
OPTICAL PROPERTIES OF COUNTING DIAMONDS

The average good counter appears to have a smaller
percentage of Type I than the average noncounter, but
a small percentage of Type I does not necessarily result
in a good counter. This is the result one might expect if
the classification of diamonds as Type I or Type II
indicated the relative density of some but not all of
the electron and hole traps. For example, the classifi-
cation Type II might indicate the absence of shallow
electron traps at 0.1 to 0.2 ev below the conduction
band (which are possibly related to the 8-micron ab-
sorption region) without giving information about
deep electron traps at 0.5 ev or 0.7 ev below the con-
duction band.

Birefringence and luminescence appear to be of little
value as criteria for selecting counting diamonds.

Trapping levels at 0.5 and 0.7 ev which are respon-
sible for thermoluminescence are probably also respon-
sible for part of the space charge field observed in
diamond counters.

A donor level located about 3 ev below the conduction
band is believed to be responsible for photoconductivity.
When a sufficient number of electrons from this level are
removed from the diamond, a semiconductor action may
be set up which allows electrons to enter the crystal from
the negative electrode when triggered by an incident
quantum or high energy particle.

We wish to thank Mr. Louis Small, president of the
Service Diamond Tool Company, for his cooperation
in loaning us some of the diamonds used in this in-
vestigation.
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It is pointed out that the concept of the Poincar6 sphere appreciably simplifies the mathematical treat-
ment of phenomena accompanying the passage of polarized light through a medium which exhibits bire-
fringence, optical activity or both simultaneously. This is exemplified by using the Poincare sphere to evolve
techniques which could be used for determining the true Faraday rotation in the presence of birefringence.
When birefringence is present, measurements made with the half-shade at the polarizer and analyzer ends
are not equivalent. In either arrangement, the errors introduced as a result of birefringence are largely
reduced by taking the mean of two measurements for opposite directions of the field. Formulae are also
derived by which the magnitudes of the error can be calculated for the particular experimental set up,
knowing the value of the birefringence. In certain cases, even this need not be known, and the true rotation
can be determined purely from measurements of the apparent rotations for two different azimuths of the
incident plane of polarization.

INTRODUCTION

THE Poincar6 sphere' is a convenient geometric
representation in which the state of polarization

of a light beam can be denoted by a point on the sphere.
Its utility arises from the fact that the phenomena
accompanying the propagation of polarized light
through a medium exhibiting birefringence, optical ac-
tivity, or both can be determined by means of simple
geometric constructions on the sphere. In spite of this,
comparatively few applications appear to have been
made of this concept in original investigations. In, two
papers published in this journal,2' 3 the Poincare sphere
was used for obtaining elegant methods for the deter-
mination of the state of polarization of light propagated
in a birefringent medium and in the design of an accu-
rate apparatus for the analysis of elliptically polarized
light. The Poincar6 sphere has been applied to the case
when both birefringence and optical rotation coexist by

I H. Poincar6, Traite de la lumiere, Paris 2, 165 (1892).
2 F. A. Wright, J. Opt. Soc. Am. 20, 529 (1930).

C C. A. Skinner, J. Opt. Soc. Am. 10, 490 (1925).

Becquerel4 in his studies on the paramagnetic rotation
in tysonit and by Bruhat and Grivet5 for the determina-
tion of the rotatory power of quartz at right angles to
the optic axis. In an investigation of the latter, made by
Szivessy and Schweers,6 the 1Poincar6 sphere was not
made use of, and one has only to compare the large
number of complicated.formulas in their paper with the
simplicity of Bruhat and Grivet's treatment to appreci-
ate the advantage of the concept of the Poincar6
sphere.

As far as the authors are aware, no other investiga-
tions have been reported making use of this concept
until quite recently. Ramaseshan and Chandrasekharan7

made a brief study of the influence of birefringence on
measurements of Faraday effect, and Ramachandran

4 J. Becquerel, Communs. Phys., Lab. Univ. Leiden No. 91C
(1928); 211a (1930).

5 G. Bruhat and P. Grivet, J. phys. et radium 6, 12 (1935).
6 G. Szivessy and C. Schweers, Ann. Physik 1, 891 (1929).
7S. Ramaseshan and V. Chandrasekharan, Current (India) Sci.

20, 150 (1951). S. Ramaseshan, Proc. Indian Acad. Sci. 34A, 32
(1951).
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and Chandrasekharan8 measured the photoelastic con-
stants of sodium chlorate, a cubic crystal exhibiting
optical activity. Both these investigations were con-
ducted in this laboratory and they revealed to the
authors the elegance and simplicity of the geometric
methods using the Poincar6 sphere compared to the
algebraic manipulations that have to be made from the
electromagnetic theory.

The present paper contains a very brief account of
the Poincar6 sphere proper, particularly in relation to
the propagation of light in a medium exhibiting, simul-
taneously, both optical activity and birefringence. Some
properties of the sphere, which do not appear to have
been noted before, are also discussed. Since a medium
exhibiting magneto-optic rotation behaves like one
possessing optical activity (so long as the direction of
a ray is not reversed in the medium), the Poincar6

H

V

FIG. 1. Method of representing the state of polarization
of light on the Poincar6 sphere.

sphere can also be used for the study of the effect of
birefringence on the Faraday rotation. Interesting re-
sults are thus obtained regarding the variation of the
apparent rotation with the magnitude of the birefring-
ence, with the azimuth of the incident plane polarized
light and with the disposition of the measuring ap-
paratus, such as half-shades, nicols, etc.

II. THlE POINCARE SPHERE*

We shall always represent the sphere by its stereo-
graphic projection because suitable charts are available
for making the calculations. The primitive circle is taken
to be the "Greenwich meridian" or the great circle
corresponding to longitudes 00 and 1800. All points on

8 G. N. Ramachandran and V. Chandrasekharan, Proc. Indian
Acad. Sci. 33A, 199 (1951).

* For proofs of the statements made in this section, see refer-
sc- X,

the upper hemisphere will be denoted by ordinary
letters (e.g. A) while those in the lower hemisphere will
be indicated by a circle around the letter.

A general point P (Fig. 1) represents a general elliptic
vibration. The poles Cl and C, represent left and right
circularly polarized light, respectively. The equator
HA VB represents all plane vibrations, the point H of
zero longitude standing for a horizontal vibration and a
general point D, of longitude 2, representing a plane
vibration whose direction is inclined at an angle X to
the horizontal. 2 is taken to be positive for a counter-
clockwise rotation about C1. Thus, the point A above
has X =+45', while B, the correpsonding point below
has X - 45°. A general point P, with longitude 2 and
latitude 2w, represents an elliptic vibration, whose major
axis is at an angle X to the horizontal and the ratio of
whose axes b and a is given by

b/a= tang. (1)

w is taken to be positive measured from the equator
towards C. Thus all left-rotating ellipses are on the
hemisphere containing Cl and similarly all right-rotating
ellipses are on the opposite hemisphere.

In a rotating birefringent medium, theory shows that
two elliptic vibrations are propagated unchanged in
type, along any direction of propagation. As in a non-
optically active birefringent medium, these two vibra-
tions are crossed with respect to each other. The two
principal ellipses are propagated with different velocities
so that plane polarized light incident on the medium
emerges in general as elliptically polarized light. The
state of polarization of light propagated in the medium
can be obtained by the following simple construction.
Let H and V be the two principal vibration directions
of birefringence (i.e., in the absence of rotation) and let
a be the relative phase retardation introduced between
the two per cm. Let p be the true rotationt per cm
(i.e., in the absence of birefringence). Draw the line
RX' in the plane HCVC, (Fig. 1) at an angle 2 y to HV
where

tan2-y= 2po/6o. (2)

Let
A0= (o2+4po2)'. (3)

Then, if P is the state of polarization of the incident
light entering the medium of thickness , then the state
of polarization Q on emergence is obtained by rotating
the sphere through an angle A =A 01 about the axis
RR', which brings P to Q. The intermediate states of
polarization lie on the small circular arc PQ.

The above construction follows from the electro-
magnetic theory of light propagation in an optically
active birefringent medium.9 Equation (3) is not strictly

t The rotation is taken to be positive when it is counter-clock-
wise. This is contrary to the convention used by physical chemists,
but agrees with the mathematical definition of a counter-clockwise
angle as being positive. See also Szivessy.9

9 G. Szivessy, Ilandbuclz der Physik (Julius Springer, Berlin
Germany), Vol. 20, Ch. I.
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valid, for according to theory Ao2 =o2+4po 2+ a small
correction term, but the deviations from Eq. (3) are
only of the order of 10-6 and may be neglected in any
practical case.

In the special case of a purely birefringent crystal,
po=O and 2-y=O and the sphere is to be rotated about
HV, the rotation being anticlockwise looking from H
to V, if H is the faster ray, and conversely. The vibra-
tions which are propagated unchanged are the hori-
zontal and vertical plane vibrations. Similarly, for a
purely rotating crystal, 2y = 7r/2 and the circular vibra-
tions Cl and Cr are propagated unchanged. The rotation
of the sphere is anticlockwise looking from Cl to C if
the medium is left-rotating and conversely. Thus, if
elliptically polarized light (say P of Fig. 1) is incident,
only the major axis of the ellipse is rotated, but its
eccentricity is unchanged. The states of polarization of
the light lie on the small circle EPF. When both rotation
and birefringence coexist, the ellipses that are propa-
gated unchanged are those represented by R and R'.
It is readily seen that the axes of both are parallel to H
and V and that the ratio of their axes are, respectively,
tan-y and -coty (since w(R)=7 and (R)='y-w/2),
so that their major and minor axes are interchanged and
they have opposite sense of rotation.

The latitude 2w and the longitude 2X of a general
elliptic vibration may be determined in various ways.
One method is to use a quarter-wave plate for reducing
the ellipse to a plane vibration and then measure the
inclination of this to the axes of the quarter-wave plate.
The azimuth of the axes gives X, and the tangent of the
angle between plane vibration and the major axis gives
the ratio of the axes and hence c. Obviously, because of
the use of a quarter-wave plate, this method is applicable
only to a particular wavelength. It can, however, be
adapted such that any birefringent plate (not neces-
sarily a quarter wave plate) is used as a compensator.
A simpler method would be the following.8 One meas-
ures the azimuth of the major axis of the ellipse by using
a biquartz half-shade and a linear analyzer.1 A Babinet
compensator is then introduced with its axes at 450 to
the major axis and the shift s in the fringes is measured.
If f is the fringe-width, then one has

2w = 2rs/f. (4)

III. DEFINITION OF TERMS USED LATER

It is necessary to evolve suitable terms for various
quantities so as to simrplify the discussion in the later
sections. We shall use the term "principal directions"
to denote the axes of the ellipses that are propagated
unchanged in the medium. If the rotatory power of the
medium becomes zero, these would correspond to the
principal directions of the purely birefringent crystal
thus produced. Similarly, "birefringence" means the

t We shall use this term, instead of "nicol" or "polaroid" to
denote an apparatus which transmits linearly polarized light. See
next section on notation.

difference in refractive indices of the two waves, when
rotation is taken to be zero. The quantity A will be
denoted by "composite phase difference," i.e., the phase
difference between the two elliptic vibrations, while 
the corresponding phase difference caused by bire-
fringence alone, (= 3ot) will be called "pure phase
difference." When birefringence is present, the angle by
which the major axis of the ellipse is rotated () would
be different from the rotation (p) which it would have
suffered if there were no birefringence. To distinguish
between the two, 46 would be called the "apparent rota-
tion" and p the "true rotation." The true rotation per
unit distance traversed (p0) is clearly the "rotatory
power" of the medium.

Reverting to the Poincar6 sphere, "light of polariza-
tion P" would mean that its polarization is represented
by the point P. Similarly, a "polarizer P," is an ap-

H

2A2~~~~~~~~~A

Cr C

P A~~~~~~~~~~~~~I 

V

FIG. 2. Top half-Construction for determining the intensity
of light transmitted by an elliptic analyzer. Bottom half-Locus
of points representing the emergent light in Chauvin's experiment.

paratus which transmits light of polarization P when
unpolarized light is incident on it, and an "analyzer P"
is an apparatus which completely transmits light of
polarization P, but only transmits a portion of light of
any other state of polarization. For a general point P,
these would be elliptic polarizers and elliptic analyzers.§
When P lies on the equator, or coincides with the poles
of the Poincar6 sphere, they become linear and circular
polarizers and analyzers, respectively.

IV. A THEOREM ON THE POINCARE SPHERE

Suppose light of unit intensity having the polarization
S(X2 , W2) (Fig. 2) is incident on an elliptic analyzer
P(X, wi). It can be shown that the intensity trans-

§ This is to be distinguished from the "elliptic analyzer" de-
scribed by Ramachandran and Chandrasekharan. 8 Their set-up
would be called crossed elliptic analyzers, according to our
nomenclature.
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mitted is cos2(PS/2), where PS is the length of the great
circular arc between P and S. As the proof of this is
elementary, but tedious, only the main steps will be
given here. The ratio of the axes of the ellipse S is tanW2
and the azimuth of the major axis is 2. The two axes
thus have lengths coscW2 and sinW2 , there being a phase
difference of r/2 between the vibrations in the two
directions. These can be resolved along the axes of the
ellipse P. The effect of the analyzer would be to change
the phase difference by r/2 and to transmit fractions
coscwi and sinw of the components along the major and
minor axes, respectively. In this way, the intensity
transmitted is found to be

COS2(wI-W2) cos 2 (X1 - X2 )+sin 2 (co1+w 2 ) sin 2 (Xl-X 2 ). (5)

This can be put in the form

^[1+sin2wi sin2co2 +cos2coi cos2co2 cos2(X 1-X2)] (6)

=2(1+cosPS) = cos2PS/2, (7)

from spherical trigonometry.

H~~~~~~~

CrC

V

FIG. 3. The difference between putting the half-shade at the polar-
izer and the analyzer ends, illustrated on the Poincar6 sphere.

An interesting consequence of this result is that the
locus of points on the Poincare sphere representing
elliptic vibrations of which the elliptic analyzer P would
transmit the same intensity, is a small circle with P as
pole. In particular, it is seen that a linear analyzer of
any azimuth would transmit half the intensity of circu-
larly polarized light and a linear analyzer at 450 to H
and V would transmit half the intensity of any elliptic
vibration whose axes are vertical and horizontal. Fur-
ther, an analyzer P would transmit zero intensity of
light having a polarization represented by the antipodal
point (P'). Thus, for every elliptic polarizer, there is a
unique elliptic analyzer, which may be said to be
"crossed'! with respect to it, on the analogy of crossed
nicols. Points R and R' in Fig. 1 thus represent ellipses

which are "crossed" with respect to each other, as they
should be because of their orthogonal property.

V. FARADAY EFFECT AND BIREFRINGENCE

A medium exhibiting magneto-optic rotation behaves
similarly to one possessing natural optical activity. The
only difference is that the sense of rotation is different
for opposite directions of travel in the former case,
while it is the same with optical activity. So long as one
is interested in the phenomena accompanying light
propagation only in a particular direction, the theory
aforementioned can be applied in toto and used to
evaluate the results when birefringence is also present.
It has been known for a long time that the Faraday
rotation of an isotropic solid, measured in the usual way
with a half-shade at the analyzer end, appears to be less
than its true value when the medium is birefringent. 0

Thus, Chauvin" measured the rotation in directions
slightly inclined to the optic axis of calcite with the
incident light polarized along a principal direction. With
increasing magnitude of birefringence, he showed that
the apparent rotation not only diminished in magnitude,
but actually reversed in sign and also exhibited several
reversals in sign. Chauvin explained these on the basis
of the theory of light propagation in an optically active,
birefringent crystal.

Obviously, therefore, measurements of the Faraday
effect in a cubic crystal would be vitiated by the pres-
ence of accidental birefringence. Formerly, it has been
the practice to choose for measurement as perfect a
specimen as possible, judged by the least restoration of
light under crossed polarizers, and to assume that the
value obtained with this specimen is correct. As men-
tioned before, the errors introduced by birefringence in
such measurements were considered by Ramaseshan
and Chandrasekharan,7 but not in great detail. The
succeeding sections will deal with this problem, both
in regard to the technique of measurement and the
results obtained.

Before proceeding, we may indicate how the result
of Chauvin can be simply explained from a geometric
construction on the Poincare sphere. Assuming the rota-
tion p to be constant, and to increase continuously,
the inclination 2y of the axis of rotation continuously
decreases while A increases, so that the state of polar-
ization executes the spiral shown in the bottom half
of Fig. 2. Obviously, the azimuth X of the major axis
first decreases from p, reverses sign, and then oscillates
with successive reversal of sign, finally tending to zero,
as it should for a purely birefringent crystal.

VI. EFFECT OF PUTTING THE HALF-SHADE AT THE
POLARIZER AND ANALYZER ENDS

The apparatus used for the measurement of the
Faraday effect is very similar to those used in polar-
imetry. In some polarimeters, the half-shade is put at

10 H. Schutz, Handbuch Exp. Phys. 26, 48 (1936).
l M. Chauvin, Compt. rend. 102, 972 (1886).
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the polarizer end and in others at the analyzer end, and
different designs are used for the half-shade.1I All the
methods lead to identical results, so long as the medium
is purely rotating, but when birefringence is present,
they are different in effect, as will be shown as follows.

Three types of half-shades are in common use; (a)
biquartz, (b) Lippich, and (c) Laurent. The last of these
employs a half-wave plate and hence is useful only for
one wavelength. In the Lippich type, the two halves are
not of the same intensity, so that it is difficult to work
out a general theory for it. In the special -design of
Jellet, this defect is remedied and effects obtained with
it are identical with those with a biquartz half-shade.
We shall therefore consider only the latter. If , is the
half-shade angle its effects would be to rotate the azi-
muth of the incident light through angles of +/2 and
-B/2 in the two halves.

(i) Analyzer End

Let the principal directions be vertical and horizontal
and let linearly polarized light (P, Fig. 3) be incident
at an azimuth 2. Let the effect of the medium be to
bring it to Q by rotation through an angle A about RR'.
The effect of the biquartz would be to split Q into two
ellipses Q, and Q2 lying in the same latitude, but differ-
ing in longitude by 2. From the construction of section
4, the locus of points representing analyzers for which
the intensities of the two halves are equal is the great
circle CNC, bisecting the arc QQ2. Therefore, the
setting of the plane analyzer when this happens is given
by N, the intersection of this great circle with the
equator. (Actually, the setting would not be N, but the
antipodal point to N, i.e., 900 away, when the intensity
is least, but no confusion would arise by calling it N.
The corresponding setting for the incident light would
be P itself according to this convention and not its
antipodal point.) Clearly, N has the same longitude as
Q, the midpoint of QQ2.

(ii) Polarizer End

In this case, the light incident on the medium from
the two halves will have the states of polarizations PI
and P2 and the emergent light will have the polariza-
tions Q and Q4 and by the same construction as before,
the setting of the linear analyzer for equality in the two
halves will be N', which is different from N. Indeed, it
can be very far away from N, and the longitude of N'
need not even lie in between those of Q and Q.

This is illustrated in Figs. 4 and 5. We consider the
case when 2 = 30', i.e., 2 p/a= 1/V3 and the half-shade
angle 13=20. The composite phase retardation is 630,
and we assume that the mean azimuth of the half-shade
is H. Fig. 4 gives the variation in intensity of the light
transmitted by the linear analyzer at various azimuths.

11 See Weissberger, Physical Methods in Organic Chemistry
(Interscience Publishers, Inc., New York, 1945), Vol. 1, for details
regarding various types of apparatus.

-45 0 45 90
Setting of linear analyzer

FIG. 4. Graph showing the variation of the intensity and 2
of the two halves when the half-shade is put at the polarizer end
and the linear analyzer is rotated.

It will be noticed that the minima for the two halves
occur at about 20° and 400, respectively, while the
two are equal only at 44°. Figure 5 shows Al/I (i.e.,
(I1-I2)/2(I1+I2)) plotted against X, and it will be seen
that there is a sharp minimum at the azimuth of
equality.

It is interesting to note that in both cases (i) and (ii)
the setting N and N' of the analyzer is independent of
the half-shade angle 13. This follows from the construc-
tion that N (or N') should lie on the great circle bisect-
ing Q1Q2 (or Q3Q4).

Considering now the effective rotation 46 in the two
cases, the following formulas can readily be derived.

1.0

'.5

0 45 90
Setting of linear analyser

FIG. 5. Graph showing the variation of Al/I with
the setting of the analyzer.
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We shall not give the proof here. Let a be the azimuth
of the polarizer in case (i) or the mean azimuth of the
two beams in case (ii). Then we have

Case (i)

a=0 0 tan2i/=sin2-y sinA/(cos 2 2,y+sin 22 cosA), (8)

a = 45° tan2i, = sin2y tanA.

Case (ii)

a=O0 tan2i,=:sin2y tanA,

(9)

(10)

a=450 tan2il=sin2,y sinA/(cos22-y+sin22-y cosA.) (11)

It will be noticed that the formulas for a= 0 and 45°
have been interchanged in the two cases. We shall now
prove that this is a particular case of the more general
result, viz., that the value of 2 in case (i) for an azi-
muth a of the incident light is the same as that in case
(ii) with an azimuth 45+a and vice versa.

H

R'~~~~

V

FIG. 6. Construction for proving the result in Sec. 6.

In Fig. 6, let P (longitude 2a) be the state of polariza-
tion of the incident light in case (i). If /v is the composite
phase retardation, then the emergent light will have
the polarization Q (longitude 2X) and the apparent
rotation is if= (X- a). Now consider case (ii) with the
mean longitude of the two halves of the half-shade
(P1 and P2 ) at P' (longitude z+ 7r/2). Obviously, the
locus of points representing elliptic analyzers which
would transmit equal intensities of the two halves is the
great circle C 1P'C,. whose pole is P. The effect of the
passage of light through the medium is to rotate both
P1 and P2 through an angle A about the axis .RR'. The
great circle CiP'Cr, of equal intensity, would also there-
fore be rotated through the same angle A about the same
axis. This great circle is best drawn by considering the
fact that its pole (P) would also be rotated through the
angle about RR?' and would thus be brought to Q. The
required great circle thus has for its pole the point Q.

and its intersection with the equator gives Q', and the
azimuth X' of the plane analyzer for equality of intensity.

The following are clear from the diagram:

Hence

i.e.,

Since

we have

arcQQ'= ir/2, arcQ'Cz= 7r/2.

ZQ'CQ=r/2 or 2X'=2X+ r/2,

X'= X+ 7r/4.

a' a+ ir/4,

This interesting result, which was entirely unex-
pected, has in fact been verified by experiment. A rec-
tangular block of optical glass (3X3X2 cm) was placed
in a magnetic field and was subjected to different
stresses. The light traveled along the thickness (2 cm)
and the pressure was applied on the pair of faces 3X2
cm. In the absence of any strain, the glass exhibited a
Faraday rotation of 17.40° for the field employed. The
field was kept the same, and the glass was subjected to
the successive loads shown in Table I. In each case, the
birefringence introduced () was directly measured with
a Babinet compensator in the absence of the field
(column 2). The succeeding columns contain the meas-
ured values of 4&, each of which is the average of two
measurements made with the field reversed in between.
This reduces the errors caused by nonuniformity of the
strain (see Sec. 7). The results of the theory are verified
to be true from the table. When VI is of the order of 30°
or more, the agreement is not satisfactory. This is a
result of two causes: (a) the measurements themselves
are not accurate because the ratio of the axes (b/a) of
the ellipse approaches unity, and (b) a Lippich half-
shade had to be used at the polarizer end owing to the
nature of the experimental set up. In this, the two
halves are not of equal intensity and the geometrical
constructions outlined before are not exactly valid. It
is, however, possible to work out the results from theory
for this case. Thus, in Fig. 3, the setting with the
Lippich would be N", where N"Q 3 /N"Q 4 = the ratio of
the intensities of the two halves. Obviously, no general
result can be derived in this case as the results would de-
pend on the value of the ratio, the half-shade angle, etc.

Table I also shows another result, mentioned earlier,
that the apparent rotation increases with birefringence
when a= 45'.

VII. EFFECT OF REVERSING THE FIELD ON THE
MEASUREMENT OF APPARENT ROTATION

Equations (8) to (11) of the previous section show
how the apparent rotation varies with birefringence
when the incident light is polarized at 0° or 450 to the
principal directions. In what follows, we shall consider
only case (i) with the half-shade at analyzer end, since
the formulas for case (ii) are readily deducible from
these, utilizing the results of the previous section.
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Suppose, linearly polarized light is incident on the
medium at an arbitrary azimuth a, and let the major
axis of the emergent ellipse have an azimuth Xi. Then,
it can be shown that

cot2X 1=
cos 22y+ sin221y cosA- sin2-y sinA tan2a

tan2 a cosA+ sin2-y sinA
-. (12)

VI, the apparent rotation, is equal to (Xi- a) and can be
calculated. Suppose now, the field is reversed, the bire-
fringence remaining the same. Then the azimuth 2 of
the emergent ellipse is given by

cot2'
cos22,y+sin22,y cosA+sin2y sinA tan2a

tan2a cosA- sin2-y sinA
(13)

It is common in Faraday effect measurements to deter-
mine the rotations for the two directions of the field
and find the average which is (X1-X 2 )/2. Now, from
the aforenamed two equations,

cot2(X 1 - X2)

= [(cos 2 2-y+sin 2 2y cosA) 2 - sin2 2-y sin 2 A

+tan 2 2a(cos 2A- sin22y sin2A)] (14)

2 sin2-y sinA[cos 2 2'y+sin 2 2y cosA

+tan 22a cosA].

Although these equations are valid for any value of a,
they find application particularly when a is near about
00 or 450. This would cover the case when the polarizer
is set parallel or at 450 to the principal directions, but
when there is a slight mis-setting of either the polarizer
or the specimen, or if the principal directions are not
exactly the same at all points in the medium. To deter-
mine the order of magnitude of the errors introduced
thereby in the apparent rotation, a few particular cases
have been numerically evaluated and the results are
shown in Tables II and III. The small deviation of a
from 00 or 450 is made equal to 2°52', so that tan2a= 1L§.

4 is the apparent rotation when a is exactly 0° or 450;
when it deviates from these, V/1 and 4'2 are the apparent
rotations for positive and negative fields, and f is the
mean of the two (I = (4'1-4'2)/2).

Tables II and III show that the usual practice of
taking the mean of the measurements for the two direc-
tions of the field largely eliminates the errors caused by
slight mis-setting of the polarizer or specimen or as a
result of variations in the strain axes in the specimen.
The results have an important bearing on the method
suggested by Ramaseshan7 for determining photoelastic
constants of isotropic solids by measuring the reduction
in the apparent rotation due to strain. Since the strain
directions may not be the same at all points in the
medium, it would be expected that measurements made
with one direction of the field alone would be highly
erratic. In fact this was found to be so, but taking the
mean, eliminated all the irregularities. The measure-
ments of photoelastic constants are being reported
elsewhere.

TABLE I. Effect of the position of the half-shade on
measurements of apparent rotation.

^ in degrees
Load in Analyzer end Polarizer end

kg in degrees a =0° a =45° a =0° a =45°

0 0.0 17.40 17.40 17.40 17.40
38.9. 32.4 16.50 19.05 18.55 16.55
54.4 46.8 15.55 22.15 21.40 15.50
70.0 63.0 14.10 28.75 27.80 14.25
85.6 77.8 12.90 39.00 33.00 12.40

101.1 92.9 11.20 69.00 60.10 11.15

VIII. EVALUATION OF THE TRUE ROTATION IN THE
PRESENCE OF BIREFRINGENCE

A general method of determining the true rotation
(either natural or magneto-optic rotation) in the pres-
ence of birefringence is the following: Linearly polarized
light is allowed to fall on the medium at an azimuth a
to the principal directions and one measures the ap-
parent rotation VI by means of a half-shade at the ana-
lyzer end and the ratio of the axes (tanw) of the emerg-

TABLE II. Effect of an error in setting on the apparent rotation,
when the azimuth is near 00 (a= 252').

2-y =30, 2p/1=I/4 2 -Y=60, 2p/3==-F
A V1 #2 b P 1 2 II A

0 0001 0001 0.0' 0001 0001 0001 00 0001
30 659' -732' 7015' 7015' 12046' -12°57' 12052' 120511
60 12°12' -14°11' 13012' 13010' 2453' -25022' 2507' 2506'
90 14°54' - 1 8 °52 ' 1653' 16051' 36048' -37014' 37011 3657'

120 14020' -20°47' 17033' 17 22 ' 5007' -4937' 4 9 °5 2 ' 49043'
150 6 3' -18°24' 12013' 12034' 6807' -65°4' 660361 66021'
180 -8°30' -8°30' 00'0 00'0 92048' -87°12' 900'0 900'0

ent ellipse by a suitable method. Both a and 2p can
then be calculated. The formulas are:8

tan2-y = [cos2a-cos26, cos2(a+q,)J/sin2co

cos = 1- (1- cos2) cos2')/ (I - cos22y 2)

3=A\cos2,y; 2p=A sin2,y. f

(15)

This method may be used when neither a nor 2 p can be
measured independently.

If, however, pure birefringence can be measured inde-
pendently as in Faraday effect studies, then allowance
may be made for it, and the true rotation can be deduced,
from a measurement of 4, alone.

If both 2 p and are small, then it can be shown from
Eqs. (8) and (9) that

TABLE III. Effect of an error in setting on the apparent rotation,
when the azimuth is near 450 (a= 4 2 8').

2-y =30', 2p/l = l / 2Y =60°, 2p/a= i3
A #1 #2 f # Vi1 V2 .

0 00 00, 000/ 0 0' 00' 0001 0 0 01 00
30 7044' -8°20' 802' 803' 13011' -13°21' 1316' 13017'
60 1904' -21°31' 20017' 20027' 28061 -28°20' 28014' 2809'
90 45029' -44°38' 45041 450'0 4507' -44°53' 450' 450O'

120 73020' -65°57' 69039' 69033' 62025' -61°7' 61046' 61050'
150 86014' -77°46' 8200' 81057' 7755' -75°25' 760401 76043'
180 940171 -85°42' 900'0 90'0 91020' - 88°3 9 ' 900'0 900O'
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(a) for the incident azimuth a= 00 or 900

2Vo= 2p(1-6 2 /6) 7 , (16a)

and (b) for a= 450,

21/45= 2 p(1+6 2 / 3 ). (16b)

The error in using these approximate formulas is less
than 1 percent so long as and 2p do not exceed 300.

tan2p=

It will be noticed from the forementioned formulas
that the apparent rotation is less than the true rotation
when cz=0 or 900, but is more when a= 4 50 . It is
interesting to see what would be the average value of
2iP for all azimuths a of the incident light. Thus, from
Eq. (12), tan2ib has the value given below for a par-
ticular value of 2a:

sinm2y sinA- (1- cosA) cos22,y tan2a+ sin2y sinA tanm2 a

cos22'y+sin2 2y cosA+cosA tan2 2a

The mean value of tan2if over the range - 7r/2 to
+7r/2 of 2a can be shown to be the remarkably simple
expression

(tan2V/')m= [cotA(cotA+ cosecA cot22y)]A. (17)

With the same approximations as were used in deriving
Eqs. (16a) and (16b), one obtains

2 iPm=2 p(1+ 2 /12 ). (18)

Although the deviation in the mean value of the appar-
ent rotation is less than the deviation for either a =0
or a=450 , it does not vanish.

However, Eqs. (16a) and (16b) suggest a simple
method of eliminating the effect of birefringence, without
measuring its value. We have, from these,

(260o+14)/3=p, P(19)
and this equation is correct to the third order in 6, the
only terms that occur being &4 and higher powers.

The above formulas can be verified to be true from
the data in Table I. The entries in the second row corre-
spond to 6=32.40, which is near the limit of validity of
the formulas. It is seen that the decrease in ip for a =0
is nearly half the increase for a= 450 and their magni-
tudes are what are given by Eqs. (16a) and (16b).
Further (2ito+,64s)/3 is 17.35°, which differs from the
correct value 17.40 by less than 0.5 percent.

Another approximate formula, valid when 2p is small
(<30°) and > 2 p is

2iA = 2 p sin6/6, (20)

if a =. For a= 450 26 increases indefinitely with in-
crease of 8. The relation between the two is

tan2ifr=2p tan6/6, (21)

but this is not a convenient equation to use.
Equations (16) and (20) cover practically the whole

range of values which occurs in Faraday effect studies,
and can be used to deduce the true rotation from the
measured apparent rotation.

JOURNAL OF THE OPTICAL SOCIETY OF AMERICA VOLUME 42, NUMBER 1 JANUARY, 1952

Energy Levels and Wavelengths of the Isotopes of Mercury-198 and -202

KEIVIN BuRNs, Allegheny Observatory, Pittsburgh 14, Pennsylvania

AND

KENNETH B. ADAMS, Westinghouse Research Laboratories, East Pittsburgh, Pennsylvania
(Received September 10, 1951)

In the region 6709-2302A the wavelengths of sixty lines in the first spectra of the even isotopes of mercury,
sHg1 0 3 and soHg2 , have been measured relative to 5460.7532A. Electrodeless tubes (see reference 3) contain-
ing 0.5 mg of mercury were excited by radio waves of 90- to 300-mc frequency. Comparison with the data
of Meggers and Kessler (see reference 5) shows the median difference AOW-MK to be 0.0001A. A compari-
son of the wavelength and level systems of the two isotopes confirms our opinion that the spectrum of
natural mercury may be useful as a source of secondary standards, since the isotope shift of the odd level
6p PI' is nearly the same as that of several even levels.

We are indebted to Director Condon and Dr. Meggers of the National Bureau of Standards for a sample
of 80Hg'98 which was derived from radioactive gold in cooperation with the United States Atomic Energy
Commission. The sample of soHg20 was produced by Carbide and Carbon Chemical Division, Oak Ridge
National Laboratory, Y-12 Area and obtained on allocation from the Isotopes Division of the AEC.

IN continuation of the search for secondary standards
of wavelength the spectra of mercury 198 and 202

have been observed throughout the region 6709-2262A.

The method of observation was the same as that used
to observe the spectra of neon and mercury' with the

I Burns, Adams, and Longwell, J. Opt. Soc. Am. 40, 339 (1950).

56 Vol. 42


