic section, or vice versa, the principal 
axes are the internal and external bisectors of the angle between r, and r,. 
Representing the directions by points on a sphere (Fig. 39) the D vibrstg-11s pro- 
pagated along the direction z bisect internally and externally the angle subtended 
at z by the two optic axial directions N, and N,. 

Y 
a b 

Fig. 59. (a) N,,  N, ,  z are the intersections of the optic axes and the direction of pmpagation with a sphere. The two 
vibration directions I)' and D for propagation along Oz are the internal and external bisectors of the angle N X  z N z .  

(b) Construction for proving Eq. (34.1). 

The velocities v' and v" of the two Waves propagated along the arbitrary 
direction Oz are given by the elegant relations 

where Ul and U2 are the respective inclinations that the direction of propagation 
makes with the optic axes N, and N,. 

To prove this we choose our Ox axis such that the xz plane bisects the angles 
between the planes N,z and N,z (Fig. 39b). The x direction is therefore one of 
the vibration directions D' and the length of the intercept by it is the correspond- 
ing refractive index, i.e. we have v'2 =%, where %, is given by (29.19) in terms 
of the direction cosines al, a, y, of O x .  Since the direction cosines of the optic 
axes are (sin V, 0, cos V) and (-sin V, 0, cos V) the angles 3 and u2 which 0 x  
makes with the optic axes are 

We have also from spherical trigonometry 
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where I is the angle -l.?N,. On account of the expressions for sin2V and cos2V 
given in (33.4) the first relation of (29.19) can be written as 

or because of (34.2) and (34.3) 

v'2 = ay - (ax - aZ) cos u, cos u2 

= a, - (ax - aZ) sin Ul sin U, cos2 r.  I 
Similarly it can be shown that 

y"2 - - a, + (ax - aZ) sin sin U, sin" I. 

Now according to (33.3) 

ay =*(ax+az) +$(a,- a,) cos2V 

= + (a, + a,) + 4 (ax - a,) (COS Ul cos U, + sin Ul sin U2 cos I). 

Introduction of these in (34.4) and (34.5) leads to the expression (34.1). 
From (34.4) we see that1 

, ) I 2  V"2 = (n$ - v;) sin U, sin U, . (34.6) 

Hence the birefringence for propagation along a direction making angles of U, 
and U2 with the two optic axes is, approximately 

An. = Ksin Ulsin U2 (34-7) 

where K is some constant. When the two optic axes coincide as in a uniaxial 
crystal Ul = U2 = U (say), the formula reduces to 

This may be directly derived f& (33 2).  These are of importance in the discussion 
of the interference figures exhibited by uniaxial and biaxial crystals (Sect. 63 et seq.) . 

Since D, s and Q lie in a plane, the two ray-normals corresponding to the wave 
normal z in Fig. 39b must be on the arcs zx and zy respectively. The position 
of any one of them, for example, the ray R, lying on zx is determined by the 
condition that zx must also be the internal bisector of the angle subtended by 
the two optic bi-radials at  R since the plane of E and Q is also the pIane of D 
and s. This is known as SYLVESTER'S construction. For a11 the propositions 
proved in this section, there exist corresponding propositions for rays which can 
be derived from the Fresnel ellipsoid representation. 

35. Wave velocity surface and the wave surface. The wave velocity surface was 
defined in Sect. 27. The equation to it can be derived from the constitutive 
equation (26.7), which may be written as follows in terms of the principal electric 
axes of the medium as co-ordinates axes: 

This relation is usually proved by a method using the wave surface (see, e.g. DITCH- 
BURN), but the above proof of (34.1) and (34.6) due to VOIGT is much simpler. For other elegant 
proofs, see SALMON'S Analytic Geometry of three dimensions. , 
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Since D - s = C Dx sx =O, we have from the right-hand side of (35.2) 

Since any radius vector r (x, y, z) of the wave velocity surface is equal to the wave 
velocity c in that direction we may set r = v and X, Y, Z =s,r, s,r, s,r in (35.4) 
to get the equation to the wave velocity surface, which.is 

The ray velocity surface could be obtained in a similar manner from the other 
constitutive equation (26.14) which may be put in form 

1 
E x = T  [&xEx- ex 

or 
E x  = - ex (D . Q)/(~F - EX) . 

Since E . Q = 0 we have similar to (3 5.3) the result 

Since the radius vector r (x ,  y, z) of the ray velocity surface is equal to the ray 
velocity v, along that direction, we thus obtain the equation to the ray velocity 
surface as 

zxzv;/(r2- v%) =o. (35.7) 

This is also the equation to the wave surface a t  t = 1, which was shown to be 
identical to the ray velocity surface in Sect. 2 7. 

It may be mentioned that the equations to the wave velocity surface and the 
ray velocity surface could also be derived from the index ellipsoid and the Fresnel 
ellipsoid respectively in the following manner. To obtain the former, mark off 
along a line from an origin 0 in the direction of wave propagation s, two points 
P and Q, such that 0 P and 0 Q are equal to the two wave velocities, which are 
given by the reciprocals of the major and minor axes of the central section of the 
index ellipsoid normal to s. The loci of the points P and Q, for all directions of s 
in space, would represent the wave velocity surface, which is in general a surface 
of two sheets. The ray velocity surface (which is the same as the wave surface) 
could be obtained in a similar manner from the Fresnel ellipsoid, but now 0 P 
and 0 Q are equal to the two ray velocities, which are directly equal to the major 
and minor axes of its central section normal to Q.  This is only an extension of 
the method of obtaining the wave surface of a uniaxial crystals discussed in Sect. 32. 

The wave surface is also a two-sheeted surface, as would also be evident from 
its Eq. (353,  which is of the fourth degree. An idea of its form is best obtained 
by considering its sections by the principal co-ordinate planes. These sections 
could also be derived, ab initio, by the process illustrated in Fig. 34 for uniaxial 
crystals, each section therefore consisting of an ellipse and a circle. When making 
the construction for a biaxial crystal, it must be remembered that the third re- 
fractive index for the vibration nomal  to the paper in Fig. 34 is not equal to 
one of the other two, so that the circle and the ellipse will not touch each other. 
In fact it may be shown that, for the section by the YZ plane the circle completely 
encloses the ellipse; whereas for the X Y  section, the circle is contained within 
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the ellipse. In the case of the section by the XZ plane however the circle and the 
ellipse intersect. These are illustrated in Figs. 40a-d. In Fig. 40c the 
tangent line touching both the circle and the ellipse has been drawn. I t  can be 
shown that the plane parallel to the Y axis and containing this line, touches the 
wave surface along a circle (see SZIVESSY [I]). The perpendiculars ON, and 
ON, to these tangent planes are clearly the.optic axis, i.e. directions of single 
wave velocities. Corresponding to one such wave normal ON,, there are an 
infinite number of ray directions, lying on a cone obtained by joining the origin 

Fig. 40 a a .  Form of the wave surface for a biaxial nystd. (a), (b), (c) are the sections by t6e three co-ordinate planes. 
(6) is a three-dimensional diagram of one octant. 

to the circle of contact. This is the phenomenon of internal conical refraction, 
which has been discussed in Sect. 33,  using the index ellipsoid. 

The lines ORl and OR, joining the origin to the points of intersection of the 
circle and ellipse in Fig. 40c are the directions of single ray velocity. Each such 
point is a dimple in the wave surface, through which an infinite number of tangent 
planes_~az be drawn. The normals to these tangent planes lie in a cone and re- 
present the possible direction of the wave normal for a ray propagated along the 
optic biradials 0  Rl and OR,. This corresponds to the phenomenon of external 
conical refraction already discussed in Sect. 33,  using the Fresnel ellipsoid. 

The features of light propagation in crystals can be derived not only by the 
index ellipsoid treatment as described above, but also from the wave surface 
representation, which is the one that is usually followed. The wave surface 
representation also finds application in the discussion of the phenomenon of 
refraction in anisotropic media (see Sect. 58). The two refracted wave fronts 
are given by the envelopes of the different Huygens wavelets. HUYGENS himself, 
after introducing the idea of the secondary wavelets applied it to explain the 
" strange refraction of Iceland spar", assuming with ingenious foresight the correct 
forrn of the wave surface for a uniaxial crystal. 
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111. Non-absorbing optically active crystals. 
36. Nature of the dielectric and index tensors. So far, we have discussed the 

case of non-absorbing, non-optically active crystals, for which the dielectric 
tensor has real components and is symmetric. In such a crystal, two linearly 
polarised waves are propagated in any general direction, and in particular direc- 
tions, namely the optic axes, waves of all states of polarisation are transmitted 
with the same velocity. The last property is exhibited in all directions by a cubic 
crystal or an isotropic medium. It is known that some isotropic media exhibit 
the property of optical activity, i.e. of rotating the plane of polarisation of a 
linearly polarised wave traversing the medium'. The same property is also shown 
by some cubic crystals, e.g. sodium chlorate and sodium bromate, andby uni- 
axial (quartz, cinnabar, benzil) and biaxial (cane sugar, Rochelle salt) crystals 
along their optic axial directions. The phenomenon of optical activity was first 
discovered by ARAGO~ in quartz and other crystals in 1811 and later observed 
by BIOT in liquids and gases. 

A theory of optical activity in isotropic media was first given by FRESNEL 
as early as 1822. The incident plane polarised beam is supposed to be resolved 
into two opposite circularly polarised components in the medium which are then 
propagated with different velocities. When they reunite on emergence, the plane 
of pplarisation is rotated on account of the phase difference introduced between 
the two waves. This theory is phenomenologically correct and corresponds to 
thespecial case of the more general theory of the propagation in optically active 
mepia. 

Some attempts were made in the nineteenth century to develop a structural 
theory of optical activity, notably by SOHNCKE and REUSCH, but they were not 
very satisfactory. A full bibliography of these studies will be found in the article 
by S m s s v  [ I ] .  

The first attempt to explain optical activity in terms of the dispersion theory 
is due to DRUDE ([3], p. 400 et seq.). I t  is obvious that in a medium having 
the property of a screw axis, the displacement vector D must depend not only 
on the electric vector E at that point but also on the spatial variation of Ein) 
the neighbourhood. DRUDE therefore assumed for D the form 

D = E E  +jcurlE.  (36.1) 
Since 

1 aH curlE=-- and H = s x E  
at 

for an electromagnetic wave in vacuum, we have 

Putting 

we get 
D = E E  + i ( G x E ) .  

This equation, as will be shown below, agrees with the more general theory, as 
far as an isotropic medium is concerned. However, DRUDE made a further 

1 A full account of this subject of opticaI activity will be found in the article by J.P. 
MATRIEU in Vol. XXVIII, p. 333, of this Encyclopedia. 

2 I?. ARAGO: OEuvr. Compl., Vol. 10, p. 54. Paris 1858. 
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assumption that the parameter f and hence the vector G is the same for all 
directions of propagation; this does not agree with observation. 

The form of Eq. (36.4) may also be derived from general phenomenological 
considerations. If we discard the assumption made in Sect. 29 that the com- 
ponents of the tensor relating the vector D and E are all real, we have the relation 

This implies that D is dependent not only on E  but also on aE/at (since a p t  =iw) 
and hence (36.5) can be written in the form 

For an infinitesimal change we have 

~ D = [ E ] ~ E  + $ [ @ ] B d t .  

Hence 
E . d D = E - [ & ] d E - - W E - [ p ] E d t .  (36-7) 

Comparing Eq. (36-7) with (29.6) and (29.7) we see that the introduction of .the 
imaginary part of the dielectric tensor will generally lead to dissipation unless 
the second term in '(36.7) vanishes identically. This will occur only if [Q] is anti- 
symmetric i.e. @ . = - pi%. This can be seen more clearly by using the fact that 

17 
an antisymmetnc tensor w [el can be replaced by a vector operator G x  where 

G, = co Q,, =- co Q,,; G2 =w = - w k,; G3 = w cL2 = - w eZ1. (36.8) 
Then 

D = [ E ] E  f i G x E .  (36-9) 

This equation is the same as (36.4) and we shall call G  the gyration vector. 

Integrating Eq. (36.7) we obtain as in the case of an optically inactive medium 
the electric energy density 

W , = # E -  [&]E .  (36-10) 

Thus the antisymmetric tensor [Q] does not contribute to the energy density 
which must be a function of state of E. Hence it is not at  all necessary that the 
components of [ Q ]  should be the same, independent of the direction of propagation 
as should be the case with the components of [&I. As the gyration vector depends 
on the spatial variation of E in the neighbourhood of a point, it would in general 
depend on the direction of propagation in an anisotropic crystal. We may take 
G  to be a linear vector function of the wave normal s. This has also been obtained 
from a molecular theory1 of optical rotatory power. Thus we may write 

where the gyration tensor [g] need not necessarily be symmetric. This is in 
accordance with the molecular theory of BORN. It may however be remarked 
that since the observable rotation is dependent only on (gii +gii) i t  would have 
been sufficient for a phenomenological theory to assume the gyration tensor to 
be symmetric. 



78 G.N. RAMACHANDRAN and S. RAMASESHAN: Cryst& Optics. Sect. 37. 

We shall take Eqs. (36.9) and (36.11) to be the constitutive relations for a 
transparent optically active medium assuming in addition B = HI.  

37. Refractive index of an optically active crystal2. Eq. (36.4) may now be 
combined with the relation (26.7) 

D =n2[E - s ( E . s ) ]  (37.1) 

for an electromagnetic wave. Suppose the coordinate axes are chosen pardel 
to the principal axes of the real part of the dielectric tensor. Then, equating the 
right hand sides of (36.4) and (37.1). we have 

and two similar equations. The quantities Ex, Ey, EZ may be eliminated from 
these, giving the following equation for the variation of refractive index with 
direction : 

n4(n$sg+n2ys$+n~s$) -nZ(Cn2yn:(s2y+s~)} + n 2 ( ~ ~ G ) 2  + 
+n$n$n$- (n:G$+n$G$+n;G$) = 0 .  

} 137.3) 

Although this quadratic equation in n2 can be exactly solved, the solution may 
be put in a more tractable, but approximate form, by using the information that 
the components of G are small compared with those of [ E ] .  If we denote by nh 
and n i  the solutions of (37.7) when G is set equal to zero, then it can be written as 

Even then, the right-hand side of (37.5) contains the quantity n, which is to be 
determined. To avoid this difficulty, we put %=nz=n, in Eq. (37.5) only, i.e. 
we assume that the property of optical activity does not depend on the magnitude 
of the. birefringence, although actually the crystal may be in .fact birefringent3. 
Then, g takes the simple form 

g = s . G  (3 7.6) 

and has a fixed value for a given direction of propagation. The two refractive 
indices for this direction may then be calculated from (37.6) and are 

See POCKELS' Leh~buch [2] for an alternative theory where B+ E. In  the customary 
treatments B is set equal to H to avoid excessive complication, although this procedure is 
considered an approximation. The treatment we have adopted in Sect. 29 and Sect. 36 
shows that contrary to what is often supposed, the use of (36.9) and B=B, together with 
POYNTING'S theorem, does not lead to any violation of the principle of conservation of energy. 
However the expression (36.10) which we have derived for energy density is not QE. U 
as is assumed at  the commencement in the usual treatments. That the electric energy density 
can differ from *E . D for any medium is by itself not a matter of surprise since this is mani- 
festly the case in absorbing crystals. Hence phenomenological considerations by themselves 
do not require that B* H. It may be remarked that polatisability theories of optical activity 
do not appear to lead to any magnetic moment being induced. See BORN [4] or e.g. G.N. 
R ~ u a c ~ k w o R - 4 ~ :  Proc. Ind. Acad. Sci. 33, 217, 309 (1951). 

2 The treatment in this section follows the conventional method adopted by most treatises, 
e.g. BORN [4j,  SZIVESSY [ l ] .  A more exact solution of the wave equation is given in Sect. 3s. 

11'. 1-OIGT: Gottinger Nachr. 1903, p. 167. 
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where we assume that It follows that 

n 1 z + n r f z = n ; 2 + n t z .  (3 7.8) 

Making use of the above formulae, it is possible to show that the two waves 
which are propagated corresponding to the principal indices a' and n" are two 
opposite ellipses, whose axial ratios b[a = x are1 : 

n ' 2  - n; 2 B 
XI= r X2= m"2-n',2 . (3 7.9) 

We have from (37.8) 
0 

1 so that = - - showing that the two elliptic vibrations correspond to oppositely 
X z  

polarised states. We shall however show this by other methods. 

38. A more exact solution of the wave equation=. The approximations which 
we had to make in the last section can be avoided by the use of the inverse of 
the dielectric tensor, viz. [a], the index tensor. We have already seen how the 
use of this tensor, with the associated index ellipsoid, considerably simplifies 
the discussion of the optical behaviour of non-optically active crystals. When 
the dielectric tensor is complex and takes the form (36.5), the corresponding 
equation in terms of the index tensor is . 

where r may be called the optical activity vector. Like the gyration vector it 
will be a function of the direction of propagation being determined by a relation 
corresponding to 06.1 1) 

r= [YI s (38.2) 

where [y] is a general nine component tensor which may be called the opticaI 
activity tensor. To obtain expressions for the quantities introduced in the present 
formulation in terms of the dielectric and gyration tensors we may justifiably 
neglect the squares of the components of G since even their first powers will 
always be very small compared with the principal values of [ E ]  even in crystals 
whose optical rotation is normally large. Choosing the coordinate axes along- 
the principal electrical axes of the crystal it can then be shown that 

1 a x = -  etc., 
E X  

(38.3) 

--- r - Ex Gx etc., 
x- 

Exgxy  etc. yxu=- 
E X  B Y  E Z  

I t  may be mentioned that the formulation of the constitutive equation of 
the medium in the form (38.1), in terms of [a] and I' is as valid as the form 
(36.4), in terms of [E] and G. In fact, using the same method as was adopted 
for Q in Sect. 36, we can show that if Eq. (18.1) is valid, then there is no dis- 
sipation in the medium. Actually, in discussing the optical behaviour of the 
medium, the formulation (38.1) in terms of the index tensor and the optical 
activity vector is the more convenient one, as will be seen below. However, 

F. POCKELS [2], P. 328; SZIVESSY [I], pp. 811 -813. 
S. PANCH.~RXTXAM: Proc. Ind. Acad. Sci. A 43, 247 (1956). 
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both formulations (36.4) and (38.1) are exact and completely valid, although the 
relations (38.3) to (38.5) between the coefficients in the two formulations are 
correct only to the first order of magnitude. 

If now we choose the coordinate axes such that the z axis is along the wave 
normal, then D,=o and we have only two components D, and D,. Also from 
Eq. (37.1) we have the simple relations 

E,=v2D,, Ey=v2Dy, D,=O. (38.6) 

Since D,=o we have also from (38.1) 

Following the same procedure as in Sect. 30 if we now take the x and y axes 
to be parallel to the principal vibration directions in the absence of optical acti- 
vity, then 

4 2 = ~ ,  dll=vv,", ~ ~ ~ = ~ 2 2  (38.8) 

where v, and v2 are the velocities for the particular direction of propagation in 
the absence of optical activity (i.e. r= 0). Substituting for E, and E y  from (3 8.6) 
we have1 

v" vv," = i (Dy/Dz) , 
v2 - v: =-i (D,/Dy) . 

(38.9) 

These equations can be solved to give both the principal refractive indices 
and the polarisation states of the two waves. 

The form of the vibration for propagation along Oz is defined by the ratio 
(Dy/D,) and may be obtained by eliminating v2 between the two equations in 
(38.9) when we obtain 

In terms of a general coordinate axis, 

Hence 
G = s - . ~ = ~ ,  say. 

The two solutions for Dy/D, are reciprocals of each other and it is also obvious 
that both should be purely imaginary. 

Putting therefore (2)' = i tan 8, (+$)'I= - i co t8  

in (38.10) we obtain 
2Y tan 2 8  = K = --- u f - v :  - (38.14) 

The two vibrations given by Eq. (38.13) are naturally orthogonal and correspond 
to oppositely polarised elliptic waves. The ellipses are similar in form though 
described in opposite senses, the two major axes lying along two perpendicular 
principal planes. 

These are practically equivalent to the equations derived in POCKELS [Z], p. 328. 
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If we eliminate (D,,/D,) between the two equations in (38.9) we obtain the 
equation for the velocity v of the waves propagated along 02: 

(v" vp112) (vz - v 4  = y2. (38.15) 

The two solutions of this equation are the two principal velocities v' and v", 
which are then given by 

It follows from this that 

( ~ " 2 -  v'2)2= (v& vf)z+fy2. (38.17) 

The wave with velocity v' will be in the state of polarisation (Dy/D,)', while the 
velocity v" corresponds to the state (Dy/Dz)" in Eq. (38.13). This may be verified 
by substituting the corresponding values in Eq. (38.9) 

When y = 0 we have from (38.14), 6 = 0 giving the orthogonal linear vibrations 
with velocities v, and v,, as should be the case for a non-optically active crystal. 
The characteristic effect introduced by the parameter y is best reveaIed by sup- 
posing linear birefringence to be absent i.e. by setting v,=v2=v,, say, in Eq.(38.13) 
and (38.1 7). The former gives 6 = 4 4  i.e. the two waves should be circularly 
polarised in opposite directions, thus theoretically confirming FRESNEL'S hypo- 
thesis. Thus if there is no birefringence the difference in the refractive indices 
of the two circular waves is given by 

The rotatory power Q is related to nr-n, by the equation 

so that 

Eq. (38.20) gives the rotatory power of a crystal to be positive1 when y is positive. 
The propagation of two circularly polarised waves as described above should 

occur for instance in an isotropic medium or a cubic crystal for all directions of 
propagation, and for propagation along the optic axis in birefringent crystals. 

In these cases, the medium should actually exhibit circular double refraction. 
This was first shown to be so by FRESNEL~ using a combination of quartz prisms. 
Later, the experiment has also been performed with the cubic crystal, sodium 
chlorate 3. 

39. Method of superposition. A simple way of calculating the combined effect 
of birefringence and optical activity of a medium is by the method of super- 
position4 dealt with in Sect. 5cr. Here, we assume the two properties are 
independent, and that an infinitesimal layer dz  of the medium may be considered 

1 This corresponds to a left rotating or laevo-rotatory crystal. In chemical literature, 
however, g is taken to be positive for a dextro-rotatory crystal. Our convention agrees with 
the mathematical convention of taking counter-clockwise angles to  be positive. 

2 A. FRESNEL: OEuvr. Compl., Vol. I, p. 731, Paris 1866. 
G. MESLIN: C. R. Acad. Sci., Paris 152, 166 (19ll). 
For reference to earlier literature, see POCKELS [Z], p. 309. 

Handbuch der Physik, Bd. XXV/i. 6 
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to be made up of two parts, one producing the phase retardation (d6) due to 
linear birefringence and the other a rotation (de). The superposition of the two 
effects is best worked out by means of the Poincarb sphere. The former is a 
clockwise rotation of the sphere about the axis X, Y, (X, being the slower axis) 
through an angle d 8, while the latter is a clockwise rotation about a perpendicular 
axis R L through an angle 2 d p (see Fig. 41). The combined effect is obviously 
a clockwise rotation through the angle 

dA =y- (39-1) 

about an axis B B, in the plane containing X,Y, and RL, the latitude 26 of the 
state B being given by 2de tan26 = ----. 

d S (39.2) 

@ If 6 is the phase retardation per unit length, 
2n = - (q- nJ and p is the specific rotation, then 
1 

= e tan26 = - - 
6 (39.3) 4 2 v, 

and per unit thickness the effect on the state of 
polarisation of the transmitted light is a rotation 
through an angle 

A = 1 J B q @ .  (39.4) 
R Obviously, the polarisation states of the two 

Fig. 41. superposition of birefringence and 
optical a B and Ba are beams which are propagated unchanged in the 
pr"pagatedunchang* slower velocity. of which has the crystal are B and B,, which represent crossed 

ellipses, whose axial ratio is I tan 6 1. 
Futher from the results of Sect. 4, A represents the relative phase retardation 

per unit distance between the waves in the state B and B, the former being the 
slower wave. 

It will be noticed that the results obtained )by the method of superposition 
are closely analogous to those obtained from the exact theory, although they 
are not exactly equivalent. This may be seen by comparing Eqs. (39.3) and 
(39.4) with (38.14) and (38.1 7)  respectively. 

Since 
1 1 1 1  -+-=-+- n: n i  (39.5) 

we may take 
1 n' + n" 1 nl+ 2 =- ( ( j  x:. say, (39.6) 

where we shall call nw as the mean refractive index. Then, (38.17) takes the form 

(n'- n")" ((n,- nJ2+ ( ~ n 3 , y ) ~ .  (39.7) 
If we suppose that 

z 3  
0 =,%my (39.8) 

analogous t o  Eq. (38.20), then we get the result (39.4). Correspondingly, Eq. (38.14) 
becomes the same as (39.3). 

Quite apart from the small approximation involved in (39.6) we have to make 
the assumption in (39.8) that the medium has a rotation Q given by that equation 
in the direction concerned. It involves in addition to y the quantity n3, which 
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is not entirely independent of the components of the dielectric tensor. The formal 
similarity of the results obtained by the use of the superposition method with 
those from the rigorous theory enables us to use the former method which is 
much simpler, with the assum#tio.n that the medium has a "rotatory power" 
given by Eq. (39.8). We shall use the method of superposition hereafter for work- 
ing out the theory of the experiments to be described later. 

40. Symmetry and optical activity of crystals. The rotatory power of a crystal 
along any directions is determined by the parameter y which is given by Eq. (38.1 1). 
It turns out that, although y;, is not symmetric, the expression for y involves 
only a symmetric combination of the components of the optical activity tensor. 
Thus combining (38.11) and (38.2) 

where s,, s,, s3 are the direction cosines of the wave normal with respect to an 
arbitrary coordinate system. 

If we lay off a radius vector s parallel to the direction of propagation such 
that 

1 L 
- y2 = I ? ]  = lplFvk (40.2) 

we get the surface of optical rotation. Given this surface we can determine y 
for any direction (the sign to be attached being supposed to be marked on the 
surface). I t  follows from this that the specific rotation p may be put in the form1 

This is a slight approximation because n: is not a constant, but the subsequent 
discussion on symmetry does not depend for its validity on this approximation. 

Some interesting consequences follow from this regarding the occurrence of 
optical activity and of its variation with direction in crystals of different sym- 
metry. Thus, i f  the crystal has a centre of inversion, then applying this operation, 
a right-handed system of axes is converted into a left-handed one. Referred to 
the latter, the sign of p 'is reversed. However, substituting - s,, - s,, - s3 for 
sl, s,, s3 in Eq. (40.2 a) the sign of e is unchanged. Both these conditions will 
be satisfied only if Q = 0, i.e. there can be no optical activity for centrosymmetric 
crystals, a result which is in conformity with the corresponding property of 
molecules. 

Thusraf-the 32 crystal classes, the specific rotation is zero in all directions 
in 1 1 classes, namely T ,  2/m, m m  m,  7,T m ,  4/m, 4/m mm,  6/m, 6/mmm, m3, m3 m.  

Similarly, applying the other symmetry operations for crystals belonging to 
the remaining 21 points groups, the form of the variation of p with direction 
can be obtained. Details are omitted2, but the results are given in Table 4. It 
wiU be noticed that the optical activity does not vanish in all directions for a 
crystal having a symmetry plane of reflection. Optical activity occurs for crystals 
belonging to 15 classes, but it has actually been observed only in 7 crystal classes, 
namely 2, 222, 3, 32, 6 ,  42 and 23. Even among these, measurements are avail- 

Unlike the index ellipsoid and the Fresnel ellipsoid, this surface need not be ari ellipsoid, 
but only a central quadric. 

These may be found in F. POCKELS 123, pp. 31 3 - 318; W. A. WOOSTER: A text-book on 
crystal physics, pp. 156- I 60. Cambridge 1949- 

6% 
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4 

Table 4. Variation of rotatory power g with directiola in non-centrosymmetric crystals. 

Crystal system / Crystal class / Exprenion for Q 

Triclinic 

Nonoclinic 

Orthorhombic 

Rhombohedra1 

Tetragonal 

Hexagonal 

f 

m 
~ : y ~ ~ + s f  Y~~ 2 ~ ~ ~ ~ r ~ ~  + 2 ~ ~ ~ ~ ~ r ~ ~ +  2 ~ ~ ~ ~ r ~ ~  

259 ( ~ 2 ~ 2 3  f sl%l) 

Cubic 23 
43 

(5: + s; + %I= ~ I I  

( s f  -t- s i  + ~ 1 )  rll = 
0 

able only along the optic axes, except for quartz, for which measurements have 
been made perpendicular to the optic axis (see Sect. 84). I t  is obvious that the 
rotatory power along the two optic axes need not be equal in a biaxial crystal-for 

instance one belonging to 
the crystal class 2. A typi- 
cal example is cane sugar 
for which the rotatory 
power along the two optic 
axes are - 1.6" and +5.4' 
per mm. 

41. Wave surface in 
optically active crystals. 
As was shown in Sect. 38, 
the refractive indices of 
the two waves propa- 

~ g .  42. Wave suxface of a n  op t idy  active transparent crystal. gated along any direction 
are only slightly modi- 

fied by the presence of optical activity. Consequently, the shape of the wave 
surface is practically the same as in a non-optically active crystal except for 
directions close to the optic axes. In a non-active crystal, the optic axes are 
directions of single wave velocity and the two sheets of the wave surface 
therefore touch along chese directions. However, when optical activity is present, 
two orthogonal circularly polarised waves are propagated along this direction, 
with slightly differing velocities. The consequent modification of the wave 
surface is shown schematically in Fig. 42 for both uniaxial and biaxial crystals. 

--__C________ - 

2 ~ f ~ l ~ + s f r z 2 + s X r 3 3 + 2 ~ I ~ 2 r ~ 2  

221 1 s:rll+sf r2z+s,8r,3 
m m  

3 
32 

3 m 

4 
42 

4 ~ 2 m  
S - 

42 m 

6 
62 

6mm 
5 

6 m 2  

25is21iz 

( s f  -k $22) 51 + ~ 3 5 3  
(s f  + 4) rll + ~ 2 3 3  

0 

(s: -k 4) %I+ sir33 
(s% -!- 5:) rll+ 5: r33 
0 

(-3 - 3) ~ 1 1  + 2 s ~  s2r1 e 
(s? - 4) 5 1  

( s f  + s;) 5 1  + 4 r23 
(3 + ~ 1 )  5 1  i- 4 %3 
0 

0 

0 
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Since the two sheets of the wave surface do not touch along the optic axes, 
there are no points on the surface, where the tangent plane is singular. Thus 
internal conical refraction, in the sense of the phenomenon which occurs in non- 
active crystals, cannot occur here. However, if a slightly divergent pencil is 
used, it is obvious that the orientation of the tangent planes varies appreciably 
for the different directions of propagation in the pencil and thus a conical beam 
emerges from the crystal. The phenomenon has been studied in great detail 
by VOIGT~ in cane sugar and tartaric acid. 

External conical refraction should also occur readiIy even in the presence of 
optical activity. 

IV. Absorbing non-optically active crystals. 
42. Fundamental equations. For every crystal there are regions of the spectrum 

in which it exhibits the phenomenon of absorption of electromagnetic radiation. 
I t  has long been known in the case of minerals and crystals which absorb visible 
light that both the intensity and the spectral nature of the absorption depends 
not only on the direction of propagation but also on the state of polarisation 
of the incident light. The anisotropy of refractive index (which is present even 
in the transparent regions) and the anisotropy of absorption are linked to one 
another by the theory of dispersion, both these phenomena being in their turn 
related to the ultimate atomistic structure of the crystal. From the point of 
view of the classical dispersion theory, the motion of the charges giving rise to 
the polarisation of the medium would be opposed by dissipative forces of an 
anisotropic nature in the absorbing regions of the spectrum. Thus the polarisation 
P would not oscillate in phase with the electric intensity E. The components of 
the macroscopic polarisability tensor would therefore be complex. In turn the 
relation between the vectors D and E would be described by a complex dielectric 
tensor [F ] .  We shall not deal with the atomistic causes of the anisotropy in the 
intensity and the spectral nature of the absorption but only present the pheno- 
menological theory of light propagation in absorbing crystals applicable to one 
particular frequency. 

In an absorbing crystal the propagation of a light wave may be described by 
two parameters, namely the refractive index lz and the absorption coefficient k. 
Thus the electric vector of a wave propagated along the z direction is given by 

where Ti is the complex refractive index. Let ?i = n  - i x  where x the extinction 
coefficient is equal to k42n. In an anisotropic crystal both n and x are functions 
of the state of polarisation and the variation of both can be expressed by a com- 
plex tensor [F] representing the complex dielectric constant. Just as in the case 
of non-absorbing crystals, not all waves are propagated without change of form 
but only those with certain states of polarisation. The method of finding these 
for a given direction of propagation as well as the corresponding complex re- 
fractive indices is closely similar to what was adopted for optically active non- 
absorbing crystals. 

Before however proceeding to discuss the properties of the dielectric tensor 
we may mention that the absorption in the medium may also arise if the medium 
has a finite conductivity represented by a tensor [c] in addition to the usuaI 

W. VOIGT: Ann. Phys., Lpz. 18, 678, 692 (1905). - Phys. Z. 6, 789 (1905). 
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dielectric tensor [ E ]  relating D and E. We shall show that this is formally equi- 
valent to the introduction of a complex dielectric tensor. The current density j 
and the charge density p (as determined by the equation of continuity) will 
then be 

j = [a] E (42.3) 
and 

4 = - & v j  11 . or e=-&v[o]E. o (42.4) 

If we introduce these in the MAXWELL'S equation (26.1 a) they become formally 
identical with the MAXWELL'S equation (26.3) for a non-conducting medium 
provided we replace D by D' where 

Di = ( E , ~  - gozj) E,. (42.5) 
,- 

The solutions for such media will thus be formally equivalent to the more common 
case of absorbing but non-conducting media in which the relation between D 
and E is represented by a complex dielectric tensor. 

43. The dielectric tensor and the index tensor of absorbing crystals. We may 
write 

D = M E  (43.1) 
where - 

E ~ ,  = s,j - i ~ , ~ .  (43.2) 

If the tensor [q] contained an antisymmetric part it would contribute to optical 
activity as was seen in Sect. 36. To correspond to the case of absorbing non- 
optically'active crystals we shall take [E]  and [q] to be symmetric. We have 
seen in Sect. 36 that the introduction of the imaginary part of the dielectric 
tensor leads to a dissipaiion of energy. 
'. A*ments subsequent to (36.5) may be followed with Q replaced by - iq  

-and a$ equation similar to (36.7) may be derived; comparing this with (29.7) 
we get that the rate of dissipation of energy Wj is given by 

W , = w E -  [q] E .  (43-3) 
If we write 

D = D l -  i D ,  (43 -4) 

where Dl and D, are related to E by the real tensors [E] and [q],  then the rate 
of dissipation of energy is given by $ E  . D, while the electric energy density 
will as in, transparent optically active crystals be given by 4 E . Dl.  

I t  is more convenient to use the complex index tensor and write (43.1) in 
the form 

E = [ZJD,  (43.5) 
where 

[Z] = El-I (43.6) 
and 

Ci= a,, + i  b G j .  (43 7)  

Both the real and imaginary parts of the complex index tensor are tensors of. 
the second rank and could therefore be represented by ellipsoids. The ellipsoid 
representing the tensor a,, will be called the index ellipsoid as in the previous 
cases while the ellipsoid representing b,i defines the absorption ellipsoid. There 
is no reason why the principal axes of the index and absorption ellipsoids should 
coincide, excepting vrhere required by the symmetry of the crystal. 

- -  - -- .--- - 
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The imaginary part of the complex tensor is usually small compared to unity 
and to the real part, and therefore it would be sufficient to work up to the first 
order of magnitude in bij. To this order of approximation the index and absorp- 
tion tensors are given by 

[a] = [&]-I (43 -8) 
and 

[bl = [,I [&1"9 - (43-9) 

i.e. the principal axes representing [ E ]  the dielectric tensor may be taken to 
coincide with those of the index ellipsoid. However the principal axes of the 
absorption ellipsoid need not coincide with those of the ellipsoid [v] l. 

Along any direction of propagation the nature of the waves propagated 
depend on the central sections of the index ellipsoid and the absorption ellipsoid 
normal to the direction of propagation. We shall call the directions of the major 
and minor axes of the section of the index ellipsoid as the principal directions of 
linear birefringence and those of the absorption ellipsoid as the principal direc- 
tions of linear dichroism. 

As the magnitude of the dichroism, determined by bii is usually very small 
compared with the birefringence, for most directions of propagation it is found 
that .the behaviour of an absorbing anisotropic crystal is closely approximated 
by the behaviour of non-absorbing crystals. The state of polarisation and the 
velocities of the two beams propagated along any direction are then determined 
by the index ellipsoid. We have however the additional property that for any 
direction of vibration there is an attentuation of the transmitted beam. The 
extinction coefficient x is related to the radius vector IlYz of the absorption 
ellipsoid drawn parallel to the direction of vibration by the equation 

where v is the velocity of propagation for that particular direction of vibration. 
The above results are exactly true for uniaxial crystals. A behaviour similar to 
that described in this paragraph was postulated in the early theory of  MALLARD^. 

44. Formal solution of the wave equation. The phenomena are however com- 
plicated for directions of propagation close to the optic axes in a biaxial crystal. 
These directions are defined as the normals to the circular sections of the index 
ellipsoid as in a non-absorbing crystal. If we consider the normal to a circular 
section of the index ellipsoid in an absorbing crystal, then there is no reason why 
it should also be normal to the circulaz section of the absorption ellipsoid. The 
sect io~ofthe absorption ellipsoid normal to an optic axis will in general be an 
ellipse. 

Consequently, as will be shown rigorously a little later, two waves can be 
propagated along an optic axial direction, with different absorption coefficients. 
There exist however directions along which only one wave is propagated un- 
changed; there are actually four such directions3, called Wzkdu~gsachsen or 
singular axes, two near each of the optic axes, and circuIar vibrations of one 
sense is propagated unchanged along two of them and of the other sense along 
the other two. It is however necessary to work out the full formal solution of 

As in the case of optically active non-absorbing crystaIs, here also Eqs. (43.7) and 
(43.3) are both equally valid. However, the relations between the two tenscrs given by 
Eqs. (43.8) and (43.9) are only correct to the first order. 

For this and earlier references see S z m s s ~  [ I ] .  
W. VOIGT: Ann. Phys. 9, 367 (1902). 
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the wave equation before these and other interesting aspects of absorbing biaxial 
crystals are discussed. 

The complex tensor Z i j  can be brought to the diagonal form by a suitable 
transformation of axes. Eqs. (44.1) below give the relation between the principal 
axes a, 5, i5 and the original axes x, y, z. Since a, Z, F are complex linear func- 
tions of x, y, z, the criis must also be complex. Thus 

E =Zl lx  +Z12 y +E13z 
- 
v =cr,,x + a 2 , y  +iiBQz 1 (44.4 ) - 
w +G,Y +&z.  

Denote by Z1,Z2,& the principal values of the tensor so that E,=& DG1. 
Referred to the axes zZ, 5,5 we have the following equation completely ana- 

logous to (26.7) and (37.1): 

? D  =(E-s(s -E)) ,  (44.2) 

(Zl - q) DD, = (s . E) s, (44.3) 
and - s; ,i' -- q-3 - 0. (44.4) - 

r' 

Formally, therefore, Eq. (44.4) gives the two principal refractive indices, both 
real and imaginary parts, as well as the principal vibration directions. 

45. Simplification of the general solution. The understanding of the pheno- 
mena is facilitated by taking one of the axes, say z, along the direction of propaga- 
tion, and the other two x and y  in the perpendicular plane. Then D, = 0 and using 
a procedure exactly similar to that for a non-absorbing crystal (Sect. 31) and 
comparing the x  and y components of (43.5) with (38.7), we obtain 

--2 v D . z = Z ~ l D z + Z ~ 2 D y ,  

} (45.1) 
$ DY =al2 Dr f Z2, Dy 

where D, and D, are the complex components of the vibration along x  and y.  
Unlike the case in a non-absorbing crystal it would not in general be possible 
to choose the coordinate axes OX and OY such that Z12 vanishes, since the prin- 
cipal radii of the elliptic sections of the index and absorption ellipsoids need not 
coincide. 

From (45 . I ) ,  we have, 
(5" &l) =a,, (Dy/Dx), 1 (45.2) 
(P - Z2 2) = Zl 2 (DxlDy) 

where D, and D, are the complex displacements parallel to x and y  directions. 
If we put D,/Dy = Y  then Y defines the state of polarisation of the wave. Eliminat- 
ing TP in (45.2) 

% ( Y - + )  = (E2,-z13 (45.3) 

or 
,,z + (G_- i"22'  ,. - 1 = 0. (45.4) 

a1 2 

1 The vectors D and E both have complex components in general 
a There should be no confusion between the axis Z and the complex velocity in Eqs. (44.2) 

to (44.4). 
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Eliminating r between the two equations, we have for the two velocities, 

I t  follows-from (45.4) that if r' and r" are the two complex solutions, then 

As may be easily shown from this relation, the two vibrations propagated un- 
changed along any direction have their major and minor axes crossed but are 
of the same sense. They  do not correspond to orthogonal states of polarisation 
unlike the case of a n  ofltically active non-absorbing crystal. The values of r for 
the two waves and the corresponding refractive indices are given by 

Writing the complex refractive index in the form ?i = n (1 -it) we have - 
v2 = vZ (1 + 2 i z) neglecting 7 2  and higher powers. Here, n is the refractive index 
and t is known as the absorption index. Eq. (45.5) can then be split up into two 
equations between the real and imaginary parts 

We shall now consider a few special cases. 

46. Special cases. K) Uniaxial crystals. For this case both the index and 
absorption ellipsoids must be ellipsoids of revolution about the common optic 
axis. Thus, for the arbitrary direction of propagation Oz, the principal axis of 
the elliptic sections of the index and absorption ellipsoids coincide, lying along 
and perpendicular to the principal plane containing the direction of propagation 
and the optic axis. Thus in the treatment of the previous section, it would have 
been possible to choose axes Ox', Oy', such that %,=0. As for non-absorbing 
crystals, Eq. (45.1) gives two solutions linearly polarised along the principal planes. 
For 

D ' - 0 ,  Y - ??=Zi, or v2=ail;  2zv2=bi1  
while for 

D: =o, ii2 =z;, or v 2 = d 2 ;  2-t-v2= biz .  
'-. 

This corresponds t d h e  description already given at the end of Sect. 43, the 
behaviour being similar to that for a non-absorbing crystal, except that the 
extinction coefficient for each vibration is determined by the absorption ellipsoid 
from (43.10). The above behaviom becomes true also for certain special direc- 
tions of propagation in biaxial crystals where the principal planes of linear bi- 
refringence and linear dichroism coincide, e.g., along the symmetry planes in 
orthorhombic crystals. 

,8) Biaxial crystals-directions aflfireciably inclined to optic axial directions. 
For directions that are not too close to the optic axes (%,--a,,) will be large 
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compared to the absorption parameters, namely b,,, b,,, h,, 271%. Then, it 
follows from (45.9) that 

5 4/n12=y12=1111. 4,n1f2=vr12- - a22 (46-3) 
and 

2%1z'=bll, Z a , , ~ " = b , ~  
giving 

Z' = bll/2ql; z" = b2,/2a,,. (46.4) 

Also, the corresponding states of polarisation are given b y  r' =O, rrr = m i.e. 
linear vibrations parallel to x and y axes respectively. The behaviou again 
obviously corresponds to the situation mentioned at  the end of Sect. 43, i.e. the 
behaviour is similar to that of a non-absorbing crystal, except for the difference 
in the absorption index between the two propagated waves. 

y )  Propagation alo.ng optic axes. As with non-absorbing crystals, we shall 
call the directions nonnal to the circular sections of the index ellipsoid as the 
optic axes. 

In this case, a,, =a,, =al (say) and a,, identically vanishes for any pair of 
orthogonal directions at right angles to the direction of propagation. We choose 
that pair for which bl, also vanishes, i.e. parallel to the major and minor axes 
of the corresponding central section of the absorption ellipsoid. Then it folIows 
that 

1/nr2 = j / n f 1 2  - -% (46.5) . 
and 

t '=b l l /2q ,  t "=b2, /2q .  (46.6) 

To find the polarisation states, we may use Eq. (45.3) in which the right hand 
side is zero, giving the two roots, r'=O, r" = 00. Here again, two orthogonal 
linearly polarised waves are transmitted, as in case (a), and they may be regarded 
as having the same velocity. The two velocities cannot be exactly equal as with 
non-absorbing crystals, for then every direction of vibration must be possible 
for this direction of propagation, all of them being propagated with the same 
velocity. The indices n' and n" differ to the second order of magnitude of the 
absorphon parameters. 

Although two linearly polarised waves are transmitted along directions far 
away from the optic axes and also exactly along the optic axes, the two waves 
are in general eEptically polarised in the vicinity of the optic axes. The two 
waves are not orthogonally polarised and are propagated with different velocities. 
If the principal constants aii and bii are known, then these can be calculated 
from Eqs. (45.7) and (45.8) but it is easier to do so by applying a method of super- 
position as we shall show later. 

6) Singular axes. However, there exist directions of single wave velocity in 
an absorbing crystal, but these do not coincide with the optic axes. From (45.7) 
and (45.8) it follows that 

and correspondingly r' and r" are also equal, both being equal to either to +i 
or -i. Along directions which satisfy Eq. (46.7) therefore the two waves are 
propagated with the same velocity and are both of the same state of polarisation. 
Thus there is really only one wave solution obtained, this wave being either right 
or left circularly polarised. There are f o u  such directions, called singular axes 
and they should obviously occur near the optic axes. The exact location of these 
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and the polarisation of the wave propagated along any one are discussed later 
(Sect. 49). 

E )  Idiophanic rings. Unlike transparent crystals, the two waves which are 
propagated unchanged in form are not of orthogonal states of polarisation in 
an absorbing crystal. This leads to the interesting result that it is possible to 
see interference figures (idiophanic rings) namely rings and brushes by using 
only either a polariser or an analyser (see Sects. 66, 69, 70). 

47. Application of the PoincarC sphere. Just as the superposition method gives 
results which are practically equivalent to those yielded by the rigorous theory. 

Fig. 43. (a) Section of the index and absorption ellipsoids in an absorbing crystal. X,, Y, are the principal axes of refrac- 
tion and XS. YG x e  the ~lincioal axes of absomtiou (bl PoincarC s~here co11struction for determinine the states of darisa- -- .. 
t~on p m p a ~ ; t e ~ ~ t h & h &  (stereographic proj&;ion). l'hcsb are P' and P" for which the iainitesimal operations 

of lrnear birc-ence and linear dicbroism prod~lce movements ds,  aod dsk which are equal and opposite. 

in the case of optically active crystals, this method could be usefully applied to 
absorbing crystals also1. The two properties, which appear superposed in the 
case of absorbing crystals are linear birefringence and linear dichroism. The 
elementary operations on the PoincarC sphere corresponding to these two proper- 
ties have been discussed in Sects. 3 ,  6 and 7. We shall now consider the super- 
position of the two. 

In Fig. 43 a let X,, Y, be the principal directions of refraction, representing 
the majo_r-and minor axes of the section of the index ellipsoid, X, corresponding 
to the slower wave. Let Xk, Yk be the principal directions of absorption represent- 
ing the major and minor axes of the section of the absorption ellipsoid, Xk cor- 
responding to the smaller absorption. Then the effect of birefringence is to rotate 
the representative point P (of the state of polarisation) about the axis X,  Y, 
(Fig. 43 b) and that of di.chroism is to move it towards Xk along the great circle 
Xk PY,. If ds, and dsk are the movements of P as a result of these operations 
then the two must be equal and opposite for there to be no change in the state P. 
In general we shall find that there are two such states P' and P" as shown in 
Fig. 43 b. Referring to this figure and using Eq. (6.6) the following relations are 
obvious 

[ds,[=dsin2p,; / d ~ ~ l = k s i 1 1 2 ~  (47.1) 

S. PAFCHARATNAM: BOC. Ind. Acad. Sci. A 42, 86 (1955). 
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where 2,- and 2y are the angular distances of the representative point P from 
X, and X, respectively and 

where 6, and d2 are the phase retardations introduced in the absence of dichroism 
and k, and k, the absorption coefficients in the absence of linear birefringencel. 

If the major and the minor semi-axes of the sections of the index and absorp- 
tion elipsoids have the lengths, 1/1/<, I/G and l/l/i;l, l/l/& then 

and the absorption coefficients in the absence of birefringence are defined by rela- 
tions analogous to (43.10) 

where v, is the mean velocity. 
In order that the simultaneous superposition of linear dichroism and birefring- 

ence should cause no change in the state P, the movements ds, and ds, must be 
equal in magnitude i.e. 

6sin2p = ksin2y. (47.5) 

Secondly they should be opposite in direction. Since arc as, is along PXk and 
ds, is perpendicular to 'PX, it is necessary that 

/\ x, PX, = 4 2  
or 

cos 2x = cos 2 g, cos 2y (47.6) 

together with the condition that P wiU represent a right or left elliptic vibration 

according as 2p  is positive [ O  to $1 or negative 0 to - . Both these equa- i " 1 
tions are satisfied when 29, and 2y are changed to (n - 29,) and (n - 2y), thus 
giving two states P1(29,', 2y') and P"(29,", 2y") indicated in Fig. 43a which 
are propagated without change of form. Clearly the states P' and P" have the 
same latitudes their longitudes differing by n. Hence we arrive at the result 
also obtained by the electromagnetic theory that the states of polarisation pro- 
pagated unchanged along any general direction are two similarly rotating elliptic 
vibrations which have their major axes crossed and which have equal ellipticities 
(Fig. 43 b) . 

The states P' and P" are fixed by the angular distance 29, and 2 y  which 
satisfy the simultaneous Eqs. (47.5) and (47.6). The explicit values of these are 
obtained by eliminating successively 29, and 2y between these equations and 
are given by 

The actual latitudes and longitudes of the states can be determined from spherical 
trigonometry. Referring to Fig. 43a let the inclination of the major axis OX' 
of one of the ellipses be X, (anticlockwise) with respect to OX, and X, (clockwise) 

The symbol k here introduced differs in sign from that in Sect. 6. 
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with respect to OXk. The directions OX' may be determined by the relation 

sin 4x1 ti2 -=- 
sin4xz k2 

and the ratio of the minor to the major axes tan E may be obtained from 

sinz 2 E = tan 2 ~ ,  tan 2 ~ ,  . (47.9) 

48. The refractive indices and absorption coefficients of the waves. As in the 
case of transparent crystals it is convenient to specify the refractive indices 
and absorption coefficients as functions of the state of polarisation (2p, 2y) of 
the waves. 

The alterationin thestate of polarisation of avibrationinitially in the state Xk to 
an adjacent state Q (Fig. 44) on travelling through the distance dz  may be evaluated 
by the method of superposition as being entirely due to the operation of birefrin- 
gence: The infinitesimal arc X, Q will be equal 
to adz  sin 2~ and will be perpendicular to 
the equator. More properly this alteration in 
the state of the vibration is connected with 
the phase retardation (6' - 6") dz  between the 
two waves in the states P' and P" into which 
the original vibration will be decomposed. 
Applying the results of Sect. 4, Eq. (4.9), the 
relative phase retardation must be equal to the 
area of the infinitesimal quadrilateral P i x k  Pi'Q 
where Pi and P: are points antipodal to P' 
and P". The area of this quadrilateral (being 
equal to the area of the lune whose angle is 
contained within the arcs P' Xk and P' Q) may Fig, 44. Construction for determining the phase 
be easily to be 6 d z  cos 2 Hence difference and difference in absorption coeffi- 

cients of the two waves propagated along any 
we have . direction. 

6'- 6" =6cos291'. (48.1) 

Alternatively the difference in the refractive indices of the waves is given by 

(nl - n") = (q - n2) cos 2 91' (48.2) 

where .~z, and n, are the refractive indices in the absence of absorption. The state P' 
for which the value of 291 (viz. 291') is less than n/2 is the slower state. 

The absorption coefficients k' and k" of the waves in the states P' and P 
may be easily evaluated from the following considerations. The diminution of 
intensity 2k d z  which a vibration of unit intensity in state P' suffers on travelling 
a distance d z  arises entirely from the operation of absorption. The X, and Y, 
components of the vibration P' have intensities cos2y1, and sin2y' respectively; 
hence the operation of absorption diminishes the intensities of these components 
by 2K, dz  cos2 y' and 2k, d z  sin2 y' respectively. Hence we obtain on addition 

k1=&(k,+ k,) - +k cosZy', 

yf=;(&+ k,) -++kcos2yf. (48.3) 

These may also be written in the form 

k', k" = + (k, + k,) - 3 k cos 2y1, 2y" - 
We have from (48.3) 

k" - k' = k cos 2y'. (48.4) 
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The last formula is similar to the expression (48.2) for the difference in the re- 
fractive indices. In fact it can be shown, from the symmetry of the operation, 
that the actual retardations per unit distance 6' and 6" of the wave will be given 
by expressions similar to (48.3) i.e. 

St =+(dl + 6,) + 96  C O S ~ ~ , ' ,  

6" =*(dl + 6,) - 48 cos 2p,', 1 (48.5) 

which may be written in the form - .. 

where the value of p, appropriate to the wave in question is to be used. 
It can be shown that the states of polarisation of the waves as deduced by 

the superposition method are identical with those deduced from the electro- 
magnetic theory if we define the mean velocity vm for the particular direction of 

, propagation a .  
v3 - 1 

m - 2 ( ~ 1 - k  ~ 1 % -  (48.6) 

I t  may be noted that this is of the same form as the one used for optically active 
crystals, cf. (39.6). 

The expression for the refractive indices and extinction coefficients of the 
waves as obtained by the electromagnetic theory may also be expressed as func- 
tions of the states of polarisation (2y, 2y) of the waves1. They then take the 

' 

form 
v2=*(al+a2) ++(%-a21 ~ 0 ~ 2 9 7 ,  

2xv3=+(&+bz) +g(bl -  b2)cos2y. 1 (48.7) 

The difference between these expressions and those deduced by superposition 
method (48.3) and (48.5) is usually not of much practical significance especially 
for directions near the optic axis. 

#?,I A$proximate formulae. The Poincard sphere method gives a direct geo- 
metric interpretation of the results discussed in Sect. 46. If the birefringence is 
zero, as along an optic axis, then the polarisation states that are propagated 
unchanged will be Xk and Yk i.e. the principal directions of absorption are at  
right angles to the optic axis. If the birefringence is large, i.e. 6> k, then obviously 
the states of polarisation which are propagated unchanged will be close to X, 
and Y,, i.e. they will be the same as if the crystal had no absorption. This will 
also be the case if the principal planes of birefringence and dichroism coincide 
as for a uniaxial crystal. These are identical with the results already deduced 
in Sect. 46. 

For directions not too close to an optic axis we may usually neglect the 
squares and higher powers of k/6. Hence from (47.5) the square of sin 297 may 
be neglected which means that in Fig. 43 the arc X,P' is an infinitesimal arc, 
perpendicular to the equator. Hence we may set 

which gives the common ellipticity of the two waves to be 

k .  
w =  ---sm2x. 

2s 
(48.8) 

See Sect. 45. 
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To this approximation the major and minor axes of the elliptic vibration lie 
along the principal planes of birefringence and from (48.7) the velocities and 
absorption coefficients may be determined from the index and absorption ellip- 
soids as though the waves were linearly polarised. 

49. The singular axes. or) General considerations. The singular axes also follow 
very simply from the PoincarC sphere. Since the two states of polarisation are 
crossed ellipses of the same sense they would become one and the same only when 
both represent circular vibrations of the same sense i.e. L or R. For example 
if R is to be propagated unchanged i.e. if  state P' of Fig. 43 is to coincide with 
R the condition that the movement ds, and dsk should be oppositely directed 

will be statisfied only if the arc X.Xk is a right angle ( 2 ~  = + :) since the 

angle at  P' must continue to be a right L 
angle. In this case 2 cp and 2 y are also right 
angles and the condition that the movements 
I ds,] = I dsk 1 gives from (47.1) that 

a = k .  (49.1) 
I 

Similarly for 2~ = - ,, and 6 = k (see 

Fig. 45) the left circularly polarised state L 
alone is propagated unchanged. The same 
results could also be proved from Eq. (45.8). 

Thus singular axes occur along direc- 
tions at which the principal planes of ab- 
sorption and refraction make angles of 45" 
with each other, the linear birefringence 
and linear dichroism being equal in Fig. 4 j. Propagation of light along a singular agis. 
tude. It will be shown in Sects. 67 and 68 %o,": Jta&k$ P=iz, ~~~~d~~~~ 
that verv close to each one of the optic axes, converted to L via the great ciecul~ arc R X ~ L .  

there eAst two singular axes, one -on either 
side of it, propagating respectively right and left circularly polarised waves. I t  
may be noted that a singular axis cannot be designated uniquely as "right circular" 
or "left circular" unless the direction of propagation is also specified. For example 
along the same singular axis right circular light is propagated unchanged when 
traversing it in one direction, left circular light would be propagated unchanged 
for an opposide direction of travel. This is because the sign of x changes when 
Fig. 43 a is viewed from the opposite side. 

/3) Pro$agation of circularly $olarisell light along the singular axes. Along 
any p~fl~c?llar singular axis, only circularly polarised light of one sense is propa- 
gated without change of state. Let this be the left circular state L (Fig. 45). 
The question arises as to what would happen if light in the right circular state R 
is incident exactly in this direction. VOIGT~ suggested, without proof, that it 
would be totally reflected. However, we obtain an entirely different answer 
by applying the method of superposition2. From Fig. 45 it is seen that for this 
direction of propagation the movement of the representative point P, is along 
the great circle R XkLYk .  Initially, the effects of birefringence and dichroism 
are additive until the point Xk  is reached; thereafter they are opposite, but the 
birefringence effect is larger and so the point moves on towards L asymptotically. 

W. VOIGT: Ann. Phys., Lpz. 2, 1002 (1908). 
2 S. PANCHARATNAM: Proc. Ind. Acad. Sci. A 42, 86 (1955). 
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Let P be the state of polarisation at  depth z inside the crystal, and let arc R?= s. 
Then, the state s +as at depth z+dz is from (47.1) given by 

a s  = (6 + k cos s) dz. (49.2) 
Putting in 6 = k and integrating, we have 

tans12 = k z .  (49.3) 

Thus, the change from R to X, i.e. to linear vibration at 45" to the principal 
planes of refraction, occurs in a smaller distance than would be the case if absorp- 
tion were absent, while the change from X, to L requires an infinite distance. 
The intensity Ik at a depth dz may be similarly calculated. The change dl, 
due to the passage through a distance dz is - -A 

where k, is a function of the state of polarisation. In terms of k, and k, it is 
given by an expression of the form (48.3) 

Thus, kz< *(k,+k,) which is the coefficient of absorption for L, the state of 
polarisation propagated unchanged. We thus get the surprising result that if 
the incident light is of state R, then the transmitted intensity is more than if 
it were of state L, although it is L that is propagated unchanged. 

Substituting (49.5) in (49.4) we have 

If I,, and IR are the incident intensity and the intensity transmitted after a 
thickness z, then 

log (Io/IR) = (4 + k,) z - log (I + k2z2) . (49.7) 

For left-circular vibration, we have 

so that the ratio of the two is simply 

which is always greater tha.n unity.  
This interesting result has been verified experimentally1 (Sect. 68). 
The result is not really in contradiction with those of the electromagnetic 

theory. It is true that according to the electromagnetic theory only one homo- 
geneously polarised plane wave solution (not two) is obtained for a singular 
direction. A theoretical approach more general than the one we have adopted 
in Sect. 26 becomes necessary to establish that other solutions also exist, re- 
presenting however plane disturbances propagated with a progressive change of 
polarisation (see Sect. 56). 

1 S. PANCHARATNAM: ROC. Ind. Acad. Sci. A 45, 1 (1957). 
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V. Absorbing optically active crystals1. 
50. Formal solution of the wave equation. When both absorption and optical 

activity are present, then again the relation between E and D takes a form similar 
to that for an optically active crystal without absorption, viz. 

However the tensors and [g] and correspondingly the tensors and [Fj 
are all complex. Thus Gand are complex vectors. We shall use the form (50.2) 
for further discussion. I t  is convenient to express the above relations in terms 
of tensors having real components; these tensors will therefore separately deter- 
mine the various optical characteristics of the medium. Thus in (50.2) we may 
substitute 

[q = [a1 + i [bl and Dl = [YI + i [PI - (50.3). 

We may further substitute 

with 

where [a] and [b] are the usual index and absorption tensors which occur for 
example in optically inactive absorbing crystals and which define the index and 
the absorption ellipsoids. As in the case of transparent optically active crystals. 
F is the optical activity vector which for any direction of propagation is deter- 
mined by the optical activity tensor [yl. The new vector h3 may be called the 
vector of circular dichroism being determined for any direction of propagation 
by the "temor of circular dichroism" [B]-the reason for this nomenclature will 
be justified as we proceed. 

Taking the direction of the z axis along the wave normal we may proceed as 
in the case of transparent optically active crystals (Sect. 38). Comparing (38.6) 
and (38.7) and remembering that in the present case the constants are complex 
we immediately obtain 

( v 2 - h l )  = (6, + i Z )  Dy/Dz> 
(50.6) 

(v"G2) = (Z12-iz)Dx/Dy. 

If we put r = Dy/Dx, then r gives the state of polarisation of the wave. Eliminating 
r between the two equations we have 

The solutions of this. equation give the complex velocities 5' and 5" of the two 
waves that are propagated along any chosen direction. The two states of polari- 
sation 7' and r" are the roots of the equation 

Explicitly written the roots of (50.7) and (50.8) are 

1 S. PANCHARATNAM: Proc. Ind. Acad. Sci. A 48, 227 (1958). 
Handbuch der Physik, Bd. XXV/l. 
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and 
-.I - 

yf, ytf = (al1 - a,,) -+ 1J{+ (41 - G J I "  + ( G 2  + Z3 (50.10) 
(ZLa + i &is] 

The task of discussing in greater detail the velocity and absorption coefficients 
and the state of polarisation of the waves is complicated by the fact that all the 
coefficients occurring in (50.9) and (50.10) are really complex quantities, namely 

In terms of a general coordinate system 
- - 

rs=17.s=y,  say, 
G=I'.s  =y ,  say, 

or 
6?33=&.s=p, say, 

and here y is the scalar parameter of optical rotation already met with, and ,9 
may be called the scalar parameter of circular dichroism for reasons discussed in 
the next section 51 and is the complex parameter of optical activity. 

51. Circular dichroism and its directional variation. By assuming the complete 
absence of linear birefringence and linear dichroism we can understand the 
characteristic effect introduced by the parameter &,. Hence, setting 

in Eq. (50.7) and (50.8) we get 

D,]D,=&i, v ~ = a & G .  

This means that the waves are right and left circularly polarised and if ii, and 5, 
are the complex velocities of the circular waves then 

- 
53-~,?=21;. (51.3) 

-The complex velocity 5 is related to the actuaI velocity and the extinction coef- 
ficient x  by the relation 

- 1 v = ---- - 
n - i x  

-v ( l  + i x v )  (5 1.4) 

and when terms containing the squares of the extinction coefficients are of 
negligible magnitude we get to a high degree of approximation: 

where a, is the mean velocity. Thus, the optical rotation of an absorbing crystal 
may be considered to be a complex quantity being given by = Q +io,  where e 
and o are related to y and ,9 by ( j 1.5) and (5 1.6). The reason why y and /? are 
termed as the parameters of optical rotation and circular dichroism is now 
quite evident. 
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The parameter of optical rotation has been shown to be a quadratic function 
of the direction cosines of the direction propagation in Sect. 40. The same must 
be true of the parameter of circular dichroism. If we measure off two radii 
vectors r, and r, parallel to the direction of propagation such that their lengths 
are given by 

where y and B denote the parameters for propagation in a general direction, then 
(5  1.7) and (51.8) define respectively a surface of optical rotation and a surface 
of circular dichroism, both of which are central quadrics to a good approximation. 
Given these surfaces we may determine y and for any direction or alternatively 
the coefficients of circular birefringence and circular dichroism for any direction. 

52. Method of superposition.-The use of the Poincark sphere1. I t  will be 
noticed that the equations for a general direction of propagation (50.9) and 
(50.10) are very intractable. We shall now develop the theory of wave propagation 
in absorbing optically active crystals by making use of themethod of superposition. 
The change in the state of polarisation of a vibration on travelling through a 

R 4 
a b 

Fig. 46 a and b. Propagation of light in an absorbing, optically active crystal. (a) Linear birefringence about X Y and circu- 
lar birefringence about RL compound to yield elliptic birefringence about BB,. Similarly, linear dicbroid &out XkYk 
and circular dichroism about RL compound by the vectorial law to yield elliptic dichmism about DD,. (b) P', P" represent 
states propagated unchanged under the effects of elliptic biref&gence (about BB,) and elliptic dichroism (about DDJ.  

Cis the pole of the great circle through BD. 

--- 
thickness d z  will have to be determined by applying in succession the infinitesimal 
operations of linear birefringence, linear dichroism, optical activity (i.e. circular 
birefringence) and circular dichroism. For any particular direction of propagation 
the first two operations are determined by the sections of the index and absorp- 
tion ellipsoids according to Eqs. (47.3) and (47.4). The latter two operations are 
determined respectively from the surfaces of optical rotation and circular dichroism 
according to Eqs. ( 5  1.7) and (5 1.8). [The mean velocity v, is defined in Eq. (48.6) .] 

Refening to Fig. 46a the infinitesimal operations of linear birefringence 
(rotation 6 d z  about X,Y,) and of circular birefringence (a rotation 2 e  d z  about 
RL) may be compounded by a vectorial law as in the case of transparent optically 
active crystals. The two operations are together equivalent to a single operation 

1 S. PANCRARATNAM: Proc. Ind. Acad. Sci. A 46, 280 (19 57). 

-- 
i* 
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of elliptic birefringence, a rotation of Adz about the axis BB,. The relative 
phase retardation per unit thickness A between the crossed ellipses B and B, 
which are propagated unchanged in the absence of absorption, and the latitude 
28  of the slower state B, are determined by Eqs. (39.4, (39.2 for transparent 
optically active crystals. 

Similarly it has been shown (Sect. 7) that the infinitesimal operations of 
linear dichroism (axis Xk Y,) and circular dichroism (axis RL) can be compounded 
by a vectorial law and may be replaced by the operation of elliptic dichroism. 
In Fig. 46a, vibrations of two oppositely polarised elliptic states D and D, (which 
have the same longitudes as Xk and Y, respectively) remain unaltered in form 
under the combined effects of linear and circular dichroism. If 6' is the angle 
of ellipticity of the less absorbed state and K the difference in thF%sorption 
coefficient of the vibrations in the state D and D, then 

tan6' = - 2a/K (52.1) 

K = Ilk2+ (2G)21 (52.2) 

where 20 corresponds to the difference between the absorption coefficients of 
left and right circular components in the operation of circular dichroism, i.e. 
2b=kL-kR and k=kyk--kx,. 

Referring to Fig. 46b we may specify any point on the PoincarC sphere by 
its angular distance 2y, 2y and 2E from the three reference points D, B and C 
which form a right handed set, the point C being at an angular distance of 4 2  
from both B and D, the arc BD, which is not in general a right angle, being de- 
noted by 2%'. Since the three direction cosines are not independent, it is sufficient 
to specify 2y and 2y ,and give merely the sign of 2E. Thus we have to superpose 
only the operations of elliptic birefringence A (about the axis BB,) and of el- 
liptic dichroism K (about the axis D D,), the two axes B B, and D D, being inclined 
at an angle of 2 ~ ' -  There wiU in general be two states P'(2y1, 2y') and P 
(2y", 2y") as indicated in Fig. 46b which are propagated unchanged under the 
combined effects of these operations, 2[ being positive in both cases. The problem 
is formally the same as in an optically inactive absorbing crystal so that the results 
derived in that case can be taken over, provided we replace 6 by A,  k by K, and 
2x by 2x'. 

Thus the state of polarisation 2y, 2y of the waves are given by the simulta- 
neous equations analogous to (47.5) and (47.6): 

Asin2y = Ksin2y, (52-3) 

cos 2x' = cos 2 y cos 2 y . (52.4) 

The refractive indices and the absorption coefficients of the waves expressed in 
terms of these states of polarisation are given by the equations analogous to 
(48.5) and (48.3). 

6', Sf'= 4 (dl + 6,) f + A  cos2yr. (52.5) 

k',k"=+(kl+k2) f *Kcos2y1. (52.6) 
Further 

6'- d"= A cos2yf, (52.7) 

k"- k'=Kcos2yf. (5 2.8) 

The explicit expressions for cos 29, and cos 2y will be of the form (47.7) with the 
replacements mentioned above. 
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For directions of propagation appreciably inclined to the optic axis the effect 
of linear birefringence predominates over all the other operations and the wa>-es 
may be regarded as linearly polarised along the principal planes af finear bire- 
fringence. 

I t  can be shown that the expressions for the velocities and extinction coef- 
ficients of the waves as derived by the electromagnetic theory may also be expres- 
sed as functions of the state of polarisation (294 2y) of the waves1. They take 
a form similar to (52.5) and (52.6) deduced by superposition methods, being for 
any general direction of propagation given by [cf. (48.7)] 

vL+ ((a,+ a,) ++I(%- a 2 ) 2 + ( 2 P ) 2 ~ ~ ~ 2 y ,  (52.9) 

2 ~ v ~ = ~ ( ~ + b ~ ) + + ~ ( b ~ + b ~ ) ~ + ( 2 ~ ) ~ ~ 0 ~ 2 ~ .  (52.10) 

For directions not too close to an optic L 
axis the squares and higher powers of @/A 
and KIA may be neglected so that from 
(52.3), 1 cos 2q 1 m 1. According to (52.9) the 
velocities may then be determined from the 
section of the index ellipsoid as though the la 

waves were linearly polarised. Since for 
such directions 2 y m 2 ~ '  from (52.4), it can Yk 
be shown from (52.10), using (52.1), that the 
extinction coefficients of the waves may 
similarly be determined from the absorption 
ellipsoid. For directions still closer to the 
optic axis, the difference between the expres- 
sion (52.9), (52.10) and those derived bythe R 
superposition methods (52.5) and (52.6) will Fig. 47. Pnpagatlonm a wstal .  The great 

cucle through BD is here a meridian of long~tude. 
be entirely negligible, SO that the latter may n e  states P'. P' ~ b c h  are propagated ~ c h a g d  

be more conveniently used. also bearaslrnple geometric relatlon to one another. 
The figure also illustrates the vffitorxal wmpositlon 

For uniaxial crystals the principal pla- of linear and circular dichroam. 

nes of linear birefringence and dichroism 
coincide so that the points B and D (Fig. 47) lie on the same great circle passing 
through the poles. I t  will be seen from Fig. 47 that the two ellipses have the 
same numerical ellipticity though described in opposite senses; and the orienta- 
tion of the major axes of the two ellipses are obtained from the principal planes 
of OX, and 0 Y, by turning the latter through equal angles in opposite directions. 
This result has been obtained by FORSTERLING~ from the electromagnetic theory 
of propagation in uniaxial crystals. For uniaxial crystals however, the linear 
dichroism close to the optic axial direction will be weak (being near a circular 
section of the absorption ellipsoid) while circular dichroism in crystals has always 
been found to be a.weak phenomenon. I t  is appropriate to remark here that 
VOIGT~ has made some observations on the so-called liquid crystals which exhibit 
very strong circular dichroism. However, we shall not deal with them here, for 
the large circular dichroism and the enormous rotation of the plane of polarisation 
indicate that these media may not be homogeneous but may on the contrary 
possess a lamellar structure (DE VRIES) 4. 

See Sect. 56. 
FORSTERLING: Gottinger Nachr. 1912, p. 207. 
W. VOIGT: Phys. 2. 17, 159 (1916). 
H. DE VRIES: Acta crystallogr. 4, 219 (1951). 
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As in the case of absorbing inactive crystals, interesting phenomena are to 
be expected for the class of biaxial crystals showing appreciable linear dichroism 
along an optic axial direction. In such a case, circular dichroism being a weak 
phenomenon may be neglected in comparison with linear dichroism. We shall 
therefore next consider the case when circular dichroism is zero. 

53. Biaxial crystals with negligible circular dichroism. a) General consideratims. 
In this the constant of elliptic dichroisrn K has to be replaced by the linear di- 
chroism k. Further the axis DD, (Fig. 46a) of elliptic dii3qpism becomes coin- 
cident with axis Xk Yk of linear dichroism. Accordingly Fig. 46b takes the special 
form shown in Fig. 48. 

In this case we have, from (52.4) and (52.7), 
6 cos 2 ~ '  = cos 2p' c0s2yf = 7 cos 2y'. 

R 
Fig. 48. Fig. 49. 

Fig. 48. Propagation in a biaxial crystal with no circular dichmism. DD. of Fig. 46 (b) becomes coincident with XkYk.  

Fig. 49. Propagation for directions not in the vicinityof the optic ax? (no circular dichroism). Each wave has an ellipticity 
which is tke sum of the w~~espmding ellipticities which would obta~n in the absence of absqtion and of optical acdvity. 

Here again we note that the two polarised waves in the states P' and P" that 
are propagated along any direction are in elliptic states of polarisation whose 
geometrical forms bear no simple relation to one another, i.e. the major axes of 
the elliptic vibrations are not in general crossed, their ellipticities are not equal 
numerically and finally they may or may not be described in the same sense 
(depending on the direction of propagation). We shall consider only certain 
special cases. 

#I) Directions n o t  too near an o+tic axis. For such directions we may neglect 
the squares and higher powers of @/A and KIA. The arcs X, B and B P' of Figs. 46 a 
and 46b respectively become infinitesimal arcs normal to the plane of the equator, 
the situation being illustrated in Fig. 49. To this degree of approximation A = 6 
and 2 ~ ~ ~ 4 2 ~  from Eqs. (39.4) and (53.1). From Fig. 49 the directed arc B? 
will be equal to 2 s  where s is the common ellipticity of the two waves in the ab- 
sence of optical activity given by Eq. (48.8) of the section on absorbing inactive 
crystals. Moreover the directed arc X- is equal to 28 where 6 is the ellipticity 
of the slower wave in the absence of dichroism (i.e. as in a transparent active 
crystal). Thus to this degree of approximation the orientations of the major 
axes are along the principal planes of linear birefringence but the ellipticity for 
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each state now approximates to the sum of the corresponding ellipticities obtain- 
ing, in the absence of optical activity and absorption respectively. Thus the 
ellipticities of P' and P" are 

k &', &" = - - 
2 6 

sin2*7 L. 
6 (53.2) 

As has already been mentioned in the last section the velocities and absorp- 
tion coefficients may be determined by the usual index and absorption ellipsoid 
constructions as though the waves are linearly polarised. I t  may be seen that 
though the waves are non-orthogonally polarised, the non-orthogonality factoy 
cos2c (where 2 c  is the angular separation of the states on the PoincarC sphere) 
is the same as in the absence of optical activity. I t  may also be seen that the waves 
tend to the form of a linear vibration 
as 6 increases, i.e. as the inclination from 
the optic axis increases (Sect. 71). 

y)  Pro+agation along a n  optic axial 
direction: TWO classifications of the gerzer- 
a1 behaviow. Case 1. Linear dichroism 
k > circular birefringence I 2 e 1. 

In this case (as will be shown) the 
waves propagated along the optic axes 
are actually linearly polarised, the angle 4 
between the linear vibrations being dif- 
ferent from a right angle. This is illu- 
strated in Fig. 50 for the case when e 
is positive. The azimuths of the two R I,\ 
linear vibrations may be readily C ~ C U -  FX. 50. Propagation along an optic axis. NO circular di- 
lated remembering that linear hire- c h m i  and k> l2el.  ine ear states P, P" are pmpa- 

gated unchanged. The co~~$truction is for a left-rotating 
fringence is absent. A linear vibration crystal, i.e. e positive. 

P initially at an azimuth y with re- 
spect to OXk will under the infinitesimal operation of linear dichroism be turned 
through an angle +k sin 2 y d z  towards OX,, the less absorbed component-as a 
direct calculation shows. On the other hand, it is turned through an anti- 
clockwise angle @ dz  under the infinitesimal operation of rotation. Since these 
must be equal and opposite, the azimuths of the states propagated must satisfy 
the equation 

sin 2y = 2 ~ / k .  (53.3) 

Thus 4 h e  will be two states at  azimuths y' and - ?yf which are propagated 

unchanged. These azimuths will be either both positive (0 to n/2) or both nega- 

tive [O to - according as Q is positive or negative. The situation is illustrated 

in the ~oincG6 sphere drawn for the case when Q is positive (Fig. 50). This is 
the special form which Fig. 46b takes for optic axial directions when linear bire- 
fringence is absent i.e. when B B, coincides with R L and A = 1 2 e 1. The arc 
2 ~ '  in Fig. 46b has become a right angle and from the condition that the angle it 
subtends a t  P' should also be a right angle it may be seen geometrically that P' 
must lie either on the equatorial arc X,  C (2 p, = 742) or on the meridional arc 
C R (2y =n/2)- The latter corresponds to the case when 12 Q 1 > k which we shall 
consider later. The fonner is the case we are treating at present for which Eq. (51.3) 
has a solution. The two linearly polarised beams have the same velocity since 
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2plr =n/2  in (52.9). They are however propagated with different absorption 
coefficients given by (52.10) 

k"-kt=Kcos2y'. (53 -4) 

The behaviour in this respect is somewhat- similar to that for inactive crystals 
except for the fact that the two linear polarised states are not orthogonal. 

Case 2. Circular birefringence 1 2 @ 1 > linear dichroism k. 

This situation is illustrated in Fig. 51 when Q is positive and represents the 
second of the two cases mentioned in the last paragraph-namely the case when P 
lies on the meridional arc C R (2 y = 42). In this case two elliptic vibrations 
exactly similar in form and orientation but described in opposite-sifises are. 

L propagated. The sense of description of 
the slower elliptic vibration is the same 
as that of the slower circular vibration 
which would be propagated in the absence 
of dichroism. The major axes of the el- 
liptic vibrations are coincident and make 

@ /  A 
II 

4 an angle f - or - - with reference to 
C 4 4 

4 OX, according as Q is positive or nega- 
tive. The numerical value of the ellipticity - 
I w'l of the vibrations may be obtained 

2.f from the Eqs. (52.3) since 2y' =z/2 - 
12w11 and 2y' =n/2 

z$' p' B 
R cos12w'I = k / I 2 ~ l .  (53.5) 

Fig. 51. Same as Fig. 50, but for the case  ha 12~1, k. The two waves have equal absorption 
Two ellipses in oppusite senses are propagated unchang- 
ed, a& ellipticities being equal and major axes at coefficients according to (52.8) but they 

450 to xk. possess different velocities of propaga- 
tion and the phase retardation which one 

wave suffers relative to the other per unit distance of propagation is obtained 
from (52.7) to be 

6 ' -8 '=-2~sin2w':  (53.6) 

One can see the parallelism between this and the case of the propagation 
along the optic axis in transparent optically active crystals. There is however 

. ' the important difference that, in the present case, the two waves are not circularly 
but elliptically polarised. This leads to the curious property that the observed . 

. rotation of the plane of polarisation along the optic axis depends on the azimuth 
of the incident linear vibration so that the true rotatory power cannot be obtained -'-. . wthout correction for the dichroism. This important correction will be dealt with 
in Sects. 718 and 72. 

54. Propagation in the vicinity of the optic axis. Biaxial crystals with negligible 
circular-dichroism. For directions in the vicinity of an optic axis the linear 
dichroism and the rotatory power may be regarded constant. Hence for example ' 
if ]2@l>k along the optic axis, the same holds for directions in its vicinity. 
The general behaviour even along directions other than the optic axis exhibits 
a certain similarity to that of transparent optically active crystals or to absorb- 
ing inactive crystals according as 1 2 @ ] > k or k > 1 2 @ I along the optic axis itself. 
Thus, in the former case, there are no singular axes, but in the latter, singular 
axes do occur in the vicinity of optic axes, just as in absorbing inactive crystals. 
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CaseI.  Izel>k. 
We shall first consider the case when the optical activity predominates over 

linear dichroism. We see from formula (53.2) that the sign of the ellipticity is 
determined by the second term since it is always numerically greater than the 
first. Thus the two eilipses will always be described in opposite senses, and the 
numerical magnitude of the ellipticity for one of the waves will be greater than 
that for a transparent active crystal, while that for the other will be less by the 
same amount. Since the formulae (52.5), (52.6) for the states of polarisation are 
formally similar to those for inactive absorbing crystals (48.5), (48.3) it follows 
as in that case that the two states P' and P" of Fig. 48 can become identical, 
i.e. there will exist a singular axis, only if 

2 ~ '  = n/2,  A = k .  (54.1) 

Since the elliptic birefringence is given by 

A 

its minimum value is 1 2 ~ 1  which occurs where the birefringence vanishes i.e. 
along the optic axis itself. Hence if I 2 Q 1 > k, the situation A = k cannot occur 
for any direction, showing that for such cases (i.e. when 12 e [ > k ) ,  there will be 
no singular directions. 

Cae2.  k>l2el. 
Here, we shall first consider a general direction of propagation in the vicinity 

of the optic axis. The singular axes will be considered in the next section. 
We have seen that the principal planes of linear dichroism as well as k and Q 

may be regarded as constant in the neighbourhood of the optic axis. On the 
other hand the linear birefringence 6 increases rapidIy with angular distance 
from the optic axis. Further as we go round the curve 13 =const, i.e. round the 
optic axis, the principal axes of linear birefringence also turn round rapidly i.e. 
in the approximate formula (53.2) X, the inclination of OX, to OXk varies rapidly 
with the azimuth (see for example Sect. 66, Fig. 70a). Hence along these azi- 
muths where the first term becomes numerically equal to the second, one of 
the waves will be elliptically poIarised (with twice the ellipticity obtaining for a 
transparent active crystal). But the other wave will be linearly polarised. This 
obviously occurs along directions where 

, s in2~=&12eIIk .  (54.2) 

Thus when any one of th6 principal planes of line& birefringence (OX, or OY,) 
is at  an azimuth y with respect to OXk, ,where y satisfies the equation 

", 
sin2y = 2e[k, (54-3) 

a linear vibration parallel to that particuIar principal plane is propagated un- 
changed. ~. 

That the truth of this Iast statement does not depend on the-use of the ap- 
proximate formula (53.2) is seen directly by applying the method of superposition 
which gives in fact a simple physical explanation of the phenomenon. A vibration 
along the principal plane of linear birefringence remains unchanged under the 
infinitesimal operation of linear birefringence. Further if i t  is a t  an azimuth y' 
which satisfies (54.3) it will remain unchanged under the combined effects of 
the two succeeding operations of linear dichroism and optical rotation, as we 
have demonstrated in Sect. 537. Thus the linear vibration will be propagated 
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unchanged under the superposed effects of all the three operations. I t  must how- 
ever be remembered that the second wave propagated along such a direction is 
eIliptically polarised and for directions close to the optic axis, its ellipticity and 
orientation are different from that derived from the approximate treatment. 
For these directions, since y is a constant, we see from (52.8) that the absorp- 
tion coefficient of the waves are the same as those propagated along the optic 
axes. 

The results of the previous paragraph leads to the interesting conclusion 
that in the interference figures observed between crossed polaroids in convergent 
light, if the polarised vibration is parallel to any one of the vibrations propagated 
along the optic axis, true isogyres are formed occurring in the same position 
as in a transparent inactive crystaL 

55. The singular axes. From Eq. (53.2) we see that the elliptic birefringence 
increases from a minimum value of 1 2 ~  1 as we move away from the optic axial 

Fig. 52a and b. Determination of the singular axes, when k> l2el. (a) E, is  the only state which can be propagated 
unchanged along one of the singular axes. (b) E, is the only state propagated unchanged along the other singular axis 

associated with the same optic axis. No singular axes occur when k < Izel. 

direction. Since I 2 Q 1 < k there can arise a situation when A = k. From Eqs. (54.1) 
a singular axis will occur if in addition 2 ~ '  = 4 2 .  In such a case Fig. 48 acquires 
the form illustrated in Fig. 52a. 

Here the arc B?~ has become a right angle and since the angle i t  subtends 
at  P' must be a right angle, the states P' and P" both coincide at El. Since X, - 
is on the same longitude as B, the arc X,Xk is also a right angle, so that the 
principal planes of linear birefringence and dichroism must make angles of 45" 
with one another. (The case when x = 5214 and Q is positive is illustrated in Fig. 52 a.) 
The major axes of the ellipse will be along the principal plane 0 Y, of linear bi- 
refringence if Q is positive, and along OX, if Q is negative. Since 2 9' = 2y' = 4 2 ,  
i t  follows from Eqs. (52.7) and (52.8) that the two refractive indices and the 
two absorption coefficients become identical in the limiting case. I t  is seen that 
along this singular axis only one wave is propagated as in the case of absorbing 
inactive crystals, but this wave is elliptically polarised. 

In the case when ~ = n / 4  and A =k we again get a singular direction where 
only the elliptically polarised state E, (Fig. 52b) is propagated unchanged. This 
differs only in the sense of its description from the ellipse El which is propagated 
along the other singular axis associated with the same optic axis. A similar pair 
of singular axes wil be associated with the other optic axis. 
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When an elliptic vibration orthogonal to that propagated without change 
of form along a singular axis is incident in that direction it will not be reflected 
away, but will be propagated with a progressive change in its state of polarisation 
towards the state which is propagated unchanged. 

VI. The matrix method of solving electro-magnetic equations 
in anisotropic media1. - -  

56. The refractive index matrix. or) Descri#tiort of the matrix. The method we 
have hitherto followed in the previous sections for solving the electromagnetic 
equations has been to seek homogeneously polarised plane-wave solutions of',-. 
the customary form (27.4). A limitation of this method is revealed for directions 
of propagation along singular axes in absorbing crystals where only one such 
solution is obtained and not two, as is usually the case (see e.g. Sects. 49, 55).- 
Hence the procedure leaves unanswered the question as to what will happen 
when light in any other state of polarisation is incident in the direction of a 
singular axis. Though this problem was solved by the method of superposition, 
it must be capable of being handled directly and more rigorously by the electro- 
magnetic theory. For this purpose we discard the restriction of seeking plane 
wave solutions of constant polarisation. 

We wish to write down the equation to a more general type of plane wave 
propagated along an arbitrary direction Oz in an anisotropic medium. We how- 
ever continue to seek solutions for which the time factor is exp iw t  so that2 

and we use the matrix representation of JONES (discussed in Sect. 13) according 
to which the state of vibration 5 at the plane z would in general be a linear 
vector function of the state at z =0 being related by the matrix M of (13.3). The 
propagation through an infinitesimal distance however is described by the ma- 
trix N, the vibration at the plane z +dz being a linear vector function of the vibra- 
tion at  the plane z. In fact by substituting (15.4) in (13.3) and differentiating 
we have a 5  + - = N D .  

az (56-2) 

In order to see the similarity of this equation with that satisfied by the usual 
plane wave we write (56.2) as 

A 

This 'resembles exactly the equation satisfied by the usual type of plane wave 
of the form (27.4) with the following difference; the refractive index lz has been 
replaced by the refractive index matrix n in order that the same equation may 
represent the most general plane wave that can be propagated in a homogeneous 
anisotropic medium. By differentiating (56.3) with respect to t and (56.1) with 
respect to z we get + 

a25  a2I, = C2h-2 - 
a t2 azZ ' - (56.4) 

R.C. JONES: J. Opt. SOC. Amer. 45, 126 (1956). - ~.PANCEBRATNAM: PTOC. Ind. 
Acad. Sci. A 48, 227 (1958). + 

The displacement vector is here written as a two-dimensional vector D since it lies on 
the wave front and it can be described by its x and y components. 



108 G. N. RAMACHANDRAN and S. RAMASESHAN : Crystal Optics. Sect. j6. 

This resembles the usual form of the wave equation to a plane disturbance except 
that the square of the velocity has been replaced by the matrix c2 n-2. Our 
problem is to determine the refractive index matrix n or alternatively the matrix 
n-2 satisfying MAXWELL'S equations consistent with the' properties of the medium. 

In Sect. 27 we replaced the operator by - i o . n s / c  since solutions of the form 
a (27.4) were sought. More generally V= k7 where k denotes the unit vector - - 

along the z-axis (which is here taken as the direction of propagation). The rela- 
tion obtained bv eliminating H between the MAXWELL'S equations takes the form 
(see Sect. 26) 

and writing the components of this equation we have \. 

azE, azE, Dz=Or D Z = c 2 -  a=z , Dy=c2--- 
azZ (56.6) 

The properties of the medium can be expressed in the form 

where the components of A can be written down by comparison with the complex 
analogue of (3 8.7) as follows : 

-411 =GI, A,, =a,, + iT,, 
A = - A,, = a 2 , .  

From (56.8) and (56.7) we have 
a 2 3  -- a 2 5  

, a t 2 - ~ 2 A -  az2 

and comparing with (56.4) we have 

Hence if we write (56.8) in the form 
--L -+ 

D = E E  
where 

'4. E = A" 
we get the most elegant result1 

n2 = E 

analogous to the result .n2 = E  in an isotropic medium. Hence the refractive 
index matrix n or alternatively the matrix n-2 can be determined from (56.10) 
and (56.11). 

Though the wave equations (56.4) and (56.3) describe in general a disturbance 
propagated with change of polarisation this is not always the case. Clearly they 

Only the physically significant square root of the matices in (56.11) and (56.14) are 
to be taken. See R.C. JONES: J. Opt. SOC. h e r .  46, 126 (1956). 

We have here considered the case of a homogeneous medium. For the corresponding 
relation when N is not independent of z see the paper by R.C. JONES quoted above. 
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reduce to the customary equations satisfied by a homogeneously polarised wave 

for those particztlar states of 5 for which 

where Z is the velocity, .ti the refractive index of the wave. The Eq. (56.15) is -, - ~ 

usually satisfied for two states D-the eigen vectors of the matrix A-with two 
corresponding values of F2, the eigenvalues of A; these may be determined as in 
Sect. 26 since the Eqs. (26.8) previously used are merely the components of the 
vector equation (56.15), giving thereby the connection with our previous method 
of solving the electromagnetic equations. Alternatively we could start with 
Eq. (56.16) and determine the states of polarisation of the waves which should 
be eigenvectors of the refractive index matrix n = A-$, the corresponding eigen- 
values being the complex refractive indices of the waves. 

A singular axis represents a special direction for which the matrix A (and 
correspondingly the refractive index matrix n) has only one eigenvector and 
correspondingly in this case the matrix itself cannot be reconstructed from a 
knowledge of its eigenvectors and its eigenvalues but this does not in principle 
lead to any difficulty in directly determining 52 from (56.11). From the present 
standpoint, along a singular direction, as indeed along any other direction, we 
can have disturbances propagated with a progressive change in the state of 
polarisation. The peculiar feature of a singular direction however is that such 
a disturbance cannot in turn be described 'as a sum of two plane waves with 
constant states of polarisation. 

Also, while in a general direction, the state of polarisation of the wave under- 
goes an oscillatory change (the representative point on the Poincar6 sphere going 
around the sphere), along a singular axis it tends asymptotically to the only 
state propagated unchanged along it. 

- - 

/I) Relationshifi of the matrix method with the method of superposition. The 
components of the two-dimensional matrix A are identical with the corresponding 
components of the three-dimensional matrix [a] relating E to D by E = [a] D l .  
Comparing with the complex analogue of (38.7) we may write 

Here the components of the two-dimensional matrices a and b are identical 
with the corresponding components of the index and absorption tensors and 
y and B are the parameters of optical rotation and circular dichroism in (50.11) 
and (50.12) and 

the rotation matrix S (/I) of (13.6) with /I = *n: 
Our previous procedure has been in effect to determine the refractive index 

matrix n indirectly by determining the eigenvectors and eigenvalues of the ma- 
trix r2. The refractive index matrix n is also directly given by A-t. Though 
this could be solved exactly, we obtain a direct connection with the method of 
superposition adopted previously by noting that, when the birefringence is not 

1 A corresponding statement camot be made regarding the relationship between the com- 
ponents of the 2 x 2 matrix E and the components of the three dimensional matrix in D = [E] E 
since E does not lie on the wavefront. 
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high, we have to the first order of approximation, 

where 
1 - 

n = CJ-&, k =- I a b ,  R = T y =  (@+;a) 
v t  Urn 

(56.20) 

[compare with Eq. (5 1.91. 
Thus we have expressed the refractive index matrix as the sum of symmetric 

and antisymmetric parts in the form (56.19). This decomposition is very closely 
related to the splitting of the N matrix into the sum of eight O matrices considered . 
in Sect. 15. As has been explained there, such a decomposition is the analytical 
expression of the method of superposition. I t  may be remarked that the physical . 
interpretation of the relation (56.20) is the following: the operation of linear 
birefringence given by n is determined by the section of the index ellipsoid (47.3) ; 
the operation of linear dichroism given by k is determined by the section of the 
absorption ellipsoid by the relation (47.4) ; the optical rotatory power p and the 
coefficient of circular dichroism o are determined from the surfaces of optical 
rotation and circular dichroism (51.7) and (51 3). With these as postulates the 
consequences of the method of superposition have been developed using the 
PoincarC sphere. 

The method of superposition as we have adopted is equivalent to  sol^&^.,, 
Eq. (56.16) taking A-4 to be given by (56.20) and (56.19). Such a procedure can 
be seen to be formally similar to solving Eq. (56.15) together with (56.17) except 
that in the latter case we have V ,  a, b, 7 occurring in place of E, n, k, and z. 
Hence by following such a replacement scheme, toevery relation derived by the 
method of superposition we obtain a relation which is exactly the same as that 
derived from the electromagnetic theory or vice versa*. Such a procedure shows 
that the state of polarisation of the waves derived from the method of super- 
position must be identical with those given in (50.10) by the electromagnetic 
theory and hence can be expressed more conveniently by the parameters y, y 
on the PoincarC sphere. The refractive indices and the absorption coefficients 
have to be altered from the forms (52.5) and (52.6) to (52.9) and (52.10) so that 
the results obtained from the electromagnetic theory are aIso transformed to an 
elegant form. 

C. Optical phenomena in crystalline media. 

I. Reflection and refraction at boundaries. 
57. General formulation. The laws relating to the phenomena of reflection 

and refraction can be derived by solving the electromagnetic equations of propaga- 
tion, subject to the specified boundary condition, and the properties of the two 
media on either side of the boundary. The subject has been treated in good 
detail by POCKELS [Z], DRUDE [3] and S~IVESSY [ I ]  and therefore only the es- 
sential principles will be outlined here. 

We shall denote the first medium in which the wave is incident as medium 1 
and the second as medium 2. Both of them are supposed to be anisotropic in 
general. Suppose that the plane of the boundary is the x y-plane and the norrpal 
to it is the z-axis. Let the direction of the incident wave normal be in the xz 
plane making an angle 6, with Oz. Denote a unit vector along the wave normal 

S. PANCHARATNAM: ROC. Ind. Acad. Sci. A 48, 227 (1958). 
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by s o .  Let sl, s, be unit vectors of the reflected wave in the first medium and 
refracted wave in the second medium. Then, the electric vectors in the three 
waves are given by 

E - A e2~"a" - no (so. r)] 
0 -  0 

El=ale2ni[vt -a(s~.r)f  41 

' i (5 7.1) 
E, = A, e 2 n ~ [ v t - n ~ ( ~ s . ~ ) f 8 ~ l .  

- - 
In an anisotropic medium, there would in general be two waves propagated along 
any direction with two different refractive indices. For the present, we assume 
that the incident wave is polarised with its state of polarisation corresponding to.  
one of the two waves propagated along that direction. Then, ~z, is unique, but " 
n, and n, are in general double-valued functions of the direction of propagation. 
At the boundary, we must have the conditions 

- 

EO, + El, = Ez,, Ho,+ Hl, = Hz,, 
(57.2) 

Eoy+El,=E,y9 Hoy+Hly=H,y. 

It is obvious that these equations would hold for all points (x ,  y) on the 
boundary only if the exponential terms are the same in all the three terms, which 
gives the following conditions : 

(a) 6,=6,=0 or z i.e. if there is a phase change, it can only reverse the ampli- 
tude, without producing any phase shift as such; 

(b) the vectors so, sl, s, and O z  are coplanar, i.e., the reflected and refracted 
wave normals remain in the plane of incidence, and 

(c) if $lo, 4,.$J2 are the angles made by the incident, reflected and refracted 
wave normals with Oz, then 

These laws of reflection and refraction are similar to those for isotropic media, 
but they differ in important details. Thus, the wave normals of the reflected and 
refracted waves remain in the plane of incidence, but the corresponding rays 
need not lie in this plane, as will be shown in the next section. Also, since no 
is in general not equal to % in an anisotropic medium, the angle of incidence is 
not equal to the angle of reflection. Further, we should expect to have in general 
two reflected and two refracted waves, even when there is only a single incident 
wave with a definite refractive index. If, however, the incident wave is unpolarised 
or has a general state of polarisation, this would be split up into two waves in the 
medium with different refractive indices, and therefore we should expect four 
reflected-asd four refracted waves. We shall denote by A, B the two polarised 
waves along the incident direction and by PI, Ql and P,, Q2 the two polarised 
waves along the reflected and refracted directions. Then it follows that the direc- 
tions of propagation of the four waves of each type are given by 

sin 8Apl = 2% sin 80, sin GAP% = 3% sin e0, 
nA n A  I 
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It is obvious that the above laws do not depend on the exact form of the 
boundary conditions, but follow directly from the condition that the equations . 
must hold for all points on the boundary. If now, the Eqs. (57.2) are applied, 
one can also obtain relations between the amplitudes of the incident wave and 
of the reflected and refracted waves. For a definite polarisation of the incident 
wave, the directions of propagation and states of polarisation of the two reflected 
and the two refracted waves are first obtained from (57.4). Feeding these data 
into the four equations (57.2), the amplitudes of the four waves can be solved for 
in the terms of the amplitude of the incident wave. 

If the first medium is isotropic, then there is only one reflected wave and two 
refracted waves. The reflected wave follows the usual law of reflectGF-% far as, 
direction is concerned, but its intensity and state of polarisation are affected by \, 

the anisotropic nature of the second medium. This result has been applied for 
measuring the optical properties of a crystal from a study of the light reflected 
from its surface and the theory of the phenomena is discussed in Sect. 60. 

Fig. 5ja-c. Total rdection at the boundary of an anisohpicmedium. Upper medium is isotropic, lower one anisotropic, 
" 

A C being the dividing line. (a) Huygens construction for wave propagation in anisotropic medium. A B is the incident 
wave front and A N  and AM represent normals to the waves propagated in the medium. A P and A Q are the ray direc- 
tions. Two cases when total reflection takes place are illustrated in (b) and (c). (b) When the wave normal (AM) coincides 

with A C, or (c) when the ray direction (A Q) coincides with A C. 

58. HWGENS' construction and total reflection. Although the relation between 
the angle of incidence and of reflection or refraction of the wave is formally very 
simple even in anisotropic crystals, the actual determination of the direction of 

-the reflected or refracted ray is not so straightforward. The method of obtaining 
this is by a generalisation of the well-known HUYGENS' construction to ani- 
sotropic media (see Sect. 27). If we consider the secondary waves radiating from 

"-.a point A on the boundary into the second medium, then the envelope of the 
wave at any instant of time will be a surface of two sheets, the so-called wave- 
surface or ray-surface of Sect. 27. Let AB be the wavefront of the incident plane 
wave (Fig. 53 a), which covers the region AC of the surface, of unit length. Then 
the incident wave takes a time t =no sin 6,lc to reach C after it has reached A.  
During this interval, the secondary wave from A would have spread out, and its 
position would be given by the wave surface corresponding to t. The secondary 
waves from points in between A and C would have spread to intermediate 
distances proportional to their distance from C and the two resultant refracted 
wave-fronts would thus be the tangent planes through C to the two sheets of 
the wave surface. The directions AM and AN perpendicular to these lie in the 
plane of incidence and give the directions of the wave normals of the two refracted 
waves. On the other hand, the two ray directions are given by the lines AP, AQ, 
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joining A to the two points where the tangent planes touch the wave surface 
These do not, in general, lie in the plane of reflection. 

A similar situation holds for the reflected waves and rays also, if the first 
medium is anisotropic. The two reflected wavefronts are parallel to the tangent 
planes through C to the two sheets of the wave surface radiating from A, after 
a time t. The ray directions again need not be parallel to the wave normals and 
may not even lie in the plane of reflection. 

~n interesting consequence of these is in relation to total internal reflection 
in anisotropic media when the medium on the other side is isotropic. In  Fig. 53 a, 
kt so be the refractive index of the isotropic medium, which we may first con- 
sider to be greater than all the three principal indices of the crystal. Then, there 
would in general be two refracted waves in the second medium. Suppose that 
the angle of incidence is increased. Then the time interval t increases and the 
size of the wave surface also increases. Thus the point P and Q would approach C 
and the wave normals AM and AN would also approach the direction AC tan- 
gential to the surface of separation. 

Considering the point P it is clear that when it reaches the position shown in 
Fig. 53 b, the wave normal AM coincides with AC. For larger angles of incidence, 
the wave cannot propagate into the second medium and is therefore totally 
reflected. This condition for total reflection is analogous to that for isotropic 
media and is given by the condition 

where, however, n, is the wave refractive index along the direction AC. 

On the other hand, if we consider th i  point Q, it is clear that when it reaches 
the point C (Fig. 534, the refracted wave normal AN is not tangential to the 
surface of separation, but the ray direction AQ is tangential. For larger angles 
of incidence, the wave surface with A as origin goes beyond C and so no tangent 
can be drawn to it from C. In  other words, there will be no refracted wave cor- 
responding to this sheet of the wave surface, and there will be total reflection. 
The critical angle for total reflection is now defined by the condition that the 
ray is tangential to the surface of separation, i.e., 

where now nrz is the ray refractive index along the direction AC. 

Thus from the boundary between an isotropic and an anisotropic medium, 
total reflection may occur if either the wave refractive index or the ray refractive 
index satisfies Eq. (58.1) or (58.2). Which one is relevant to a particular 
situation depends on the.shape of the wave surface, and the fact whether the ray 
or the wave normal-is?t a smaller angle to the surface, near the critical condition. 
It is obvious that, if AC coincides with a principal axis, then the ray and the 
wave normal directions coincide and so the two conditions are equivalent. 

If we now denote by n, and n, the wave or the ray refractive indices, which- 
ever is smaller, for the two sheets of the wave surface along the direction AC, 
then it follows that 

if n,< n,< no there are two critical,-angles, 

if ?<.no < n, there is only one critical angle, 

the other polarised component being always refracted and if a,<%< n, total 
reflection does not occur for any angle of incidence in the isotropic medium. 

. Handbuch der Physik, Bd. SXV!i. 8 
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The above results may be used to obtain the principal refractive indices of 
a crystal from measurement on the critical angles for total reflection from a 
parallel plate of the crystall. The isotropic medium is chosen such that its 
refractive index no is larger that the largest index y of the crystal. The plane of 
incidence is kept fixed while measurements are made for different settings, rotat- 
ing the crystal plate in its own plane. Both the indices lz, and n, would then be 
found to vary between a maximum and minimum over a full rotation of the 
crystal. It is readily verified that the minimum of .n, will be a, the maximum 
of n, will be y, and either the maximum of r, or the minimum of n, will be f i  
(see Sect. 825' for the experimental method). 

59. Twin plane reflection phenomenon exhibited by some minerals. a) Calcite 
and fascicular gypsum. The beautiful iridescence displayed by the twin plane 

Y reflection in calcite is well known and has been 
treated in great detail by FRAILICH, OSLOFF, 
UYLEIGH~. When a distant luminous source is 
viewed through a rhomb of calcite containing a 

A' twin plane, three images of the source may be 
seen. The central image, which is undeviated, 
is colourless while the two -outer ones display 
vivid colours. The intensity, the colour and the 
angular separation of the images are markedly ' dependent on the direction in the crystal along 
which the source is viewed. 

/ The explanation of this phenomenon is quite ' 
Y' simple. When a beam of light traverses a layer 

Fig. 54. Locationof theprincipal axes of the of calcite which has on either side of it crystal- 
index ellipsoid in the symmetry plane in 

KCIO, tWm. line matter in different orientations, the inci- 
dent wave would be both reflected and refracted. 

Since the medium is birefringent, the incident beam would split into two and 
associated with each of these, there would be two reflected and refracted beams. 
Of the four refracted beams possible, two emerge from the twin layer in the same 
direction as the incident beam in the case of calcite (since it is a uniaxial crystal). 
Hence for the most general direction of incidence, although there would be four 
reflected pencils, there occur only three refracted pencils. The central undeviated 
ray appears in the same direction for all wavelengths, while the dispersion of 
the refractive indices of calcite manifests itself by the later deviated images being 
drawn out in the form of spectra. 

One can also show that the twin plane reflections actually vanish when the 
plane of incidence coincides with a plane of symmetry. Fig. 54 represents the 
location of the principal axes of the index ellipsoid in the symmetry plane, OX 
and OY refemng to the upper side and OX'  and OY' to the lower side of a twinning 
plane. 02 and 02' coincide and thay are normal to the plane of the paper, 
coinciding with the two-fold axes. The upper and lower parts being mirror images, 
the coefficient of reflection at  the boundary for a given angle of incidence would 
be the same whether the incidence is from above or below. But according to 
the principle of reversibility the reflection coefficient should be of opposite signs 
according as the wave is incident on one side or the other of the boundary. As 
these two results are contradictory, the coefficient of reflection should be zero 

1V.H. WOLLISTON: Phil. Trans. Roy. Soc. Lond. 92, 381 (1802). 
? See POCKELS' Lehrbuch [2] or WALKER [5] for summary of earlier work. See also 

C.T .  RAMAX and A.K. R~MDAS: Proc. Ind. Acad. Sci. A 40, 1 (1954). 
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for all angles of incidence and all states of polarisation when the plane of incidence 
coincides with the symmetry plane. 

An extremely striking variation of the phenomenon described above has been 
observed1 in the case of a variety of gypsum. Gypsum is a monoclinic crystal 
and it is known to have a fibrous modification (satin spar). But another variety, 
fascicular gypsum is found which consists of an aggregate of crystalline rod? having 
their axes of symmetry nearly parallel to each other while the other two axes 
show a range of variation. Optical studies indicate that in the best specimens 
the rods can take two orientations, in both of which one of the axes of the index 
ellipsoid is unchanged, while the two other axes are approximately interchanged: - 

When such a plate is held close to the eye and a distance source of light is 
viewed normally through it, a brilliant circle of light is seen and the source of 
light appears a t  the centre with 
an overlaid diffraction pattern 
of concentric circles. As the 
plate is slowly tilted away 
from the normal setting the 
outer circle enlarges and the 
inner pattern enlarges first to 
form a second ring and later 
as the tilt is increased a third 
ring appears (Fig. 55 a). The 
intensity over each circle varies 
considerably. The circles do 
not display any colours when 
white Iighf is viewed, suggest- 
ing that their origin is due to 
internal reflection. 

It is well known that if a 
pencil of ravs is incident on 

Fig. 55 a. 7be cirdes of internal reflection in fascicular gypsum. 
Note the source being visible as a bright point on the second circle. 

an isotropic cylindrical rod in 
a direction making an angle 6 with its generator, the reflected rays lie on 
a right circular cone whose semivertical angle is 6 and the axis of the cone is 
parallel to that of the cylinder. The direction of incidence would therefore be a 
generator of the cone. If now, as in the present case, reflections take place at 
inter-crystalline boundaries within a birefringent solid, the angles of incidence 
and reflection need not necessarily be equal as a consequence of the planes of 
polarission and the wave velocities being different for the incident and reflected 
pencils. Hence four cones of rays must emerge from the cylinder. But in the case 
of fascicular gypsum, since the surface of the plate is normal to the common axis 
of the index ellipsoids, two of the reflected rays (whose planes of polarisation are 
perpendicular to each other) would obey the ordinary laws of reflection and would 
therefore.emerge along identical directions. Hence the four reflection cones to 
be expected in the most general case, degenerate to three. The central one cor- 
responds to the case where the ordinary laws of reflection are obeyed; the direction 
of incidence being a generator of this cone, the source should appear as a luminous 
point on it. The first and the third circles correspond respectively to the two 
cases when the angle of reflection is less than and greater than the angle of inci- 
dence. 

C.V. RAMAN and A. K. R~MDAS : ROC. Ind. Acad. Sci. -4 39, 1 j j (19 jq). 
8* 

- -- -- --- -- 
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The polarisation characters of the rings may be briefly described as 'follows: 
If the incident pencil on entering the plate divides into two pencils with vibrations 
along two mutually perpendicular directions, (OX and 02, say) then in the first 
circle the vibration direction changes from OX to 02 on reflection, while in the 
third circle it changes from OZ to OX. In the central circle OX remains as OX 
and OZ as 02. 

The reflecting power at the inter-crystalline boundary would obviously be a 
function of the azimuth of the incident light, it being zero when the plane of 
incidence coincides with the plane of symmetry in the crystal. I t  may be remarked 
that as this substance has a peculiar preferred orientation it also displays niany 
of the phenomena to be treated in Sect. 61. --. - - 

j3) Iridescelzce of $otassium chiorate. The spectacular iridescence of certain 
crystals of potassium chlorate (KC10,) when viewed in white light has long been 
known. Crystals of this substance are strongly birefringent (belonging to the 
holohedral monoclinic class) and they crystallise in tabular forms. The tablet 
face (c face) contains the two-fold axis of symmetry with the mirror plane per- 
pendicular to it. 

STOKES~ was the first to recognise that the iridescence had its origin in the 
reflection of light at twin plane boundaries within the crystal. Rayleigh concluded 
that a single twin plane layer was quite insufficient to explain the observed effects 
and postulated that the crystals exhibiting this phenomenon must be polysynthe- 
tically twinned parallel to the tablet face causing the medium to be regularly 
stratified. Hence for a given angle of incidence the intensity of the reflection 
would be a maximum for wavelengths at  which the reflections by successive 
stratifications reinforce each other because of the agreement in phase. The 
maximum should therefore be a function of the angle of incidence. This explains 
the sequence of changes in the colour (the narrow spectral band shifting towards 
the shorter wavelengths) as the angle of incidence is increased. In all cases how- 
ever, irrespective of the angle of incidence, the coloured reflection vanishes 
completely when the plane of incidence coincides with the plane of symmetry in 
the crystal. The reflections reappear, although feebly when the plane of incidence 
deviates even slightly from the plane of symmetry. Under these conditions, 
there would be a rotation of 90' in the plane of polarisation qf the incident light. 
A light wave polarised in the plane of incidence would be reflected as a wave 
polarised in a perpendicular plane and vice versa. We shall for convenience call 
this as a reversal of the plane of polarisation. 

Since the crystal is highly birefringent other extremely interesting phenomena 
have been observed by RAMAN and KRISHNAMURTHY~. As we have seen previously 
(Sects. 57, 594 there would be four reflected streams of light and hence there 

.would be four wavelengths of the maximum intensity in the spectrum, their 
positions being determined by their respective optical paths; of these four, two 
would be polarised in the normal manner while the other two would have reversed 
polarisation. The relative intensities would vary with the angle which the plane 
of incidence makes with the plane of symmetry. When the angle is small, there 
would be only two maxima of the latter type while if the angle is large all four 
would appear with comparable intensities (see Fig. 5 5 b). 

When the plane of incidence is perpendicular to the plane of symmetry the 
total optical paths of the two pencils which emerge after reflection with their 

1 For a summary of earlier work see POCKELS [ZI. 
2 C.V. RAMAN and D. KRISHNAMURTHY: ROC. Ind. Acad. Sci. A 36, 31 5-334  (1952) ; 

A 38, 261  (1953).  
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planes of polarisation rotated would be the same. This can be very simply seen 
as symmetry permits us to deduce the optical path of one from that of the other 
by just interchanging the path of the incident and the reflected rays. Therefore 
for this setting two out of the four maxima of intensity would coincide. It can 
also be shown that if the alternate layers of the stratifications are of equal thick- 
ness then each layer would be related to the one below it by a mirror not only in 
atomic structure but also in thickness, the optical paths of these two pencils 
showing reverse polarisation would be the same irrespective of the azimuth of 
the plane of incidence. This however, would not be the case when the alternate 
layers are not of equal thickness. Hence the 
presence of four spectral maxima in any posi- 
tion is an indication of the inequality in the 
thickness of the alternate layers. 

If diffuse mo~zochromaiic light is allowed to 
fall on a specimen simultaneously in all direc- 
tions, the resulting effect would be total re- 
flection in all directions along which all the 
reflections reinforce each other due to the agree- 
ment in their phase. For a particular order of 
interference such directions will lie on the genera- 
tors of cones whose cross sections would be 
circles if the medium is isotropic and ellipses 
if it is birefringent. In the present case there 
must be four cones of total reflection of elliptic 
shape two having the normal type of polarisa- 
tion and two of the reversed type of polarisa- 
tion. Each cone will be accompanied by second- 
a m  maxima of interference. Such reflection 
spectra have been observed as bright curves on zd:& c ~ ~ ~ ~ - n ~ ~ ' $ $ f & ~ ~ ~ ~ ~  
a dark field when monochromatic source is used. the white light i s  kept corutant and azimuth 

If however, the source is viewed through the ~ ~ ~ ~ ~ d " ~ ~ W I ~ ~ ~ l " , ? f  ~agfz 
crystal, corresponding extinction curves are seen ~ ~ ~ ; ~ , " ; , " $ ~ ~ ~ ~ > ~ , $ ? &  
as dark bands on a bright field. The pattern to a triplet may be noted. 

vanishes in the symmetry plane of the crysid 
and has its maximum clarity in the perpe~dicular plane. Hence the pattern 
observed consists of two pairs of crescents wlih their tips narrowing to sharp 
points fading off gradually as the symmetry plane is approached. Of the four 
components of extinction and reflection bands, two are polarised with their vibra- 
tion direction parallel to the symmetry plane while the other two are perpendicular 
to it. 

60. Reflection at the surface of an absorbing anisotropic crystal. The first 
medium, from wliic\ light is incident on the surface of the anisotropic crystal, 
is assumed to be isotropic and non-absorbing. The formulae for the intensity and 
polarisation of the reflected and refracted waves in the case of transparent crystals 
were derived long ago by MACCULLAGE and NEUMANN and they are available 
in POCKELS' Lehrbuch ([Z], S. 183 -211) and SZIVESSY's article ([I], pp. 717-751) 
and is therefore not given here. The theory has been extended to absorbing 
crystals by BEREK~, who has also devised several methods of investigating the 
optical properties of such crystals from a study of the light reflected from their 

M. BEREK: Z. KristaUogr. 76, 396 (1931); 77, 1 (1931); 89, 125, 144 (1934); 93, 116 
(1936); 96. 357 (1937). - N. Jb. Min. Geol. Palaont. ,4 64, 132 (1931). 
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surface. I t  is only possible to discuss some of the more important results obtained 
in this very interesting series of papers. The original papers may be referred to 
for the detailed derivations and also for a review of earlier work in this field. 

a) Oblique incidence. The general solution of the boundary equations for ab- 
sorbing media is formally the same as for transparent media, except that the 
refractive index is complex, and consequently all the quantities involved, such 
as amplitudes of electric vectors, azimuth of polarisation etc. are also complex. 
The significance of the complex nature of these quantitieqis explained below. 
Complex quantities will be denoted by symbols in bold face italicsl. 

As with non-absorbing crystals, there would be, in absorbing crystals also, 
two refracted waves-in general for any angle of incidence, which may be denoted 
by suffix 1 and 2, the former referring to the faster and the latter to the slower 
wave. Let i be the angle of incidence in the first medium of refractive index no 
and let + and s denote the two components parallel and normal to the plane of 
incidence. If A is the amplitude o: the incident wave and R that of the reflected 
wave then 

where 

Ap (Rp, As, - b 0: As,) -As (el AP, - RP* A ~ ~ )  RP =  AS, - Ap2 As,) 
~p (RS, As, - EsLs,As,) - As (Rs, AP, - RsSAp 

Rs = 
(AP, As, - AP, AS,) '1 

2 A  -  COST^ cos ah sinrh cos dh 
h -  cosi + sini ' 1  

cos r h  cos dh sin rh cos cTh 
2 Rph = 

cos i + sini ' 1  
sin TI; 

2Ash=sindh+ . . 
slnz cosi mhl  I 

sin ~h 
2Rsh = sindh - 

sin i cos i I 
Here, r,, rp are the (complex) angles of refraction of the two refracted waves, 
d is the azimuth of polarisation of the refracted wave with respect to the plane 
of incidence and m stands for 

where T~ is the angle between the ray and the wave normal, which may be ob- 
tained in terms of the components of the index tensor and the direction cosines 
of the wave normal. 

The complex nature of the angle of refraction arises from the relation 

lz, sin i = nh sin rh 

=nh (1 -ixh) sinr,. 

The complex azimuth of polarisation means that the wave is not linearly, but 
elliptically polarised. If x is the azimuth of the linearly polarised wave to which 
this is brought by a compensator producing a phase difference A between the 
perpendicular and parallel components, then 

tan d = tan ei ". (60.5) 

1 Sote that this differs from the convention followed in other sections of this article. 
Further il is also used in a different sense in this section (see Sect. 45). 
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Alternatively, if 1 is the azimuth of the major axis and w the ellipticity, i.e., 
tan w = bla then 1 and w are related to and A as follows: 

cos 2 x  = cos 2w cos 21, 

sinA =sin2w/sin2~, (60.6) 
sin 2A cos 2w 

cos A = sin 2% - - - 
Eq. (60.5) then becomes 

sin2lcos2w+isin2w 
tan d =  

1+cos21cos2w - (60.7) 

p )  No~mal incidence. In this case, i = rl = r2 = 0 and m, becomes equal to '- 

sin dh. The two refracted waves are propagated in the same direction, and 
therefore the two ellipses have the same axial ratio and sense, but their axes 

az 
are crossed (see Sects. 42-49). Thus, wl =a, and cf, = + 4. Further, there is 

no particular sense in talking of the parallel or perpendicular component of the 
incident amplitude, for the plane of incidence is not defined at all for normal 
incidence. We may therefore take Ap = A  the amplitude of the incident linearly 
polarised wave, and A, = 0. 

Putting in these simplifying conditions in (60.1) and (60.2), we obtain [z - 2) 
Rs - -- sin2 4, 
A ( 1 + ~ ) ( 9 + ? )  

n 1 - 0  1 - 3  
-- 

A 
sin2 cfl + 3 cos2 (60.8) 

no I + -  
n2 n, 

The ratio of R, to Rp which gives the complex azimuth of polarisation of the 
reflected wave, is [$ - 2-1 sin 2 

5-- - 
n 

(60.9) 
R~ 1 - 0 . 3  + [ ~ - ~ ) c 0 s 2 6 1  * 

n2 n, , n2 n, 
If R stands for the resultant amplitude obtained by combining R, and Rp then 

- -  

n I - 3 .  
R 
- = - I/{' sin I*r+ (+ cos &[. (60.101 

--- A 4 i " o  
4 4 - 2  

  he most interesting result is that R, is not zero, i.e., there is a component in the 
reflected wave which is at  right angles to the vibration direction of the polariser. 
Therefore, the field will not appear dark under crossed polariser and analyser 
and this phenomenon is known as the "anisotropy effect ". The reflecting power 
under crossed linear analysers is 

=(sin22ji,+cos~2Alsin22m,l)~f(n,,n,x), say. ] 
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Here, cu, is the ellipticity of the two refracted waves, while Al is the azimuth 
of the faster wave, with reference to the electric vector of the incident wave. I t  

ic is readily verified that %+ is a minimum for ll = O  or - and a maximum for 
n 2 

Al = & - the two values being 
4 

%+min=f(no,n,~)sin22wl; W+,,=f(n,,n,x). (60.1i) 

The ratio of the two gives the ellipticity directly. Thus, 

and we have here a method of determining the ellipticity of the waves transmitted 
in any direction in the crystal, purely by observation on light reflecfea-from its 
surface. The minimum intensity is zero only if there is no absorption. The 
reflecting power under crossed analysers is identically zero for all azimuths if 
q =n, i.e., if the crystal is isotropic, or if  the light is incident along the direction 
of single wave velocity. 

The reflecting power W = IR ]2/A2 is also of interest. If the ellipticity is zero 
or small, this is given by 

This is maximum or minimum when ll = o or z/4 and the two values then 
correspond to the azimuth of the incident beam parallel to the vibration direc- 
tions of the two transmitted waves. These are called the uniradial reflecting 
powers and %, and are given by 

The difference between the two, 
AW=%2-%l 

may be called the "bireflection" of the section, analogous to the quantities 
birefringence and dichroism. I t  is interesting that the uniradial reflecting power 
and the bireflection (for normal incidence) depend only on the direction of the 
electric vector and its corresponding refractive index. One may thus talk of 
the three principal uniradial reflecting powers for the crystal: 

-.  Elegant formulae have been worked by BEREK~ also for the case when ellipticity 
is not small. Thus, the ratio of R, to Rp in (60.9) may be written in the from 

Consider in particular the settings of the polariser at & $ to the fast axis. 
7c 32 Then i, = - and + - for the two settings and we hAve from (60.7) 

4 

tandl= cos2w f i s in2w.  (60.1 8) 

M. BEREK: 2. Kristallogr. 93, 116 (1936). 
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Putting this in (60.9) 
Rs - - - 1 

RP 
(60.19) 

n 2 q - n '  cos*w+is in2w ' 

+ no (n, - n,)  

Using the absorption coefficient k instead of the absorption index x we may write 

nh=.12,-ikh, k = 1 ,  2 
when we have 

where 
G- 1 . n 2 ( n f + k f ) - n , ( n % + k f ) f  n:(n2-n,) 

no (n, - + (k2 - %I2 
H -  -1- " ( n ? + k : ) - % ( n 2 , + k : ) T n e ( k , - ~ )  

no (nZ - + (kz - kJ2  ' 1  
Comparing with (60.1 7) 

Denoting the quantities relating to the two settings of the polariser by the 
indices I and 11, it may be shawn that 

sin 2 0  = - - 

For an account of the application of these formula to various crystal symmetries, 
the original paper should be referred to. 

11. Propagation of light in heterogeneous media. 
61. Polycrystalline media. Most minerals ..ccur in nature as polycrystalline 

aggregates, consisting of a great number of optically anisotropic crystallites, 
variously oriented, firmly adhering to each other to form a coherent solid. It is 
therefore of importance for the study of the properties of such substances to work 
out a theory of the propagation of light in polycrystalline aggregates. The optical 
property of the single crystal, its birefringence, pleochroism, etc. would no doubt 
play a dominant role in determining the optical characteristics of the aggregate. 
For example, the greater the birefringence, the greater would be the coefficient 
of reflection a t  the iiitercrystalline boundaries. One could therefore explain 
the brilliant whiteness of pure marble as due to the strong birefringence of the 
constituent calcite crystallites. However, it is clear that a simple geometric 
theory is quite inadequate. For according to it when the crystallites are very 
small, one should expect the more numerous intercrystalline boundaries to reflect 
the incident light to a greater extent. Experiment shows the contrary result, 
namely that the more fine-grained the material is, the more deeply the light pene- 
trates it. This suggests that wave optical principles have to be involked for a 
better understanding of the optical properties of polycrystalline aggregates. 
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We present below a theory developed by RAMAN and VIS\VANATHAN~ using 
a very simplified model for introducing random orientation for studying this 
problem. I t  is assumed that the crystallites are feebly birefringent, and are in 
very large numbers, but not numerous enough to completely extinguish the 
emergent light. To obtain the retardation due to the varying orientations of the 
individual crystallites, it is assumed that the plate of polycrystalline materid 
consists of crystallites, cubical in shape having a common edge length D com- 
pletely filling up the available space. The three edges of the cube are assumed 
to be parallel to the principal axes of the index ellipsoidqf the crystallite for 
which the indices are q, n2, n3. The varying orientation i< introduced in the 
following manner. The incident light is, supposed to be plane polarised with its 
vibration direction parallel to one set of edges of the cubical blocks, while the 
effective refractive index may be either q, n2 or .n, the respective probabilities 
for these being p1, P ,  and p3. One can see that when pl = p ,  =p3  one gets the 
case of the random orientation of the crystallites while in the case when the p's 
have different values (provided p, +$, +p3 =I) one gets the case of a poly- 
crystalline aggregate of any desired preferred orientation. For example p1 = 1 
and pz =p3  = 0 is the case of all the crystallites having a common refractive 
index for a particular direction of  bratio ion while the indices may be different 
in the perpendicular direction. This case is quite often met with in polycrystalline 
aggregates. One serious draw-back of these assumptions is that the incident 
plane polarised disturbance would remain plane polarised in its passage through , 
the plate. In an actual case the incident vibration would be transformed to an 
elliptic vibration and the parameter describing the ellipticity would alter from 
crystallite to crystallite. In spite of these serious limitations, these authors have 
been able to explain many observed phenomena. Finally the assumption has been 
made that the variation of the amplitude over different areas on the rear face 
of the plate may be ignored while only changes in the phase are taken into account. 

Let the incident wave train be 
2ni - (ct-z)  

y = e  2 (61 .1) 

and let there be N  cells along the direction of the thickness of the plate. When 
the wave has passed through k, cells of refractive index nl,  k, of n2 and k3 of n3 
before emerging from the plate, where 

k , + k 2 + k 3 = N ,  
the optical path retardation is 

Now the number of ways in which k,, k, and k3 cells can be orientated along a 
row of N  cells so as to have refractive indices q, n, and ~z, is 

N !  
k,! k,! k,! 

and the probability of occurence of each one of these cases is 

Hence the proportion of the total area of the rear surface of the plate from which 
a wave 

- 2- ( k l n , + k , n 2 + k 3 n 3 ) ~ } ]  (61.6) 

C.1-. R~MAN and K. S. VISWANATHAN: Proc. Ind. Acad. Sci. A 41, 37 (1955). 
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emerges is equal to 
N !  k , , k  

k , ! k 2 ! k 3 !  P i p 2  p3'. 

Hence the emergent wave is 

where P is introduced to take into account the loss of intensity of light due to '-. 

reflections at the intercrystalline boundaries. From the multinomial theorem, 
(61.7) may be written as 

The average refractive index of the medium is 

n=Plrt,+Pzz2+Psn3~3; (61.9) 
hence if we set 

vl=(n2-123), v 2 = ( n 3 - 4 ,  v3(nl-n,) 
we have 

n 1 = n + ( p 2 v 3 - P 3 ~ Z ) ,  n 2 = n + ( p 3 ~ 1 - p l ~ 3 ) ,  } (61.10) 
n , = n  + (P1v2- $21'1). 

Since d = N D ,  substituting (61 . lo)  in (61.8) and expanding in terms of a power 
series, one obtains 

neglecting the third and higher powers of (nl-a,) ,  etc. as the birefringence is 
assumed to be small. Further a little algebra will show that 

C P l ( P 2 V z  - P ~ v z ) ~  = 2 $2 P3v:- (61.12) 

Hence (61 .1 1 )  can be rewritten as 

2ni (ct-2)-nd 1 2n2Dd 
y = P e T  (61.13) 

2 x i  
(ct-2-n d )  

= PR e-~- (61.14) 
where --- 

2 n a D d  -- 
'\ ,, ZPz Pz ~ 3 2  

R = e  as N is large. 
I, (61 . I51  

The ratio of the intensity of the transmitted light to that of the incident light is 
given by 

If the three axes of the cube have the same probability of being oriented in the 
direction of the incident light then pl = p 2  = p ,  = and (61.16) reduces to 

I 8n2Dd 
- = P2 exp - - 
I0 ,p (C7-t;-Crt,fi,)- (61.17) 
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RAMAN and VISWANATHAN illustrate the significance of the formula (61.16) by 
the example that in a plate of alabaster 1 mrn thick, taking 1 = 5893 A and the 
principal refractive indices of gypsum (the constituent of alabaster) to be %= 
1.520, n, = 1.523 and % = 1.530, the percentage transmission for D = 1, 0.5 and 
0.1 p are respectively 13.5, 37 and 82 % thus showing that the plate approaches 
practically complete transparency as the crystallites approach colloidal dimensions. 
Also of interest is the case mentioned previously when 6, = 1, @, =@3 = O  i.e., 
when the crystaSlites are orientated with a common refractive index along one 
direction. In such a case for the direction of vibration for the incident light 
parallel to the common direction, the transmission is complete, while fbr a per- 
pendicular direction of vibration there would be a considerable attenuation 
depending on the actual values of the probabilities and the refracm-indices 
for that direction. Since the latter transmission is dependent on the thickness d; ,  
if the incident light is unpolarised the state of polarisation of the emergent light ' 
would vary with the thickness of the plate. These facts are confirmed in minerals 
like chalcedonyl. These substances are very transparent for one particular direc- 
tion of incident polarised light, while becoming practically opaque for a perpen- 
dicular vibration (almost reminiscent of the behaviour of thin tourmaline plates). 
The polarisation characteristics of the transmitted beam are also well explained 
by the theory. 

The attenuated energy should obviously appear as diffracted radiation in 
the form of a halo in various directions surrounding the direction of the incident 
beam. Such a diffusion halo is actually observed in these crystals. According 
to this theory if the incident light is plane polarised the diffusion halo must also 
be perfectly plane polarised-a deduction not supported by experiment. This is 
actually the consequence of some of the simplifying assumptions regarding the 
orientation of the "cubical" crystallite blocks made in the theory. Experimental 
observations show that while this theory explains most satisfactorily the intensity 
and the state of polarisation of the transmitted beam it fails to account for the 
state of polarisation of the diffracted light. 

It may be remarked in this connection that the study of these diffusion 
haloes by Rmm and his collaborators have been very fruitful in the understand- 
ing of the anisotropic distribution of crystfites in various minerals like moon- 
stone etc. 

62. The Christiansen phenomenon in birefringent powders. CHRISTIANSEN in 
1884 discovered the beautiful phenomenon that goes after his name. To observe 
i t  some powdered isotropic solid like optical glass is put in a flat sided cell and 
then filled with a liquid whose refractive index is suitably adjusted by either 
varying its composition or its temperature. Beautiful chromatic effects are 

--. observed as the mixture becomes transparent for a restricted region of the spec- 
trum for which the refractive index of the liquid coincides with that of the solid. 
This phenomenon is often used for the construction of monochromatic filters- 
particularly in the infrared. CHRISTIANSEN himself failed to observe the pheno- 
menon in birefringent crystals. Recently RAMAN and BHAT~ have observed 
this phenomenon using powdered quartz, barium sulphate, calcium sulphate, 
lithium carbonate, and magnesium fluoride suspendend in suitable liquids. I t  

C.V. RAMAN and A. JAYARAMAN: Proc. Ind. -4cad.Sci.A38, 199(1952); A41,1(1955).- 
A. JAYARAMAN: Proc. Ind. Acad. Sci. A 38, 441 (1953). 

C.V. F ~ W A N :  Proc. Ind. Acad. Sci. A 37, 1 (1953). 
CHRISTIANSEN: Ann. d. Phys. 23, 298 (1884); 24, 439 (ISSS). 

* C.V. R.~M.IN and M.R. BHAT: Proc. Ind. Acad. Sci. A 41, 61 (1955)- 
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is found that provided the birefringence is small and the material is finely powdered, 
it is possible to observe the transmission exhibiting brilliant colours. It is also 
found that the light SO transmitted is practically as monochromatic as that 
observed with isotropic powders. If the incident light is plane polarised the 
light transmitted is also completely plane polarised. The diffusion halo surround- 
ing the direction of transmitted light however exhibits imperfect polarisation 
depending on various factors, including the fineness of the powder. Finally the 
colours of the diffusion halo are markedly different for the two components of 
the light vibration parallel or perpendicular to that of the incident light. The 
general features of these observations (except those regarding the state of polarisa- 
tion of the light of the halo) have been explained by RAMAN and VISWANATHAN~ 
by an extension of the theory of the propagation of light in polycrystalline media 
presented in the last section. 

The only difference in the theory is that some of the cubical elements of Golume 
each of edge length D is now considered as filled either by the liquid of refractive 
index %i or by the crystallites. We assume that the operative refractive index of 
any one block may either be .lz,, n, , n3 with equal probabilities $ if it is a crystallite, 
or n, (with a probability q) if it is filled with the liquid. Hence 

3 P + q = 1 .  (62.1) 
If in the passage of N cells N - M happen to be solid blocks and iM liquid blocks 
then the probability of the occurrence of this event is 

N !  
( N - M ) !  M !  (3 f l ) N - M  QM 

(62.2) 

and again Eq. (61.2) becomes 

kl+kz+ k , = N - M  (62-3) 

and the probability of occurrence of a state in which k,, k, and k, cells in a row 
of (N - M) cells can be oriented in such a manner as to have refractive indices 
n, ; n, and n3 is 

(62.4) 

Following an identical procedure as in the pre:~ious derivation we get the ratio 
of the intensity transmitted to that of the incident radiation to be 

I - 4n2Dd 
- - R2 = exp - --- 
I0 * {+2 C (722 - %)" + P 2 (m1- nd21. (62.5) 

This formula reduces to that deduced by R ~ h f - 4 ~ ~  for an isotropic case. 
The formula shows that the effect of birefringence is to diminish the intensity 

of the transmitted light for all wavelengths and one cannot therefore expect to 
observe the phenomenon unless the size of the particles is extremely small or 
the thickness of t h > d  is reduced to a minimum. When the chromatic effect 
due to difference in refractive indices is not there, the colour is determined by 
the factor A-2 (due to scattering by the large particles). However, if the bire- 
fringence is not very small, chromatic effects will be observable when the volume 
occupied by the powder is small compared to the volume of the liquid. All the 
limitations of the theory mentioned in the last section apply to this case also. 
Most of the deductions from the theory about the transmitted light have been 
verified by experiment. 

1 C.V. RAMAN and K. S. VISWANATHAN: Proc. Ind. Acad. Sci. A 39, 55 (1955). 
2 C.V. RAMAN: ROC. Ind. Acad. Sci. A 29, 381 (1949). 
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111. Interference phenomena. 

a) Transparent crystals. 
63. General discussion. a) Coltditio~ts of observation. The interference pheno- 

mena exhibited by crystals in polarised light are very well known and are perhaps 
the most colourful of phenomena observed in nature. In the case of transparent 
crystals both a polariser and an analyser are necessq to observe these effects. 
In this case they arise because every polarised ray incictenLon the plate splits 
up into two rays in orthogonal states of polarisation which suffer a relative path 
retardation on passing through the plate. Pairs of orthogonally polarised rays 

derived from the same point of the original source will be 
coherent and can interfere after resolution by an analyser. 
These interference phenomena are usually observed under 
two different experimental conditions. In the first case 
the incidezt light is very nearly parallel and the eye or 
the microscope is focussed on the crystalline specimen. 
If the spe:,imen is a parallel plate it will exhibit a uni- 

L' form tint over its area since the retardation at all points 
would be the same. This will not be so in the case of a 
specimen of varying thickness. 

\ 

The second method of observation is by the use of,> 
"convergent light ", for example with the aid of the usuaJ 
conoscopic arrangement given in Fig. 56 [see also Fig. 86b] 
an extended light source being placed below B. In this 
case the interference effects occur at infinity i.e., at the 
focal plane of the lens L'. Each point P' in the focal plane 
is a focal point of a bundle of parallel rays emerging from 
the crystal in a particular direction. Since the retarda- 

Fig. 56. Schematic diagram tion introduced by the plate varies with direction, the 
of conosco~ic arrangement. interference phenomenon varies over the field of view. 

Fig. 57a illustrates one particular ray incident on the crys- 
tal which splits into two on entering it, the final rays emerging from the crystal 
being parallel to the incident ray. The path retardation suffered by each ray 
should strictly speaking be calculated using the ray velocity. I t  must be noted. 
that in Fig. 57a any other ray incident on the plate in the same direction would 
be incoherent with the particular incident ray considered since by reference to 
Fig. 56 it may be seen that they originate from different points of the original 
luminous surface. Nevertheless for simplicity we consider the incident ray in 
Fig. 57a as being normal to the portion of a plane wavefront as in Fig. 57b, the 
wave normal suffering refraction according to SNELL'S law. The path retardation 
suffered by a parallel wave front on passing through a parallel plate of isotropic 
medium is n t  cos r where n is the refractive index and r the angle of refraction. 
In the present case if %, n, and r, and r, are respectively the refractive indices 
and the angles of refraction of the wave normals then the difference in the phase 
retardation suffered by the two components is 

2k cos r1 - n, cos r,) t . A = - ( %  (63.1) 

The equation expresses the fact that A depends on the difference in the refractive 
index as well as the difference in the lengths AL and AN. For normal incidence 
thi- is exactly equal to zero and even for oblique incidence, it can be shown that 
when the birefringence is small the second effect may be neglected in comparison 
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with the first. Then the expression can be written as' 

- 2,' (%-7%) t 
1 cosr 

where r is the mean angle of refraction. 

a b 
Fig.57 a and b. The paths of (a) the rays, (b) the wave fronts travelling in a particular direction in a birefrin&t plate. 

b)  Interference effects in ;barallel light. As we have seen above, each point in 
the conoscopic figure is a focal point of a bundle of parallel rays emerging from 
the plate in a particular direction. We shall 
therefore first consider the closely connected 
problem of the interference effects in parallel 
light at normal incidence of a transparent crys- 
tal cut in any arbitrary direction when exa- 
mined between an elliptic polariser P and an 
eIIiptic analyser A (Fig. 58). Since the crys- 
tal is transparent, the incident light of unit 
intensity will be split into two orthogonally 
polarised states P, and P2 (in general ellip- 
tically polarised), whose intensities will be 
cos2 ul and sin2 al respectively, where 2u1 is 

. the angular distance of P from Pl on the Poin- 
car6 sphere. These states suffer a relative a 

phase retardation A on passage through the 
plate, the state P2 being taken to be the slower 
beam. The analyser A at 2a2 from Pl trans- 
mits frac+ions cos2 a, and sin2 cr, of these 
beams; and as we have seen in Sect. 46, 
Chap. A, the phase difference between the re- . &kA ~z 4 
solved 'components will be equal to ( A  - y) b 

where -9 may be described as the phase re- Fig. 5s. (a) PO&& representation for com- 

tardation due to the processes of decomposi- ~ s ~ e ~ l " , ~ ~ ~  E;h","a&$",; 
tion and andysation. Here 9 = 3 A PIP taken P, and P, the two elllptlc states pmpagated un- 

to be positive if on looking from pl to p2 , an 
chanped in the crystal P,being the slower state. 
(b] The case when aU the states become linear. 

anticlockwise rotation brings arc ~2 to 
( y  is also equal to 3 PP2 A ) .  Thus the analyser A transmits two b e ' a s  of inten- 
sities I, and I, with a phase difference A' between them given by 

I l = ~ o s 2 ~ l ~ ~ ~ 2 ~ ,  12=~in2alsin2u2, A f = A - - q .  (63 -3) 
See M. BORN [4], p. 248 or DITCHBURN [8], p. 512. 
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Being in the same state of polarisation, the intensity obtained by the interference 
of the resolved components will be 

I = I,+ I,+ 2 ~ ~ 2 c o s ~ '  
This can be written as 

I = [ I , + I , + ~ ~ ~ c o s ~ ] - [ ~  m 2 ( c o s &  - cos A')]. (63.5) 

The first term is the intensity transmitted if A =O i.e. if the plate were absent 
and hence must be equal to cos2 ~2. Hence 

The first term which only depends on the relative orientations of analyser and . 
the polariser is known as the "white term" and does not depend on the wave- 
length, while the second term gives rise to the "subtraction colours" in white 
light, since it depends on the retardation introduced by the plate and hence on 
the wavelength. It may be noticed that when p, is changed to y-n  the sign of 
the second term in (63.6) changes; the colour is therefore changed to a comple- 
mentary hue. The colours will be most vivid when the states of the polariser 
and analyser are orthogonal to one another when the white term vanishes, i.e. 
g, =n, and correspondingly the change from the original to the complementary 
hue will he most striking. 

In the particular case when a linear polariser and a linear analyser are used 
and the medium possesses only linear birefringence, then a, and a, are the actual 
(numerical) inclinations of the polariser and analyser to the faster linear state 
OP, (Fig. 58b). Further since the states P and A lie on the same great circle 
passing through PI P, namely the equator, g, = 0 or n according as the polariser 
and analyser are in the same quadrant or in different quadrants. In the general 
case however g, can take values other than 0 or z. This is true even in the case 
of linearly birefringent media if the polarising and andysing states are not both 
linear (or when we are considering the effect of superposed plates). The last 
mentioned case can also be treated by the same formulae (63.3) and (63.4, since 
the effect of two such plates on the incident light is that of a single plate showing 
elliptic birefringence (see Sect. 74). 

y)  The #kelzomena in comergent light. Though the two classes of phenomena 
in parallel and convergent light present very different appearances, they. can 
be explained on the same broad principles, the basic difference between the two 
phenomena being in the location of the interference effects. Each point in the 
convergent light figure corresponds to a definite direction of propagation and 
the intensity I at a point will be that observed in parallel light for the correspond- 

-.ing direction, being given by formulae (63.3) and (63.4). All the quantities in 
the formulae vary with the direction. 

Considering for example the case of a plate cut approximately normal to the 
optic axis, as we proceed outwards dong directions normal to the curves of 
constant retardation, the retardation A increases rapidly and the corresponding 
rate of variation of the intensity could usually be taken to be predominantly due 
to a change in A. Interference rings would therefore appear along the directions 
in which the resolved components transmitted by the analyser are opposed in 
phase, The curves of minimum intensity will be given by 
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I t  must be remembered that y (which represents the phase retardation introduced 
by the process of decomposition and analysation) is not a constant over the field 
of view because the states PI and P2 of the waves propagated depend on the 
direction of propagation. The curves of minimum intensity would therefore, in 
general, not coincide with the curves of constant retardation. 

For a uniaxial crystal or a biaxial crystal of not too small axial angle the 
curves of minimum intensity could usually be constructed in the following way. 
The  curve A = (2% + I )  n i s  drawn and the radii vectors of this cwrve are increased 
by  amounts corresponding to the ddditional reta~dation y (y itself depending on the 
azimuth). The intensity at any point of the curve of minimum intensity is given 
by substituting A'= n in (63.4) and is 

This is itself not constant over the curve of minimum intensity as the states of 
vibration of the beams propagated vary with the direction of propagation. The . 
rings appear darkest along zones which have to be determined for each specific 
problem. 

However in the particular case when the polariser and analyser are crossed 
we have y = + z and (ul+u,) =7E/2. In this case the curves of minrnum intensity 
are perfectly dark and occur along directions for which A = 2 n z  as is also to 
be expected from physical considerations. 

There may also exist lines in the field of view containing directions for which 
one of the states Pl or P, propagated in the crystal coincides with the state of the 
polariser (P) or the analyser (A) (i-e. ul or u2=O). Along these lines and in a 
narrow band on either side of them, the interference effects would clearly be 
absent. If now the polariser and analyser are crossed with respect to each other 
then P and A would coincide with the states Pl and P2 and along these zones 
the intensity would now be zero. These zones are known as isogyres, and it is 
clear that their position does not depend on the thickness of the crystal but only 
on the state of polarisation of P and A .  If P and A are of the same state then 
the isogyres will be bright. More generally, if P and A are of different states 
two sets of isogyres will be observed. For an a$flroxirnate discussion of the inter- 
ference rings, particularly near the optic axis, the retardation A introduced by the 
plate can be taken to be proportional to the birefringence, the effects due to the 
variations in the thickness traversed being comparatively negligible. 

64. Interference phenomena in inactive crystals. a) Conve~gent light figares 
under mossed nicols. Consider all directions as passing through the centre of a 
sphere and defined as points of intersection with the surface (the portion of the 
spherical surface under consideration can for qualitative purposes be approxima- 
ted by the plane of the paper). Thus each point on the sphere corresponds to 
point on the convergent light figure, which corresponds to a particuIar direction 

i of propagation. 
Fig. 59 represents the rings and the isogyres for a uniaxial crystal near the 

optic axis. The extraordinary ray is polarised in the radial direction. So the iso- 
gyres occur along the two perpendicular diameters representing the polarising 
and analysing states. The curves of constant birefringence are circles given by 
sin2 W =const wq. (g4.8)]. Hence the interference rings at 6 = 2 n n  are circles 
whose radii are proportional to the square root of the natural numbers. 

The case of a biaxial crystal where the optic axial angle is large and the plate 
is cut normal to one optic axis Nl is illustrated in Fig. 60. The optic axial plane 
is indicated by the straight line in the diagram and Nl N, contains the z direction. 

Handbuch der Physik, Bd. XXV/I. 9 
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The vibration direction of the faster wave obtained by the construction given in 
Sect. 34, Fig. 39a is shown The lines of like polarisation are again diameters. 
When the crossed nicols have their planes along and perpendicular to the axial 
plane, the isogyre lies along the axial plane and when they are turned, the iso- 
gyre turns at twice the rate. Thus at the 45" position the isogyre is a vertical 
brush, though it is slightly curved with the convex side facing the acute bisectrix 
(Fig. 60). The curves of constant birefringence are, from (34.7) circles sin Ul = 
const and hence the curves of minimum intensity are circles whose radii are pro- .-. 
portional to the natural numbers. . 1 

In the case of a biaxial crystal cut normal to the actute bisectrix (Fig. 61) 
the directions of vibration at any point are obtained by bisecting the angle sub- 

; 

Fig. 59. Conoscopic figure in miaxialcrystal (nonoptically Fig. 60. Conoscopic figure in a biaxial inactive crystal 
active) in a section normal to the optic axis. (2V being large) when the plateis cut normal to the optic 

m. 

tended at the point by the two optic axial directions (Fig. 39a) externally and 
internally. The internal bisector represents the slower wave in a positive crystal. 

The curves of like polarisation are rectangular hyperbolae passing through the 
optic axes the vibration directions on any point of the hyperbola being parallel 
to the asymptotes. Conversely for any Sethg  of the crossed nicols the Gogyres 
will be rectandar hmerbolae with the a s m t o t e s  parallel to the vibration 

u A ., 
directions of the polariser and the analyser. The isogyres turn round in a peculiar 
manner when the crossed polaroids are rotated. The curves of equal birefringence 
are lemniscates with sin u, sin a,= const [Eq. (34.7):. 

@) The convergent light figures with a linear polariser and a circular analyser. 
Determination of the optical sign of a crystal. Let us consider the case when the 
incident light is linearly polarised so that the point P (Fig. 62) on the Poincarh 
sphere is on the equator and a left circular analyser (which is transparent for left 
circularly polarised light L) is set after the plate. Such a circular analyser is 
obtained by a combination of a 21'4 plate backed by a linear .analyser at the 
suitable azimuth. In this case Fig. 58a gets transformed to Fig. 62 and we have 

,Z 32 
2 ~ , = ~  and a, =f the upper or lower sign being chosen according as the 

azimuth y of the faster state PI (al = 1 y 1) with respect to the polariser is positive 

(0 to $) or negative 0 to - - . Thus according to (63.)) the phase difference i "! 2 

A' between the resolved components transmitted by the analyser is greater or 
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smaller than 8l by 2712 according as the azimuth of the faster state PI with respect 

to the incident vibration is (a) positive (O to ;) or (b) negative 0 to - - . i "1 2 
7c 

Accordingly from (63.7) in the zones given by (a) (i.e. y =O to + 4 the curves - 8 

of minimum intensity occur at 8 = (212 + 6) 27 while in the zone (b) they occur 
at 8 = (2% +#). n. Thus the curves of minimum intensity shift by quarter of a 
fringe in opposite directions with respect to the curves 8 =2nz, which would be 
obtained without the 114 plate when the analyser is crossed with respect to the 
polariser. However the curves are still lemniscates in each of the two zones (a) 
and (b). The intensity obtained by substituting the relevant quantities in (63.3) ,. 
and (63.4) is given by 

I =&[I - sin2ysin8]. (64.1) 

Clearly there will be no interference along the zone of directions for which y =O. 

Fig. 61. Conoscopic figure in a biaxial inactive crystal cut Fig. 62. Poincar6 co11struction for convergent light figures 
normal to the acute bisectrig. The directions of vibration observed in inactive birefringent crystals with alinear 

at a point are indicated. polariser P and a left circular analyser L(A). 

The shift of the fringes mentioned above may be used to determine the optical 
sign of a crystal. Consider for example the case illustrated in Fig. 63 a, where a 
biaxial crystal is viewed through a left circular analyser. For any setting of the 
polariser, for regions in the field of view where the isogyres would normally 
occur y =or,= 0. Also, for any point in the field of view the vibration direction 
which internally bisects the angle between the lines proceeding from that point 
to the two axes represents the slower wave if the crystal is optically positive 
and the faster wave if it is negative. Considering for example the former case, 
let the polariser be at an azimuth 2714 with respect to the line joining the acute angle 
between the optic axes. The convex side of the line of line polarisation will 
correspond to zone (b) while the concave side to zone (a) mentioned above. 
Hence the rings would contract on the convex side of the line of like polarisation 
(the band in Fig. 63a) and expand on the concave side. The reverse would be 
true if the crystal is optically negative. If however the polariser direction is 

at - $ then the rings would contract on the concave side and expand on the 

convex side for an optically positive crystal. 

1 Since the crystal is non-optically active, the relative phase retardation A of Sect. 63 
is equal to 6. 

9* 



132 G.N. R A I ~ ~ C I ~ ~ N D R A N  and S. RAMASESRAN: Crystal Optics. Sect. 65. 

I t  may be noticed that from Eq. (63.8) that the intensity at any point of a 
3rd curve u l  minimum intensity is cos2 (f + I 1) which vanishes only at ly = & ,. 

Hence in the neighbourhood of the optic axes the rings are perfectly dark along 
an axial plane and they slowly fade away as we approach the curve of like polari- 
sation on crossing which the shift of the ring system occurs. 

In the above discussion we have considered the case when a left circular 
analyser is employed. For this the quarter wave plate is with its fast axis at  

7d 
t9 = + with respect to the plane of analysation. We have not specified the 

actual orientation of the analysing nicol as it is quite immaterial. ' 

a b 

Fig. 63 a and b. Convergent light figure with linear polariser and left circular analyser. (a) Polariser + $to N, N,  and w- 
tal + ue or polariser - $ to N, N, and crystal - ue. (b) P at 2 to N, N, crystal -we, or P at - $ to N, N, crystal +We. 

If a right circular analyser is used the sign of p, (Fig. 62) would change and 
the intensity at any point of the field would again be given by the same expression 
(64.1) except that a ~ositive sign should be attached to the second term. 

By a similar method the case of a circular polariser with a linear analyser 
could be treated. I t  may be remarked that when the polariser and analyser are 
crossed the effects observed on introducing a 114 plate at 45" above or below the 
crystal plate are the same. 

65. Convergent light figures in transparent optically active crystals. or) General 
description of the phe.nomena. Transparent optically active crystals in sections 
normal to the optic axes show a simple rotation of the plane of polarisation. 
We have seen that this arises because along an optical axial direction, the two 

- waves propagated are circularly polarised in opposite senses, the left circular 
vibration being propagated with a greater velocity when the rotatory power is 
positive (laevo rotation for an observer looking at  the source). The general treat- 
'- .ment given in Sect. 63 B for the colours appearing when a crystal is viewed between 

a polariser and an analyser is equally applicable to the present case, with A = 2 ~ ,  
though for sections of usual thickness, the colour phenomena are only vivid in 
the case of crystals like quartz which possess considerable optical activity. While 
in linearly birefringent crystals, the dispersion of birefringence i.e. of (nl-n,) 
is usudy negligible, in quartz the large dispersion of circular birefringence con- 
tributes appreciably to the colour phenomenon. This is used in the biquartz 
-the analogue of the Bravais plate-for a sensitive determination of the azi- 
muth of a linear vibration. 

In the biquartz the two halves are of left and right rotating quartz, the rotation 
for yellow being 90". When the linear analyser has been set parallel to the incident 
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vibration, the two halves are matched showing the sensitive tint of passage. If 
the analyser is rotated slightly in one direction the blue component is cut off 
in one half and the red in the other, causing a noticeable difference in the tints. 
With large thicknesses of quartz between poIariser and analyser dong the optic 
axis, if white light is used, no colours are visible, but the phenomena are still 
present and the subtraction of colours of different wave lengths can be observed 
in the channelled spectrum of the transmitted beam. I t  is interesting to remark 
that the rotatory dispersion of quartz was used by W o o ~ l  to separate the Dl 
and D, lines of sodium by choosing a suitable thickness of quartz for which the 
difference in the rotation for the two wavelengths was fairly large and cutting 
off one of them by a linear analyser. 

For directions other than the optic axis the waves propagated are in two 
orthogonally polarised elliptic states. The major axes of the ellipses lie along the 
two principal planes of linear birefringence, which are determined by the usual 
construction for inactive crystals (Sect. 34, Fig. 39a). The ellipticity of the states 
are given by the equation tan 12w I = 2 ~ / 6 ,  their relative phase retardation per 
unit distance being given by A = 1/@+ (2 e),. In the neighbourhood of an optic 
axis, if we may regard Q as constant, the ellipticity remains the same along the 
curves of constant linear birefringence. As we proceed away from the optic axis 
the ellipticity diminishes rapidly and the vibrations tend to become linearly 
polarised as in an inactive crystal and A w 8, since the square of the ellipticity 
may be neglected. 

Thus, in the optic axial figures in convergent light between crossed polaroids, 
the isogyres appear dark only far away from the optic axis and fade away as 
the optic axis is approached. However this effect is best observed only in the 
case of a crystal possessing high optical activity. AS we have seen in Sect. 63 y 
the curves of minimum intensity are perfectly dark and occur at A =2nn.  If 
we regard Q as constant in the vicinity of an optic axis, the curves of minimum 

tintensity are circles very close to the optic axis and become Ieminiscates at larger 
distances. 

The optic axial direction itself usually appears bright and it can be extinguished 
by rotating the analyser with respect to the polariser. Hence the interference 
figures observed when the analyser is not crossed with respect to the polariser 
are of more interest here than in the corresponding case in inactive crystals. 

/3) Interference figzcres irt qzcartz with lilzear +olariser and analyser irt a general 
setting. In this and the following sections we shall confine ourselves to the inter- 
ference figures exhibited by quartz although the same treatment may be extended 
in a straightforward manner to other crystals, uniaxial or biaxial. 

For any general setting of the polariser and the analyser the behaviour at 
the border of the figure should approximate to that of an inactive crystal. We 
have seen in Sect. 63 that for an inactive crystal the phase difference - p intro- 
duced by the p r o c ' i p  of decomposition and analysation is 0 or n, the first 
case obtaining when the polariser and the analyser directions are contained in 
the same quadrant between the principal planes. Thus, in the acute sector in 
the field of view defined by the two diameters parallel to the polariser and the 
analyser vibrations P and A, as also hi the acute sector defined by two lines 
perpendicular to these vibrations, the dark rings occur at' A =2n  z. In the 
remaining sectors they occur at  A = (2% + 2) n. However, the elliptical polarisa- 
tion of the waves manifests itself as we approach the optic axis and - p is not 
restricted to the two values 0 or n but varies continuously as we proceed round a 

1 R.W. WOOD [13]. 
Handbuch der Physik, Bd. XXVl1 9a 
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circle described about the optic axis. As a consequence, the discontinuity in 
the ring system is smoothened out and towards the centre ofthe field of view, the 
rings take the form of squares with rounded comers. The directions at which 
the comers occur can be discussed using the Poincar4 sphere. 

Along any direction represented by Q on the convergent light figure (Fig. 64) 
two crossed elliptic vibrations are propagated. Let the polar coordinates of Q 

be r ,  6 (where the origin 0 represents the optic axial gv direction and 0 P is parallel to the vibration direction 
of the polariser). Then, since quartz is a positive crys- 
tal, 6 is also the azimuth of thcmajor axis of the 
slower vibration P'. Hence if the eIlipticity of this 
slower wave'be E the state P' will be represented on 

u the Poinca~-C sphere by a point of longitude 26,  while 

~~~A~~~~ ;$Ty:z its latitude is numerically equal to 2 8, E being posi- 
cal line.  long aw point Q on the tive or negative according as the crystal is optically 
convagerrt light f m  the two ellip- 
ses plopagated for a non-abWbinp right or left handed. We s h d  first consider the case of 
optically active birewent  wt* a right handed crystal in which case the point P' lies in 

are marked. 
the upper hemisphere (Fig. 65 a). In what follows the 

main point to remember is that, as the representative point Q goes round a circle 
described about the optic axis, the corresponding state on the PoincarC sphere 
goes round a parallel of latitude. For a general setting A of the analyser we have 
=+ PP'A, and this is positive or negative according as the azimuth y bf,, 

the analyser with respect to 0 P is negative (O to - G) or positive (0 to :) , -~ 

Fig. 65 a and b. Poincar6 representations for computing the interference figure obtained in quartz with a linear polariser 
and analyser in a general setting. 

the former case being illustrated in the Fig. 65a. As the analyser is rotated in 
a clockwise direction, p, increases and the rings will expand according to the 
construction of the curves of minimum intensity given in Sect. 63y. 

For a fixed setting of P and A, in order to find the orientations of the maximum 
and minimum radii of the quadratic curves, we have to find the positions at which 
p, becomes maximum and &um as P' goes round the small circle. For this 
we note that Q: P,P'A,=+ PPIA=p, while QA,P'P= QAP'P,=z-y. 
The numerical value of g, attains a maximum for the position Pi, P,' indicated in 
Fig. 65b for which the azimuths and 6, of the major axes bisect internally 
and externally the acute angle between the polariser and analyser vibration 
directions. On the other hand, for positions P,' and P,' the supplement of I p, 1 
attains a maximum value, i.e. I p,I attains a minimum value. If the azimuth 
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of the analyser is negative, g, is always positive. Hence to obtain the curve of 
minimum intensity, we have to draw the circular curves A = (2% fi) and 
increase the radii of the circles by amounts variable with direction. These in- 
crements attain their maximum values along the internal and external bisectors 
of the vibration directions of the polariser and the analyser and their minimum 
value along directions inclined at n/4 to the former. The "quadratic curves" in 
this case are illustrated in Fig. 66. On the other hand, when the analyser w-imuth 

is positive (0 to +$ with respect to the polariser), the greatest contractions 

P from circular form occur along the 
former set of directions, while the great- ' ., 
est expansions occur along the latter. 

Fig. 66. Fig. 67. 
Fig. 66. Quadratic c w e s  in basal section of quartz. 

Fig. 67. Poincar4 representation for intensity transmitted in a basal section of quartz with circular polariser (L) and a 
linear analyser (A). 

The intensity for different points on the curve of minimumintensity is given by 

I mm . = cos2+(2a;+ 24 ) .  (65.1) 
The quantity (2a; +2u;1) has also its turning points at Pi, P,', P,' and P,' as P 
goes round the circle and it can be easily verified that the expression becomes 
zero at P,' and P,' and has a maximum value of cos2 P Pi at Pi and Pi. Thus the 
quadratic curves always appear darkest along the azimuths bisecting internally 
and externally the angle between the polariser direction and a direction crossed 
with respect to the analyser. For the same reason, when the optic axis is extin- 
guished, lalac2ntral cross is formed whose arms point to the dark portions of the 
quadratic curve. 

It b a y  be noticed that only when the analyser is at a positive azimuth with 
respect to the polariser do the darkest portions occur at the corners of the qua- 
dratic curves. Otherwise they occur at the centres of the sides. 

All the above discussions apply to a right-handed crystal. For a left handed 
crystal the point P' will be in the lower hemisphere. It may be readily verified 
that the figure exhibited at any setting of the polariser and analyser for a left- 
handed crystal would be the same as that exhibited by a right-handed crystal 
when the vibration directions of polariser and the analyser are interchanged. 
In the case of the left handed crystal the rings expand for an anti-clockwise 
rotation of the analyser. This is contrary to the behaviour of a right handed 
crystal and may be used for the determination of the sign of the rotatory power. 
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Corresponding results could be derived for biaxial crystals. The curves of 
minimum intensity near an optic axis will be elongated in only one direction. 
At the proper setting of the analyser the optic axis is extinguished by a single 
bar instead of a cross1. 

y)  Spiral figures i n  a single basal section of quartz2. W e  shall discuss the case 
when a left circular polariser represented by P (at L, Fig. 67) is used and a linear 
analyser (Fig. 64) is set behind a basal section of right handed quartz. As 
the point P' moves along the small circle in an anticlockwise direction, 26  

increases from 0 +- +n -+ +- 2 n  and correspondingly 9 (4 P P' A) increases 
2 

Jt from - ~ - t - - - t ~ - + + ~ - + + n .  2 --- 
2 

The curves of mhimum intensity are given by (63.7) '., 

Hence along the circle A = 2 n n  the phase difference between the resolved com- 
ponents falls short of (2% + 4) n by an angle (n + q) which increases continuously 
with the azimuth 6 and which in fact becomes exactly equal to &ice the azimuth 

at 6 = m  G .  The curves of minimum intensity obtained by correspondingly 

increasing the radii vectors of the circle A = 2 n z  would therefore consist of two 
mutually enwrapping left-handed spirals related to one another by a rotation 
of n. The expression for 9 could be obtained from the spherical triangle A P'P 
and this exp~ession could be used to study the form of the spirals in greater detail. 
Close to the optic axis the point P' would be nearer the pole so that p w - (n - 28).  
Further the linear birefringence varies approximately as the square of the distance 
Y from the optic axis. Hence close to the optic axis the equations to the spirals 
using (5.2) and (65.2) are given by3 

A =IAr" f42=2?27Cf 28.  (65.3) 

If the spirals are extrapolated to the origin (where they actually fade away) 
the common tangent at the origin will be at an azimuth of - Q (Fig. 68) [the 
negative sign has to be attached as the spiral is left handed and at the azimuth 
6 = n/2, it passes through the point A = n/2]. 

Towards the border, the figure must tend t o  the form which we have dis- 
cussed in the case of inactive c~ystals (Sect. 63y). The transition occurs by 
way of a non-uniform rate of increase of the arm of the spira.1, which manifests 
itself as kinks along the vertical and horizontal directions. These assume the 
form of discontinuities towards the border of the figure. 

- The variation of intensity along the spiral may be studied with sufficient 
accuracy by considerkg the variation of cos2 (a; +a@ [Eq. (65.1)] as P' goes round 
the smalI circle, the arc 2ui being constant. The arc ui acquires its minimum 
value of 2.3 at  2 8  = 0 and its maximum value of n - 2 6 at  28  = n. Further the 
sum 2u;+2uh lies between the limits n/2 and n for directions close to an optic 

( axis where 2 s > . Hence the arcs of the spirals appear darkest along the 
- - -  - - 

The observation of a continuous expansion or contraction in the ring system as the 
analyser is rotated is a very sensitive method of testing for optical activity of a biaxial 
clysial. 

S. PANCEARATNAM: Pmc. Ind. Acad. Sci. A 45,402 (1957). 
Here A and p refer to the retardation and total rotation for the whoIe plate and not for 

unit thickness as in (39.4) or (5.2). 
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diameter perpendicular to the plane of vibration of the analyser. It must be 
em~hasised that this does not hold at greater angular distances, 2 8  <:, so that 

towards the border of the figure the zones above which the rings appear darkest 
are 45" to the plane of the analyser as in inactive crystals. 

If the polarising state (L) is changed to its opposite state (R) and the analyser 
is rotated to its orthogonal state there will be no change in the observed figure 
since y (in Fig. 67) remains unaltered and 2u; and ZU; are changed to their supple- 
ments. 

We may summarise the above results in a form applicable both to right and 
left rotating sections of quartz. The hand (left or right) of the spirals observed 

--- 
Fig. 68. Fig. 69. 

Fig. 68. Spiral curves obswed in a basal section of quartz with a circular poladser and a linear analyser. 

Fig. 69. AIRY'S spirals. P o i n d  representation to pmve that in parallel light two equal sections of quartz (first left- 
handed and the second right-handed) superposed with the corr€sponding principal planes coinciding, is equivalent to a 

- single optically inactive birefringent plate. 

with a circular polariser and a linear analyser is opposite to that of the quartz. 
When the hand of the c i rda r  polariser is opposite to that of the quartz, the 
common tangent to the spirals at  the origin is at an azimuth-e with respect 
to the analyser vibrations where p is the optical rotation of the basal section 
measured with the usual sign convention. Close to the optic axis the spirals 
appei? darkest along the diameter normal to the vibration direction of the 
andyser. A change in the hand of the circular polariser merely rotates the entire 
figure through a right angle. 

From Fig. 67 it is seen that when the polarising and the analysing states are 
interchanged, only the sign of p, is altered. The same result is obtained by the 
change of the sign of 26.  Hence the spiral figures exhibited with a linear polariser 
and a circular analyser may be derived from the figure obtained when the polariser 
and the analyser ,are interchanged by reflecting the latter about the plane of 
vibration of the an'ayser. 

6) Airy's sfiirals due to two sufierfiosed basal sections of qzcartz. Let us first 
consider the case when fiarallel light is incident normally on two superposed 
sections of quartz, the first being left handed and the second right handed; it 
is further supposed that both plates are of the same thickness and cut at  the 
same angle to the optic axis, being superposed such that the corresponding prin- 
cipal planes of the two plates are in coincidence. 

Referring to Fig. 69, the state of the faster elliptic vibration of ellipticity E 

propagated in the first plate is represented by the point A, of latitude 2.5. The 
state of the faster vibration propagated in the second plate will then be represented 
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by the point A,, which has the same longitude as A, but has a latitude -2a  
In order to combine the action of fhe two successive plates, we construct the 
isosceles triangle A,XA, as indicated in Fig. 69, the base angles Q A, AIX and 
Q XA,A, being both equal to 412, A being the retardation of each plate. 

We now apply the theorem for compounding rotations given in Fig. 8 of 
Sect. 58. An anticlockwise rotation of the sphere about A, through twice the 
internal angle at A, (representing the action of the first plate) followed by an 
anticlockwise rotation about A, through twice the internakangle at A, (represent- 
ing the action of the second plate) is equivalent to a single-rotation about the 
axis X lying on the equator (Fig. 69) through twice the external angle at X. In 
other words, the combination is equivalent to a single optically inactive bire- 
fringent plate of retardation d', the faster vibration direction being at an azimuth 
-a with respect to the common principal plane of the quartz plates (containing 
the major axis of the faster ellipse propagated in each plate). From the spherical 
triangle AIXX, we have 

tan2a =tangdsin28.- ' (65.4) 

We now proceed to consider the ccmverge~t light figures exhibited by two super- 
posed basal sections of quartz of equal thickness, the first being left handed and 
the second right handed. Since for any particular direction of propagation the 
combination behaves like an inactive crystal between crossed nicols, we should 
expect the appearance of "isogyres" along the zones where the equivalent planes, 
of the combination coincide with the vibration direction of the polariser and 
analyser. The "isogyres" would not however take the form of a uniaxial cross 
since the equivalent principal planes for any particular direction of propagation 
do not coincide with the principal planes of the individual plates. If the azimuth 
of any point in the field of view with respect to the vibration direction of the 
polariser be as usual denoted by 6 (Fig. 64), then dark isogyres obviously occur 

where 6 = a  or $ $- a so that the "isogyres" will: occur at 

This takes the form of four mutually enwrapping left handed spirals1. This may 
be seen particularly for directions close to the axis where, as a first aPproximation 
by setting sin 2 E = 1 in Eq. (65.5) the isogyres would be determined by [see 
Eq- (65-311 ~=1-=2nn+46.  (65.6) 

These dark curves consist of four left hand spirals, each of which is rotated by 
90" with respect to the adjacent one. At the centre the spirals touch two perpendi- 
cular lines inclined at an angle el2 (since A =2e at the optic axis) to the planes 
polarisation and analysation on the left hand; where Q is the rotation of the plane 
of polarisation produced by any one of the plates. 

In addition we have the usual circular curves where the retardation 6' of the 
equivalent plate is a multiple of 27c and it can be shown from Fig. 69 that these 
will coincide with the circles A =2n?c. The sense of description of the AIRY'S 
spiral is reversed when the right handed plate is placed first, because the sign 
of a in Fig. 69 would then be changed. 

b) Absorbing inactive crystals. 
66. General introduction. Very remarkable optical phenomena are exhibited 

by absorbing crystals in the vicinity of the optic axes. Thus BREWSTER discovered 

See WALKER [5],  p. 368. 
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long ago that, when an extended source of unpolarised light is viewed through 
a highly dichroic crystalline plate cut normal to one of the optic axes, two dark 
brushes-the BREWSTER'S brushes-are seen. In the interference between 
crossed polaroids the dark isogyres do not in general pass through the optic axial 
directions as they do in the case of transparent crystals. These phenomena can 
be broadly explained using the approximate theory mentioned in Sect. 43 where 
the waves propagated along any direction are taken to be linearly polarised. We 
have seen however that according to the rigorous theory the two waves are 
really elliptically polarised with non-orthogonal states. Corresponding to this 
we meet with phenomena which have no parallel whatsoever in the case of trans-. ., 
parent crystals. Thus, if the incident light is polarised, then even without an 
analyser behind the plate, feeble interference phenomena-the idiophalzic rilzgs- 
are seen. These arise because the two beams into which the incident light is 
decomposed along any direction can directly interfere with one another as they- 
are not orthogonally polarised. More striking is the fact that, with an analyser 
behind the plate, idiophanic interference rings appear even with the incident 
light completely unpolarised. The explanation of this phenomenon leads us to 
the concept of the partial coherence between the component non-orthogonal 
beams into which the incident unpolarised light is split. 

We shall not be dealing with the case of uniaxial crystals, because from the 
demands of symmetry itself the dichroism will necessarily be weak for directions 
near the optic axis, and hence the phenomena ob- 
served are usually not of such great interest. The 
interference phenomena exhibited by such cryst& Qq:u 
have been extensively dealt with by SZIVESSY [I], 
POCKELS [Z]. 

Consider all directions as passing through the 
centre of a sphere and defined by their intersec- 
tions with the spherical surface (Fig. 70 a). The 4~ 
regions surrounding the optic axis Nl which we 

4 44 Yr ',= 
r--_8 take as the origin may be approximated by the 

plane of the paper, the plane A\ N2 representing the 
axial plane. We shall be considering the case when 6 
the optic axial angle is not very small although the 70a. Figure the differ- 
extension to that case is fairly straight forward1. ent axes to egplain wnvmgent light 

Nz has been enclosed in brackets as it is not capable % ~ d ~ ~ ~ ~ ~ t i , " i ~ ~  
of being represented in the figure itself. or Q, absorption themajor and ellipsoid, rmnor x., axes 1: of principal section 

Let Nl Ql and N, Q, be the traces of the major ; ~ ~ & , O ~ , ~ ~ " , f  k>dizi2;z 
and minoFXxes of the section of the absorption el- d e l  to N,QI, NIQ,) for a point z; N, e 

and N, q llnes aiong which major and lipsoid taken normal to the optic axid direction, ,bar ,,of sections of index ellipsoid 
the angle Ql N, N, being denoted by K. These may and ab50mtion 

also be taken to be the principal directions of ab- 
sorption for any other general point in the small range of directions con- 
sidered2. The principal planes of absorption X k ,  Yk for the point z are parallel 
to NIQ, and N,Q2 and are indicated by dotted lines. On the other hand, the 
principal planes of linear birefringence vary very rapidly with direction. We have 
seen in Sect. 34 that for a point of azimuth a with respect to N,N, the slower 

S- BOGULOWSKI: Ann. d. Phys. 44, 1084 (1914). 
Thiswill not be the case when the optic axis is near the circular section of the absorption 

ellipsoid. In  such a case the dichroism would be so weak that phenomena of interest wiil 
usually be not observable. 
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vibration direction makes an angle $ + % with respect to NIN,. (The principal 

planes of linear birefringence X,, Y, are denoted by bold lines for the general 
point z in the Fig. 70a.) I t  is therefore clear that the major axes of the sections 
of the index and absorption ellipsoid will coincide for points on Nl 5, which is 
at an azimuth 2 K- n with respect to NIN,. We shall choose N,E and the per- 
pendicular direction Nlr as the axes of coordinates since the phenomena we are 
about to discuss exhibit a certain symmetry with respect to these axes. 

I t  may be noted here that as the azimuth of z with respect to N,E isincreased, 
the azimuth of X, increases at half the rate while X, remains all the whileparallel 
to N, Q,. Hence if 6 is the azimuth of the point z with respect to N,E, x tlie angle 
X,  makes with X,, then 

6 - -- x=--. 
2 

(66.1) 

p) Phenomena exflicable on the elementary theory. Along the optic axes two 
waves linearly polarised along the principal axes of linear dichroism N,Ql and 
NIQ, are propagated, their absorption coefficients k, and k, being determined 
by the lengths of these axes. Because of this the optic axial direction does not 
in general appear extinguished between crossed polaroids (unlike the case of 
transparent crystals) but shows two extinction positions as the crossed polaroids 
are rotated together. These positions occur when the vibration directions of the 
polariser coincides with either N, Q, or N, Q, . At other positions of the polariser 
the incident vibration is split into two linear vibrations which are differentially 
absorbed and which are propagated with the same velocity. These compound 
together to form a linear vibration whose plane of polarisation would have turned 
towards the less absorbed component. The correctness of this explanation is 
shown by the fact that the optic axial direction can be extinguished by rotating 
the analyser from the crossed position. In fact it is possible to compute the 
difference in the absorption coefficients between the two linear vibrations pro- 
pagated along the optic axis from a measure of this rotation. 

We have seen that, for directions not in the vicinity of the optic axis (Sect. 43), 
the waves may be regarded as linearly polarised as in transparent crystals, with 
the additional property that they have different absorption coefficients deter- 
mined by the intercepts that these vibration directions make with the absorption 
ellipsoid. By assuming that these results continue to hold very close to the optic 
axes (Mallard theory) an explanation of the phenomenon of Brmster's brztshes 
may be given. The clue to the explanation of this phenomenon lies in the fact 
_that in the neighbourhood of the optic axis the vibration direction for any point 
in the field of view changes rapidly with the azimuth, leading to a corresponding 
rapid change in the absorption coefficients. With unpolarised light of intensity I,, . incident, the intensity of the emergent light at any point will obviously be 

where k' and k" are the absorption coefficients of the two waves propagated 
along that direction. Since we have already assumed that the section of the 
absorption ellipsoid does not vary over the range considered, the mean of the 
absorption coefficients may be considered constant for all directions (in the 
angular range covered). This follows from the property of any two perpendicular 
radii of an ellipse. Hence the emergent intensity I is the sum of two terms whose 
product is a constant. From a well known theorem in algebra it acquires its 
minimumvalue when the two terms are equal i.e. k' = k", and its maximum value 
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when the absorption coefficients differ by the maximum extent. The latter will 
occur for points in the plane N15 since in this case the vibration directions lie 
along the principal axes of the section of the absorption ellipsoid. On the other 
hand, the absorption coefficients will be equal (and I will be a minimum) in 
the plane N,q since the vibration directions will be inclined a t  4 5 O  to the principal 
planes of dichroism. This explains the occurrence of two absorption brushes 
(intensity minima) on either side of the optic axis N, lying in the plane. The two 
brushes do not pass through the optic axis because k' and R" are practically con- 
stant in the vicinity of the optic axis and there is no minimum in that region. 

Since for any point on NIE the waves are linearly polarised along NIQ, and 
N, Q,  i.e. the major and minor axes of the section of the absorption ellipsoid, the 
two waves have-the least and the greatest coefficients of absorption for all the 
points on the line NIE. Hence with a polariser or analyser set with its vibration 
direction parallel to Nl Q,, a dark brush passing through the optic axis forms in 
the plane NIE, while if the vibration direction is parallel to N,Q, a white brush 
appears in the same position. Incidentally, this also demonstrates directly the 
existence of dichroism along the optic axis. 

It may be remarked that the above phenomenon will be simplified if N,N, 
.be a plane of symmetry or perpendicular to an axis of symmetry as will occur 
in an orthorhombic crystal and can sometimes occur in a monoclinic crystal. 
In this case the principal diameter of the section of the absorption ellipsoid 
must be along and perpendicular to the axial plane. Then N,Q, will lie on the 
axial plane. Hence the absorption brushes will lie in a plane perpendicular to 
the axial plane. 

The above simplified theory does not explain some of the important features 
connected with this phenomenon. For example, when the plate is viewed between 
crossed polaroids in a general setting it is not the optic axial directions alone 
that remain unextinguished but the region of non-extinction extends over a finite 
strip passing through the optic axis. In fact the extinction along the isogyre 
becomes perfect only at the boundary of the field of view. The isogyres however 
are perfectly dark for the setting when they pass through the optic axis. These 
facts by themselves are sufficient to show that while the waves may be linearly 
polarised for the points on the plane N,  6, this is not so for any general direction 
of propagation. Again, the BREWSTER'S brushes show incipient traces of inter- 
ference phenomena. These features can be accounted for only when the elliptical 
polarisation of the waves propagated along a general direction is taken into 
account. 

67. Results of the detailed theory. According to Sect. 45 except when the 
principal planes of linear' birefringence coincide with those of linear dichroism 
i.e. except along Nl$, the waves propagated will be elliptically polarised. The 
two vibrations have their major axes crossed, possess the same numerical ellipti- 
city and are described in the same sense. For directions not too close to the 
optic axis where the<square of the ellipticity may be neglected, the major axes 
of the ellipses may be taken to lie along the principal planes of linear birefringence, 
their refractive indices and absorption coefficients being determined as though 
they were linearly polarised. According to the results of Sect. 48 the common 
ellipticity of the two waves propagated along any arbitrary direction is given by 
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from Eq. (66.1). Here k, the superposed linear dichroism, which is taken to be 
constant over the area of the figure, is therefore equal to the difference in the 
absorption coefficients k,-& of the waves propagated along the optic axial 
directions. The linear birefringence 6 on the other hand, unlike k, increases as 
we move away from the optic axis, being proportional to the angular distance 
from N, (see Sect. 34). 

Eq. (67.2) also shows that the sense of description of the ellipses on either side of Nit  
will be opposite. Further, as we proceed along the circular curve of constant birefringence 
described about the optic axis, the maximum ellipticity is obtained h r  points on N,? where 
the principal planes of linear birefringence and dichroism have the maximum inchnation 
of 450 

Towards the border, the waves approximate to linear vibrations parallel to 
the planes of linear birefringence. The continuous transition from this towards 
waves polarised along principal planes of linear dichroism (along the optic axial 
direction) is not revealed by the approximate formula given above, which is not 
applicable for directions close to the optic axis. 

We now turn to the rigorous formula (47.5). We may first from simple 
considerations determine the state of polarisation along N,f and N,q. Along the 
former the waves are rigorously linearly polarised as the principal directions of 
linear dichroism and linear birefringence coincide. Along N,q however they are 

inclined at  45' for which 2~ = - $. Substituting this in Eq. (47.5) and con- 
sidering Fig. 45 we have for k > 6 

n 297 =- 
2 

which gives 
6 

s i n 2 y =  s in2e=-  
k 

and for 
76 

6 > k ,  2y =- 
2 

giving 
k 

sin297 =sin2e =- 6 ' 

Hence when we proceed from the optic axis along N1q, the two vibrations, ini- 
tially polarised along the principal planes of absorption, open out into two right 
elliptic vibrations and become two identical right circular vibrations at  the point 
C, for which the magnitudes of linear dichroism and birefringence become equab. 
Further on, these split again into two elliptic vibrations, now with their major 
axes in the principal planes of linear birefringence, tending to the form of two 
orthogonal linear vibrations at the border of the field of view. A similar behaviour 
holds for the 11 axis except that the waves are now left elliptically polarised since 

n 
2 x = + - .  

2 

Again at  the point C; for which k = 6, the two elliptic vibrations take the form 
of one left circular vibration. C, and Ci are the singular axes which are highly 
characteristic of the behaviour of absorbing crystals. We have already discussed 
the properties of the singular axes previously (Sect. 55). 

For a general direction of propagation the orientation of the major axes and 
the ellipticities are given by Eqs. (47.7) and (47.8). However their variations 
over the field of view are somewhat complicated, but have been discussed in 
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some detail by VOIGT~ whose result we shall quote. These results are summarised 
in Fig. 70 b. 

(a) The vibration ellipses of the two waves corresponding to the same direction 
have constant ratio of axes along circles whose centres lie on the straight line 
through C, and C;, and whose radii are such that all the circles cut the circles 
described on CIC; as diameter orthogonally. The ellipses degenerate to circles 
at  Cl and C; and become straight lines in the i axis. The direction of vibration 
is of opposite sense on the two sides 
of the ,$ axis, though everywhere the 
same for the two waves. 

@) The orientations of the prin- --. 
cipal axes of the vibration ellipses is . 
constant along equilateral hyper- 
bolae which pass through Cl and C{ -- 
(indicated by the dotted lines), the 77 . 
coordinate axes and 7 being special 
cases of these hyperbolae. The orien- (4) 
tation of the axes of the ellipse cor- 
responding to one segment of one 
hyperbola is indicated by an arrow 
corresponding to the principal axis 
of birefringence. I t  will be seen that 
these directions are not constant for 
the entire hyperbolic branches but 
that they become rotated through Fig. 70b. Convergent light figure (due to VOIGT) ~i10-g the 

45 0 on through the points C, variations of the states of polarisation of the waves for direc- 
tions of propagation close to an optic axis in an absorbing bi- 

and C; of circular polarisation. The axial crystal cut 1 r to one optic axis. C, and C, are the singo- 

differences in the refractive indices lar axes associated with this optic axis. 

and , the absorption coefficients of 
the waves given by Eqs. (48.3) and (48.5) have also been plotted by VOIGT as 
a function of direction and he gives the following results. 

(c) The difference in the refractive indices may be considered constant over 
ellipses having the points C, and C; as foci. This difference vanishes along the 
straight line C,C; and increases as the ellipses open out. However they are prac- 
tically circles as the angle between the singular axes is usually extremely small 
in all cases. 

(d) The absorption coefficients k', k" of the two waves are constant over 
hyperbolae having their foci at  C, and Ci. They have the same value along the 
s t ra igh t -hs  C,C; and along any hyperbola have values which differ from k, 
by equal amounts of opposite sign, the maximum difference of the absorption 
occ-ng along the axis. 

68.  h he singular axes.-Experimental observations on iolite2. The existence, 
even in an inactive crystal, of axes along which a circularly polarised wave is 
propagated without change is most directly confirmed by observing the convergent 
light figures between a circular polariser and a crossed circular analyser. Fig. 71 a 
shows the figure observed with iolite, an orthohombic crystal, kept between a 
left circular polariser and a right circular analyser. The eccentric spot just below 
the axial plane obviously represents the direction along which the incident left 

W. VOIGT: Phil. Mag. 4, 90 (1902). 
S. PANCHARATNAM: ROC. Ind. Acad. Sci. A 42, 23 j (195 5); A 45, 1 (1957) 
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circular vibration is propagated unchanged and crossed out by the analyser. 
That along this direction a circular vibration of opposite sense is not transmitted 
unchanged (as would be the case in a transparent optically active medium) is 
proved by observing the figure between a right circular polariser and a left 
circular analyser. This is shown in Fig. 71 b where the other singular axis (above 
the axial plane) is extinguished. 

Fig. 71 a--4. Optic axial interference figures in convergent light by the absorbing biaxial mineraliolite, the axial plane being 
horizontaL (a) Left circular polariser and right circular analyser, Iower sing~?Iar axis extinguished. (b) Right-circular 
plarisex.and left-circular analyser, upper singular axis extinguished. (c) Left-circular polariser alone, dark rings in lower 
half of figure comespond to bright rings in upper part of figure, Lower singular axis appdars darker than the other. 

(d) Left-circular analyser done; a s v e t r y  with respect to axial plane reversed. 

It is ppssible to show using an elliptic polariser and a crossed elliptic analyser 
that for any point on the strip joining C,C; (Fig. 70b), the two waves propagated 
are: elliptic vibrations of the same sense, with their major axes not lying coinci- 
dent with the principal axes of birefringence, in conformity with the theory. 

' These experiments also show that as the singular axes are approached, the two 
elliptic vibrations tend to the form of identical circular vibrations. 

Since along the singular axis the only wave that can be propagated unchanged 
is a circular vibration described in one particular sense, the following interesting 
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question arises: What will happen if for example a left circular vibration is incident 
along a singular axis where only a right circular vibration is propagated unchanged ? 
I t  had been supposed by VOIGT~ that the light would be totally reflected, the 
reflection being partial in practical cases. However the question can be put to 
test by removing the circular analyser in the arrangement used for Fig. 71 a, but 
keeping the circular polariser. The result is shown in Fig. 71 c where it will be 
noted that the upper singular axis where the incident left circular vibration cannot 
be propagated unchanged actually appears brighter than the lower axis where 
it can be propagated unchanged, disproving VOIGT'S conjecture. The explanation 
has been considered in Sect. 49. It has been shown that, when left circular vibra- 
tion is incident in the direction of a singular axis along which only a right circular 
vibration is propagated unchanged, the incident vibration is propagated into the 
medium with a progressive change of state of polarisation under the superposed 
effects of linear birefringence and linear dichroism. Theory also predicts that 
the state of polarisation which is not propagated unchanged has the smaller 
absorption coefficient, as is actually observed. The state of polarisation of the 
emergent light has also been found to be in conformity with theory. 

69. Idiophanic rings without an analyser. I t  will be noticed in Fig. 71c that 
feeble interference phenomena are observed even though no analyser has been 
kept behind the crystal. This is also found to be the case when linear or elliptic 
polarised light is incident. Such a situation cannot occur if the waves propagated 
are orthogonally polarised as in transparent crystals, for orthogonally polarised 
waves (even though coherent) cmnot directly interfere unless brought to the 
same state of polarisation by an analyser. But if the vibrations A and B are 
non-orthogonal, then B can be resolved into two parts, one of state A and the 
other in the orthogonal state A,. The former can interfere with A. Hence the 
occurrence of interference phenomena without the use of the analyser proves 
that the waves propagated along a general direction are non-orthogonally polari- 
sed. The visibility of the interference phenomenon will however be not very 
pronounced since the extent of the interference will L 
depend on the non-orthogonality factor. The for- 
mula for the interference of two non-orthogonal 
beams is given by (Sect. 4) : 

I = I; + I; + 2 11-1 cos &= cos A' (69.;) 

where a is the angular separation of the ;tat& A 
and B on the PoincarC sphere. We shall for simpli- 
city confine ourselves to the case when the inci- 
dent light is left circularly polarised as in Fig. 72 c. 

Two elliptic vibrations A and B propagated . R 
along any directio'n.have their major axes crossed =ig. 72a P o i n d  representation for 
and have the same ellipticity E (which according mmputing the for 

the case of Fig. 71 c. 
to the sign convention means that they are de- 
scribed in the same sense). Hence on the PoincarC sphere the longitudes of A 
and B differ by z but their lattitudes are the same, equal to 2~ as drawn in 
Fig. 72 a. 

When the incident vibration of intensity I, in the state L is decomposed into 
two vibrations in the states A and B their intensities I, and I2 are given by 

W. VOIGT: Ann. d. Phys. 2, 1002 (1908). . 
- 

Handbuch der Physik, Bd. XXS'/I. 10 
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4.5 and 4.6 as 

sin2 +AT I2 = I. 
sin2)AS ' (69.3) 

where 
- - 7 c  1 -  72 BL=AL=- -28 and -AB=--28. 

2 2 2 (69-4) I 
\ Their initial phase difference according to formulae 4.14 is o w n according as E 

is positive or negative (As the three points ABR are coplanar the spherical excess 
of the tliangle ABR is z or 0 according'as E is - ve or +ve). The waves have 
different absorption coefficients and, on emerging from the plate, their intensities 
I; and I; being equal to IIe: and 12eg respectively the relative phase advance A' 
of the first beam over the second is equal to 6 or n + 8 according as E is + v e  
or - ve. The minima occur when the phase difference A' between the interfering 
beams is x, 3 ?t etc. In the lower half of the Fig. 71 c E is positive, i.e., the elIipses 
are left-rotating; hence A'= 6 and therefore minima occur for values 6 = x ,  3 n etc. 
On the other hand, in the upper half of the figure E is negative and hence A'= 6 +n. 
Hence minima occur for 6 =0, 23c,4x, etc. The fringes in the lower half of the 
figure would therefore be shifted by half a fringe width relative to those appearing 
in the upper half. The fringes in the upper half of the figure should coincide with 
the fringes observed with crossed polariser and analyser and this may be verified 
by comparison with Fig. 71 b. 

There is also an asymmetry in the average intensity distribution. The inten- 
sity at any point in the field of view is obtained by substituting the values of 
I;, I; and A' in (69.1) and will be given by 

I =  2(1+sin14 10 (e~+8+2e,ebsin2~cosS). (69.5) 
36 

The expression for I becomes indeterminate for E = - , i.e., along the singular 
7 

axis where only the right circular vibration can be propagated unchanged. 
The propagation in this direction has, however, been considered in the last 
section. When right circular polarised light is used, the sign of the third term 
in (69.5) has to be changed and the assymmetry about the axial plane will be 
reversed. This asymmetry of the figure when circular light is used is a clear proof 
that the sense of description of the ellipses on either side of the axial plane is 
different. 

When linear polarised light is used, the interference figures do not exhibit 
any asymmetry and the figures are clearest when the incident vibration is either 
parallel or perpendicular to the axial plane. Further a dark band appears along 
the axial plane (for orthorhombic crystals like iolite), when the vibration direction 
of the polariser is set parallel to the vibration direction of the more intensely 
absorbed wave propagated along the optic axes (i.e. 06, Fig. 70a). 

All these phenomena can be explained by a procedure similar to that adopted 
for circular polarised light; but we shall not deal with them here. For further 
details, reference may be made to POCKELS [2], VOIGT~, PANCHARATNAM~. 

70. Phenomena involving partial coherence. or) Partial colzere?zce. Fig. 71 d 
shows that faint interference rings observed when only a left circular analyser 

W. VOIGT: Ann. d. Phys. 9, 367 (1902). 
S. PANCEARATNAM: Proc. Ind. Acad. Sci.'A 45, 1 (1957). 
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The intensities 1; and I: of the two beams in the states A and B emerging 
along any direction from the crystal plate and their effective phase-difference A' 
are given by (see Fig. 72) 

I f - -  1 
1- ;-I sin2 eC> (70-3) 

If I: and I',' be the resolved components of the beam transmitted by the 
analyser, and A" the phase-difference between these components, -then 

where 97, may be called the phase-difference introduced in the process of analysa- 
tion. These resolved components, although in the same state A of polarisation, 
are partially coherent, their degree of coherence y being cos *AX. The intensity 
at any point in the field of view is therefore obtained from the general interference - A - 
f o r p l a  (70.1), by substituting the value of the degree of coherence y =cos A% 
ajRd by putting cos C = 1, (as the two resolved components on passing through 
the analyser are in the same state of polarisation) ; thus 

Now the phase-difference v, introduced by analysation will be equal to 0 or n, 
according as L lies on the smaller or the greater segment of the great circle through 
A and B, i.e. according as E is positive or negative. Hence in the upper half of 
the figure, where the ellipses propagated are rightrotating, minima occur at 8 = n, 
3 n etc., while in the lower half of the figure they occur at  8 = 2n, 432 etc., being 
shifted by half a fringe-width. 

The intensity at any point in the field of view is obtained by substituting 
in (70.9) from (70.6) to (70.8) and (70.3) to (70.5)' using (69.4): 

I= 2(1 - I0 sin 2s) (eC +eg - 2e,eb;in 2 E cos 6) 

Thus, the idiophanic rings with a left circular polariser are not the same as 
with a left circular analyser, but should be the same as with a right circular analy- 
.ser, as may be seen from the fact that (70.10) goes over into (69.5) when 28 
is' replaced by - 2 E .  However, it is found that the idiophanic rings with a linear 
analyser alone at a particular setting are exactly the same as those presented 
with a linear polariser alone kept at the same setting. I t  can be shown that this 
is a particular consequence of the fact that the two waves propagated along any 
direction are two crossed ellipses, having the same ellipticity and decribed in the 
same sense. This, however, is not the case in optically active absorbing crystal 
(vide Sects. 71 to 73). 

I t  may be shown that the interference effects observed with the polariser P 
alone have the same visibility as  those observed with (a) a polariser P, alone, 
@) an analyser of state P alone and (c) an analyser of state Pa alone. In the 
former case, the interfering beams are completely coherent, but the extent of their 
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interference is limited because of the non-orthogonality of the two waves pro- 
pagated in the crystal. In the latter case, the interfering beams transmitted by 
the analyser are in the same state of polarisation, but they are only partially 
coherent, the degree of coherency being determined by the identical non-ortho- 
gonality factor. 

y )  Phenomena with Partially circular-Polarised light. In Sect. 11, it is shown 
that when two non-orthogonally polarised beams are mixed together incoherently, 
the result is a partially polarised beam. Hence, it 
should be possible for the converse phenomenon to 
occur under certain conditions. That is, for partially 
polarised incident light, it may so happen that the 
non-orthogonally polarised beams (into which the 
incident light is split) may be completely incoherent 

even i f  the beams are resolved by an  analyser. This 

(Q, 
for some particular direction, so that near this re- F*. 72h. Pain- representation for 

gion no interference effects should be observed, C O ; ~ ~ f ~ Y  2;z$,.in . 

effect has been observed in iolite by PANCHARATNAM~ with the incident light 
partially circularly polarised-say, left-circularly polarised light. 

If the degree of polarisation be +, the incident light will be represented by a 
PoincarC vector of length + directed towards L (Fig. 72b). If the component 
completelv polarised beams A and B are to be completely incoherent, then the 
foll&ng "two equations must hold. 

Since p must be contained in the acute 
angle between A and B, such a resolution. 
can occur only when the ellipticity 8 is 
positive i.e., on the side of the axial plane 
where the ellipses propagated are left rotat- 
ing. From symmetry, the intensities I, and 
I, of the component beams are equal to 
one another and hence equal to + I  from 
Eq. (70.12). Substituting this in Eq. (70.11), 
and resolving the vectors along p, we see - - 
that an incoherent resolution can occur Fig. 73. Incident light partially left circularly pola- 

rised and linear analyser with vibration direction 
only when 1 vertical. In the upper half of the figure the ring 

system fades away near the second and third nngs sin28 =+. (70.13) and reappears further with a shift of half a fringe. 

As we proceed,outwards from the optic axis in a direction perpendicular to 
the axial plane (on the side of the axial plane where 8 is positive), the ellipticity 
varies and near a particular region where condition (70.13) is satisfied, the vi- 
sibility of the interference effect should become negligible.. For other directions, 
the resolved beams will be partially coherent; the region defined by (70.13) is 
a particular case where the degree of coherence vanishes and on crossing which 
the effective phase difference changes by n. This behaviour is confirmed by 
experimental observation (Fig. 73). 

When partially plane polarised light with the plane of polarisation of the 
polarised part at  45" to the axial plane is incident on a plate of iolite and it is 

- 

1 S. PANCHARATNAM: Roc. Ind. Acad. Sci. A 45, 1 (1957). 
Handbuch der Physik, Bd. XXV/l. 
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viewed through a circular analyser, a beautiful spiral has been observedl. The 
sense of the spiral does not depend on whether a right or a left circular analyser 
is used, but it changes sign when the azimuth of maximum polarisation is rotated 
by 90". The phenomenon is also observed when the incident light is completely 
polarised, but the spirals are not so continuous. It can be shown that as in the 
case of transparent optically active crystals, the spirals arise because the sum of 
the phase differences introduced in the processes of decomposition and analysa- 
tion increases continuously with the azimuth. 

\\ 
c) Absorbing optically active crystals. 

71. Phenomena along the optic axis when dichroism is weak. or) General 
descri+tion of the phenomena. Little experimental work appears to have been 
done on the optical behaviour of crystals belonging to this class. However in 
one particular case, namely in amethystine quartz, which has an absorption in 
the yellow green region, extensive observations, though of a qualitative nature, 
have been reported2 agreeing in detail with the theory presented in Sects. 50 to 5 5 .  
The observations have been made with intensely coloured sectors of amethyst3, 
carefully selected so as to exclude .certain extraneous complicating features 
(such as twinning etc.) which are very often found in this substance. Such sectors, 
unlike quartz, are biaxial with the c axis of quartz appearing as the acute bisectrix. 
They show a pronounced dichroism near the axial directions, the elliptic section , 
of the absorption ellipsoid having its major and minor axes lying respectively 
parallel and perpendicular to the axial plane. 

In blue light, which is practically outside the absorption range, the dichroism 
is negligible and the interference figures observed between crossed polaroids are 
as in transparent optically active crystals, the isogyres not penetrating to the 
optic axial directions. The axial directions can however be extinguished by 
rotating the analyser from the crossed position, the rotation of the plane of polari- 
sation thus measured agreeing with that for colourless quartz. 

In  red light, which is on the other side of the absorption maximum, the same 
sector exhibits a weak dichroism and the phenomena observed correspond to 
the case when the optical activity predominates over dichroism i.e. I 2 Q 1 > k, 
a case which has been dealt with in Sects. 53, 54. Here again the axial directions 
are not perfectly extinguished by isogyres when observed between crossed polaroids 
{Fig. 74a). They can be extinguished by rotating the analyser (Fig. 74b) but 
the rotation of the plane of polarisation thus measured is found to depend on 
the azimuth of the incident linear vibration. This proves that the waves propagated 
along the optic axis cannot be circularly polarised as in transparent active crystals. 
According to Sect. 53 the waves propagated along the axial directions should be 
elliptically polarised, the elliptic vibrations being exactly similar in form and 
orientation but described in opposite senses. (The major axes of the ellipse 

should be coincident, making an angle $ with respect to the axial plane accqrd- 

ing as Q is + v e  or -ve.) This was verified to be true by viewing the crystal 
between crossed elliptic analysers (Sect. 21 6). In the present case the principal 
planes of the quarter wave plates are set at  45" to the axial plane. Thus the prin- 
cipal axes of the incident elliptic vibration are at  45" to the axial plane. As the 

-- 

1 For a discussion of this and other phenomena see S. PANCHARATNAM: ROC. Ind. Acad. 
Sci. A 45, I (1957). 

S. P-~NCEARATNAM: Proc. Ind. Acad. S C ~ .  A 46, 280 (1957); A 47, 201, 210 (1958). 
The photographs illustrating thus section have been taken with right rotating amethyst. 

Correspondingly much of the discussion and figures refer to right rotating specimens. 
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ellipticity is altered by turning the crossed polaroids, it is observed that there 
are two settings of the coupled polaroids (symmetrically situated with respect 
to the principal planes of the 114 plates) where the optic axial directions are 
completely extinguished, confirming the view that the two waves propagated 
along this direction are elliptically po- 
larked. Fig. 74c illustrates one such 
position, where the major axis makes 
an angle of -45". Q in this case is ne- 
gative. 

@) Measurement of the optical rotatory- 
power in the presence of weak dichroism. 
The variation of the rotation of the 
plane of polarisation with azimuth of the 
incident vibration may be explained by 
using the results of Sect. 53. The plane 
vibration is resolved into two elliptic 
vibrations which are propagated with 
different velocities but with the same 
absorption coefficient. These have to be 

- b'. =: 
Fig. 74 a-c. Biaxial interference figmes exhibited by amethyst quartzin red light ( 2 ~  tk). (a) Betweencrossed polaroids 
with the polariser and analyser direction at 45' to the axial plane. The optic axial directionis not extinguished. (b) The 
analyser mta+ed-to extinguish the optic axial direction. (The crystal is rotated to keep the polariser and analyser sym- 
metrically oriented with respect to the axial plane.) (c) Optic axial directions extinguished between an elliptic polariser 

and a crossed elliptic analyser. 

\ 
compounded after emergence from the plate. The actual rotatory power may be 
calculated from the measured rotations a, and a, observed with the incident 
vibration Iying respectively parallel and perpendicular to the major axes of the 
ellipses propagated along the optic axis. In the former case the incident vibra- 
tion represented by a point M (on the equator) Fig. 75 will be decomposed into 
two vibrations in states A and B which have the same longitudes as M .  Since 
M is equidistant from A and B, and it lies on the arc A B itself, the intensities 
of the component beams will be equal and their initial phase difference will be 
zero [according to Eq. (4.10)]. The waves, on emerging from the piate, will 
have a phase difference y, but will still be of equalintensity because of the equality 
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of their absorption coefficients. Hence they will compound to give a vibration 
whose state will again be equidistant from A and B i.e. a linear vibration re- 
presented by a point C, on the equator. If &; be the area of the triangle Cl,BA 
where C,, is a point opposite to Cl then $ E ;  =n- p,. The spherical excess of 
the right angled triangle C,,BM is given by 

t an i~ '= t ancc , t an&(?~-2xJ  (71.1) 
and so 

cot $ p, = tancc, cot or,. (71.2) 

Fig. 76 a. Fig. 76 b. 

Fig. 75. The P o i n d  sphere representation for explaining the apparent variation of optical rotation with the azimuth 
of the incident vibration in a biaxial crystal showing weak dichroisn. 

Fig. 76 a. Plate cut normal to an optic axis along which waves are propagated linearly polarised in non-orthogonal states 
A, and A=. 

Fig. 76 h. Convergent light figure depicting the variations of 'the states of polarisation of the waves for directions of 
propagation for particular zones in the field of view. 0, and 0, are the optic axes along which two non-orthogonal linearly 

polarised vibrations are propagated unchanged 
- 

On the other hand if the azimuth of the incident vibration is parallel to the minor 
axis, it is represented by the state M'. The two initial vibrations A and B into 
'which it is split will have an initial phase difference of -n and a final phase 
difference of q~ - n. The corresponding linear vibration obtained by composition 
being in the state C,. Hence p, should be equal to half the spherical excess of the 
triangle C2,A B where C,, is the point opposite to C,. Proceeding as before 

tan$p, = tanotana,.  

From (71.2) and (71.3) we get 
tan a, tanz w = - - a 2  

and 
tan2 p, = tan oc, tan a,. 
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From (71.5) we can calculate the relative phase advance p7 gained by the faster 
wave on passage through the plate. The relative phase difference per unit path 
(q/d) is not directly equal to 1 2 Q 1 since the waves are not circularly polarised but 
is related to it by equation 

C , - d 

Fig. 77 a-d. Convergent light figures in amethyst quartz. (a) and (b) show the only two settings betwem crossed pdaroids 
for which genuine isogyres passing through the optic axial directions are observed. The polariser and andyser settings 
are parallel to O'Al and O'A, of Fig. 76(b). (c) and (d). The'optic axial directions crossed by turning the analyser from 

the crossed position. The palariser and analyser make equal angles (5 59". * 84g) with the axial plane. 

'h 
The numerical ellipticity I w 1 of the vibration propagated along the optic axis 
which is to be substituted in (71.6) can be determined from (71.4) or may be 
determined directly from the observations with the elliptic polariser and crossed 
elliptic analyser, described above. In the case of amethyst rough measurements 
show that the ellipticities determined by these two methoe are practically the 
same. Further the optical rotation determined is also of the order of rotation in 
quartz. 

72. Phenomena along the optic axis when dichroism is strong. The same 
sectors of amethyst which exhibit the phenomena (described in the last section) 
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associated with weak dichroism can be used to study the case when k > lael 
by using a wavelength which lies in the heart of the absorption band. In fact, 
the dichroism for yellow light is so large that even the phenomenon of optical 
activity can be only inferred indirectly. When the convergent light figures 
are observed between crossed polaroids the optic axes in general are not ex- 
tinguished. However there are two settings of the incident vibrations for which 
genuine isogyres are observed passing unmodified through the optic axes (Fig. 77a 
and b). This has a certain resemblance to the phenomenon observed in inactive 
absorbing crystals. But in this case the two settings of tk,incident vibrations 
are not at right angles but are equally inclined to the line drawn at 45" to the 
axial plane. Thus the waves propagated along the optic axes are not two ortho- 
gonal linearly polarised waves as in inactive absorbing crystals, but are linearly 
polarised along two non-orthogonal directions OA, and OA, (Fig. 76). This 
agrees with the deductions from theory in Sect. 53 y. 

For any general setting of the incident vibration it is always found possible 
to extinguish the optic axial direction by rotating the analyser from the crossed 
position (Fig. 77c and d). This shows that the two waves cannot differ in their 
velocities but only in their absorption coefficient. The incident linear vibration 
will then be decomposed into two non-orthogonal vibrations in states P' and P" 
according to the parallelogram law. After being differentially absorbed the 
vibrations emerging from the plate may be compounded (again by the parallelo- 
gram law) to yield a linear vibration whose azimuth would always have turned ~ 

towards the less attenuated state P'. Hence by noting the settings of the polariser 
and the corresponding setting of the analyser at  which the optic axis is extinguished, 
a simple calculation based on the above explanation enables the difference in the 
absorption coefficients (k" - k') of the waves propagated along the axial direction 
to be estimated. The linear dichroism can be determined from the formula 

k" - k' = k cos 2y1 (72.1) 

and the optical rotatory power could be obtained from the formula 

Here again approximate measurements show that the rotatory power of amethyst 
is practically the same as that of uniaxial quartz. 

73. Other phenomena in the vicinity of the optic axis. a)  Formation of isogyres 
We have seen in Sect. 72 (Fig. 77a and b) that the optic axial direction appears 
extinguished between crossed polaroids when the vibration direction of the po- 
lariser is parallel to either O'A, or O'A, (Fig. 76b). Consider for example the 
former position. It is not the optic axial directions alone that are extinguished 
but all points on a dark isogyre, one branch of which coincides with A,OA;. 
The isogyre would have occurred in the same position even in a transparent optic- 
ally inactive crystal. Hence for any point on the isogyre one of the principal 
planes of linear birefringence lies parallel to O'A,. For such a direction, a vibra- 
tion parallel to O'A, will therefore remain unchanged for an infinitesimal opera- 
tion of linear birefringence. The same vibration also remains unaltered under 
the combined effects of the two succeeding operations of linear dichroism .and 
optical rotation. (This is proved by the fact that it is propagated unchanged 
along the optic axial direction where these two factors alone exist. I t  may be 
remembered that the factors of linear dichroism and optical rotation are regarded 
as constant over the field of view.) Hence for all points on the hyperbolic arc 
A,O,A; one of the waves is linearly polarised parallel to O'A,, thus explaining 
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the formation of isogyre when the polariser vibration is parallel to OrA1. By the 
same argument for any point on the hyperbolic arc A,OIAL one of the waves is 
linearly polarised parallel to O f A l ,  thus explaining the formation of the iso,ve 
when the polariser vibration is parallel to O'A,. By the same argument for any 
point on the hyperbolic arc A,OIA;l one of the waves is linearly polarised parallel 
to O'A,. Hence when the polariser vibration is parallel to O'A,  a second set of 
isogyres, one branch of which coincides with A201AL should be formed. -This is 
in accordance with experiment. Fig. 77 shows that one wave is linearly polarised 
for any point on AIOIA; and A,O,A;. The other wave is elliptically polarised 
approximating to a linear vibration a t  the border of the figure. Qualitative 
observations with an elliptic polariser and a crossed elliptic analyser have con----.. 
firmed these and other predictions of theory. 

,9) The sing.ullar axes. We have seen that singular axes occur where the prin- 
cipal planes of linear birefringence and linear dichroism are inclined at  45" to 
one another and where A becomes equal to k (Sect. 55). It can be shown that 
they are located on either side of the optic axis along a line drawn perpendicular 
to the axial plane. Two singular axes are associated with each optic axis. The 
wave propagated unchanged along any singular axis is elliptically polarised. 
This and other properties have been discussed in Sect. 5 5. Using a suitable elliptic 
polariser and a crossed elliptic analyser, two singular directions, one associated 
with each optic axis can be extinguished a t  a time. 

y )  Observations with +olariser and analyser alone. I t  is clear that with a 
polariser alone set in front of the plate the optic axial direction Ol will appear 
darkest when the polariser vibration is parallel to O'A,  i.e., to the vibration 
direction of the more heavily absorbed wave propagated along the optic axis. 
The absorption coefficient of all the plane polarised waves propagated along the 
points on A,OIAi is the same since their direction of vibration makes the same angle 
with O X k ,  0 Yk . Hence a pair of brushes appear a t  the same setting of the polariser, 
passing through the two optic axes (one of the brushes being coincident with 
A,OA;). The phenomenon is akin to the appearance of brushes in the case of 
absorbing inactive crystals when the polariser vibration is set along the more 
strongly absorbed linear vibration propagated along the optic axis. However, 
as A ,  and A, are not orthogonal (unlike the case in the inactive absorbing crystals) 
the setting of the polaroid at  which the optic axis appears darkest becomes dif- 
ferent when the polaroid is placed behind the plate and used as an analyser. 
In  this case the analyser vibration has to be parallel to 0' A; so that it will be 
crossed with respect to the less absorbed linear vibration 0 A,, propagated along 
the optic axis. At the same setting of the analyser the less absorbed wave pro- 
pagated&ng any direction on the hyperbolic arc AIOIA;  is also crossed out- 
since it is also linearly polarised parallel to O'A,. Hence a pair of hyperbolic 
brushes are formed (one of which coincides with A,01A3. Very simple arguments 
show that the intensity of the brush observed in this case is the same as that 
observed with the polariser alone with its vibration parallel to O'A,. 

I t  may be noted that in the two cases, not only do the settings (of the polaroid) 
at which the brushes occur differ, but also the positions of the brushes themselves. 

Idiophanic rings also appear when the crystal plate is viewed with a polariser 
alone or an analyser alone. The reasons for their appearance are broadly the same 
as those in the case of the inactive absorbing crystals (Sect. 68) and may be traced 
to the fact that the two waves that are transmitted along any direction are non- 
orthogonally polarised. These can be analysed using the general principles out- 
lined in Sect. 68 to 70. The effects presented with a linear polariser alone are 
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in general not the same as those observed with a linear analyser alone at  the same 
setting (except for certain special settings). This again proves that the non- 
orthogonally polarised waves propagated along a general direction cannot be of 
the special type obtaining in inactive absorbing crystals. 

6) Brewster's brushes. For directions not too close to an optic axis the squares 
of the ellipticity of the waves may be neglected even if the first powers of these 
quantities may not be negligible. For such directions we have already seen that 
the absorption coefficients of the waves will practically be the same as in the 
absence of optical activity. To this degree of approximation the formation and 
the position of the BREWSTER'S brushes may be treated as for inactive absorbing 
crystals. It may however be remarked that since the optic axial an@@? amethyst 
is small the discussion for the position of the BREWSTER'S brushes given in Sect. 668 
(for iolite) for large optic axial angles must be correspondingly modified. 

IV. Passage of light through birefringent plates. 
74. General theory. The study of the passage of light through a system of 

birefringent plates is of particular interest in two applications, namely the theory 
of compensators and of birefringent filters. The general theory may be readily 
worked out in terms of the PoincarC representation, following the methods out- 
lined in Sect. 5 8. 

The complete solution in the important case when all the plates exhibit ordi- 
nary linear birefringence forms one of the oldest applications1 of the PoincarC 
sphere but may be briefly described not only because of its elegance but because 
analytical discussions of the problem are still not uncommon. Let 6,, 6, . . . 6, 
be the phase retardations introduced by the constituent plates, the orientation 
of the fast axes being represented by the points A,, A, ... A, on the equator, 
the arc A,,, A, being denoted by 26m (see Fig. 78). Consider the solid pyramidal 
figure obtained by joining the centre 0 of the sphere to the vertices of a spherical 
polygon A,A;A; . . . A',A1 drawn as indicated such that the angle a t  A, is (n - 6,) 
and the sideis equal to 28*. The angle z- 6 at A' and the adjacent sides A',A;+, 
are automatically determined Ijy constructing the polygon. We have to combine 
successive rotations 6,, 6,, ..., 6, about the equatorial radii A1O, A20, ... A,O. 
This will cause the pyramidal figure to be rolled on the equator, the vertices 
A;, A ; ,  . . . , A:, A' of the polygon being in succession brought to coincide with 
A,, A,, . .., A,A, the figure coming to rest with AXA' resting on the equatorial 
arc A,A. The final orientation of the pyramidal figure could equally well have 
been produced by the following two successive operations: (a) an anticlockwise 
rotation 2e about the polar diameter through the arc A'A which is the excess 
of 2 n  over the sum of the sides of the polygon, and (b) a clockwise rotation 6 

- about the axis A 0  where arc A A, is equal to the side 2 6  of the polygon. - . -  

Thus the combination is equivalent to an optically active plate of rotation Q 

followed by an ordinary birefringent plate of retardation 6, the orientation of 
the slow axis being determined by the angle 26. I t  is more convenient (using 
the formulae of spherical trigonometry) to determine 2 ~ ,  6 and 2 6  by drawing 
the polar polygon (Fig. 78b) B, B, B, . . . B, such that the sides B,-, B ,  = 6, - 
and the angle Q Bm-, B,Bm+, =n- 28%. We then have 6 = B, B, and 2 8  = 
Q B,-,B,, B, while 2~ is the spherical excess or area of the polygon-thus deter- 
mining completely the two optical elements to which the combination is equi- 
valent. 

H. POINCARES: Th6orie Math. de la lumi&re, Vol. 11, p. 266. Paris 1892. 
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If the w plates in the system are all non-dichroic, then the effect of each plate 
is to rotate the point representing the state of polarisation on the PoincarC sphere 
through an angle Sf  about some axis. If this operation is denoted by Ri(Si), 
the resultant is again a rotation 

R (6) = Rl(8J . . . Ri (d;) . . . R,, (6,) . (74.1) 

Fig. 78 b. 

Fig. 78 a. - .  Fig. 79. 

Fig. 78 a and b. Poincd representation to calculate the effect of a series of linear hirefxiwent plates. 

Fig. 79. T6e Poinmb representation showing the effect of reversing the direction of the light beam on the intensity 
transmitted by an optical system. 

Thus, the whole system is equivalent to a single plate exhibiting both optical 
activity and linear birefringence; of appropriate thickness, or to a combination 
of two plates, one of which exhibits pure circular birefringence, while the other 
has only pure linear birefringence and is oriented at  a suitable azimuth*. If now 
light traverses the system ih the reverse direction, then the resultant operator is 

This result is, of c&se, true only if the optical activity present is natural, not 
of the magneto-optic type. 

A consequence of this result is that if the system is placed between a polariser 
and an analyser, then the fraction of the intensity transmitted by the system is 
the same when light traverses it either way, for all azimuths of the polariser 
and analyser. If P is the state of the incident beam (Fig. 79) and Q that of the 

This result has been proved by the matrix method by H. HURWITZ jr. and R. C. JONES: 
J. Opt. Soc. Amer. 31, 493 (1941). Some of the results proved below have also been obtained 
by a modification of this method, using quatemions, by H.Y. Hsfi, M. RICHARTZ and Y.K. 
LIANG: J. Opt. SOC. Amer. 37, 99 (1947). -A 
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analyser, then the transmitted intensity in the f is t  case is cosz* P ~ Q ,  while in 
h 

the second - case, it is cos2 4 PQr. I t  is obvious from the diagram that the arcs P? 
and PV are equal, making the two intensities equal. The transmitted intensities 
are however unequal if the system of plates is alone reversed, keeping polariser 
and analyser unchanged. If the polariser and analyser are crossed, then the 
transmitted intensity is unchanged even when the system alone is reversed, which 
happens because P and Q are then antipodal to each other on the Poincar6 sphere. 

Since rotations about non-coincident axes are in g&er$ non-commutative 
operators, it is not possible to interchange the order of two plates without affect- 
ing the state of polarisation of the emergent beam. If, however, two successive 
plates have their principal planes parallel (the fast directions of the two may 
be parallel or at right angles), then they may be interchanged. This follows at 
once from the fact that the corresponding rotations in PoincarC space are about 
the same axis, but may be of the same or opposite senses. 

The particular case of three doubly refracting plates kept between a polariser 
and analyser is of interest in the theory of compensators. The azimuth of the 
polariser is taken to be zero, and let those of the analyser and of the three plates 
be a,, y,, y,, y3. Then, the fraction of the incident intensity transmitted by the 
system is z3 given by the following formula: 

5=cos2a,+4sin2 y,~in2(y--~,) c0s2(~,-y,) cos2(y3-y,) sin26,/2sin26,/2sin2 S3/2 $ 

+ sin 2 yl sin 2 (a, - y,) sin2 6,/2 $. sin 2 y, sin 2 (a, - y2) sin2 6,/2 + 
+sin2y ,~ in2(y-y~)s in~6~/2-s in2~~s in2(y-y~)  [ ~ 0 ~ 2 ( y , - y J s i n ~ & / 2 ~  
x sin 6, sin 6, + sin2 8,/2 sin 6, sin 6, + cos 2 (y, - y,) sin2 d3/2 sin 6, sin 6,] + 
+ 2 [sin 2 ylsin 2 (g, - y,) sin d1/2 sin 642 {COS 6J2 COS 6,/2 - cos 2 (y, - y j  X 

x sin 6J2 sin 6J2) + 
+ sin 2 y2 sin 2 (a, - y3) sin 6,/2 sin a3/2 {cos 6,/2 cos 6,/2 - cos 2 (y, - y,) x 
x sin 6,/2 sin 6,121 + 
+ sin 2 y3 sin 2 (a, - y j  sin 6,/2 sin 6J2 {COS a3/2 cos 6J2 - cos 2 (yl - y3) X 

x sin d3/2 sin 6,/2}]. 

For two plates and a single plate, these reduce to the expressions1: 

t, = COS' a,+~in 27, sin 2 (p-yJ sin2 6,/2 + sin 27, sin 2 (a,-?,) sin2 6,/2 + 
+2 sin2 yl sin2(a,-y,) sin 6,/2 sin 6,/2 {cos 6,/2 cos 6,/2-cos2(y2-y,) sin 6,/2sin 6,/2}; 

} 174.4) 

tl = cos2 a, + sin 2 yl sin 2 (y - y,) sin2 6,/2. (74.5) 
We shall not consider the applications of these formulae further here. 

If some of the plates in the system are also linearly dichroic (these may be 
called as partial polarisers), then the following theorems hold,: 

(a) A system consisting of any number of partial polarisers and circularly 
birefringent plates is equivalent to a combination of two elements, one a partial 
polariser and the other a circularly birefringent plate. 

(b) A system consisting of any number of (linearly or circularly) birefringent 
plates and partial polarisers is equivalent to a system containing four elements- 
two linearly birefringent plates, a partial polariser and a circularly birefringent plate. 

H.G. JERRARD: J. Opt. SOC. Amer. 38, 35 (1948). 
For a proof see H. HURWITZ jr. and R.C. JONES: J. Opt. SOC. Amer. 31, 493 (1941). 
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75. Birefringent filters. An interesting application of the propagation of light 
through birefringent crystals and the,interference phenomena exhibited in polarised 
light is to the design of narrow-band filters for obtaining monochromatic light. 
The device, which is known as the birefringent filter, was first invented by LYOT~, 
although one was constructed independently by OHM AN^. The filter is mainly 
used for astrophysical purposes. A detailed account of the theory and practical 
details have been given by LYOT~ and more recently by  EVANS^. 

Suppose monochromatic light is incident normally on a uniformly-thick 
birefringent plate of thickness t. If the polariser and analyser are kept parallel, 
at an angle of 45" to the principal planes of the plate, then it follows from (69.5) 

" I 2 x  232 'h that the transmitted intensity is just cos2 - 8 where 6 = - (n'- n") t = - p t . 
2 a A 

If we put $ = N, say, which may be called the order of interference, then the 

transmission is t,= cos2nN. If con- 
tinuous radiation is used, the order 
of interference would vary with 
wavelength and one thus obtains a 

sinusoidal fringes with minimum 
intensity zero in the spectrum of 
the transmitted light. The fringe b 

width is given by I 

ji 1 

"=7 --- 1 ap - (75.1) C 

I 
P a1 

Suppose now a second crystal of 
twice the thickness as the first is a 
placed after the above system with 
its principal planes parallel to the 
first crystal and is backed by an 
analyser parallel to the other two -A 
anal~sers' Then the trans- Eg. 80. Transmission curves for birefringent filters. (a) One 
mitted by the system is element of thickness t. @) One element- of thiclmess 2f. 

(c) Two elements t and 2t. (d) One element 4f. 
(e) Three elements t, 2t  and 4t. 

t2=cos2nNcos22nN. (75.2) 

The transmission curves for tl and z2 are given in Fig. 80 from which it will be 
seen that there is appreciable transmission only near the maxima of t,. Further 
elements, c~)gnjosed of crystal plates of thickness 2't backed by polarisers, may 
be added, and the effect will be to make the principal maxima sharper, while 
at the same time suppressing the transmission in between them. If there are 1 
such elements, the transmission of the filter is 

This expression can be put in a more elegant form as follows. Expressing 
the cosines in terms of exponential functions and substituting n N  by the 

B. LYOT: C. R. Acad. Sci., Paris 197, 1593 (1933). 
Y. OHMAN: Nature, Lond. 141, 157, 291 (1938). : B. LYOT: Ann. Astrophys. 7, 31 (1914). 
J. W. EVANS: J. Opt. SOC. Amer. 39, 229 (1949). 
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from which it is seen that an interference filter composed of plates is similar 
to a grating of 2l lines and the secondary maxima have relative intensities equi- 
valent to those associated with such a grating. 

If there is no loss by absorption or reflection, then the transmission at the 
peak of the principal maximum is unity. Theoretically, therefore, there is no 
loss of intensity. In practice, the peak transmission is of the order of 30 to 40%. 

A birefringent filter has usually six to eight elements, which are cemented 
together or immersed in oil to avoid multiple reflections. A typical example is 
the one which has been in use at the High Altitude Laboratory at Climax, Colorado, 
U.S.A.I. I t  consists of six quartz elements with N=23, t,= 1.677 mm, t6=53.658 
mm and the peak has an effective width of 4A centered on the H, line (6563 A), 
at a temperature of 35.5" C2. Since both the thickness and birefringence vary 
with temperature, good temperature control is required. For quartz, the peak 
shifts by-0.66 A per degree rise of temperature in the red region. 

While the above theory is satisfactory for normal incidence, the order of 
interference would obviously vary if the light traverses the filter at an angle to 
the normal. The theory of such effects has been considered and it has been pos- 
sible to design filters having a much wider fieId of view than the simple type 
described above. The principle is essentially to split each element into two or 
three parts and to choose the material and orientation of these parts in such a 
way that the variations in N are compensated as far as possible. Details of 

- these may be obtained from EVANS' review mentioned above3. 
I t  would obviously be a great advantage if the transmission peak of a birefrin- 

gent filter can be adjusted. Control of temperature has been suggested and 
attempted by LYOT, but it is not very satisfactory. An alternative method is to 
vary the thickness of each element, which may be made as a pair of wedges as 
in the Soleil or Babinet compensator. A third method will be to have a phase 
shifter-capable of introducing a path retardation of upto one wavelength. This 
may be either of the photoelastic or electro-optic type4. A one-Angstrom pass- 
band filter has been constructed using ammonium dihydrogen phosphate (ADP), 

J.W. EVANS: J. Opt. SOC. Arner. 39, 229 (1949). 
2 Other designs for a Lyot filter are given by A.B. GILVARG and A.B. SEVERNYI: J. 

Tech. Phys. USSR. 19, 997 (1949) and by L. BERTI: NUOVO Cim. 9, 304 (1953)- 
3 Methods of reducing the stray light are discussed by R. G. GIOVANELLI and J.T. JEFF- 

RIES: Austral. J. Phys. 7, 254 (1954). 
B.H. BILLINGS: J. Opt. SOC. h e r .  37, 738 (1947). 
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which has a birefringence five times that of quartz1. For a 1 A band-pass filter, 
the thickest plate would have to be nearly 24 cm thick, if made of quartz. With 
NIP, a thickness five times less would be sufficient, but the tolerances are also 
more severe (f 0.6 micron). By using mica corrector plates, the tolerances are 
made less critical. The filter consists of seven elements and the thicker elements 
are split in order to increase the angular field of view to 1". The filter is tem- 
perature controlled to work a t  (40&0.05)"C and is also equipped with a SCnar- 
rnont compensator a t  each end, in order that the pass band may be adjusted, 
over a range of about 3 A. 

An entirely different type of birefringent filter in which all the plates are of 
the same thickness, but their principal planes are rotated with respect to one 
another has also been 

V. Miscellaneous topics. 

76. HAIDINGER'S rings in birefringent crystals. The interference rings observed 
between plane parallel surfaces under diffuse monochromatic illumination are 
of great importance in view of their practical applications in the construction of 
spectroscopes of high resolving power. These rings were first observed by HAI- 
DINGER in mica. Mica being a double refracting substance there shollld be two 
systems of rings superposed on each other due to the beams that are polarised 
at  right angles to each other. This superposition causes regions of maximum 
and minimum visibility in the field of view. This was first noted by RAYLEIGH~ 
in 1909 and this phenomenon was investigated in great detail by CHINMAY~~NAN- 
 DAM^. Later very beautiful photographs of this phenomenon have been published 
by other authors5. 

For an isotropic medium the path difference 6 between the two interfering 
rays is 6 =2nt cos r where t is the thickness of the plate and n is the refractive 
index and the dark rings appear when 

In  the case of a birefringent crystal the incident ray is split into two rays polarised 
along and perpendicular to the principal vibration directions. And in a mica 
plate where the acute bisectrix is practically normal to the plate there would be 
two sets of fringes which satisfy respectively equations 

where n and m are integers. The points of minimum visibility will correspond 
to the case when tGe dark rings of one set fall on the points which correspond to 
the bright rings of the second set i.e., when 

B.H. BILLINGS, S. SAGE and W. DRAISIN: Rev. Sci. Instrum. 22, 1009 (1951). 
I. SOLE: Czech. J. Phys. 4, 53 (1954). 
Lord RAYLEIGH: PhiI. Mag. 12, 489 (1906). 
T.K. CHINMAYANANDAM: Proc. Roy. Soc. Loud., Ser. A 95, 177 (1919). 
A.H. PFUND: J. Opt. SOC. Amer. 32, 383 (1942). - B.H. BILLINGS: J. Opt. SOC. Amer. 

35, 570 (1945). 
Handbuch der Physik, Bd. XXV/1. 1 I 
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where (N - M )  is an integer. Hence a line of minimum visibility satisfies the 
condition that the respective orders of the rings of two sets have a constant 
difference N - (M + &). Hence the curve of minimum visibility is given by the 
equation 

+ =2t(% C O S Y ~ - ~ ~ C O S Y ~ )  (76.4) 

which is the equation for the isochromatic lines in a convergent polarised light 
for a plate of thickness 2 t  [see Eq. (63.1)]. This has been verified by experiment. 
I t  must be mentioned that this analogy between the linesbf.,@nimum visibility 
and the isochromatic lines in convergent polarised light is applicable only to 
the case of crystals with the surface perpendicular to the axes of optical symmetry 
and not to crystals cut in any random manner. Fig. 81 illustrates the MoirC or 
scalar fringes observed. - 

Fig. 81. HAIDINGEE'S rings in a mica plate. 

CHINMAYANANDAM has discussed in detail the two cases when the optic axial 
angle is large and small. In  the case of a plate of calcite (uniaxial crystal) cut 
normal to the optic axis n will assume two values n, the ordinary index for the 
vibration at right angles to the plane of incidence and ni given by 

Hence the two sets of interference rings will be given by 

2tnen, cos r, =ml 
[n,2 cos2 rC + n: sin2 re]& 

where the subscript w refers to the ordinary ray and E to the extraordinary ray. 
The patterns will be independent of each other and a single linear polariser will 
extinguish a large part of two opposite quadrants of the circles. 

In viewing these fringes when the plates are not perfectly parallel BILLINGS 
found that the technique developed by RAMAN and F ~ J A G O P A L A N ~  proves in- 
valuable. They showed that the effects of irregularity in the specimen could be 
effectively removed by using a very small section of the plate. 

C.V. RAMAN and V. S. RAJAGOPALAN: J. Opt. SOC. Amer. 29, 413 (1939). - Phil. Mag. 
29, jOS (1 940). 
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77. Conical refraction. a) Ge.nera1. The phenomenon of internal conical 
refraction was first observed in aragonite by HUMPHREY LLOYD l. But it may be 
very much more conveniently observed with naphthalene2 for which the angle 
of the cone is 13 "44' as compared to 1" 52' in aragonite; so much so that the conical 
refraction can be exhibited in the same way as ordinary birefringence is by view- 
ing a line of print through an appropriately cut crystal plate. To observe it 
conveniently a plate cut approximately normal to one of the optic axes is kept 
on the Federov stage. The lower face is covered with a screen with a very small 
aperture. With parallel light incident from below a suitable adjustment of the 
stage enables the circle of light to be seen through the microscope which is with- 
drawn so that its focal plane lies above the crystal. The simple explanation of .. 
this phenomenon has already been consideredin Sect. 33 using the index ellipsoid 
and in Sect. 35 using the wave surface. According 
to these results when the wave normal of the pencil 
entering the crystal is along the optic axial direc- 
tion, there are not just two ray normals but an in- 
finite number, lying in a cone with the optic axis as 
a generator. Since the wave normals are practically 
perpendicular to the second surface, they experience a) 
no refraction and the emerging pencil of rays is 
not a cone but a hollow cylinder (Fig. 82a). This 
may be easily verified by raising the microscope 
when it is found that there is practically no in- 
crease in the diameter of the ring of light. Further 
with the analyser above the microscope, the polari- h) 
sation a t  each- point is what is to be expected from 

Fig. 82, diagrams for ob- 
the explanation given in Sect. 33 if we consider all serving (a) internal conical refraction 

directions of linear vibration to be equallv probable (b) conic* rehction. 
A - -  

in unpolarised light. 
To observe the external conical refraction however, an extended source of 

light is used and both the upper and the lower surfaces of the crystal are covered 
up except for small apertures situated a t  the ends of the axis of single ray velocity. 
In  this case the emergent pencil forms a divergent cone as may be seen from the 
expansion of the ring of light when the microscope is raised (Fig. 82b). Both 
from the Fresnel ellipsoid and the wave surface we have seen that, when the direc- 
tion of the ray normal i sdong  the direction of single ray velocity, there are an 
infinite number of wave normals forming a cone with the optic biradial as one 
of the generators. Nevertheless this simple explanation is not quite adequate. 
For exa-le, according to it, while internal conical refraction is shown only 
when the wave normal is exactly coincident with the optic axis, for any slight 
deviation ordinary double refraction should ensue. It is true that, when the 
wave-normal is quite far from the optic axial direction, two points of light are 
seen near two diametrically opposite points on the circle of conical refraction. 
When the wavenormal is gradually brought towards the optic axis these two 
points are drawn out into the form of two circular arcs, one approaching the 
circle of conical refraction from the interior and the other from the exterior, 
the intensity a t  any point on the two arcs a t  the same time diminishing; when 
the setting is exact they run together to form a ring of light. Further, POGGEN- 
DORF and HAIDIWGER under better conditions have observed two concentric 

See SZIVESSY [I], POCKELS [Z ]  for earlier literature. 
2 C.V. RAMAN, TI. S. RAJAGOPALAN and T.M.K. NEDUNGADI: Nature, Loud. 147, 262 

(1941). 
If* 
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rings of light separated by a fine line, the Poggendorf dark circle actually cor- 
responding to the directions where we should expect true conical refraction 
according to the elementary explanation. 

The simple explanation of this phenomenon given by V O I G T ~  is along the 
following lines. We have to take into account the fact that we are concerned 
with a pencil of rays with a finite divergence, any limitation even of a plane 
wave-front leads in fact to such a divergence. Representing directions by cor- 
responding points on the surface of the sphere, the small region in the vicinity 
of the optic axis may be approximated by the plane of the paper in Fig. 83. 

Here hi, and R, represent the optic axis and the optic biradial, NIRl being 
the axial plane. Let the direction of P, the wave-normal close to the optic =is 

be specified by i tspolar  coor- 
dinates r, y  with respect to the , optic axis and let the corre- 
sponding directions of the ray 
normal be specified by R, @ 
measured with respect to the 

4 )  optic biradial Rl. The principal 
planes S, P and S ,  P correspond- 
ing to the wave normal P are 
obtained by bisecting internally 
and externally the angle be- 
tween PN, and the horizontal 

/ 
' s ,  

line PN2 which proceeds to the 
/ 

L- ---' other optic axis N,. Hence it 
Fig. 83. Figure ~llustrating the simple explanation of the Poggen- may easily be shown that Sl P 

dori cirde. N,, N,  optic axial directions (binormals); 
R,, R? directions of the biradlals. is inclined a t  an angle + 5 to 

the axial plane, the other plane S,P being at  right angles. The points of 
intersection of these two lines with a line through Rl parallel to N I P  will be 
the direction of the ray normals Sl and S ,  corresponding to the wave normal P. 
This may be verified from the fact that S I P  bisects the angle between SIRl 
and SIR2 where R2 is the other biradial (Sect. 33). Then by a little geometry it 
may be shown that RISl=RILVl+~ and R,S2=R,Nl- r. Thus the polar co- 
ordinates R ,  CD of the two ray normals will be (x+r), n and ( x - y ) ,  ( y f  n), 
where ;C = RINl the semi-angle of conical refraction. For directions appreciably 
inclined to the optic axis a small change in the direction of the wave normal will 
cause a corresponding small change in the directions of the ray normals so that 
a pencil of incident wave normals will emerge without appreciable change of 
divergence. Even for this case the distortion of the bundle of rays due to astig- 
matism is well known (STOKES~) .  On the other hand in the present case a small 
'change r d y  in the direction of the wave normal causes appreciable changes 
( X  + Y )  d  y  and ( X  - r) d  y  in the position of the ray normal Sl and S,. This lateral 
extension is not compensated for by a radial contraction, a small change dr 
causing an equal change d R  in the position of the ray normals. If we consider 
a pencil of wave normals about the optic axis we will obtain a ring of ray normals 
containing the circle of conical refraction. The portion of the incident pencil 
having the divergence r dr d y  will give rise to two sets of ray normals with 
large divergences ( X  + r) d y  dr and (;c - r) d  y  dr. Since energy must be con- 
served the intensity will be reduced by the factor w y / ; ~ .  As r tends to zero the 

W. VOIGT: Phys. Z. 6, 673, S1S (1905). 
C. G. STOKES: Sci. Pap. Cambridge 5, 6. 
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intensity tends to zero, so that the exact circle of conical refraction is a region 
of vanishing intensity. It is also clear that tfie vibration direction at  any point 
of the ring is parallel to the line joining that point to the optic axis. 

p) Obsevvations in naphthalene1. I t  is indeed remarkable that the above 
geometric theory is able to explain most of the general features of the phenomenon 
considering that the wave optical principles on which the very concept of the ray 
for directions of singularity can be justified have to be critically examined. It 
is therefore to be expected that the wave optical principles would furnish a deeper 
understanding of the subject. For example similar arguments based on geometrical 
optics could be used to explain the phenomenon of external conical refraction 
and in this case one would get an infinite concentration of energy along the axis 
of single ray velocity which would be physically inadmissible. 

In any case, as RAMAN has emphasised, the practical method of observing 
the conical refraction ties up the subject with the question of aberration of images 
viewed through biaxial plates. This is particularly the case with the arrangement 
usually regarded as demonstrating internal conical refraction wherein an il- 
luminated pinhole is viewed and focussed through a crystal plate by means of 
a microscope or magnifying lens. Since the pinhole is backed by an extended 
source of light, the phenomenon corresponds to neither the internal nor external 
conical refraction. The phenomenon in this case has been extensively investigated 
by R ~ N  and his collaborators and we shall describe some of these results. Using 
naphthalene it is found that the Poggendorf circle is an ultrafocal phenomenon 
completely disappearing in the position of best focus, the image being then a single 
circular ring that is extremely sharp. I t  is well known (WALKER [5]) that there 
are no fewer than four distinct positions of best focus for an image viewed through 
a biaxial plate these being determined by the principal radii of curvature of 
each of the two sheets of the wave surface. The image exhibits astigmatism 
being drawn out perpendicular to the principal planes of curvature, one of the 
principal radii of curvature of the wave surface is infinite along the circle of 
contact. In  the case of crystals for which the angle of internal and external 
conical refraction are nearly the same, as is the case with most crystals including 
naphthalene, the other radius of curvature is practically constant at  all points 
on the circle and changes only slowly as we move away from the circle along the 
wave surface either tow.ards or away from the conical point. Accordingly the 
astigmatism of the rays emerging from the crystal gives rise to a particularly 
simple form of image viz., a sharply focussed circular ring of the same diameter 
as the circle in which the wave surface makes contact 'with the second face of 
the crystal. When the microscope is raised, the Poggendorf circle develops and 
when it is focussed on the second surface of the plate, a luminous point is observed 
a t  the centre of the field of view showirtg the converse of the Poggendorf phenomenon, 
namely the intense concentration of energy along the axis gf single ray velocity. 
In fact with the micr.oscope focussed on the second surface, the field of view exhibits 
as it were an illuminited picture of the wave surface of two sheets, their inter- 
section appearing as an intensely luminous point and the circle of contact made 
by the tangent plane as a dark ring. The dark circle and the luminous central 
point can be traced to a considerable distance behind the crystal. The luminous 
point is in effect an image of an original pinhole. This remarkable phenomenon 
that a biaxial crystal cut normal to the direction of single ray velocity can form 
an erect image of a luminous source was first observed by RAM AN^ with aragnoite 

C.V. RAMAN, V.S. RAJAGOPALAN and T.M.K.NEDUNGADI: Proc. Ind. Acad. Sci. 
A 14, 221 (1941). 

C.V. RAMAN: Nature, Lond. 107, 747 (1921). 
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though it is better displayed with naphthalene. The image is in continuous focus 
and can be seen at great distances from the crystal plate. 

We have seen that for crystals having the angles of internal and external 
conical refraction nearly equal, a position of perfect focus can be obtained in 
which the Poggendorf circle vanishes. This is not the case in aragonite. A remark- 
able photograph taken with a specimen of this substance appears in RAMAN'S 1 

paper with the microscope adjusted to as near a perfect focus as possible where 
the two circles actually intersect! 

Fig. 84 a---d. Conical rehaction in  naphthalene. (a) Hollow cohe of external conical refraction. (b) Cylindcr of internal 
conical rehction. (Note the inteuse central spot which corresponds to the inverse of the Poggendorf phenomena.) 
(c) Image of source scrn in focus. Poggendori circle not present. (d) Poggendorf circle appears when image of rource is 

out of focus. 

78. Dispersion in birefringent crystals. Effects of dispersion on the optic axial 
figures. Since the refractive index is a function of the wavelength of the incident 
light, we s h d  briefly discuss the effects of dispersion with wavelength on the 
convergent light phenomena. 

In uniaxial crystals, although the magnitudes of o and s may vary with wave- 
length, the direction of the optic axis remains the same. There are a few uniaxial 
crystals which become isotropic at a particular wavelength. Of special interest 
is the case of the positive uniaxial crystal benzil whose birefringence progressively 
decreases as one goes from red to blue2. In fact at 1 =4900 a the crystal becomes 

1 C.V. RAMAN: Current Sci. 11, 44 (1942). 
' W.3I.D. BRYANT: J. Amer. Chem. Soc. 65, 96 (1943). 
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isotropic and for still smaller wavelengths the crystal becomes negative. 
Since b e n d  is an optically active crystal the investigation of the shape of the 
gyration surface when the index surface is a sphere would be of the greatest 
interest. 

In  the case of biaxial crystals, the variations in the principal refractive indices 
with wavelength may cause considerable changes in the optic axial angle-dis- 
persion of the optic axes-which may even be accompanied by changes in the 
optic axial plane itself (crossed axial dispersion). In the case of monoclinic and 

Fig. 8 ja. (a) Dispersion of opfjc axes in crystals. Orthorhombic crystals. (b) Monodinic crystals. (c) Triclinic crystals 

triclinic crystals for different wavelengths the orientation of the optical ellipsoid, 
may itself alter with respect to the crystallographic axes (dispersion of the 
bisectrices) . 

In  orthorhombic crystals, the axes of the index ellipsoid coincide with the 
crystallopaphic axes since the optic axial plane contains a and y, the acute 
bisectrix must be parallel to a, b or c axis. The bisectrices would therefore not 
change with wavelength and the interference figures would be symmetrical with 
respect to two planes that are a t  right angles to each other, their line of inter- 
section being a bisectrix (Fig. 85 a). 

In  monoclinic crystals one of the axes of the indicatrix (ci, #I or y) must coincide 
with the unique b axis, hence three cases are possible. When the b axis coincides 
with the /3 axis the plane of the optic axis (plane of a and y) coincides with the 
symmetry plane. The optic axial figures (with different wavelength) are no 
longer symmetrical with respect to a plane a t  right angles to the plane of the optic 
axes. When i3 and the acute bisectrix lie in the symmetry plane and the third 
axis coincides with the crystallographic axis b, the plane of the optic axis will 
lie at  right angles to the symmetry plane. This is called the Horizontal Dispersion. 
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Finally when the acute bisectric coincides with the crystallographic b axis, there 
is no dispersion of the bisectrix and the figure has a twofold axis of symmetry 
about the acute bisectrix. Fig. 85 b illustrates these cases. 

In the case of triclinic crystals the optic axial figure will show an unsymmetrical 
figure as the three vibration axes are dispersed (Fig. 85 c). 

P 
Fig. 85 b. Dispersion of optic axes in monoclinic crystal 

The plane of the optic axes contains the longest and the shortest axes of the 
index ellipsoid. In certain crystals the principal refractive indices vary so uniquely 
with wavelength that very peculiar effects arise. For example if in a particular 

Fig. 85c. Dispersion of optic axes in tridinic crystals. 

crystal %<n,<r, (where the subscripts 1, 2, 3 correspond to the principal axes 
of the index ellipsoid, then the optic axial plane would be the n, n, plane. As 
the wavelength of the incident light is changed if for a particular wavelength if 

' 
% =a, then the crystal becomes uniaxial while for a still further change of wave- 
length if n,<n, then the plane of the optic axes would get rotated to the n,n, 
plane. The famous case that is often quoted to illustrate this phenomenon of 
crossed axial dispersion is that of the orthorhombic crystal brookite where the 
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optic axid plane for red light is parallel to (OOI), the crystal becomes uniaxial 
for 1 5 5 50 and the plane rotates to (010) for lower wavelengths. Again the 
case of saccharo lactone (C,H,,O,), an orthorhombic crystal which is also opti- 
cally active and which exhibits this phenomenon, is of great interest. 

It may also be remarked that in many crystals (particularly those having low 
birefringence) the dispersion actually causes a change in the optical sign of the 
crystal1. 

D. Experimental techniques in crystal optics. 
49. The polarising microscope2. The polarising or the petrographic microscope 

is an invaluable instrument for optical research and in recent years its application 
has been extended to many fields of investigation. I t  was originally constructed 
for the examination of rock sections and its design has undergone many changes 
because of its varying uses. Stripped to its essentials, the polarising microscope 
differs from an ordinary microscope in that it possess a revolving graduated stage, 
a polarising device below and another above this stage. A removable amiliary 
lens (called the Bertrand-Amici lens) is present between the upper polarising 
device and the eyepiece. Fig. 86a represents the median section of a typical 
polarising microscope. 

The polarising microscope is used in two ways. When the Bertrand-Amici 
lens is not inserted, the optical system magnifies any object on the stage and the 
microscope acts as an orthoscope. The paths of the light rays for this arrange- 
ment is given in Fig. 86a. If however the Bertrand lens is inserted, it brings the 
eyepiece into focus on a focal plane of the objective, thus bringing the entire 
optical system to a focus at  infinity. This enables one to observe simultaneously 
all the bundles of parallel rays which pass in various directions through a plate 
placed on the stage. This is known as the conoscopic arrangement and is used 
for the examination of interference phenomena exhibited by crystals in "con- 
vergent light ". To make the convergence of the light entering the crystal large 
enough, a converger. can be introduced above the condensing lens. The paths 
of the light rays for the conoscopic arrangement is given in Fig. 86b. 

Some microscopes are provided with means for bringing the axis of rotation 
of the stage and the optical axis of the instrument into coincidence. This is 
essential if the crystal is to remain at  the intersection of the cross wire when the 
stage is rotated. But this difficulty is avoided in most microscopes by having 
a mechanism for rotating the polariser and analyser simultaneously, with the 
crystal on the stage remaining stationary. The polarising microscope is provided 
with alI the diaphragms and stops to be found in ordinary microscopes. In addi- 
tion there is a substage adjustable diaphragm below or above the polariser which 
can decrease the convergence of the incident light and is particularly useful in 
the measurement of the refractive index of a crystal by the Becke method. 
Another adjustable-diaphragm in the upper tube helps to isolate the interference 
figures in tiny crystals. This diaphragm if it is to be really effective for this 
purpose, must be situated where the real image of the crystal is formed. 

1 See W.M.D. BRYANT and J. MITCHELL: J. Amer. Chem. Soc. 63, 511 (1941); 65, 96 
128 (1943). See also A.E.H. TUTTON [12].  

Several excellent treatises some of which are listed below are available which describe 
the different parts and accessories of a polarising microscope. They also give full accounts 
of the different uses described in this and the following section. F.E. WRIGHT: Methods of 
Petrographic Microscopic Research. 191 1. - A. JOHANNSEN [ l o ] .  - H. ROSENBUSCH and 
E. A. WULFING: Mikroskopische Physiographic der Mineralogie und Gesteine. 1924. - 
N.H. HARTSHORNE and A. STUART [ I l l .  
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The eyepiece of the microscope can be replaced by oculars of other special 
types for the measurement of different optical characters under the microscope. 
These oculars amongst others include the scale, net grating, screw micrometer 
and planimeter oculars for the measurements of lengths and area, the ocular 

Fig. 86. 

a b 

The polarising microscope. (a) Light rays for orthoscopic arrangement. (6) Light rays for the 
arrangement. 

goniometer for measurement of edge angles, Bertrand half shadow ocular (which 
is actually a rotating biquartz (65 a)] for determining the exact position of extinc- 
tion, ocular compensators of the quartz wedge and the Babinet types for the 
measurement of small and large retardations, the dichroiscope ocular for estimat- 
ing the pleochi-oism and so on. The microscope has also recesses for the insertion 
of quarter-wave and full wave undulation plates, quartz wedge, Berek compen- 
sator, etc. for the determination of the optical sign and birefringence of crystals. 

Additional devices are used sometimes for mounting the crystal or the slide 
on the stage of the microscope. The mechanical stage is used for varying the posi- 



Sect. 80. Polarising microscope for reflected light. 

tion of the slide on the stage and is very popular with the mineralogists as the 
movement of the slide can be adjusted to a nicety. The rotation apparatus (e-g., 
the Miers stage goniometer or its simpler modification) is most useful in the 
determination of the optical characters of a crystal for different orientations. 
Most of these devices involve the fixing of the crystal on a rotatable support 
which in its turn can be attached to the revolving stage. The crystal can be 
immersed in a liquid of the appropriate refractive index when necessary,- The 
most versatile of this type of rotation apparatus is the Federov Universal Stage 
or its modification by EMMONS (Sect. 826). 

The microscope has usually linear polarising and analysing devices (either 
nicols or polaroids). By the introduction of retardation plates at  the proper posi- '-. 

tions the microscopes can be con- 
verted for observations with cir- 
cular or elliptic polarised light 

A 
I _ 

(Sect. 21 6). Achromatic quarter 
wave plates that have been de- 

-+F 

vised*. should prove quite use- 
ful in this respect. 

Normally the microscope has 
its tube axis vertical but it is 

@* I 

capable of being set with its 
axis horizontal. Such a setting ,r A, 
is found to be very convenient I ;  y$-++--srR I for the study of stress optic and >t 
thermo-optic behaviour of crys- 5' 
tals. 6 C, 

80. Polarising microscope for 
reflected lights. It is obvious that 

$" I I 

the microscope described above &M 
can only be used for the studies Fig. 87. Sdemat~c magram oi reflect= polarising m~mscope. 

of light transmitted by the spe- S = some, F = filter, Ax&. = apertures, C,, C. =condensers, P= 
polariser, VR = vertical reflector, 0 =objective, M = metal 

cimens. Since the important in- specimen, ST = sensitme tint, A = analyser, E = eypiece. 

vestigations of JAM IN^ and 
D R U D E ~  on the problem of the reflection of light by conducting and non-con- 
ducting materials, it has been realised that a polarising microscope for reflected 
light could be put to significant use particularly in metallography. Since the 
pioneering work of KONIGSBERGER~ and BEREK (see Sect. 60) in this field, various 
types of reflection polarising microscopes have been designed but only recently 
have these-aesigns been perfected. The most convenient set up for a reflection 
polarising microscope is given in Fig. 87. 

It ig customary to replace the nicols shown in Fig. 87 by polaroid sheets when 
visual observations are made. Owing to the anomalies that are likely to arise 

G. DESTRIAU and J. PROUTEAU: J. Phys. Radium 10, 53 (1949). 
S. PANCHARATNAM: Proc. Ind. Acad. Sci. 4 41, 130, 137 (1955). 

3 Several review articles on this subject have appeared which may be consulted for the 
details of this important instrument, e.g. B.W. MOTT: The Microscopy of Metals. London 
1 9 53. - G. K. T. CONN and F. G. BADSHAW: Polarised Light in Metallography. London 1952. 
B. W. MOTT and H.R. HAINES: Research 4, 24, 6 3 (1951). - B. W. MOTT and S. FORD: 
Research 6, 396 (1953). 

P. JAMIN: Ann. Phys. 19, 296 (1847). 
P. DRUDE: Wied. Ann. Phys. Chem. 32, 581 (1887); 36, 532, S65 (1889); 39, 481 (1890). 
J.  KONIGSBERGER: J. Zentr. Min. 1901, 195; 1908, 565; 1909, 245; 1910, 712. 
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due to the pressure and strains in the lenses etc., the analyser and polariser are 
placeci as close to the vertical reflector as possible. Considerable research is being 
done to get rid of this anomalyl. A further source of error is the ellipticity and 
the rotation of the plane of polarisation introduced by the vertical reflector. 
A large part of these errors have been reduced by coating the reflecting s~~rface 
of the glass plate with a highly refracting material like zinc sulphide and the other 

spPC/inen side with magnesium fluoride to reduce 
the effect of internal reflection inside 
the glass. 

Since most observations are made be- 
tween crossed polarisers, these difficul- 
ties have been avoided iii'3ame rnicro- 
scopes by the use of the Foster prism2 
and its principle is illustrated in Fig. 88 a. 
I t  consists of a calcite rhomb which is 
split and recemented with material of 
the same refractive index as the extra- 

b C 

Fig. 88 a-c. Foster polarising vertical illuminator. (a) Dark field illumination. (b) Bright field illumination. 
(c) A modification of the Foster prism. 

ordinary ray so that the ordinary ray is totally reflected (exactly as in a nicol 
prism) and absorbed on the blackened surface. The plane polarised extraordinary 
ray is transmitted to the specimen and unless a change in the polarisation occurs 
a t  reflection no light reaches the eyepiece. The unit therefore serves as a polariser, 
vertical reflector and analyser all combined. The correctness of the angle of the 
prism and the strain-free nature of the cementing medium are important factors 
for making the microscope efficient. A bright field illumination can be obtained 
by inserting a ii/4 plate between the objective lens and the prism (Fig. 88b). 

In another polarising vertical illuminator (Fig. 88 c), the reduction of the aper- 
ture of the objective present in the first prism is avoided. Unpolarised light passes 
through a lens and enters the glass prism passing through a thin calcite plate 

See for example B.W. MOTT and H.R. HAINES: Proc. Phys. Soc. Lond. B 66, 302 
(1953). 

L.V. FOSTER: J. Opt. SOC. Amer. 28, 124, 127 (1938). 
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and is reflected a t  the silvered surface of the calcite plate where a part of it vibrat- 
ing in a plane perpendicular to the plane of incidence is reflected to the objective. 
The other part is transmitted and absorbed a t  the lower part of the entering 
face, which is blackened. The light reflected by the specimen passes back through 
the objective and no light will be transmitted unless it is depolarised by the 
specimen. There will be complete polarisation in all parts of the field since the 
reflecting surface is the polariser and it is inclined at  an angle sufficient to include 
the angular field of the microscope. 

While the Foster prisms are a very great improvement over other types of 
polarisers in reflection microscopes, its chief disadvantage lies in that the con- 
dition for crossed polarisers cannot be varied. The microscope can be used for 
conoscopic observation by the use of an auxiliary lens. 

81. The shearing interference microscopes. When a wave is incident on a bi- 
refringent crystal plate placed between two polaroids, the two wavefronts emerging 

Fig. 89. Schematic diagram illustrating the principles of a shearing microscope. 

from the system are in a position to interfere (see Sect. 63). This property has 
been made use of in the design of certain microscopes for making objects which 
are actually transparent but with a refractive index slightly differing from that 
of the surrounding media, visible. We present only the most elementary ideas 
about these microscopes and follow the treatment given by FRANCON. For greater 
details the articles by FRANFON~, INGLESTAM, and the references given therein 
may be consulted. 

The basic principles of the shearing interference microscope can be made clear 
from Fig. 89. The object A is transparent with a region B whose refractive 
index varies from that of the surrounding medium. This introduces a phase 
change and the incident wavefront Wl gets distorted to the form W2. The light 
then passes through the birefringent system, PI and P, being two polarisers and 
Q a birefringent crystal. The lens which can either be placed before or after the 
birefringent system produces an image at B'. The distorted wavefront W, is 
doubled to W, and We by the birefringent system and, because of the polarisers PI 
and P,, these waves are,coherent and are in a position to interfere. If the doubling 
is comparatively large then the two wavefronts can be pictured as in Fig. 90a. 

In  the regions (a), (c) and (e) where there is not much distortion of the wave- 
fronts the path difference between the two wavefronts would be a constant given 
by A and due to the interference between the two wavefronts the h i n a t i o n  
in these regions would be the same. 

However in the regions (b) and (d), where there is a considerable distortion 
of the wavefront, the situation would be entirely different. If 6 is the maximum 

1 M. FRANGON: J. Opt. SOC. Amer. 47, 528 (1957). 
2 E. INGLESTAM: J. Opt. SOC. Amer. 47, 536 (1957). See also Vol. XXIV of this Ency- 

clopedia. 
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path difference variation due to B then the maximum path difference between 
W, and We at (b) would be (8 -A) whereas it would be (6 + A )  a t  (d). Hence due 
to interference effects the illumination a t  (b) and (d) would be different from 
that of the background and the object would become visible but it would neces- 
sarily be doubled. This doubling effect would be of no consequence if the object B 
is completely isolated from other objects. However such a situation rarely arises 
and it is usually arranged that the doubling is actually quite small with respect 
to the width of the object (see Fig. gob). Here again in r$gions (a) and (d) where 
the path difference is the same the illumination is the same but in regions (b) 

d and (c) where the path differ- 
b /-\ < 

I \ ence changes the object be- 
c : \  e comes visible. If d is the %_A A ----- \------ lateral doubling, the path dif- 

ference A' in the region (b) 
a having a slope d is given by 

A' =ad if the two wavefronts 

A ,/$ / however, are in phase the (i.e. two if wavefronts A =O). If 

1 \ d are not in phase the path ---lt--- / \----- d / difference in the region (b) is 
Af=crd--Aandin the region 

Fig. 90 a and b. The doubling of the wave front in a shearing microscope. (c) it is A ' = u d +A. The 
(a) Large doubling. (b) Small doubhg. object B therefore becomes 

visible. 
The first method of total doubling obviously corresponds to introducing a 

path difference in a manner similar to phase contrast microscopy. The second 
method obviously gives a differential method. 

JAM IN^ was the first to construct a polarisation interferometer while it was 
first applied to a microscope by LEBEDEFF~. JAMIN used two identical uniaxial 
crystal plates (calcite) cut at  45" to the axis and oriented in the same way. A 
half wave plate placed at  45" between the two calcite plates converts the ordinary 
and extraordinaq waves in the first plate into the extraordinary and ordinary 
waves respectively in the second plate. There is therefore a compensation of 
path differences in the two plates and observations can be made in white light. 
The object is placed between the two plates when there is doubling. The dis- 
advantages of this system are that (1) a calcite plate has to be introduced between 
the specimen and the objective and (2) the half wave plate is usually correct 
only for a narrow spectral range, (3) the system may not be useful for large 
macroscopic objects where large crystal plates have to be used. 

All these disadvantages have been avoided in the arrangement suggested by 
FRANCON where the two crystalline plates (made of quartz) are crossed-the 
axis of the second plate makes an angle of 45" with the plane of Fig. 91 a and 
the projection of the axis is shown as a dotted line. The rays inside the plates 
are also shown. WhileEO is in the plane of the paper,OE is not in the plane but 
is parallel to EO. The adaptation of this to a microscope is shown in Fig. 91 b, 
the part O,P,Q,Q,P,O, forming the interference eye piece which may be used 
11-ith any microscope it may be remarked that the unit Ql Q, when it has a large 
birefringence can be used for total doubling and from the hues present, a very 
accurate estimate of the optical thickness of the object can be made. When the 

JAMIN: C. R. Acad. Sci., Paris 67, 814 (1868). 
' LEBEDEFF: Rex-. d. Opt. 9, 385 (1930). 
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doubling is small the eye piece can be used with great advantage to observe 
objects with slight differences in refractive indices. Since the doubling used is 
quite small there is not too much loss of sensitivity. Using similar principles 
differential refractometers have been made for measuring extremely small changes 
in the refractive indices1. 

- 

6 4 
Fig. 91. FRAN~ON'S polarisation interferometer. 

82. Measurement of the refractive index2. K) 1mme~sio.a techniqzce. With the 
aid of the polarising microscope many of the optical constants can be measured 
for crystals. We shall not describe all the techniques nor the experimental de- 
tails, which are given in standard textbooks on the polarising microscope. We 
shall content ourselves by describing some of the procedures. 

The refractive indices of crystals are usually determined by the immersion 
method. The basic principle of the method is that when a transparent crystal 
is immersed in a liquid having the same refractive index it becomes invisible. 
This will occur accurately only for one wavelength at a time, as the dispersion 
of the refractive index of the solid and the liquid may differ. The immersion 
medium employed is usually a liquid3 and in rare cases a solid4. The variation 
in the refractive index of the medium to attain exact equality with that of the 
crystal is obtained by varying the relative proportions of two miscible liquids5, 
or by varying the temperature of the liquid6 or by varying the wavelength of 
observation7 or by varying both. 

A complete list of miscible liquids and the methods of determining their 
refractive indices are given in most standard works on petrographic microscopy. 
The last three methods given above make use of the property that the variation 
of refractive index with wavelength or temperature of a liquid is in general much 
greater than that of a solid. 

Two methods are used to distinguish whether the refractive index of a crystal 
is higher or lower than that of the immersion medium. 

(a) The  Becke method or the method of parallel illumination: With a high 
power objZcfiTe if the crystal is sharply focussed and if the objective is slightly 
raised, a bright line (Becke line) will appear near the border and will move into 
the substance having the higher refractive index. On depressing the tube the 
phenomenon is reversed. 

E. INGLESTXM: J. Opt. SOC. h e r .  47, 536 (1957). - R. BARER: J. Opt. SOC. Amer. 
47, 545 (1957). " See article by C.D. WEST: Physical Methods in Chemical Analysis, Ed. G. BERL, New 
York 1950 and the  references given therein. 

F.E. WRIGHT: The methods of Petrographic Microscopic Research. Carnegie Inst. 
Publ. No. 158, 1917. 

E.S. LARSEN and H. BERMAN: Microscopic determination of non-opaque numerals. 
Bull. Geol. Survey, U.S.A. No. 848 (1934). 

See for example JOHANNSEN [lo]. 
MERWIN and E. S. LARSEN: Amer. J. Sci. (4), 34, 42 (1912). 

' R.C. EMMONS: Amer. Mineral. 13, 504 (1928). 
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(b) The V a n  der Kolkl or the method of oblique illumination: If one-half 
of the incident light is cut off by inserting a card between the condenser and the 
stage then a shadow appears on the same side of the crystal as that on which 
the screen is inserted if the substance has a greater refractive index than the' 
medium. There are many methods of obtaining this inclined illumination but 
perhaps one of the most sensitive methods is that given by SAY LOR^ in which 
two light stops are used, one a t  the focal plane of the objective and the other 
above the low power component of the condenser. The limit of accuracy of the 
immersion method is usually about 0.002 while with temperature controltit could 
be increased to 0.0005. However, recently using the Saylor technique the ac- 
curacy has been greatly increased to 0.00003 for optical glasses3.,B may also be 
remarked that for identification purposes measurements are usually made in 
white light. 

For optically isotropic crystals refractive index measurements can be made 
in unpolarised light, the isotropy being detected by the fact that crystals show 
no restoration between crossed polarisers for all orientations. 

The determination of the ordinary refractive index (o) for uniaxial crystals 
presents no difficulty; the indicatrix being a spheroid w is one of the principal 
refractive indices of every section. The measurement is made with the incident 
light having its vibration parallel to the appropriate principal vibration direction 
in the crystal section. For very accurate determination, a section perpendicular 
to the optic axis, showing no restoration should be used. The principal extra- 
ordinary index & for a crystal lying on a slide with its 3, 4 or 6 fold axis (i.e. 
optic axis) horizontal, can be measured directly using incident light with its 
vibration parallel to this axis. However many uniaxial crystals are of such a 
shape that the optic axis is never horizontal. Then the crystals are broken and the 
two principal indices for a series of specimens are determined. I t  will be found 
that while one refractive index (cu) is always the same, the other continuously 
varies. The limiting value (either maximum of minimum depending on the optical 
sign of the crystal) of the other index gives the value of E. I t  is best to make 
measurements on crystal grains that show the highest polarisation colours. 

For biaxial crystals also, advantage is usually taken of the morphological 
relationship between the crystal axes and the axes of the index ellipsoid. I t  
may be possible, under favourable circumstances using a simple rotation apparatus, 
to determine all the three indices for crystals belonging to the orthorhombic or 
monochic classes. In the former class all the principal axes can be determined 
from the morphology, while in the second at least one principal axis of the crystal 
can be determined from the morphology. 

In  many crystaIs the refractive index y is so high that it cannot be determined 
by immersion techniques. A simple .and accurate method for finding y has been 
given by WOOD and AGLIFFE*, when the directions of the three principal axes 
can be obtained from morphology. The crystal is mounted on the needle of a 
rotation apparatus so that ,6 is parallel to the axis of rotation and the optic 
axial plane (containing a, y) is normal to the axis of rotation. It must be possible 
with this mounting to determine a, B directly by the immersion methods with 
the plane of the incident polariser in that of the optic axial plane. The crystal 

1 For a simple explanation and also the pit-falls in making measurements see R. C. EVANS 
and N. F.M. HENRY: Min. Mag. 26, 267 (1 942). 

SAYLOR: J. Res. Nat. Bur. Stand. 15, 277 (1935). 
3 A. CONRAD, FAICK and B. FONOROFF: J. Opt. SOC. Amer. 34, 530 (1944). 

R. G. WOOD and S.H. AGLIFFE: Phil. Mag. (7) 21, 324 (1936). 
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is now immersed in liquids of successively greater refractive index and it is 
rotated until a match is obtained. If n is the refractive index of the liquid, then 

where 8 is the angle through which the a direction has to be rotated to get a 
match. Plotting the known values of 1/.n2 against cos28 one can get to a fair 
accuracy an extrapolated value of y. 

p) Measurements &th convergent light figures. When the principal axes of a 
crystal cannot be determined from the morphology, the help of convergent light 
figures have to be resorted to. 
Sections giving centred inter- Table s. 
ference figures which show the 
principal refractive indices are Figure / optical sign I Indices shown 

listed in Table 5. I I 
Hence using the usual im- i ~ z  Eg':z 

mersion techniques the refrac- Obtuse b i s e c e  
B 

tive indices could be deter- Obtuse bisect* 
mined. Optic normal + v e  or - u e  

'From a bowledge of the re- Sing" 1 Or 

fractive indices the optic axial 
angle can be calculated. Also from a knowledge of two of the indices and the 
optic axial angle the third index can be computed from Eqs. (33.5) and (33.6) 

where 2 V(E) is the acute axial angle for a negative crystal (Sect. 83,8) and 2 V(y) 
that for a positive crystal. The optic axial angle is also an important constant 
for a crystal and its determination is useful for identification purposes. It must 
be remembered that the angle between the axes which is observed under the 
microscope is 2E,  the apparent optic axial angle after refraction which is dif- 
ferent from the real optic axial angle 2 V h i d e  the crystal. The relation between 
2E and 2 V is given by 

sinE=/?sinV - (82.3) 

where /? is the intermediate refractive index of the substance. 

I t  is easiest to yeasure the optic axial angle when both the metalopes i.e., ' 

the "eyes" of the conyergent light figure appear in the field of view. Under the 
usual conditions of observation (using the Bertrand Amici lens) several factors 
contribute to make the measurement of the optic axial angle inaccurate. The 
primary figure at  the principal focus of the objective is formed on a curved surface 
which is observed in an orthographic projection by the eye. The isogyres may be 
so diffuse that the exact point of emergence of the optic +xis c y o t  be found 
accurately. The simplest method of determining the optic .axla1 angle is by 
MALLARD'S method. The distance between the melatopes is measured with a 
micrometer ocular and E is calculated from the formula 

-- D =KsinE (82.4) 
Handbuch der Physik, Bd. XXVI1. 12 
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where K is the MALLARD'S constant depending on the lens system, tube length 
etc. D is determined by using a specimen of known optic axial angle under iden- 
tical conditions. V is evaluated from the formula (82.3) for which graphical 
methods have also been developed. 

SLAW SON^ has devised a method for measuring the angle between the melatopes 
by using a variable diaphragm placed at the focal plane of the objective. This 
can be calibrated to give the angular distance between the centre of the field 
to any point on the interference figure. This method is found to be better than 
MALLARD'S method, as  al l  the errors due to length of tlq tube, position of the 
lenses etc. are automatically eliminated. \ 

When the apparent optic axial angle 2Eis near about go0, for a section normal 
to the bisectrix the two melatopes will be outside the field of view. M.ICHEL LEVY, 
~VRTGHT, D m ~ a n d  JOHANNSEN [lo] have evolved methods for estimating the opti- 
cal axial angle under these conditions. In optic axial sections when only the iso- 
gyre is visible, it is possible to estimate the value of 2 V from the curvature of 
this isogyre. In large random crystal sections i t  is most convenient to measure 
the optic axial angles directly on a universal stag$. 

It is quite obvious that for many of these measurements it is necessary to 
observe the convergent light figures in small crystal grains. When the grains 
are comparatively large they can be isolated by using the iris diaphragm of the 
tube. But perhaps the most satisfactory method is that due to JOHANNSEN. 
\&%en a small auxiliary lens (which is actually a spherical globule produced by 
heating a fine glass fibre in a flame) is held closely above the crystal grain and 
viewed between crossed nicols, the interference figure is clearly seen. The use 
of a converger is also not essential. For convenience the fibre with the globular 
lens at its end may be fixed by means of wax to the stage so that it lies in the 
centre of the field slightly above the slide, which may then be moved around 
to bring the different grains beneath the lens. 

y)  A method for determining the refractive indices of small crystals %sing a 
simple rotation apparatus. We give here a simple method developed by J O E L ~  

by which using only one crystal, whatever be its habit, it is possible to get both 
the orientation of indicatrix and also the magnitudes of the principal axes at 
the same time. One of the important advantages of this method is that it uses 
only a simple rotation apparatus. 

The crystal is mounted on a glass fibre at the end of a very simple one-circle 
. goniometer which can be fitted on to a microscope stage and which enables one 
to rotate the crystal about the horizontal axis. A glass slide may be adjusted 
such that the crystal may be completely immersed in a drop of liquid of suitable 
refractive index. Now when the crystal is in a given position (on a polarising 
microscope with the nicols crossed in parallel light), on rotating the nicols together, 
two extinctions are observed which correspond to the major and the minor axes 
of the section of the index ellipsoid by the plane of the microscope stage. For 
each position p of the goniometer there are two extinction directions a1 and 6, 
perpendicular to each other. These extinctions may be represented on a stereo- 
graphic projection where g, = O  corresponds to the primitive great circle and 6 = 0 
corresponds to the polariser vibration parallel to the rotation axis. The gonio- 
meter is rotated successively by small angles and the corresponding values of 6, 
and 6, are plotted, each p value corresponding to a great circle with the axis 
of rotation on the line of intersection (Fig. 92a). During a complete rotation of 

C.B:S~~wsolu: Amer. J. Mineral. 19, 25 (1934). 
N. JOEL: Miner. Mag. 29, 206 (1950) ; 29, 602 (1951). 
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the indicatrix about its fixed but arbitrary axis, it is clear that every vector in 
it will at some time or other come into the horizontal plane. Hence it is possible 
to bring into the horizontal plane each one of the three axes in its turn. 

As each axis of an ellipsoid is a twofold axis, every central section that 
contains one of the three axes has this as the axis of symmetry. For example 
as y along the Z axis is the longest vector in the ellipsoid it must be the longest 
vector of any ellipse containing it and hence will be the major axis of that ellipse. 
Same argument applies to the X axis, a being the smallest refractive index. Hence 
it follows that when each of the three axes comes to the horizontal plane it corre- 
sponds to an extinction direction and the points, X, Y, or Z therefore lie on the-'. 
curves of the extinction direction. The axes can be located if the position of 
one of them could be determined. This could be easily done by finding that 

a b 

Fig. 92a and b. Stereographic projection showing JOEL'S method for determining the refractive indices using 
rotation apparatus. 

a simple 

vibration direction for which the refractive index is a maximum or a minimum. 
For this a drop of suitable liquid of known refractive index is used to immerse 
the crystal. By successive rotations of the crystal and setting it for extinction 
each time and using the Becke line technique it is possible to determine the 
direction of vibration for which the refractive indices of the crystal and the liquid 
are the same. It is now easy to discover the directions of rotation of the gonio- 
meter for which the refractive index increases (or decreases) and by changing 
the immersing liquid it is possible [usually within two or three attempts] to get 
the vibration direction when the refractive index is a maximum (say). This 
corresponds to the point Z. A great circle is drawn with Z as the pole and the 
points of iakwection of the direction of "extinction curve" with this arc is the 
probable position of the X and Y axes. The choice of these axes is usually quite 
unambiguous. For details and the mathematical treatment of the method the 
original references may be consulted. The possibility of determining the principal 
axes of the indicatrix directly by graphical method from the extinction curves 
have been discussed by JOEL and GARAY COCHEA~. The procedure as before 
consists of drawing the curve for the extinction direction which consists of two 
distinct parts-an equitorial branch and a polar branch. (It is better to immerse 
the crystal in a liquid having approximately the mean refractive index of the 
crystal when plotting the extinction curves.) The next step consists of determining 
the spherical triangle XYZ for which each side is a quandrant, the two of whose 
vertices lie on the equitonal curve. Taking two points on the equitorial cwve 

1 N. JOEL and I. GARAY COCHEA: Acta crystallogr. 10, 399 (1957). 
12* 
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the pole of the great circle passing through these is marked. Taking a series of 
such points the locus of the pole is drawn (Fig. 92b). The locus intersects the 
extinction curves a t  two points one of which corresponds to the axis of the index 
ellipsoid. 

Two great circles can be drawn with these points as the pole. Each great 
circle intersects the equatorial part of the extinction curve at  two points. We 
therefore have two spherical triangles one of which corresponds to the "true" in- 
dicatrix. In  order to know which is the "true" one and which the "ghost", it 
is sufficient to remember that one of the vertices of the "ghost" triangle is 90" 
away from Po, the goniometer axis. Hence it would be easily possible to distin- 
guish the "ghost" triangle. U V W  from the "true" triangle XYZ. --- 

'J) 
Fig. 93. (a) The four axes of the Federov stage. (b) The five axes of the Emmons stage. 

6) The ~ ~ i z ) e r s a l  stage1. This is an instrument which helps to orientate a 
single crystal grain by rotation about a number of axes that are mutually per- 
pendicular. This is particularly useful in the identification of a single grain by 
optical means. The important principle underlying the method of examining 
crystals on a universal stage is the recognition of the optical symmetry planes. 
For example a uniaxial crystal may be recognised by the infinite symmetry 
planes parallel to the optic axis and one symmetry plane perpendicular to it. 
A biaxial crystal on the other hand is recognised by the three minor planes of 
optical symmetry the intersections of which define the three principal axes of 
the triaxial ellipsoid, which are themselves two-fold axes of optical symmetry. 
The biaxial crystal has also two optic axes. These symmetry planes can be 

- readily recognised by a simple procedure using the universal stage. The Federov 
stage has four axes of rotation whiie its improved version by EMMONS~ has five 
axes. Fig. 93 give the arrangement of the axes of rotation in both the Federov 
and the Emmons stages. 

The -axes A,A, and A, are parallel to the axis of the microscope (the last i.e. 
A,  is the microscope stage itself) when the other axes are in the zero position, 
A, is a N-S axis and A, is an E-W axis. The Emmons stage differs from that of 
Federov in that there is an extra E-W axis which is usually denoted by A, ,  
so that the same nomenclature can be used for both stages. This extra axis 

1 A good summary of the techniques using the universal stage is available in the mono- 
graph by P.R. J.  NAIDU: 4-axes universal stage. Madras 195% 

2 R.C. EMMONS: Amer. J. Mineral. 14, 441 (1929). 
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considerably reduces the labour of determining each symmetry plane separately 
and then finding the angular coordinates of the line of intersection by the stereo- 
graphic projection method. But we shall not give the routine process by which 
the optical indicatrix of a single grain is recognised and measured using the 
phenomenon of extinction. 

E) The  prism method. The well known minimum deviation method can be 
used for the measurement of the refractive indices of anisotropic crystals also. 
In the case of uniaxial crystals a single prism will enable both co and E to be 
determined provided it be cut so that either the refracting edge is parallel to 
the optic axis or else perpendicular to it, with the optic axis lying in the 
plane bisecting the refracting angle. In  the case of biaxial crystals, two of the 
three refractive indices can be obtained from a prism (60" say) in which the 
plane bisecting the refracting angle contains two of the principal axes of the 
index ellipsoid with one of these parallel to the refracting edge. Hence one 
requires at  least two prisms to determine the three refractive indices. The making 
of these prisms with the principal axes of the indicatrix in specified direction 
becomes more and more complex as we proceed from orthorhombic (where the 
crystallographic axes coincide with the axes of the optical ellipsoid) to triclinic 
where there is no relation between the two sets of axes1. 

[) Total reflection method. If the crystal has one polished surface then perhaps 
the most convenient method of determining the three principal refractive indices 
js by the method of total internal reflection using an instrument corresponding 
to the Pulfrich refractometer2-the crystal having a lower refractive index than 
the adjacent medium. When the crystal is put in optical contact with the prism 
on the hemisphere of the refractometer two critical edges are seen (which are 
linearly polarised). When the crystal is rotated in the plane of its surface the 
critical edges move'and the four extreme positions of the two edges are noteds 
Since the crystal is being rotated about a random axis all the arguments presented 
in Sect. 82y in connection with JOEL'S method hold. Hence the maximum and 
minimum values correspond to u and y while one of the two.inner extremalt 
corresponds to  8. The ambiguity in can be resolved by making measuremens. 
on another non-parallel section of the crystal. When no other section is avilable 
the method used is the following3. 

Where the crystal has been rotated into the position giving the maximum 
reading y the other shadow edge provides a second reading say R. If the reading 
associated with cc is r and if p is the angle between the position at  which these 
occur then 

From this the approximate value of 8 can be computed, and the extremal 
corresponding to f l  recognized. Other methods using a polarising cap have also 
been suggested. 

83. Measurement of birefringence. u) The  determination of the "fast" and 
"sloze, " axes in a crystal +late fiossessing orcly linear birefringence. These correspond 
to the principal axes of the elliptic section of the index ellipsoid noimal to the 
direction of observation and are also the two privileged directions of vibration in 
a crystal plate. I t  is worthwhile remembe+g that the "fast" axis corresponds 

For details of the experimental methods see S z r v ~ s s ~  [ I ]  or A.E.H. TUTTON [12]. 
For a detailed description of the various refractometers see TUTTON 1121. 
E. J. BINBAGE and B.W. ANDERSON: Min. Mag. 26, 246 (1942). 
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to that direction of vibration which has the lower refractive index (minor axis) 
and the "slow" axis to that with the higher refractive index (major axis). 

When a crystal plate is observed between simultaneously rotated crossed 
polarisers, there are' two positions, perpendicular to each other, where one gets 
complete crossing. These happen only when the direction of vl3ration of the 
incident light coincides with one of the two privileged directions of the crystal 
plate. In all other positions the crystal exhibits polarisation colours, which arise - 
due to the phase difference introduced by the crystal be%t-een the two waves 
that travel inside it (see Sects. 63 and 64). The colours are most vivid when the 
incident vibration is at 45' to the privileged directions of the vibrations of the 
crystal. For this setting colour charts giYing the polarisation colours for different 
values of phase retardation are available and are usually referred to as the New- 
tonian scale of colours. If now a birefringent plate or wedge of known optical 
characteristics is placed above or below the crystal with its principal vibration 
direction coinciding with those of the crystalline plate, the colours seen through 
the combination change. I f  for example the "fast" axis of the test plate coincides 
with that of the crystal plate, the phase difference between the two emerging 
beams increases and the interference colours will rise in the Newtonian colour scale. 
If on the other hand, the "fast" axis of one coincides with the "slow" axis of 
the other, the interference colours will fall in the Newtonian scale. The test 
devices used are usually (a) a mica A/4 retardation plate, (b) a full wave retardation 
plate made of gypsum or (c) a simple quartz wedge. These can be introduced in . 
a slot in the microscope tube but care must be taken to see that they are in a 
proper orientation with respect to the crystal plate. The 114 plate is more useful 
for examhing crystals of relatively high retardation while the full wave plate 
is more suitable for the study of specimens with low birefringence. 

8) Determinatim of the @tical sign of a wystal. A uniaxial crystal is "positive" 
(+) if E >W i.e., the index ellipsoid is a prolate spheroid and is negative (-) i f  
E<W. A biaxial crystal is positive if y is the acute bisectrix and is negative if a 
is the acute bisedrix. If one gets the appropriate crystal sections it will be 
possible to determine the optical sign directly by measuring the refractive indices. 
The optical character can be easily determined by making observations on the 
interference figures. The determination of the sign finally resolves itself to find- 
ing (a) whether the radial or tangential directions is faster in uniaxial crystals 
and @) whether in the acute interference figure the vibration in the optic nonnal 
direction (/?) is faster or slower than that in the line joining the melatopes in 
biaxial crystals. This can be done by the insertion of a 114, a full wave retarda- 
tion plate or a quartz wedge, at the proper angle. Fig. 94 gives the effect of a 
quartz wedge on a centred uniaxial or biaxial figure. 

The problem however is more complicated when the melatopes are not in 
the field of view but many of the text books mentioned earlier give excellent 
diagrams showing the actual movements of the fringes and these should prove 
useful in such cases. The theory of these phenomena has been dealt with in detail 
in Sect. 64. 

y )  T h e  measu~ement of bimfringence. The birefringence introduced by any 
crystalline plate can be accurately determined by compensating it by a graduated 
quartz wedge compensator or a Babj.net compensator which have been dealt with 
in detail in Sect. 21. The former, which has a graduated scale etched on its 
surface, usually gives the path difference directly in cm. Both these require 
special oculars with a cap analyser. The compensator that is now very popular 
with microscopists is the Berek com#ensator which can be introduced in the tube 
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above the objective and which does not require a cap analyser or any special ocular. 
A plate of calcite about 0.1 mm thick is cut normal to the optic axis and mounted 
on a rotating axis in a metal holder. A calibrated drum controlling the rotation 

b 
Fig. 94 a and b. Effect of a qnartz. wedge on the interference f i p e s  due to fue and -uc  crystals. 

(a) Uniaxial. (b) BiaxiaL 
I 

measures the angular position of the calcite plate. To detennine the birefringence 
with this instrument, the crystal plate on the stage is rotated so that the trace 
of the vibration of the fast ray is parallel to the trace of the slow ray in the -hclined 
plate of the compensator. The angle through which the calcite plate is rotated 
to reach compensation measures the path difference produced by the crystal 
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plate. The Berek, the Babinet and the quartz wedge compensators can also be 
used effectively in the determination of the sign of the crystal. 

The dispersion of birefringence with wavelength can be measured from the 
channeled spectrum observed in the beam transmitted by a crystal placed between 
crossed polaroids when white light is incident on it. This method has been used 
with success in the measurement of the dispersion of the stress birefringence in 
crystall. 

84. The measurement of optical rotation. a) Along the o$tic axis. In a cubic 
crystal for any direction of propagation, or in a birefringent crystal for %ections 
along the optic axes, the rotation of the plane of polarisation can be measured 
very accurately using some of the well known techniques. of pola-@sttry. Very 
good accounts of the experimental methods are given in various review articles2. 
We shall not deal with them here. 

8) Along directions other than the oetic axes. The effect observed would be 
the result of superposing the effects of optical rotation and birefringence (Sect. 39). 
Most of the measurements that have been made are confined to the case of quartz 
(a uniaxial crystal) and that too for directions perpendicular to the optic axis. 
We shall therefore deal only with this specific case, although the same methods 
can be directly applied for the measurement of optical rotation along any direc- 
tion in either a uniaxial or a biaxial crystal. 

From the results of Sects. 38 and 39 one sees that if on a plate of quartz cut 
parallel to the optic axis, a linear vibration is incident with the vibration direction 
parallel or perpendicular to the optic axis, the emergent vibration is not linear 
(as in an inactive birefringent crystal), but is slightly elliptic. If the ratio of the 
axes of this ellipse is bla, then the emergent light may be represented by a point 
on the Poincarh sphere whose latitude is 2w,  where tan w =b[a. The angle w 
would be a maximum for a thickness corresponding to a half wave plate and for 
such a plate w, has been measured to be 13' by VOIGT~ for the D line of sodium 
(for propagation perpendicular to the optic axis). This measurement alone is 
quite sufficient to compute the optical rotation of quartz perpendicular to the 
optic axis. This comes out to be half the rotatory power along the optic axis 
but the rotation is of the opposite sign. 

The next important experiment is that of WEVER* who, using a 60" prism 
with its edge parallel to the optic axis, actually separated the two privileged 
vibrations transmitted unchanged along any direction. He measured the elliptici- 
ties of the vibrations and confirmed the values-obtained by VOIGT. 
- Later the rotatory power of quartz has been measured accurately by two 
groups of workers, BRUHAT and GRIVET~, and SZIVESSY and MUNSTER~, using 

. slightly different techniques and we shall describe the general principles of these 
,.two methods. In both the methods a plane parallel plate of quartz cut parallel 

to the optic axis is employed. 
In the first method, the plate is placed between crossed +ear polarisers and 

rotated till a minimum of intensity is Qansmitted. This is what BRUHAT et al. 
call the azimuth of minimum. Next a sakamura biplate is introduced in hont 
of the analysing nicol. I t  is found that the two halves do not show equality. 

E. G. COXER and L.N. G. FILON: A Treatise on Photoelasticity. Cambridge 195 7. 
W. HELLER: Physical methods in organic chemistry, Ed. WEISSBERFR. New York: 

Interscience PubL 1949. 
a W. VOIGT: mttinger Nachr. 1903, p. 155. - AM. d. Phys. 18. 645 (1905). 

F. WEVER: Jb. PhiL Fak. Univ. attingen 2, 206 (1920). 
G. BRUHAT and R. G R ~ T :  J. Phys. Radium 6, 12 (1935). 

' - 6  CL. MONSTER and G. SZIVESSY: Phys. Z. 36, 101 (1935). 
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The plate is again rotated in its own plane till the two halves of the Nakamura 
plate show an equality of intensity. This position is called the azimuth of equality. 
Now the total birefringence of the plate is measured using any of the well known 
methods. These three measurements are sufficient to compute the rotation 
perpendicular to the optic axis. 

The theory of the method can be understood by referring to Figs. 95 a and 05 b- 
Let P be the linear incident vibration. The effect of the crystal plate of thickness t,  
possessing both birefringence and optical activity would be a rotation td' -= A 
about the axis E O F  where the latitude of E i.e. 26 is given by 

2te' 2e 
tan26 =-=T (H4.j) 

+& ___--- 

26' M ! 
G 

a b 

Fig. 95 a and b. Poincd representation to explain BRWAT'S method of determining the optical rotation of llllartz 

a normal to the optic axis. 

. where Q' is the rotatory power in the absence ofibirefringence and 6' is the tvire- 
fringence in the absence of rotation. The total birefringence 

and since the ellipticity of the emergent ellipse is small, one could take 

The incident state P would therefore be brought to the elliptic state M. The 
effect of rotating the plate in its own plane would be to move the point E along 
a small circle whose latitude is 28. Since the ellipticities are small the portion 
of the PoincarC s p $ e  could be approximated to a, plane and this is show11 in 
Fig. 95 b. For any geqeral setting of the plate (axis of rotation EF) the intensity 
transmitted by the analyser is - 

I = s i n 2 & ~ ~  (84.4) - A and since PM = 2 PE sin T , I would be a minimum when P̂E is a minimum- 
z , This will occur when E is at El (latitude 2@) on the same nieridian as P. Hence, 

at the azimuth of minimum, the ellipses that are @ro@agated unchanged correspond 
to El and the opposite ellipse 4. (It may however be noted that the ellipse 
emerging from the crystal actually corresponds to MI.) Now when a Nakamura 
plate is used in front of the analysing nicol the two halves will not be equal- 
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I 
The crystal plate will have to be rotated in its own plane and the two halves will 
become equal only when the emerging vibration & is on the same meridian as P 
so that E now occupies the position E,. / 

Now 
PA& = 46 (84.5) 

and since El lies on PM2 the azimuth of equality E, differs from the azimuth 
of minimum El by an angle 2% given by (from the triangle PM2E,) . 
Here the approximation is made that fhe length of the small circular arc E, E, = 
the great circular arc P^Q. 

Since both A (measured using a compensator), and o;, are experimentally 
determined, 6 can be calculated and hence Q can be computed from (84.3). 

BRUHAT and GRIVET using this technique have measured the optical rotation 
of quartz perpendicular to the optic axis for a series of wavelengths from 1= 
5461 A to 1 = 253 7 A. They used an accurate photoelectric method- for measuring 
the azimuths of minimum. For the exact experimental procedure and the estima- 
tion of errors the original paper may be consulted. The value obtained for ,ol/ell 
was - 0.51 for 1 =5461 A which increased to -0.57 for 1=2597 A. These 
results confirm not only the values-obtained by VOIGT and WEVER but also 
their finding that the sign of the rotation perpendicular to the optic axis is opposite 
to that parallel to the optic axis. 

In the second method due to SZIVESSY and MUNSTER, the azimuth of mini- 
mum is first determined using crossed linear polarisers. Then instead of a Naka- 
mura biplate, a birefringent half shade (Bravais plate of small retardation) is 
introduced before the final analyser. This consists of two birefringent plates of 
exactly equal thicknesses but with their slow and fast axes interchanged. Hence 
the two halves show equality only when Eilzearly polarised light is incident on i t  
(see Sect. 20y). The quartz plate (cut parallel to the optic axis) is rotated in its own 
plane till the Bravais double plate shows equality of intensity (i.e. plane polarised 
light is emergent from the crystal). When the polariser and analyser are crossed 
there are two positions in a complete rotation of the crystal plate in which the 
emergent light is linearly polarised. The situation is illustrated in Fig. 96, the 
point P representing the incident light on the equator is brought back to M3 
on the equator by a rotation about E,O F, where the latitude of E3 is 26. 

From the triangle PE,S, P? =2a the angle through which plate is turned 
from the azimuth of minimum to get a linear vibration emergent from it and - 
E3S = 26 and hence A tan2a =sin26tan-. 

2 (84.7) 

Measuring the total birefringence td', the value of 6 can be determined from 
which ,o can be computed. It may be remarked that in the paper by SZIVESSY 
and MUNSTER the formula is expressed in terms of k =tan 6. 

Using this method, for different wavelengths have been measured and the 
value - 0.45 was obtained for e1/ell , a value differing by about 10% from that 
of BRUHAT and GRIVET. 

From Sect. 40 we know that the optical rotation power is determined by the 
symmetric tensor which can be represented by the equation [cf. Eq. (40.1)] 



Sect. 84. The measurement of optical rotation. 187 

where %, x2, x, correspond to the axes of coordinates. The sign in the right is 
to be so chosen that the surface is real. In optically uniaxial crystals the gyration 
surface represented by (84.8) is a surface of revolution1 about the optic axes. 
If the axial system (x,, xz, %) is so chosen that x, is along the optic axis, then 
yik=O for i + K ,  ykz=yis and if we put yi1=y; and yiz=Y~3=Y: and %=a 
and 4 +4 =s2 Eq. (84.8) reduces to 

Since in quartz yi and y: are of opposite signs, the rotation surface has the shape 
of two conjugate hyperboloids of revolution about the optic axis. .- 

Fig. 96. Poindrepresgtation showing Snv~ssy's meth- 
od of measuring the optical rotation of quartz normal to 

the optic axis. 

Fig. 97. The section of the optical acrivity surface parallel 
to the optic axis in quartz. 

The lines of the common asymptotic cone make with the optic axis an angle B 
given by I - tan2p = - y:/yi. (84.10) 

The meridonial section of the surface is shown in Fig. 97. The optical activity 
in a direction making an angle /3 with the optic axis is given by 

where yG is the scalar parameter of gyration and here obviously yi and y: are the 
measure of the activity along and perpendicular to the optic axis. Since yi/YL = 
ellell = - 0.45 the scalar parameter would be given by 

where lz, is the ordinary refractive index. 
Since *&-ratio of el/ell is practically independent of wavelength it follows 

that a plate cut at 56'10' to the optic axis [from Eq. (76.10)] behaves as an 
inactive crystal. 

S ~ S Y  and MUNSTER have established by experiments that a quartz plate 
whose normal makes an angle 56" 10' with the optic axis behaves like an optically 
inactive plate over the entire spectral region for a parallel beam of light at normal 
incidence, thus confirming the predictions of theory. These authors have there- 
fore advocated that in making Soleil compensators and certain other half shades, 
sections of quartz at 56" 10' to the optic axis must be used if the measurements 
are to be free from errors. 

y) Along the optic axis ilz the presence of dichroism: This has been deal: with 
in detail in Sects. 718 and 72. 

1 This is not true for the tetragonal tetartohedral and tetragonal hemihedral classes. 
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E. Variation of properties due to external influences. 
85. General considerations. The external influences that could affect the 

optical properties of a crystal could take the form of a scalar (e.g., temperature 
or hydrostatic pressure), or a vector (e.g., electric field, magnetic field etc.) or a 
tensor (a stress, strain etc.). The general effect of these external influences would 
be to alter the optical parameters determining the propagation of light in a crystal. 

These can for convenience be classified into those that relate to the refractive, 
the gyratory or the absorptive properties of the crystals. The parameters that are 
usually chosen for the complete description of the effect of external influences 
on crystals are the components of the index, gyration and absorption tensors. 
In what follows we shall be referring mostly to refractive properties (i.e., the 
changes in the index tensor) as a large amount of experimental and theoretical 
work has been concentrated on this aspect of the subject. The methods indicated 
can however be equally well applied to the case of the gyration and the absorption 
tensors. The effect of the external agent would therefore be to alter each com- 
ponent of the index tensor aZi by a small amount A U , ~ .  This would physically 
correspond to the alteration of the magnitudes and directions of the principal 
axes of the index ellipsoid. 

One could to a first degree of approximation assume that the changes induced 
in the optical parameters are proportional to the magnitme of the scalar or are 
a homogeneous linear function of the components of the vector or the tensor. 
In such a case using the matrix notation we can write 

(a) [A aiiI = [cijI S ( S  is a scalar) . 
(b) [A aii] = [cii,,] Ak (Ak is a vector) , 1 (85.1) 

(c) [ A  aii] = [cij, k 1 ]  Bkl (Bkl is a tensor of the second rank) 

and so on. From a knowledge of the nature of the tensor whose components are 
A aii and also the nature of S, A, or B,, one can determine the type of the tensors 
Cij, C i j , k  Or Cij,kl. 

For example since [aii] is a symmetric tensor of rank two, [A aii] would also 
be a symmetric tensor. Hence [cii] must be 3 x 3 symmetric tensor having 
therefore 6 independent components. However [cii, must be a tensor of rank 3 
but sjmmetric in i and j. Hence its elements can be written in the form of a 
6x3 matrix with 18 components. If Bkl is a symmetric tensor of rank two as 
in the classical case of homogeneous stress or strain then [cij, would be a tensor 
of rank 4 but symmetric in i and j and k and I. Hence its Independent elements 
can be represented by a 6 x 6  matrix with 96 distinct constants for the most 
general case. It is to be noted that c ,~ , , ,  is .not symmetric for an interchange of 

.-- (ij) and (k l ) ,  since these indices refer to entirely different properties of the 
medium, e.g. optical and eIastric properties. That this had been overlooked by 
POCKELS in his classical studies in photo-elas-ticity was pointed out by BHAGA- 
VARTAM (see Sect. 92 below). The number of independent constants in all cases 
would- be reduced by any symmetry in the crystal. 

If however the changes of the optical parameters are quadratic functions 
of the vector or tensor components we have 

and so on. In these cases also, the nature of the matrix describing the change 
may be computed. I t  may be remarked that, except in a very few substances, 
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the quadratic effect is usually a second order effect. The changes in the optical 
properties which we are discussing do not relate to those associated with trans- 
formations of crystal structures due to external influences. 

I. Variation with temperature. 
86. Changes in refractive indices and the optic axial angle. or) In the most 

gneral case the number of constants necessary to describe the changes in the 
constants of the index tensor [aii] due to an alteration in the temperature is six 
and Aaii can be written as 

Aaii=kiiAt (86.1) 

where A t  is the rise in temperature. I t  is convenient to choose the principal 
axes of the index ellipsoid as the axes of coordinates. These coincide with the 
crystallographic axes for cubic, tetragonal (trigonal, hexagonal) and orthorhombic 
crystals. Hence for all these classes kij(i+= j )  = 0. The effect of temperature 
would therefore be to alter the magnitude of the principal axes of the index 
ellipsoid without any change in their orientation. In monoclinic crystals one 
of the principal axes will continue to coincide with the unique axis, while the 
other two may change their orientation, remaining all the while in the symmetry 
plane. In triclinic crystals the temperature would affect the orientation and 
magnitude of all the three axes of the index ellipsoid. The number of constants 
necessary to describe the effect of temperature in different crystal classes is given 
below. 

Cubic Tetragonal Orthorhombic Monoclinic Triclinic 
Trigonal unique axis 

Hexagonal O Y  

I t  is quite obvious that in the last three cases there would be an alteration 
in the optic axial angle due to temperature. This can be computed using Eq. (82.2). 

Perhaps the most interesting phenomenon connected with thermo-optics is 
the Mitscherlish phenomenon. When a plate of gypsum which at room temper- 
ature is a positive biaxial crystal is heated, the optic axial angle goes on diminish- 
ing and at about 90" C, for i15893, the crystal becomes uniaxial. Above this 
temperature the crystal again becomes biaxial, but with its optic axial plane ro- 
tated through a right angle. I t  has been shown in Sect. 33 that the optic axial 
plane in any biaxial crystal is that which contains the directions of the minimum 
and maximum principal refractive indices (namely y and a, where y >/3 >a). 
The condition necessary for exhibiting the Mitscherlisch penomenon in any biaxial 
crystal is that two,of the principal refractive indices must be close to each other 

a rta 2p 
(say n, =p w % =a) and - > - . In such a case at some particular temper- 

d t  at 
ature n, could become equal to a, making the crystal uniaxial. At higher temper- 
atures ?z, may become greater than n, so that n, becomes a and .lz, becomes /? and 
the axial plane would be now that containing n, and n3. This phenomenon of 
crossed axial disfiersion can be most spectacularly exhibited in the case of crystals 
in which all the three refractive indices are very close to each other, for in such 
a case the optic axial angle would be large. This phenomenon has been observed 
in many crystals but special mention1 may be made of CsSeO, in which within 

A.E.H. TUTTON LIZ]. , -- 
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the narrow range of 0 to 250' C each of the three axes of the index ellipsoid 
becomes in turn the acute bisectrix. It must be remembered that in the case 
of monoclinic and triclinic crystals this effect is accompanied by the rotation 
of the axes of the index ellipsoid with respect to the crystallographic axes dbe 
to thermal expansion effects. - .- 

Very few investigations have been made of the variation of the absorption 
or gyration tensor surfaces with teplperature in a general biaxial crystal. Most 
of these studies have been confined to isotropic or m$xial crystals. In the 
latter case the obsemations have been restricted to directions parallel to the optic 
axis. 

Exfjefimental methods. Very few measurements of the actual constants have 
been made for crystals of symmetries lower than orthorhombic. For crystals for 
which there is no rotation of the axes of the index ellipsoid, we have 

Hence 

The temperahre coefficient of refractive index of a solid can be evaluated 
from the measurements of the refractive index of the substance at different tem-, 
peratures by the well known prism method. The various detaiIs of the technique 
can be obtained elsewhere1-3. The disadvantages and the limitations of this 
method are obvious. The requirement of the experimental specimen in bulk, 
the maintenance of these large non-conducting specimens at  uniform temperatures, 
the making of prisms from crystals that exhibit a layer structure are some of 
the problems one is confronted with. Since the magnitude of d n / d f  is of the 
order of the prism has to be heated by 100" C to alter its refractive index 
by one unit in the third place of decimals. Hence the accuracy of the method is 
also not very high. 

A much simpler way of measuring dnld t  is provided by the interference 
method4 where it is evaluated from the measurements of the shift with tempera- 
ture of the interference fringes formed between the two surfaces of the crystal, 
fashioned in the form of a plate. Either Newtonian fringes or Haidinger fringes 
can be used. In both cases, for normal incidence the bright fringes satisfy the 
relation 

2ni1 = N I ,  (86.3) 

where ni is the refractive index, I the thickness of the crystal and 1 is the wave- 
length and N an integer. On varying the temperature the fringes will move past 
a reference mark on the crystal. If AN is the number of fringes crossing this 
mark for a temperature change A t  then 

MARTENS: In Vol. VI of WINKELMANN'S Handbuch der Physik, 1906. 
W.S. R O D N E Y , ~ ~ ~  R. J. SPINDLER: J. Res. Nat. Bur. Stand. 49, 253 (1952). 

= SZIVESSY [ I ] .  
See for example G.N. R~MACHANDRAN: ROC. Ind. Acad. Sci. A 25, 266 (1947). 
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where I is the length of the specimen and u; is the coefficient of linear expansion 
along the direction of propagation of light. By this method, knowing ui one can 
obtain the value of dnJdt with respect to vacuum. The shift of the fringes can 
be determined either visually or photographically. I t  must be mentioned that 
even though ANlA t  may be determined to within 1 %, the value of dnldt  can 
usually be obtained only to an accuracy of 5 %, as the major contribution to 
the path retardation change usually arises due to the thermal expansion. The 
application of this method to birefringent crystals is obvious. 

For the measurement of the variation of optical activity with temperature, 
the method consists of measuring the rotations of the crystal at various tempera:,. 
tures using the well known visual, photographic or photoelectric polarimetersl. 
A fair amount of experimental data on the thermo-optic behaviour of crystals 
has accumulated. These and a list of references on this subject may be found 
elsewhere 2. 

Phenomenological atomistic theories have been proposed to explain the ther- 
mal variation of refractive indexS and the thermal variation of optical activity 
in crystals*. We shall not deal with these here. But for a list of references on 
this subject reference 2 (footnote below) may be consulted. 

87. Phenomenological theory. When a crystal is placed in an electric field, 
there would be an alteration of the distribution of the electric charges of the atoms 
and molecules, which constitute the crystal. These alterations in the charges 
which give rise to the opposing polarisation field would affect the optical pro- 
perties of the medium. I t  should be possible in principle to develop a consistent 
picture of these electro-optical effects purely from an atomistic standpoint. But 
in this section we shall present the simple phenomenological theory of electro- 
optics. 

The changes in the optical properties of the medium can be, as has been shown 
in Sect. 85, best expressed as changes in the constants of the index ellipsoid. 
With respect to any set of co-ordinate axes, the equation to the index ellipsoid 
could be written as 

If one assumes that the constants of the undefonned cfystals are represented 
by a$'i and those of the electrically stressed crystal by aii then to a first degree 
of approcqation it could be assumed that A aii[=aii - a!j] can be expressed 
as homogeneous linear function of the components of either (a) the electric polari- 
sation or @) the electric field. The three components of the polarisation field 
PI, P,, P, and the electric fieldT1, E,, E, along the principal electric axes are 
related by the following equations, if one neglects second order effects. 

See e.g. the article by W. HELLER, Physical Methods in Organic Chemistry, Ed. WEISS- 
BERGER. New York: Interscience 1919. 

2 See article by S. RAMASESHAN, K. VEDAM and R. S. KRISHNAN, in: Progress of Crystal 
Physics, Vol. I, Ed. R.S. KRISHNAN. 3Iadra.s 1958. 

G.N. RAMACHANDIULN: ROC. Ind. Acad. Sci. A 25, 266 (1947). 
S. CHANDRASEXEAR: ROC. Ind. Acad. Sci. A 39, 290 (1954). 
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where 8;s are the principal dielectric constants of the substance. We therefore 
have (writing the six components of the index tensor as %, a2, . . . , a6) 

written explicitly 
becomes 

and the two sets of constants eij and rdi are related as 

in terms of the components of the polarisation field Eq. (87.3) 

% 1 - @ ! 1 = -  rellPl+elzPz+e13P3lr --- 

It must be mentioned that although piis are of greater theoretical importance 
for the development of atomistic theories, the constants rii are the ones that are 
most readily obtained experimentally. I t  is therefore customary to measure the 
constants rii and then compute the values of eii from a knowledge of the di- 
electric properties of the crystal. We shall call the constants r i j  as the electro- 
optic constants. 

From Eqs. (87.5) and (87.6) we find that in the most general case, the number 
of electro-optic constants that can exist is 18. However, if one uses the principle 
that all expressions involving any physical constant of a crystal should be in- 
variant when any symmetry operation of the crystal is applied, one can find the 
number of electro-optic constants for the different crystal classes. The detailed , 
methods of computation have been given el~ewherel*~. When this is done one 
finds that there are only twenty groups (all non-centro-symmetric) for which 

. there are suviving constants. These are also the groups that exhibit Piezoelectricity. 
The surviving constants for these 20 groups have been listed in Table 6. All  
classes not listed have Y , ~ = O .  The subscripts indicate the independent values 

1 S. BHAGAVANTAM: Ada crystallogr. 5, 591 (1952). 
W. CADY: Piezoelectricity. New York: McGraw-Hill 1946. 

a 2 2 -  a h = -  [~21P1+ QzZPz + Q23P3Ir  

( 5 3 -  43=- [ ~ 3 1 ~ 1 + @ 3 2 % +  ~33P31, 

- ~ 0 2 3  = - [@PI  Pi + @4zP2 + ~ 4 3  P31 , 
% l - a k = -  CeslPl+es2Pz+ e53P31, 

, 

%2-a!2=- [eelG+ ee2P~+e63P31,,  

and in terms of the components of the electric field, Eq. (87.4) becomes 
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of the coefficients. Since crystals that exhibit the electro-optic phenomenon are 
also piezo-electric, we must take into account the changes in the optical property- 
caused by stresses or strains induced by the latter phenomenon. We know that 
in a free crystal only strains can develop while in a clamped crystal only stresses 
can develop. Hence the changes Aaji  in the coefficients of the index ellipsoid 
due to both the electro-optic and the photoelastic effect (induced hy the piezo- 

Table 6. Electyo-optic constants surviving in the different point groups. 

C,=l 
18 constants 

Monoclinic 

C2=2 c , L m  
8 constants 10 constants 

s4=5 C4=4 
3 constants 4 constants 
0 0 Y,, 0 0 rl, 
0 0 7 0 0 r,, 
0 0 r3, 0 0 r3, 
O 751 O ' 4 1  ' 5 1  O 

751 0 0 7 5 1 - 7 4 1  O 
0 0 0  0 0 0  

c3=3 
\, 6 constants 

Tetragonal 
D Z d = 7 2 m  
3 constants 
0 0 0 
0 0 0  
0 0 0 

741 0 0 
0 "5, 0 
0 0 rs3 

C3h=6 
2 constants 

711 -722 0 
-711 722  0 - 

0 0 0 
0 0 0 
0 0 0 

-2YZ2 -2Y11 0 

D3h=6m2 
I constants 
Yll 0 6 

.Yll 0 0 
0 0 0  
0 0 0  
0'-,o 0 
0 -27,, 0 

Trigonal 
D3=32 

2 constants 

5'11 0 0 
711 0 0 
0 0 0  

741 0 0 
0 -Y4, 0 
0 -2Y11 0 

Orthorhombic 

D4 = 4 2 2  C4,= 4 m m  
I constant 4 constants 

0 0 0  O O 713 

0 0 0  0 0 -r13 
0 0 0  0 0 0  

'hl 0 0 4 -751 0 
0 -9'41 0 r51 741 0 
0 0 0  0 0 763 

T = 2 3  
I constant 
0 0 0  
0 0 0 
0 0 0 

741 0 0 
O r41 O 
0 0 741 

Handbueh der Physik, Bd XXV/i. 

D2 = 222 
3 constants 
0 0 0  
0 0 0 
0 0 0 

741 0 0 
O ' 5 2  O 
0 0 7 6 3  

C,,=mm 
5 constants 

0 0 '.IS 

0 0 7 2 3  

0 0 733 

0 742 0 
' 5 1  0 
0 0 0  

Hexagonal 
C,=6 

4 constants 

0 0 5'13 

0 0 y13 

0 0 723 

5'41 7.51 0 
5 4 O 
0 0 0  

C3"=3m 
4 constants 

DK=622 C6,=6mm 
I cpnstant 4 constants 

Cubic 
q = T 3 m  
i constant 
0 0 0 
0 0 0 
0 0 0  

v 1  0 0 

0 741 0 
0 0 741 
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electric effect) can be expressed in terms of the electric field and the stresses or 
strains in the crvstal. Hence 

where Xk and xk are the components of the stress and,strain respectively and 
qik and pik are the stress optic and the strain optic coefficients (see Sect. 91) .  
rii and rii are the electro-optic coefficients for a clamped and a free crystal. The 
relations (87.8) and (87.9) are not indkpendent as 

where ski and d jk  are the elastic and piezo electric constants. Substituting 
Eq. (87.10) and (87.9) we have 

' 

Comparing Eqs. (87.8) and (87.11) we have [see (91.10)] 

One can see clearly that rij is the electro-optic coefficient associated with the direct 
effect of the electrical field on the optical constants while rii is the electro-optic 
coefficient which represents the total effect of the electric field on the constants 
of the index ellipsoid. In the early stages of experimentation it was thought 
that the electro-optic effect was just a secondary effect of the piezo-electric 
deformation (i.e. rii=O). The classical experiments of POCKELS~ were the first 
to establish the existence of rl j ,  the direct effect of the electric field in the atomic 
polarisability. 

88. Changes in the optical behaviour of a crystal due to the electric fields. The 
next problem that we shall consider will be the relative dispositions of the index 
ellipsoids of the undeformed crystal and the electrically deformed crystal. If we 
choose the principal axes O X o ,  0 Yo, 0.2, of the index ellipsoid as the axes of 
co-ordinates, then the equation to the index ellipsoid is 

and that of the deformed crystal with respect to the samk axis is 

and consequently in Eqs. (87.5) and (87.6) 

Referring Eq. (88.2) to the principal axes OX',  OY', 02' of the ellipsoid we have 

a;,x2+ ai2y2+ ai3z2=1 (88.4) 

POCKELS [Z]. 
2 See B.H. BILLINGS: J. Opt. Soc. Amer. 39, 797 (1949). 

-- -- -- - - 
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and the direction cosines relating the two sets of axes may be described by the 
matrix (88.4a) where orl is the cosine of the angle between OXo and OX' and so on. 

From a knowledge of the rij these direction cosines can be computed (see 
also Sect. 93 on photoelasticity) from which the magnitudes of a;; of the indey 
ellipsoid after deformation can be computed from the formulae 

The data available in electro-optics are extremely meagre and in no case has 
the measurements been extended to cases of monoclinic or triclinic crystals where 
the principal axes of the index ellipsoid do not coincide with the crystallographic 
axes. We shall present some typical cases to exemplify the methods of computa- 
tion. . 

In the case of the point group 32m or D,, to which a large number of signette 
electric crystals belong, the number of surviving constants is two, viz. r,,=r,, 

-and r6,. The crystals belonging to this class are uniaxial and so 4,=aO,, giving 

Hence the crystal becomes biaxial with the axis of the index ellipsoid rotated 
with respect to those of the original ellipsoid. We shall consider the case of the 
field being parallel to OZ in which case Ex=E,=O. Here a,,= a3,=0 and the 
equation to the index ellipsoid reduces to 

From this one can conclude that OZ' and 0.2, coincide and the x and the y axes 
rotate in the XY plane. This gives 

yl=y2=Lx3=/33=o --- 
and since the rotation is in a plane 

'> 
', - %=ar ~ 1 = 8 2 -  

From the matrix given in (88.4) we have 

x ' = u , x + A y ,  y 1 = a 2 x + B 2 y .  

Substituting the values from Eqs. (88.8) and (88.9) we get 

x f = a 1 x - u 2 y ,  y ' = u 2 x + u l y .  (88.11) 

Introducing these in Eq. (88.7) of the index ellipsoid, 
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Hence, if 6 is the angle of rotation, 

The angle of rotation of the x and y axes is independent of the field. Since the 
unstressed crystal is uniaxial one can observe the uniaxial figures along the 2, 
axis. On putting on the eIectric field, sin& 02, and 02' coincide, the circles 
become ovals, the major and minor axes of the ovals being at  45" to the crystallo- 
graphic axes. The lengths of the two axes of the ovals change with the field,while 
its direction remains constant. i 

Substituting the values of the direction cosines in Eq. (88.5) we get . 

If n, and ne are the ordinary and extraordinary refractive indices 

Therefore the change in refractive index is given by 

An = 4n:ye3EZ 
which gives 

n: = n, + 4 n f  r6, Ex, 
n; = no - &$, rG3 Ex, 
12; = n, . 

The birefringence of plane waves propagated along these axes will be 

and finally the angle 2V between the optic axes is obtained from (33.5) or (82.2) 
to be 

  he rotation of the axes when the field is parallel to X or Y can be computed 
in the same way. For this case 

7 - a!,(xz+y2) + 4 3 . z 2 + 2 r 4 1 E x y ~ = l ,  (88.21) 

i-e., OXo and OX' coincide and the rotation 5 of the axis in the y z  plane is given by 

-, For the trigonal class 32 (D,) to which quartz belongs the independent con- 
stants that survive are two, viz. y,,, y,,, with r,,=-y,,, ~ , , - r , , = r ~ ,  and 
r3,= - r,,. and hence a field perpendicular to the optic axis is only effective in 



Sect. 89. Experimental methods. 197 

changing the optical parameters and since a;,=ai2 for this class also 

the crystal becomes biaxial with a rotation of the axes. 
For the orthorhombic class 222 (D, or V) to which Rochelle salt belongs 

(above the Curie temperature) there are only three constants r4,, Y,,, Y,, giving 

89. Experimental methods. The experimental methods in electro-optics consist 
by and large of the measurement of the birefringence induced in a crystal plate 
due to the electric field and determining the electro-optic constants using formulae 
of the type (88.19). For the measurement of the birefringence the compensator 
methods mentioned in Sect. 2 can be used. In most investigations the Sknaramont 
or the Babinet compensator have been used. A variation of this method1 is to 
place the crystal between two plane polarisers parallel to each other, with a 
half-wave plate after the crystal. The electric field is increased till an extra half- 
wave retardation is introduced. At this position the emergent light is crossed by 
the second analyser. This position can be accurately determined either by the 
hse of a half shade device in front of the analyser or by a photo-electric cell. 

Some of the constants can be accurately determined from the measurement 
of the optic axial angle2.s and using formulae of the type given in Eq. (88.20). 
The method has proved quite satisfactory in the case of tetragonal seignette 
crystals. 

In the case of certain directions where the retardation is large even in the 
absence of the field, other methods have been resorted to. One is to fashion a 
wedge of very small angle (a few minutes of arc) so as to get a small number of 
" Babinet fringes " between crossed polarisers. From the measurement of the 
shift of the fringes with electric field the induced birefringence can be computed4. 

Another novel method1 is based on the measurement of the rotation of the 
axis of the index ellipsoid induced by the field by electronic means. If A is the 
retardation of the plate, and if 6 is the inclination of the fast axis of the plate 
with respect to the initid polariser, the intensity transmitted through the system is 

I l l  -- -- + Tsin2zA sin4a 
I 0  2 

n, - fl, where A = - (for a uniaxial crystal) is a rapidly varying function with 

wavelength. F& a sufficiently thick cr~&tal, by using a broad continuous source, 
sin2zA can be replaced by its mean value $ which gives 

''p 

To detect this small modulation, an atternatkg voltage is applied to the crystal 
and the intensity detected by a sharply tuned amplifier. Knowing a, the electro- 
optic constant can be computed from a formula of the t@e (88.20). 

R.O. CARPENTER: J. Opt. SOC. Amer. 40, 225 (1950). 
* B.H. BILLINGS: J. Opt. SOC. Arner. 39, 797, 802 (1949). 
3 POCKELS [2]. 
4 B. ZWICKER and P. SCHERRER: Helv. phys. Acta 16, 214 (1943). 
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The following are some of the important crystals in which the linear electro- 
optic effect has been studied: NaClO,, NaBrO,, ZnS, CuC1, KH,P04, KDzB04 
and similar seignette electric crystals, quartz and Rochelle salt. 

The applications to which the electro-optic phenomena have been put are 
multifarious. Of particular interest are the tuneable interference filters in which 
the narrow band of transmitted colour can be altered by changing the birefring- 
ence of the crystals in these systems by adjusting the electric field1. Electro- 
optic crystals have been used as light valves for which are many uses2. 
One of the optical problems in connection with these applications is that the 
angular field of the light shutter is limited by the natural retardation. Some 
practical methods of diminishing this natural retardation have been suggesteds. 
One is to put another non-electro-optic crystal of opposite sign in series with 
the crystal excited by the electric field. Another is to use two identical crystals 
with a 90" optical rotator placed between them. The use of ZnS and CuCl crystal 
plates (which are cubic) have also been suggested4. 

One of the important experimental problems in electro-optics is that of the 
electrodes. When the direction of propagation of light is perpendicular to the 
electric field, electrodes of either silver or gold either directly, evaporated on to 
the crystal or spliced on by a thin layer of liquid, like glycerine or oleic acid, is 
found to work very well. In the case of the direction of propagation and the 
electric field being parallel the problem is more complicated. Thin layers of, 
liquids, or semitransparent layers of-gold have been tried. But a promising - 
material is a commercially available thin conducting transparent layer of stan- 
nous oxide which has been found very satisfactory5. The electrical and optical 
problems associated with these types of electrodes have been ennumerated by 
BILLINGS. Evaporated grid and ring electrodes have now been proved quite 
suitable, particularly in the use of electro-optic crystals as light shutterse. 

90. Faraday rotation in solids. a) Isotro$ic substances. When a transparent 
substance is placed in a magnetic field,'it rotates the plane of polarisation of the 
light traversing it along the lines of force. This is known as the Faraday effect. 
I t  differs from natural optical activity in that the sense of the rotation depends 
on the direction of the magnetic field and not just on the direction in which 
light passes through the medium. The rotation is proportional to the thickness 
of the material traversed and the magnetisation intensity. For a diamagnetic 
medium the magnetisation intensity is almost equal to the applied magnetisation 
and so if it is placed in a uniform magnetic field the rotation is 

a = V H L  cos6 (go.'$ 

where L is the total length of the specimen, H the magnetic field, 6 the angle 
which the magnetic field makes with the direction of light propagation in the 

B.H. BILLINGS: J. Opt. SOC. Amer. 41, 966 (1951). 
? E. BURSTEIN, J.W. DATISSON, P.L. SMITH and J.E. DEHNEL: J. Opt. SOC. Amer. 

41, 288 (1951). 
B.H. BILLINGS : J. Opt. SOC. Amer. 42, 12 (19 52). 

4 C.D. WEST: T.  Opt. SOC. Amer. 43, 335 (1953). 
B.H. BILLINGS: J. Opt. SOC. Amer. 39, 802 (1949). 
J.G. JELATIS: J. Opt. SOC. Amer. 43, 335 (1953). 
For detailed discussion see the article by W. SCH~STZ in: Handbuch der Experimental- 

physik, Val. 16. 1936. - For other references and experimental data see article by S. RAMA- 
SESHAS and V. SIVARAMAKRISHNAX: Progress in Crystal Physics, Vol. I, Ed. R. S. KRISH- 
KAX. Sladras 1958. 
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medium. V is the Verdet constant which represents the rotation per unit length 
per unit magnetic field. 

Experiments on the velocity of light in isotropic media have definitely estab- 
lished that the Faraday rotation in an isotropic medium owes its origin to the 
fact that plane polarised light splits up into two circular vibrations which are 
propagated with different velocities in a magneto-optic medium. The rotation 
is given by the Fresnel formula - - 

where n- and n+ are the refractive indices of the two circular components for,. 
the light frequency v and c is the velocity of light. The measurement of the 
Faraday rotation in an isotropic medium is quite a straightforward process and 
in fact most of the data available in the literature relate to isotropic substances, 

,!?) Magneto-optic rotation and birefringence. Even the measurement of magneto- 
optic rotation in isotropic solids is made very much more complicated by the fact 
that most of these substances show a small residual birefringence which would 
vitiate the results of measurements unless corrected for. I t  must be remembered 
that when the magneto-optic rotation is measured in a solid with a small amount 
of birefringence using a conventional apparatus, what is determined is the posi- 
tion of the major axis of the emergent elliptic vibration with respect to the plane 
of polarisation of the incident light. This could be called the apparent rotation y. 
One should therefore be in a position to compute the value of true rotation from 
the measured value of y. 

The theory of magnetic rotation in anisotropic media has been the subject 
of a series of experimental and theoretical investigations. A medium exhibiting 
magneto-optic rotation behaves similarly to one possessing natural optical activity. 
The only difference is that the sense of rotation is different for opposite directions 
of travel in-the former case while it is the same in the case of optical activity. 
So long as one is interested in the propagation of light in a particular direction 
the theory of propagation of light in an optically active medium can be applied 
in toto, and used to evaluate the results in the case of magneto-optic rotation 
when birefringence is present. When plane polarised light is incident on an 
anisotropic medium placed in a magnetic field it splits up (as in the case of optical 
rotation) into two elliptic vibrations of opposite senses lying crossed to each 
other which travel with different velocities. The two being coherent, they com- 
bine at every point to produce an elliptic vibration whose major axis is rotated 
with respect to the plane of polarisation of the incident light. The magnitude of 
this rotation and the ellipticity of the emergent vibration are determined by the 
thicknessaf the crystal, its birefringence and its magneto-optic rotation. Hence 
the use of the PoincarC sphere representation would prove ideal for the evaluation 
of the magneto-optic rotation in a birefringent medium. 

CHAUVIN~ measured the rotation in directions slightly away from the optic 
axis of calcite with the incident light polarised along a principal direction. With 
increasing magnitude of birefringence the apparent rotation (which was actually 
the azimuth of the emergent elliptic vibration with respect to the incident plane 
polarised vibration) not only diminished in magnitude but actually reversed in 
sign and exhibited several reversals in sign. This observation can be explained 
from a simple geometric construction on the PoincarC sphere. Assuming Q (the 
magneto-optic rotation) to be a constant and 6 (the birefringence) to increase - 

M. CHAWIN: C. R. Acad. Sci., Paris 102, 972 (1886). See also WIENER: Wied. Ann. 1, 
3 j (1888). For further references see reference quoted previously. 0 
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continuously the inclination 26 of the axis of rotation of the PoincarC sphere 
continuously decreases since 2 el6 is continuously decreasing while A = Id2 + (2 Q)Z 

the total phase retardation increases. Hence the final state of polarisation exe- 
cutes a spiral shown in Fig. 98. The azimuth il of the major axis decreases from Q, 
reverses sign and oscillates with several reversals of sign finally tending to 
zero as it should for a purely birefringent crystal. 

L In principle the evaluation of the Faraday 
rotati n in an anisotropic medium reduces to P the accurate determination of the constants 
of the emergent ellipse when the magnetic field 
is on and off. RAMACHANDRAN and RAMASE- 
SHAN* have made a detailed investigation re- 
garding the exact methods involved. The general 
method of determining the true rotation in the 
presence of birefringence is the following. Line- 
arly polarised light is allowed to fall on the 
medium at an azimuth a to the principal 
directions and one measures the apparent rota- 
tion y by means of a half-shade at the analyser 

R end and the ratio of the axes (tan w) of the 
~ , " , " ; n P , " f i n ~ B , " ~ ~ ~ ~ ~ ~ ~ e n ~ ~ ~  emergent ellipse by a suitable method. From 
netooptic rotation) in calcite for h t i o n s  this both 6 and 2 Q can be calculated from the of propagation away from the optic axes. 

formulae 

tan 2y = [cos 2a - cos 2w cos 2 (a + y)]/sin 2w, (90.3) 
cos A = - [(I - cos 2w cos 2y)/(I - cos2 2y cos2 2a)], (90.4) 

6=Acos2y, 2e=Asin2y. (90.5) 

This method may be used when neither 6 nor 2~ can be measured independently. 
But in Faraday effect studies the birefringence 6 can be measured. Then the 
true rotation can be deduced from a measurement of y alone. When both 2~ 
and 6 are small from (go.?), (90.4) and (90.5) it follows that 

if a = O  or 90' 2y0=2e I-- ( ::) (90.6) 
and 

if a=4S0 (90.7) 

the error in using these ,approximations is less than 1 % so long as d and 2~ are 
less than 30". From these two equations one gets 

This equation is correct to the third order in 6. This is an extremely convenient 
method of eliminating the effect of birefringence without measuring its value 
when both 2~ and 6 are small. 

In fact this method can be used to make accurate measurements of the Fara- 
day effect in isotropic solids which show residual strain. FortunateIy most speci- 
mens grown from melt or solution exhibit a preferred axis of strain and the 
method suggested by Eq. (90.8) is of great utility in the accurate measurement 
of the Verdet constant2. 

G.N. RAUACHANDRAN and S. RAMASESHAN: J. Opt. SOC. Amer. 49, 42 (1952). 
S. RAMASESHAN and V. SNARAMAKRISHNAN: J. Ind. Inst. Sci. 38, 228 (1956). 
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72 37, 
The mean value of y over a range - to is given by 

I t  may be mentioned that the procedure may be reversed and this method 
may be used with profit to measure the small birefringence introduced due to 
artifical stresses in isotropic medial. I t  has actually been used to measure the 
stress-optic constants in glasses2. 

It may be mentioned in this connection that RAMACHANDRAN and R ~ A -  
SESHAN have proved several theorems (using the Poincark sphere) which are 
extremely useful when actual experiments are made on magneto-optic rotation. 
Thus, when birefringence is present, the observed value of the apparent rotation 
is very sensitive to small variations in the value of a, the angle between the 
plane of the linear incident vibration and the principal axis of the specimen. 
However if measurements are made for opposite directions of the magnetic field 
and the mean is taken, as is usually the practice, then the errors arising due to 
variations (is missellings) in a are practically eliminated. This result is of interest 
in connection with measurement of magneto-optic rotation when residual bire- 
fringence is present. In such a case the principal axes are never exactly the same 
throughout the specimen and they usually exhibit a variation of 5 to 10'. Con- 
sequently it is very important to eliminate the errors arising from the variation 
in a. 

y )  Faraday rotation in anisotro$ic media. In an anisotropic medium the meas- 
urement of the magneto-optic rotation along the optic axis is similar to that in 
an isotropic solids and in the few cases of anisotropic solids that have been in- 
vestigated, the measurements have been confined to the propagation along the 
optic axis. However, in spite of the practical difficulties rotations have been meas- 
ured for directions slightly inclined to the optic axis in calcite3 and alumina4. 
The analysis of the results using the procedures mentioned in the last section 
indicates that within the limits of experimental error no sensible change could 
be detected in the Verdet constant for these small inclinations. VOIGT~ has 
considered the problem of the variation of the Verdet constant with direction 
from another point of view. Using the simple electron theory and the concept 
of the anisotropic polarisability tensor he has shown that in certain types of 
monoclinic crystals in which the optic axes lie in the plane of symmetry, the 
magneto-optic rotation along the two optic axes may be different for the same 
applied field. Physically this arises because in such crystals, in spite of the fact 
that the refractive indices along the two optic axes are the same, the arrangement 
and orientation of the molecules in the path of the light would in general be 
considerably different. This was experirhentally confirmed by VOIGT in the case 
.of cane sugar when he discovered that the magneto-optic rotation along the two 
axes are significahX different. This is not surprising as the natural optical 
activity along the two optic axes in this substance are actually of different signs. 

VOIGT also foresaw the possibility of the Verdet constant varying with direc- 
tion in paramagnetic anisotropic crystals, where, due to the perceptible magnetis- 
ability, the external field causes internal fields of different strengths in different 

1 S, RaMns~sg ln  and V. CHANDUSEKHARAN: Current Sci. 20, 150 (1951). 
2 S. RAMASESHAN: Proc. Ind. Acad. Sci. A 34, 32 (1951). 
3 M. CHAUVIN: C. R. Acad. Sci., Paris 102, 972 (1886). 

S. RAMASESHAN: F'roc. Ind. Acad. Sci. A 34, 97 (1951). 
W. VOIGT: Phys  Z. 9, 585 (1908). 
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directions. This effect was experimentally demonstrated by BECQUEREL~ who 
showed in an ingenious experiment this variation of the Verdet constant with 
direction in anisotropic paramagnetic crystals. 

IV. Photoelasticity2. 
91: Photoelastic constants. We shall consider only the phenomenological theory 

of photoelasticity of solids in this article. This is based on the following two 
assumptions. 

1. In a homogeneously deformed solid, all the laws ofkppagation of light. 
derived for homogeneous anisotropic media are valid. The effect of the deforma- ' 
tion is only to alter the parameters contained in these laws of propagation. 

- - 

2. When the strain is within elastic limits, the variation of an optical para- 
meter of the solid due to the deformation can be expressed as a homogeneous 
linear function of the six stress components X, , Y,, Z,, Y, , Z,, Xy or the six 
strain components x,, yr, z,, y,, z,, xy. 

The first assumption means that the effect of the deformation only leads to 
a change in the magnitudes and directions of the principal axes of the optical 
ellipsoid of a solid. The second assumption is a generalisation of the experimentally 
observed BREWSTER'S law, according to which the magnitude of the double refrac- 
tion induced by stress in an isotropic solid is proportional to the stress. 

We shall represent the six stress components X,, Y y ,  Z,, Y,, Z,, Xy by, 
X I ,  X, ,  ..., X 6 .  The six strain components x,, yy, z,, y,, z,, x, are similarly ' 
denoted by %, x,, ..., x6. 

The stress is taken as positive when compressional and negative when ex- 
tensional. The strain however is considered positive for extension and negative 
for compression. The stress and the strain components are related by the follow- 
ing equations3. x . = - ~ . . ~ . -  x . = - s . x  

z7 1' 5 5 3  1 (91 . I )  

where the cii are called the elastic constants and the s,i the elastic moduli of the 
substance4. 

These two types of constants are related to each other by the following equa- 
tions : 

.Since Xi and xi have 6 components each, the tensor cii (and s,?) have 36 com- 
ponents each in general. In the classical theory of elasticity, these tensors are 
symmetric in i and j, so that . 

c. .= C . . '  S . . =  s . .  
$1 3 % '  5 7  7 5  (91.3) 

and there are only 21 independent constants of each type for the crystals of lowest 
symmetry. 

According to the recent ideas of RAMAN 5 and LAVAL the stress and strain tensors 
are both not symmetric tensors for a generaldeformation, so that Xi,  xi have 9 com- 

J. BECQUEREL: Z. Physik 52, 342 (1929). - Le Radium 5, I 16, 238 (1908). 
2 For an article on photoelasticity, mainly written from the point of view of its en- 

gineering applications, cf. H.T. JESSOP, in Vo1. VI of this Encyclopedia. 
8 A. E.H. LOVE: Mathematical Theory of Elasticity. 
4 The two sets c .  - and sij are also called by some authors as elastic stiffness coefficients 

and compliance coefdcients. 
C.V. RAM-4~: Proc. Ind. Acad. Sci. A 42, 1 (1955). - C.V. RAMAN and K.S. VISWANA- 

THar;: Proc. Ind. Acad. Sci. A 42, 51 (1955). - C.V. &MAN and D. KRISHN-~MURTHI: Proc. 
Ind. -%cad. Sci. A 42, 111 (1955). - J.LAVAL: C.R.Acad. Sci., Paris 232, 1947 (1951): - 
T LE CORRE: C. R. Acad. Sci., Paris 236, 1903 (1 953). 
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ponents each and the tensors cj j  and sii should have 81 components in general. 
However, they are symmetric in the indices referring to stress and strain, i.e., 
cii=cii and sii=si: so that there are only 45 independent components. The 
consequences of t h s  theory for photoelasticity have not been worked out, and 
so we shall not be considering it further in this article. 

I t  is necessary now to choose a proper optical property of the medium that 
alters with stress or strain to represent its photoelastic behaviour. As has been 
shown in the previous chapters, the most satisfactory optical parameter-would 
be the index tensor [a] connecting D and E. In the case of a non-optically active 
medium, 

E = [a] D (93.4) ' ., 

and the equation to the index ellipsoid is 

where aii are the components of the tensor [a] with respect to the co-ordinate 
axes chosen. We shall denote the value of aii in the undeformed crystal by a$ 
and if it changes to aii on deformation, then the change A aii = (aii-- a$) can be 
expressed as a homogeneous linear function of the stress or strain-components. 
Denoting %,, a,,, q3, a,,, q,, a,, by a, to a,, we may write the changes in the 
optical parameters in terms of the strain components as 

A a . = a . - a L  r r r - z + i j x i ,  (i, j = 1 to 6)  (91.6) 
7 

and in terms of the stress components as 

Written out in full, these equations take the form: 
in terms of the strain components as 

and in terms of the stress components as --- 
~ 1 - a ~ 1 ~ ~ [ ~ 1 1 x % + q 1 2 Y y ~ q 1 3 z z + q 1 4 Y z + ~ 1 5 Z x ~ ~ 1 6 ~ y ] ~  

'422-a!2 =- [q2IXXf q22 Yy+q23Zz+q24Yzf q25Zx+q26Xy], 

%3- 4 3  = - r ¶ 3 1 X x t q 3 2 Y y + q 3 3 Z z + q 3 4 Y z + q 3 5 ~ x + ~ 3 6 X y l ,  

a23- 4 3  = - [ ~ 4 1 X x t % z Y y + ¶ 4 3 ~ z + ¶ 4 4 Y ~ + q 4 5 Z x + q 4 6 X y ] ,  

% 1 - ~ : 1 = -  [q51Xx+q52qf q53zz+q54 Yz+q55Zz+q56Xy], 

% 2 - ' ! 2  =- [q61Xxf q6ZYyf ~ 7 3 Z z + q 6 4 % + q G 5 Z x + q 6 6 X y ] -  

The negative sign in Eq. (y3.9) arises because of the convention that positive 
strain corresponds to negative stress. ?)ne constants +ii are called the elasto- 
optic constants, while qtj  are called the piezo-optic constants. When either is 
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to be referred to, we shall use the term photoelastic constant. They are also 
s o m e h e s  referred to as strain-optic and stress-optic constants. The thirty-six 
constants or qij completely define the photoelastic behaviour of a crystal 
when subjected to known stresses or strains. 

The constants fiii and qij are related as follows: 

where cik and sik are the elastic constants and elastic moduli respectively, 

Table 7. The number of optical, elastic and photoelastic constants i n  the 32 c r y s t ~ l  classes. 

Photo 
Symmetry operation 

Cz, -mm E ,  C20,, 4 
Orthorhombic 1 I11 1 D, - 2 2 2  1 E ,  C,, C; , C'Z' 

D Z h - m m m  E , C 2 , C ; , C ' , ' i , u h , c u , ~ ~  

C4 - 4 E ,  2C4, C2 
E, 2 S 4 ,  C2 

c4 h - 4/m E, 2C4, C2, i, 2 S 4 ,  

Tetragonal 

Trigonal 

/ E,2C3 1 2 1  7 1 4 2  
s, - 3 v1 I c3-3 1 E, 2 ~ , , i ,  2 ~ ,  I 1 7 / 1 2  

C a y - 3 m  E, 2C3, 30, 
-11 1 4-3-2 1 E ,  2C3, 3C2 

D3d- 3 m  E,2C8, 3Cz , i ,2C8,  30, 

Hexagonal 

V 

- 
E, 2C6,2C3, Cz 
E ,  2C3, oh, 2 S 3  
E, 2C6, 2C3, C2 
i, 2 s e , 2 S 3 , ~ ~  

- - 
Cubic T d - 7 3 m  i E,8C3.3Cz. 60,  65. 3 

2 
2 
2 
2 

XI 

C4,-4_mm 
D Z d - 4 2 m  
D4-422 

D4h--4/mmm 

-- 

IX 

0 - 4 3 2  E ,  8C3, 3C2, 6C2, 6C4 
Oh-m3m E,8C,,3C2, 6Cz ,  6C4 

6 
6 
6 
6 

E, 2C4, C,, 20,, 20; 
E , C z . C ; , C ~ , o , , , 2 ~ 4 , u ~  
E ,  2C4, Cz ,  2C2,  2Cz 
E ,2C4,C2,  2C2,2C; 
t 2.5,. q,, 20,, 20; 

2 
2 
2 
2 

j 3 3 3 i, SC,, 30, 60 ,6S3  

  so tropic solids 1 Spherical symmetry 1 1  1 2 ' 1  2 

7 
7 
7 
7 

D3h-5m2 l E , 2 C 3 , 3 C z , a h . 2 S 3 , 2 0 v  5 
5 
5 
5 

C ~ v - 6 m m  
D6 - 6 2 2  

D,h-6/m2m 

6 
6 
6 
6 

E ,  2CB. 2C3, C2. 30,. 3 4  
-7% 2C6. 2C3, C,, 3Cz ,  3C2 
E ,  2C6,2C3, Cz ,  3Cz,  3C2 
i. 2s , ,  2.53, 0,. 30,, 3 4  
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The various pji and qii are experimentally determinable, the methods for 
wbi~h are given in Sects. 98 and 99. However the piezo-optic constants (qij) 
can be determined more directly by experiment, although the elasto-optic con- 
stants (fiii) are more significant from the theoretical point of view. Hence it 
is usual to determine the former experimentally and make.use of values of the 

constants of the crystal to determine the values of the latter. 

92. Number of photoelastic constants in relation to symmetry of the crystal. 
Unlike in the case of elastic constants, the tensors fiji and pii are not symmetric 
in i and j and consequently the number of constants in the general case is 36. 
This number would however be less for crystals possessing various elements of 
symmetry. This is so because all expressions involving the photoelastic constants 
should be invariant when each of the symmetry operations is applied. Conse- 
quently, it would be possible to derive relationships between some of the 36 photo- 
elastic constants1 and the number of independent constants is thus reduced. 

The number of surviving optical, elastic and photoelastic constants are given 
in Table 7. 

POCKELS found that the 32 point group can be classified into g classes accord- 
ing to the number and nature of the surviving photoelastic constants. This has 
been shown to be erroneous by BHAGAVANTAM~ who showed that the 32 point 
groups can be classified into 11 classes. These 11 classes are the same as the 
so-called Laue-symmetry groups3 and are what one would obtain if an additional 
symmetry of inversion is introduced. This symmetry is possessed both by the 
elastic and optical properties of a crystal, which do not change their magnitude 
when the direction of the stress and of light propagation are reversed. 

The surviving constants in these $1 groups are listed in Table 8. 
93. Changes in the optical behaviour of a crystal due to deformation. a) General 

formulae. One of the important problems in this subject is to know the changes 
in the magnitudes and orientation of the principal axes of the optical ellipsoid 
of a crystal for various types of deformation. When the qii or Pii are completely 
known, these changes can be computed. In this section, we shall derive the formu- 
lae for the general case. The formulae appear complicated, but the principle 
of deriving them is simple and in practice only special directions of stress and 
observation are employed, for which the formulae reduce to comparatively 
elementary expressions. 

Let OXo, OY, and 02, be the principal axes of the optical ellipsoid of the 
crystal in the undeformed state. The equation to the ellipsoid would then be 

On deforming the crystal the altered ellipsoid is given by the following equa- 
tion, referred to the same axes OX, Yo Zo 

\ 

% I 4  +a,,y; + h a 4  + 2 a 2 3 ~ 0 ~ 0 + 2 % , ~ 0 ~ 0 + 2 % 2 ~ 0 ~ 0 =  1. (93.2) 
Let the principal axes of this ellipsoid be along OX', OY', 02'. Referred to these 
axes of co-ordinates, the equation to the altered ellipsoid becomes 

1 The technique of working these out is discussed by JAGODZINSKI, in Vol. VII/1 of this 
Encyclopedia. 

2 S. BHAGAVANTAM: Proc. Iud. Acad. Sci. A 16, 359 (1942). - Acta uystallogr. 5, 591 
(1952). 

International Tables for X-ray crystallography, Vol. I, p. 30. Birmingham: Kynoch 
Press 1952. - 
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- Table 8. 

I. First group: Triclinic system-36 coefficients. 

Pl2 9 1 3  P I 4  Pl5 Pl6 ql1 412 q13 q14 915 

PZZ' P23 P 2 4  $25 P2e qai 422 q23 q24 q25 

P32 P33 P34 P35 P36 431 q32 q33 q34 q35 

%2 P43 $44 p45 P48 441 942 q43 q44 q45 

P52 lhs3 P 5 4  PSS P56 951 q52 q53 q54 q55 

Pea P s s  P e 4  $85 Pee 461 qez 463 464 qss 

?-. 11. Second group: Monoclinic system-20 coefficients. 

h a  $18 0 O P1.6 ', 8 1  412 413 0 0 
A 2  9 2 3  o o A 6  421 q22 q23 O O 
9 3 2 9 3 3  O O P36 431 q 3 2 , q 3 3  O O 
0 0 P 4 4  $45 0 0 0 0 q44 q45 

O O P 6 4 P 5 5  O . .  O O (I q54 q55 

Pa2 Pes 0 0 Pas qel qez 463 0 0 

111. Third group: Orthorhombic system- 12 coefficients. 

IV. Fourth group: Tetragonal system-10 coefficients. 

V. Fifth group: Tetragonal system-7 coefficients. 

VI. Sixth group: Trigonal system-I2 coefficients. 

VII. Seventh group: Trigonal system-8 coefficients. 
Hemimorphic, Enantiomorphic, Holohedral 
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Table 8. (Continu.ed). 

VIII. Eighth group: Hexagonal system-8 coefficients. 

IX. Ninth group: Hexagonal system-6 coefficients. 

X. Tenth group: Cubic system-4 coefficients. 

XI. Eleventh group: Cubic system-g coefficients. 

XII. Isotropic solids-2 coefficients. 

Let the direction cosines of O X ' ,  OY' ,  OZ' referred to the system O X o  Yo, Z0 be 
given by the following scheme : 

IX' Y' Z' 

where the a;, and aij. are known in terms of a!; and the photoelastic constants. 
There are in adhtion six relations between the direction cosines in (93.4) 

of the form: 
~ i ~ + B i B j + ~ i y . = & j  ( i , j )=1 ,2 ,3  1 (93 -6) 

x o  
Y o  

--- zo 

a1 xz a3 (93.4) 
a B z  B3 

Yl  Y2 Y3 

One has now to determine the magnitudes of q, @$, yi and a;, , a;, and a;, in 
terms of the stress optic coefficients and the principal values a!,, a!, and a:, 
of the7undeformed crystal. 

Referred to the old co-ordinate axes, we have the six relations 
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where 

and 

From the twelve equations in (93.5) and (93 -6), the twelve unknown quantities 
namely the three principal values of the index tensor a;,, d2, a;, and the nine 
direction cosines xi, pi, y, can be determined in terms of the stress-optic coef£i- 
cients. 

It is convenient to express the transformation of OXo YoZo to OX' Y'Z' 
by the following angles. We shall represat the co-ordinate axes by the points 
Xo, Yo, Zo and X', Y', Z' at  which they intersect a sphere of unit radius drawn 
with the origin as centre. Let the great circle passing through Zo and Z'iiitersect 
the great circles passing through Xo Yo and X' Y' at To and T'. Let X ~ T ~  = y, - 
X T' = p and 2T0 =6. The direction cosines %, pi, yi are related to y, 6, p by 
the following equations : 

a, = - cospcos~cos6  - sinpsiny, 1 

y, = cosy sin#, 

a,= - cosps iny~os6  fsinpcosy,  i93.7) 

p2= - sinpsinycos6- cospcosy, I 
y2 = sinpsin y ,  

cr,=cospsin6, ,!13=sinpsin6, y3=cos6. I 
Substituting these in the 12 equations (93.5) and (93.6), the values of y are 
obtained as the three roots of the equation. 

There is however an ambiguity in the solution, since tan y is the same both for 
y and z + y but the effect is only a reversal of the appropriate axis, and the two 
are - equivalent. Knowing y, 6 and p can be obtained from 

'-. cos 8 ((4, - a,,) sin 2 y - 2a,, cos 2 y )  + 
tan2p,= [ ~ o s ~ ~ { ~ , ~ o s ~ y + a ~ ~ ~ i n ~ y - ~ ~ + ~ ~ s i n ~ y ) -  

+ - s 8 { a z 3 s y + c o s } + s i n ~ y - l s i n 2 y - a 2 2 c o s z y + a 3 3 ] ~  2 sin8(a2, cosy  -a,, sin y )  

(93 -1 0) ' 

The values of ui, p*, yi are calculated using (93.7) and hence dl, a;, , a;, are 
. obtained from the relations: 

a..- ;r a22Bia + %3y? + 2a23pi~i + 2%1~2% + 2%2aiP%- (93.11) 
J 

p) S#ecial cases. Simpler relations can be obtained from the equations qf the 
,' last paragraph in the case of biaxial crystals with not too small birefringence, 
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i.e., when A A a,, , A a,, , A a,, , A +,, A a,, are very much smaller than 
a!l-a:2, and a:,-a:,. Then it follows that 

The transformation of'axes from OX,,YoZo to OX'Y'Z' is then equivalent to 
three rotations through angles @%, By, @: about the three axes of the undeformed 
crystal, the values of which are given by 

2Aa31 tan2QX = 2Aa23 , tan 2 @y = 3 -  2A%z . (93.14) , tan2@ -- 
a ~ ~ - a 2 3  a 3 3 - a 1 1  %1-~22 

By a proper combination of the three individual rotations @%, QY and C D ~ ,  
one obtains the total rotation which the principal axes of a crystal experience 
on deformation. In  biaxial crystals, DZ, GY and QE are in general small and 
hence to a first degree of approximation the order of the successive rotations 
does not matter. In  uniaxial crystals the rotation about the optic axis would be 
finite (as 4,-a, ,=%,),  while Qx, QY will be small. In such cases, the rotation 
about the optic axis must be carried out first. 

94. optical behaviour under hydrostatic pressure. In this case, X,= Y,=Z, 
(=p say) and X,, = Y,=Z,=O. Introducing these in Eq. (91.9) we have 

If the values of qZi are known, then the behaviour of the crystal ander hydro- 
static pressure can be deduced. From the equations given above one finds that 
the right hand side of the last three equations are equal to zero for all crystal 
classes, excepting those belonging to the triclinic and monoclinic systems. This 
is true in spite of the fact that in certain groups such as 4, 5, 6, 8 (Table 8) 
cross-coefficients of the type q,,, q,, are present. In crystals of the monoclinic 
and triclinic systems, ,the principal axes experience a rotation under a hydro- 
static pressure. However, ib no case is the crystal symmetry altered and the iso- 
tropic, uniaxial or biaxial nature is always retained. 

95. Effect of unidirectional stresses. If a stress P acts in any arbitrary direction 
having direction co?mqs I ,  m, n with respect to the chosen crystallographic axes, 
then the stress components are given by 

Xl=12P, X2=m2P, X,=n2P,  X4=mnP,  
X 5 = n l P ,  X 6 = l m P .  

If these values of the stress components are substituted in the fundamental 
photoelastic equations, then the orientation of the optical ellipsoid of the deformed 
crystal can be calculated by the method indicated in the Sect. 93. 

It is very seldom that one would require the constants of the optical ellipsod 
for an arbitrary stress direction. Some special cases of interest are discussed 

Handbnch der Physik, Bd. XXV/I. 14 
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below. For instance, it is possible to distinguish between the different photo- 
elastic classes by a study of the tilt, if any, of the principal planes when the 
stress is along one of the principal axes of the optical ellipsoid. 

We shall consider in particular a crystal not belonging to the monoclinic or 
the triclinic system, in which the stress is along OX, and calculate the tilt of the 
axes of the elliptic section when the direction of observation is OY or 02. Since 
the stress is along OX, al l  components except XI are zero. Thus 

1 - 1 - 1 1  a23=-941X,, 
a,,-- qlZX1, %I=-  9.5lX19 9 (95 -2) 

%s- 48=-qlSXl*  ( 1 1 2 = - 4 ~ 1 ~ 1 -  

The section of the deformed ellipsoid normal to OZ and OY are 
*, . 

% 1 ~ 2 + a z 2 ~ 2 +  2 4 z x y  = 4 ,  

( ~ ~ , X ~ + C E Q ~ Z ~ +  ~ C E Q ~ Z X  =I. 
(95.3) 

The tilt of the axes in the two cases are respectively 

and 

Such tilts in the axes can occur only when either pel+ 0 or q,,+ 0. A tilting occurs 
for both directions of observations only for crystals belonging to the point groups 3 
and 3. 

I t  is quite obvious that this gives a simple method for distinguishing crystals 
belonging to different photoelastic classes in the trigonal, tetragonal and hexagonal 
systems. 

8) In the case of cubic crystals also, it is possible to distinguish between the 
two photoelastic classes by means of a similar observation. Thus, if the stress 
direction is equally inclined to OX and OY (making an angle of +45" with OX) 
and the direction of observation 02 ,  then a tilt will be observed only in the 
classes T and Thl. 

In this case 
P XI = X z  = X6 = 

and 

The equation to the optical ellipsoid of the deformed crystal is 

and its section normal to OZ is 

%x2+ a22y2 + 2 % 2 ~ ~  = 0 (95.8) 
where 

% I =  4 1 -  + (q11+q1z)P, 
az,=aOzz- +(419+913 P> 1 (95.9) 
alz=- 344,p .  

1 S. BHAGAVANTAM and D. SURYANARAYANA: Roc. Ind. Acad. Sci. A 26, 97 (1947). - 
Nature, Lond. 162, 740 (3948). 
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The magnitude of the major and minor axes of the elliptic section are given by 

a;, = q1cos28 + a2,sin28 + 2q2sin6cos6 
and 

a;,=q1sin26 +a2,cos26- 2q2sin6cos6 
and the difference 

a;,-- a&,= (6,-a2J cos26 +2%,sin26. 
Thus - - 

2 4 %  tan 26 = ------ = 2 ¶ & 4  . 
% I - ~ Z Z  q i e - f i 3  (95.10) 

For the photoelastic class No. 11, comprising of crystal classes Td, 0 and Oh, 
q12=q13 and therefore 6=4s0, and one of the principal axes coincides with'- 
pressure direction. For the other class No. 10, composed of T and Th crystal 
classes q12+ q13 and so the principal planes are tilted with respect to the direction 
of pressure. The magnitude of the tilt is (6-45"), where tan 26 is given by 
(86.10). 

Such a tilt has in fact been observed in a number of crystals belonging to 
the crystal classes T and T, and this elegant method has been used to distinguish 
crystals that belong to and T and Th classes from those of the Td, 0 and 0, 
classes1. 

y)  In the case of isotropic solids, there are only two piezo-optic constants and 
under unidirectional stress the solid becomes uniaxial with the optic axial parallel 
to the direction of stress. The deformed solid behaves like either a positive or 
negative uniaxial crystal according as (qll- q,J is - v e  or 3 ve.  

96. Behaviour of cubic. crystals. For crystals belonging to the T,, 0 and 0, 
classes, the number of independent constants is three, i.e. qll, q,, and q4, and 
Eq. (91.9) becomes: 

ELI-ao=- [(qll- PI,) X I + ~ I Z ( X I + X Z ~ X ~ ) ~ ~  ) 

where gl= a!,= a& = aO, the value for the undeformed crystal. Consequently, 
the stressed crystal becomes biaxial in general. Although the birefringence for 
any direction of propagation is proportional to the stress, it is interesting that 
the optic axial angle 2V depends only on the direction of the pressure and is 
independent of its magnitude. The value of 2 V is given by 

1 I I lT-- , lTr , l/T are the principal refractive indices. It is readib seen where ,- - - 
a l l  02.2 aa s 

that (all- a;,) and (ail- a;,) are homogeneous linear functions of the stress 
components, so that their ratio and hence the optic axial angle is independent 
of the magnitude of the stress. The orientation of the optic axial plane depends 
on the ratio ~=q,$q,,--q12 and one may classify crystals belonging to this 
photoelastic class into four types according to the magnitude and sign of this 
quantity: 

( i )x>1,  (ii)O<x<1, ( - 0  (iv)x<-1. 

1 S. BEAGAVANTAM and D. SURYANARAYANA: Proc. Ind. Acad. Sci. A 26, 97 (1947). - 
Nature, Loud. 162, 740 (1948). 
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The optical behaviour of the four types for various stress directions parallel to 
the cubic and dodecahedral planes have been worked out by P o c m ~ s l .  

Cubic crystals belo~ging to T and Th classes. The phenomena in these cases 
become more complicated as the number of surviving constants is four, i.e. 
qll, q12, q13 and Q ~ .  These crystals therefore become biaxial even for compression 
along a cublc axls. Thus, if P is the magytude of the stress along the x-axis, 

$1- aO=-¶l lP ,  
a,, - a0 = - q,, P, 

q33- a"=- 413 P, \Q~.?)  
--. 

a,3=a31=$,=~. 

It is obvious from these equations that the principal axes of the optical 
ellipsoid coincide with the cubic axes of the crystal. The optic axes occur in 
the X O Z  plane if q12> qI3, and the axial angle is given by 

Here again, one notices that the optic axial angle is independent of the magnitude 
of the pressure. This can be proved to be true for any direction of pressure in 
this photoelastic class also. 

The only direction of pressure for which the crystal becomes uniaxial is 
when it is parallel to a cube diagonal [ I  111 ; for all other pressure directions it 
becomes biaxial. This is because these are the only directions in the crystal 
which have a symmetry axis of order greater than two. Of particular interest 
is the fact that for stress along the dodecahedral direction, the crystal becomes 
biaxial as in the previous case, but with one important difference. No principal 
axis of the deformed ellipsoid coincides with the direction of stress. (Again 
this is because this direction is not a two fold axis in crystal class T and Th.) 
It must however be remembered that this angle between the axis of the optical 
ellipsoid and the pressure direction can only be detected experimentally when 
observations are made along proper directions. For example when the stress 
is along a dodecahedral direction [I 101 and observations along a cubic axis [00 11, 
then the major axis of the elliptic section normal to [001]  is tilted with respect 
to the stress direction by an angle 8 given by - 

..However for the same stress direction, if the observation is along [ I  701 the - 
hajor axis of the elliptic section coincides with the stress direction. 

I n  these crystals, if the stress is along one of the cubic axes (OX) ,  the 
birefringence observed for directions of observation O Y  and OZ are different, 
these being proportional to (qll- q1J an4 (qll- qlJ.  Thus, we get the interesting 
result that in a cubic crystal, for which the three axes are equivalent in the 
unstressed state, the stress birefringence for pressure along O X  is different for 
observation along the other two cubic axes O Y  and OZ.  However, the equi- 
valence of the three cubic axes under the operations of a three-fold axis along 
the cube diagonal is seen from the fact that stress along OX and observation 

- F. Poem [2]. A summary of the photoelastic behaviour of cubic crystals is also given 
by types I and 11. G. SZNESSY [ I ] .  
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along OY is equivalent to stress along OY and observation along 02 and to 
stress along OZ and observation along OX. Similarly, the other three combina- 
tions of stress and observation directions are equivalent. 

97. Behaviour of uniaxial crystals. In cubic crystals it is found that a pressure 
along any trigonal or tetragonal axis of symmetry makes the crystal optically 
uniaxial with the pressure direction as the unique axis; a pressure applied along 
any other axis makes the crystal biaxiall. This rule is found to be valid for 
uniaxial crystals also. From the Table 6, it is seen that for a unidirectional pres- 
sure along the 2 axis since q4,=q,,=q6,=O there will be no rotation of the axes. 
And as q,,=q13 the principal components of the index tensor a, and a, of the 
deformed crystal will be the same. For any other direction of pressure these 
two constants will not be the same, showing that for any unidirectional pressure 
a uniaxial crystal becomes biaxial unless the pressure direction coincides with 
the optic axis. If the pressure direction is perpendicular to the optic axis (i.e. 
02,) and if i t  is parallel to OX, then the optic axial angle exhibited by the de- 
formed crystal is given by 

where nm and ns are the ordinary and extraordinary indices of refraction. Unlike 
in cubic crystals the optic axial angle is proportional to the square root of the 
pressure. For all crystals excepting these belonging to group V of Table 7 the 
acute bisectric of the deformed crystal will .not coincide with the optic axes of 
the undeformed crystal but would be rotated by an angle determined by the 
first two equations of (93.14). Further if ql,< ql, the optic axial plane is parallel 
to the pressure direction for a positive uniaxial crystal and perpendicular to the 
pressure direction for a negative uniaxial crystal. For ql, >q,, the behaviour 
would be just the opposite. - - 

98. Experimental methods. The photoelastic constants of a crystal can be 
evaluated from observations in specimens of suitable orientation of the absolute 
and relative retardations induced by stress. These retardations arise firstly due 
to the change in the refractive indices due to the photoelastic effect and secondly 
the change in the thickness of the specimens caused by the stress. The magnitude 
of the last effect must be known before the photoelastic constants can be computed 
from the observed values of the retardations. We shall briefly mention the 
various methods avaiIable for measuring the retardation before dealing with 
the methods of computation. 

The crystal specimen is subjected to a zdniform unidirectional stress and the 
- relative retardation produced between k y s  with electric vectors parallel and 

perpendicular to Q e  stress is measured by any of the compensator methods. 
The Babinet compen'sator has proved by far the most useful instrument for these 
measurements. Recently a magneto-optic method [see Sect. 90) has been evolved 
for measuring small birefringence usually encountered in photoelastic experi- 
ments and the method is particularly useful for the measurement of the disper- 
sion of the photoelastic constants with wavelength. This method consists of meas- 
uring the decrease of the apparent Faraday rotation with stress and is normally 
applicable to cubic crystals. 

The absolute retardation measurements can be made using two identical 
crystals in a Jamin interferometer, one being subjected to a longitudinal stress 

1-S. BHAGAVANTAM and D. SURYANARAYANA: Proc. Ind. Acad. Sci. A 26, 97 (1947). 
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while the other is notl. Another extremely accurate method for determination 
of the retardation has been describeda. Light passes through three specimens 
each placed in front of a slit. A precise exploration of the Fraunhofer pattern 
with and without the central crystal stressed yields an accurate measure of 
the variation of the optical path of the central beam. Another convenient method3 
is to measure the shift with stress of the Newtonian fringes formed between two 
surfaces of the crystal specimen. 

For a pressure change AP, i f  AN fringes cross a fiducial mark in the crystal, 
then the change in refractive index - \--. 

i dL where in the last term, represents the elastic moaulus along the direction of 
- -- 

propagation. AN and A P  can be measured very accurately. However, in general 
the experimental position in photoelasticity is quite unsatisfactory, as in most 
of the methods of measurements the major part of the path retardation arises 
due to the change in thickness of the specimen. These changes cannot be ac- 
curately found out as the elastic constants are not precisely known. 

We shall now take the case of an orthorhombic crystal to exemplify the 
computation4. Here 

%I- &I=- ( q i i x ~  f q12q + 918 Z ~ ) ,  1 
', 

a22-aO,2=- ((l~lXx+922~+923Zz)r (98.2) ' 

and %3- 43 = - (931Xx + 932 y x  + q33 2 2 )  - 

and the strains etc. are given by 

and along any direction making direction cosines I ,  m, n with the axes, the 
.dilatation is given by 

for a unidirectional stress along x, 

all- 41 =- q11px> 
a,,= a0,2=-q21Px, 

q3-a;3=-q~lPxr I 
since a!, =llnz, a:,= tin; and a:,=l/a: for observation along the z axis for 
light with electric vector parallel to the direction of pressure 

R. EPPENDAHL: Ann. d.  Phys. 61 (4). 591 (1920). 
2 B. Vrrroz: Helv. phys. Acta 26, 400 (1954). 

G.N. RAMACHANDRAN : PTOc. Ind. Acad. Sci. A 25, 208 (1 947). 
K. V m m :  Roc. Ind. Acad. Sci. A 34, 161 (1951). 
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and for the localised fringe method described, the retardation for one fringe shift is 

IIP! t = 4qll- 212,%, (98.7) 

where PJI is the pressure (in dynes-cm2) necessary to bring about one fringe shift 
for light vibrating parallel to the direction of pressure. SimiIarIy 

l / P f  t = %$qZ1 - 2nYsl3 ... (g84 

for light vibrating perpendicular to the direction of pressure and relative retarda- 
tion when measured with a Babinet compensator is 

The factor of 2 being due to the fact that the light travels through the crystal 
only once when the Babinet method is used and not twice as in the fringe method: . 

p) OPtically active medium. We shall consider the case of a cubic crystal 
possessing optical activity for which this method has been worked outl. If light 
of any state of polarisation represented by P L 
on the PoincarC sphere (Fig. 99) is incident on the 
unstressed crystal (of thickness t), the emergent 
light will be in the state P, obtained by a rota- 
tion about the axis LR by an angle 2 @ t where 
@ is the optical rotation per unit length of the 
crystal. If now the crystal is stressed, the emer- 
gent light would be represented by a point Q 
obtained by rotation of 

about an axis S S' which makes an angle cp with ua - 
LR given by - 

6 t any=-  
2 e 

R 
Fig. 99. Pointad representation to compute 
the state of the beam emerging from an opti- 

(98- 1 1) cally active crptal which has been strained. 

where 6 is the birefringence introduced in the plate due to the stress. If now 
we are able to measure the state of vibration of the emergent vibration, then A 
can be easily computed, from which 6 can be calculated since 2~ is known. The 
analytical expression when P is any general vibration is rather complicated but 
the problem can be solved graphically on a stereographic projection with the 
aid of a Wulff net. 

HowGteF when the incident vibration is linearly polarised the analytical 
expressions are comparatively simple. If the major axis of the emergent elliptic 
vibration makes an angle y with the vibration direction of incident light and 
if  the axial ratio b/a is given by tan w =b/a then 

sin 2 w tan g, = C O S ~ K - C O S ~ W C O S ~ ( C ? + ~ )  ' 
1.- cos 2w cos 2y COSA = 1 - 
1 - sin2 p cos= a 

where a is the inclination of the plane of vibration of the incident light to one 
of the principal vibration directions of the crystal: y and cr can be directly deter- 

1 G.N. RAMA~HAXDW and V. CHANDRASEKHARAN: PIOC. Ind. Acad. Sci. A 33, 199 
(1952). 
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mined using a Babinet compensator. In addition it is necessary to determine 
the principal vibration directions of the rotating birefringent crystal. This can 
be done by determining the azimuth of minimum, the method due to BRUHAT 
(see Sect. 84) using crossed nicols. The azimuth at which the transmitted inten- 
sity is a minimum gives the principal vibration direction. This method is not 
accurate unless 2p/6 is small. Otherwise the minimum is not marked. However 
the use of the analysers described in Sect. 21 would be of great help. Knowing K, 
y and w it is possible to compute both A and g7. 

The birefringence introduced ma$ be calculated from the formula (98.10) or 
from the equation \ 

6 = A sin p. --- 
For 2u =0 or 4 2  formulae (98.12) and (98.13) reduce to 

2 ~ = 0  tang7=s in2w/~-cos2~cos2y ,  

sin A = cos 2 0  sin 2ylcos y , I 
2a =z/2 tang7 =tan2w/sin2y, 

cos A = cos 2wlcos 2y. 

Another extremely simple method of determining the birefringence is to 
determine the ellipticity of the elliptic vibration that is propagated without any 
change in the stressed optically active crystd. The experimental method is 
identical with the technique described in Sect. 71 for the measurement of optical 
activity in the presence of absorption using an elliptic polariser and a crossed 
elliptic analyser. If the ratio of the axes of the ellipse is given by B/A then 

and 

Using these techniques, by stressing the crystals along [ I  001 and making 
observations along [o 1 01 and [0 0 11, qll- ql and ql,- q,, were determined and 
by stressing the crystal along [1 111 and making observations along   TO] and 
[1 121, q,, was determined for sodium chlorate a crystal which belongs to the 
T class. 

99. Ratio of the photoelastic constants in cubic crystals using ultrasonics. 
MUELLER~ has developed an elegant method for measuring the ratio of the elasto- 
optic constants in cubic crystals by studying the optical characteristics of the 

. light diffracted by ultrasonic waves passing through a single crystal. The details 
.qf the theory are beyond the scope of this article but we shall mention only the 
physical basis of the method. RAMAN and NATH~ have given a very satisfactory 
theory of the diffraction of light by ultrasonic waves in a liquid. The theory 
is based on the simple concept that the changes in phase due to changes in the 
refractive index at  each point of the liquid due to sound field, has the effect of 
corrugating the wave-front of a plane parallel light wave incident on it in the 
transverse direction. In liquids it can be easily shown that if the incident light 

. is polarised all the components of the light diffracted by the ultrasonic waves 
have the same polarisation as the incident light. However in the case of a cubic 
crystal the case is slightly different. Under the influence of the strains in the 

H. MUELLER: 2. Kristallogr. A 99, 122 (1938). 
C.V. RAMAN and N. NATH: ROC. Ind. Acad. Sci. A 2, 406 (1935). 



General references. 21 7 

solid every volume element in the crystal becomes birefringefit and for light travel- 
ling in the z direction the birefringence can be characterised by the index ellipse 
which is the section of the index ellipsoid normal to the z axis. The ellipse has 

its axial direction at an angle 6 and 90 +6 with the x axis where tan 26  = A2- 
51 --a22 

(Sect. 95). But the important point is that these directions do not vary in tune 
and are also the same for every volume element for a cu,bic crystal. Hence if 
the incident light is at any arbitrary polarisation, its amplitude can be resolved 
into two components E, and EII along the major and the minor axes of the index 
ellipse. Hence two diffraction patterns with different amplitudes are obtained 
if the Raman-Nath theory is applied to the case of solids. Since both these 
amplitudes originate from the same incident light by diffraction on the same 
elastic wave, they must be coherent and consequently the two resultant arnpli- 
tudes must be added vectorially to get the resultant vibration. The result can 
be stated as follows. For plane polarised incident light all diffraction orders 
produced by a progressive sound wave in an optically isotropic solid are plane ' 
polarised. However, the direction of polarisation is different for different orders 
and differs from that of the incident light. In the case of birefringent crystals 
for any general direction the diffracted light is in general elliptically polarised. 
By measuring the rotation of the plane of polarisation of the light in the different 
orders with respect to the light in the zeroth order it is possible to evaluate the 
ratio of th_e elasto-optic constants in isotropic solids and cubic crystals. This 
method has been extended to the case of cubic crystals which possess optical 
activity1. 
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