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Nonequilibrium stationary state of a harmonic crystal with alternating masses
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We analyze the nonequilibrium steady states (NESS) of a one-dimensional harmonic chain of N atoms with
alternating masses connected to heat reservoirs at unequal temperatures. We find that the temperature profile
defined through the local kinetic energy T (j ) ≡ 〈p2

j 〉/mj oscillates with period two in the bulk of the system.
Depending on boundary conditions, either the heavier or the lighter particles in the bulk are hotter. We obtain
explicit integral expressions for the bulk temperature profile and steady state current in the limit N → ∞. These
depend on whether N is odd or even. We also study similar temperature oscillations in the NESS of systems with
noise in the dynamics. These die out as N → ∞.
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I. INTRODUCTION

The study of nonequilibrium steady states (NESS) of
macroscopic systems in contact with heat baths at different
temperatures has a long history [1–3]. There are no known
analytic solutions for interacting Hamiltonian systems, except
for harmonic crystals. When the atoms in the crystal all
have the same mass, this NESS can be obtained explicitly
[4,5]. It gives a uniform “temperature,” i.e., 〈p2

j 〉/m, in
the bulk of the system. It also gives heat currents that
are independent of the size of the system corresponding to
the fact that phonons can travel freely through the crystal.
This behavior of the heat current is also true for harmonic
systems with periodic arrangement of masses [6,7]. It was
therefore surprising when numerical simulations of the NESS
showed that the bulk temperature profile of a chain with
alternating masses oscillates between two values and that these
oscillations did not seem to decay upon increasing the system
size [1].

Here we present analytical solutions for the temperature
profile and current in the alternate-mass chain connected to
Langevin type heat baths, which prove that the oscillations
persist in the N → ∞ limit. Only for very special choices
of parameter values, can the oscillations be made to vanish.
Surprisingly, the values of the oscillating temperature and
of the current depend on whether N is even or odd even in
the asymptotic system size limit. An oscillating temperature
profile in a thermodynamically large system is surprising when
we think from the standard viewpoint of heat flow occurring
from hot to cold regions. However this expectation will be true
only in systems exhibiting local thermal equilibrium where one
can define a meaningful thermodynamic local temperature.
This is the case for a system with normal diffusive heat
transport, though a microscopic derivation of the conditions
when this is achieved is in general difficult [2]. In the study of
systems in NESS it is natural to define a local “temperature”
from the mean local kinetic energy and this is what we do
here—the absence of local equilibrium in the harmonic chain
allows for the “temperature” profile to show the unexpected
oscillatory feature.

We note here that the study of one-dimensional models with
alternating masses has a long history [8–16]. The alternating
mass harmonic chain which is the focus of the present article

was first studied in [6]. An exact explicit expression for the
current in the case of a chain with an even number of sites
was given in [7] and then in [14]. It was noted in [14] that the
current is proportional to ( m

M
), the ratio of the light to heavy

masses when m
M

→ 0. This would make the current smaller in
the alternating mass chain than in a monoatomic chain with
only particles of mass m.

Temperature oscillations have earlier been observed in the
steady state of the alternate mass hard particle gas [15] and
in the Fermi-Pasta-Ulam chain [16] but in these cases the
oscillations decay with system size. The case of temperature
oscillations persisting for infinite system sizes is thus special to
harmonic systems where heat is transmitted by noninteracting
phonons. It is expected that the introduction of phonon-
phonon interactions will in general make things different.
Here we investigate this issue by considering alternate-
mass harmonic chains where the dynamics is stochastically
perturbed by noise which either conserves both energy and
momentum or conserves only energy. Finally, to consider
the effect of dimensionality, we present results from simu-
lations of two-dimensional strips of alternate mass harmonic
systems.

The plan of the paper is as follows. In Sec. II we
define the precise model and present some of the numerical
results for small finite systems. In Sec. III we present the
analytic and numerical results in the limit N → ∞. In Sec.
IV we present simulation results on temperature profiles in
harmonic chains with noisy dynamics. In Sec. V we summarize
our results and give a physical explanation of the results.
The details of our analytical calculations are given in the
Appendix.

II. MODEL AND NUMERICAL RESULTS FOR SMALL
SYSTEM SIZES

We consider a one-dimensional chain of N particles labeled
i = 1, . . . ,N that are placed in an external harmonic potential
(with spring constant ko) and which are interacting with each
other through a nearest neighbor harmonic potential (with
spring constant k). Let the vectors q = (q1,q2, . . . ,qN ) and
p = (p1,p2, . . . ,pN ) denote respectively the displacement and
momenta of the N particles of the chain. The Hamiltonian for
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the 1D chain we consider is given by

H = 1

2

i=N∑
i=1

p2
i /2mi + 1

2

N+1∑
i=1

k(qi − qi−1)2 + 1

2

N∑
i=1

koq
2
i (1)

= 1

2
p · M−1 · p + 1

2
q · � · q, (2)

with q0 = qN+1 = 0, and in the second line we have used a
compact notation with M defining the mass matrix and � the
force matrix. The ends of the chain are coupled to Langevin
reservoirs at temperatures TL and TR . The equations of motion
of the system are given by

miq̈i = −
∑

j=1,N

�i,j qj + δi,1[−γLq̇1 + (2γLTL)1/2ηL]

+ δi,N [−γRq̇N + (2γRTR)1/2ηR], (3)

for i = 1,2, . . . ,N , where ηL,ηR are Gaussian white noises
chosen from distributions with averages 〈ηL(t)〉 = 〈ηR(t)〉 =
0 and correlations 〈ηL(t)ηL(t ′)〉 = 〈ηR(t)ηR(t ′)〉 = δ(t − t ′),
and γL,γR are dissipation constants. (Note that the derivation in
[6] uses a different convention for the reservoir coupling. The
dissipative forces on the end particles were there taken to be
−λ1p1 and −λNpN and so their coupling constants are related
to ours as λ1m1 = γL,λNmN = γR .) We will be interested in
the case where the masses mi alternate between two values ma

and mb on successive sites.
Corresponding to the Langevin equations in Eq. (3) it is

straightforward to write the Fokker-Planck equation to de-
scribe the evolution of the phase space distribution μ(x,t), x =
(q1, . . . ,qN ,p1, . . . ,pN ). Following standard methods [18] it
can be shown that the Fokker-Planck equation is given by

∂μ

∂t
+

N∑
i=1

⎡
⎣ pi

mi

∂μ

∂qi

−
N∑

j=1

�i,j qj

∂μ

∂pi

⎤
⎦

=
∑

i=1,N

γi

mi

∂

∂pi

[
piμ + Timi

∂μ

∂pi

]
, (4)

where the right-hand side of Eq. (4) describes the interaction
of the end particles with the heat baths and T1,N = TL,R and
γ1,N = γL,R . Let us define the 2N × 2N matrix

a =
(

0 −M−1

� M−1�

)
, (5)

where � is a N × N diagonal matrix with �ij = γiδij (δi1 +
δiN ). We also define the 2N × 2N matrix d with elements
dij = 2γ δij (TLδi,N+1 + TRδi,2N ). It is known that the steady
state distribution is Gaussian [4] and given by

μs = (2π )−NDet[b]−1/2 exp

⎛
⎝−1

2

2N∑
i,j=1

b−1
ij xixj

⎞
⎠ ,

where the covariance matrix b with elements bij = 〈xixj 〉
satisfies

a · b + b · a† = d. (6)

The solution of the linear equations, Eq. (6), gives us all
the correlations bij and hence the temperature profile Ti =
〈p2

i 〉/mi = bN+i,N+1/mi , and the current, J = k〈(qi+1 −
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FIG. 1. (Color online) Temperature profiles for (a) system with
even number of sites N = 32,64 and with γL = γR = 1.0 and (b)
system with odd number of sites N = 33,65 and with γL = 1.5,γR =
0.5. Other parameters were set to ma = 0.75,mb = 0.25,k = 1,TL =
1.5,TR = 0.5. The mass of the first particle is always taken to be
ma . Note that in (a), the heavier particles are hotter, while in (b), the
lighter particles are hotter. The horizontal dashed lines indicate the
analytic predictions for N → ∞, from Eqs. (11), (12).

qi)pi/mi〉 = k(bi+1,N+i − bi,N+i)/mi . In the equal mass case
the covariance matrix for N sites can be obtained in a
fairly explicit form [4]. This seems to be difficult for the
alternate mass case. However the matrix equations can be
solved numerically for small system sizes and we can obtain
accurate results for the temperature profile and current for
these system sizes. In Fig. 1 we show typical temperature
profiles for alternate mass chains with even and odd number
of sites for particular choices of parameter values and N . We
see oscillations in the temperatures of the particles in the bulk
in both the even and odd cases, and the amplitude of the
oscillations does not seem to change with system size. In the
next section, we will obtain expressions for the current and the
bulk temperatures and show that the temperature oscillations
persist in the N → ∞ limit.

III. ANALYTICAL AND NUMERICAL RESULTS IN
N → ∞ LIMIT

To obtain analytic results in the limit N → ∞ we follow
[6] and express the covariances in terms of integrals over
frequencies. The integrands involve elements of the following
Green’s function:

G+ = [−Mω2 + � − iω�]−1. (7)

Here we are interested in the temperature and current and these
are given by [6,17]

Ti = 1

π
mi

[
γLTL

∫ ∞

−∞
dωω2|G+

i1(ω)|2

+ γRTR

∫ ∞

−∞
dωω2|G+

iN (ω)|2
]
,i = 1,2, . . . ,N,

J = γLγR(TL − TR)

π

∫ ∞

−∞
dωω2|G+

1,N (ω)|2. (8)
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We rewrite the above expressions in the form

Ti = IiTL + ÎiTR,

J = γR

mN

(TL − TR)IN,

where the

Ii = miγL

π

∫ ∞

−∞
dωω2|G+

i1(ω)|2,

Îi = miγR

π

∫ ∞

−∞
dωω2|G+

iN (ω)|2 (9)

are independent of the temperatures TL and TR . Now we note
that for the equilibrium case TL = TR , we must have the same
temperature at all sites, i.e., Ti = T , and hence deduce the
equality Ii + Îi = 1. Using this fact and defining TL = T +
�T/2,TR = T − �T/2, we can rewrite the equation for the
temperature profile in the form

Ti = T + (Ii − 1/2)�T = TR + Ii�T . (10)

We thus only need to evaluate the integral Ii , in the limit
N → ∞.

So far our treatment has been quite general. We now focus
on the alternate mass case. We define the first mass to be
m1 = ma and the next to be mb and so on. Thus odd sites
have mi = ma and even sites, mi = mb. For simplicity we
only consider the unpinned case ko = 0. It is straightforward
to extend the calculations to the case ko �= 0. Without loss of
generality we can choose time and energy scales so that k = 1
and ma + mb = 1. We give the details of the calculation in
the Appendix. The main result is that Ii can be written as a
sum of two parts, one coming from the acoustic modes of the
system and one from the optical modes. We note that the mode
frequencies for the acoustic and optical bands are respectively
given by ω2

− = (1/mamb)[1 − φ(q)], ω2
+ = (1/mamb)[1 +

φ(q)], where φ(q) = [1 − 2mamb(1 − cos q)]1/2, 0 � q � π .
The various expressions depend on whether N is even or odd
and for these two cases corresponding to superscript E,O

respectively, we get the following:

Case (1) N = 2L, L → ∞:

T E
o = T + �T

[∫ π

0
dq

γLma

2πφ(q)

(mbω
2
+ − 2)2 + 4γ 2

Rω2
+cos2(q/2)

|2(γL + γR) − (maγR + mbγL)ω2+|(1 + γLγRω2+)

+
∫ π

0
dq

γLma

2πφ(q)

(mbω
2
− − 2)2 + 4γ 2

Rω2
−cos2(q/2)

|2(γL + γR) − (maγR + mbγL)ω2−|(1 + γLγRω2−)
− 1

2

]
,

T E
e = T + �T

[∫ π

0
dq

γLmb

2πφ(q)

4cos2(q/2) + γ 2
Rω2

+(maω
2
+ − 2)2

|2(γL + γR) − (maγR + mbγL)ω2+|(1 + γLγRω2+)

+
∫ π

0
dq

γLmb

2πφ(q)

4cos2(q/2) + γ 2
Rω2

−(maω
2
− − 2)2

|2(γL + γR) − (maγR + mbγL)ω2−|(1 + γLγRω2−)
− 1

2

]
,

J E = �T

[∫ π

0
dq

γLγR

πφ(q)

sin2q

|2(γL + γR) − (maγR + mbγL)ω2+|(1 + γLγRω2+)

+
∫ π

0
dq

γLγR

πφ(q)

sin2q

|2(γL + γR) − (maγR + mbγL)ω2−|(1 + γLγRω2−)

]
, (11)

where the subscript o refers to odd sites and e to even sites.
Case (2) N = 2L + 1, L → ∞:

T O
o = T + �T

[∫ π

0
dq

γLma

2(γL + γR)πφ(q)

4cos2(q/2) + γ 2
Rω2

+(mbω
2
+ − 2)2

|(maω
2+ − 2) + γLγRω2+(mbω

2+ − 2)|

+
∫ π

0
dq

γLma

2(γL + γR)πφ(q)

4cos2(q/2) + γ 2
Rω2

−(mbω
2
− − 2)2

|(maω
2− − 2) + γLγRω2−(mbω

2− − 2)| − 1

2

]
,

T O
e = T + �T

[∫ π

0
dq

γLmb

2(γL + γR)πφ(q)

(maω
2
+ − 2)2 + 4γ 2

Rω2
+cos2(q/2)

|(maω
2+ − 2) + γLγRω2+(mbω

2+ − 2)|

+
∫ π

0
dq

γLmb

2(γL + γR)πφ(q)

(maω
2
− − 2)2 + 4γ 2

Rω2
−cos2(q/2)

|(maω
2− − 2) + γLγRω2−(mbω

2− − 2)| − 1

2

]
,

JO = �T

[∫ π

0
dq

γLγR

(γL + γR)πφ(q)

sin2q

|(maω
2+ − 2) + γLγRω2+(mbω

2+ − 2)|

+
∫ π

0
dq

γLγR

(γL + γR)πφ(q)

sin2q

|(maω
2− − 2) + γLγRω2−(mbω

2− − 2)|
]

. (12)
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FIG. 2. (Color online) Temperatures at odd and even sites for a
chain with even number of particles, plotted as a function of γ = γL =
γR , ma = 0.75,mb = 0.25,k = 1,TL = 1.5,TR = 0.5. We also plot
separately the contributions of the acoustic and optical modes to the
temperature at any site. The inset shows J and also the contributions
of the acoustic and optical modes.

We now present some numerical data for the two cases of
even N and odd N for various parameter sets. When γL = γR ,
the above integrals can be carried out exactly; see Eqs. (A13)–
(A17). In other cases, we evaluated the integrals numerically
(using MATHEMATICA).

Case (1) We consider chains with even N and set γL = γR =
γ . In Fig. 2 we plot the temperatures on the odd (T E

o ) and even
(T E

e ) sites, and also the current (JE in inset) as a function of
the parameter γ . We also separately plot the contributions of
the acoustic and optical modes to the temperatures and current.
We note the following features:

(i) Depending on the value of γ , either the heavier particles
(those on odd sites) or the lighter ones are hotter. At γ ≈ 0.41,
the temperatures at the odd and even sites are equal.

(ii) The temperature of the heavier particles gets its main
contribution from the acoustic modes while that of the lighter
particles comes mostly from the optical modes. The heat
current is mostly carried by the acoustic modes.

Case (2) We consider chains with odd N . In this case,
γL = γR becomes a very special case: The masses of the end
particles being equal, this condition implies symmetry between
the left and right reservoirs, and this leads to a uniform bulk
temperature equal to (TL + TR)/2. The more typical situation
is when the two couplings are different and we consider this
by setting γL = 1 and changing γR . In Fig. 3 we plot the
temperatures on the odd (T O

o ) and even (T O
e ) sites, and also

the current (JO in inset) as a function of the parameter γR .
We also separately plot the contributions of the acoustic and
optical modes to the temperatures and current. We note the
following features:

(i) Depending on the value of γR , either the heavier particles
(those on odd sites) or the lighter ones are hotter. At a special
value of γR = γL, the temperatures at the odd and even sites
are the same. They are both equal to the mean temperature
T = 1.
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FIG. 3. (Color online) Temperatures at odd and even sites for
a chain with odd number of particles, plotted as a function of γR

with γL = 1, ma = 0.75,mb = 0.25,k = 1,TL = 1.5,TR = 0.5. We
also plot separately the contributions of the acoustic and optical modes
to the temperature at any site. The inset shows the variation of heat
current with γR and also the contributions of the acoustic and optical
modes.

(ii) As for the even N case, here also we see that the
temperature of the heavier particles gets it main contribution
from the acoustic modes while that of the lighter particles
comes mostly from the optical modes. The heat current is
again mostly carried by the acoustic modes.

IV. SIMULATION RESULTS ON THE EFFECT OF NOISE
IN THE DYNAMICS

As discussed in the introduction, temperature oscillations
have been observed in anharmonic chains, where however
the oscillations decay with system size. This is expected
since anharmonicity leads to interactions between phonons
which helps to establish local thermal equilibrium. A simple
model which incorporates phonon-phonon interactions was
introduced in [19,20] where the deterministic dynamics of
the harmonic chain is stochastically perturbed. Here we have
carried out simulations with this noisy dynamics and looked
at its effect on the temperature profiles of the alternating mass
chain. There are two cases to consider:

(a) Momentum-conserving noise. Here, in addition to
the Hamiltonian dynamics without pinning, one introduces
random exchange of momentum between nearest neighbor
particles, which occurs with a rate λ. This conserves both
momentum and energy. In Figs. 4 and 5 we show the effect of
momentum-conserving noise on the temperature profiles for
chains of even and odd number of particles. In the even N case
we see that, on introducing noise, the size of the oscillations
has decreased and the phase of the oscillation on the left half
has changed sign. For the odd case, the choice of parameters
(γL = γR = 1) corresponds to a case with no oscillations when
λ = 0. On introducing noise, λ > 0, one gets oscillations very
similar to the even N case. We also see that the oscillation
amplitude becomes smaller upon increasing system size, for
both even and odd N cases.
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FIG. 4. (Color online) Temperature profiles with energy- and
momentum-conserving noisy dynamics for a harmonic chain with
even number of particles. Other parameters were taken to be ma =
0.5, mb = 1.5, γL = γR = 1.0 and TL = 2.0,TR = 1.0.

Thus we see that the temperature profile in this system
with energy-momentum-conserving noisy dynamics shows the
following qualitative features: (i) The oscillations decay as we
go into the bulk. (ii) There is a phase shift in the sign of the
oscillation amplitude as one crosses the center of the chain. The
lighter particles at the hot end are always hotter than the heavier
particles. At the cold end, the heavier particles are hotter. Thus
this is qualitatively different from the harmonic case. (iii) For
large N , the temperature profile is not sensitive to whether N

is even or odd. These same features have also been observed
earlier for the alternate mass FPU chain [16] which had a
quartic interparticle interaction potential (in addition to the
harmonic one). The FPU system has momentum conservation
and does not satisfy Fourier’s law as is also the case for the
system with noisy dynamics.

(b) Momentum-nonconserving case. When the noise only
conserves energy but not momentum, as can be obtained by
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FIG. 5. (Color online) Temperature profiles with energy- and
momentum-conserving noisy dynamics for a harmonic chain with an
odd number of particles. Other parameters were taken to be ma = 0.5,
mb = 1.5, γL = γR = 1.0 and TL = 2.0,TR = 1.0.
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FIG. 6. (Color online) Temperature profiles with only energy-
conserving noisy dynamics for a harmonic chain with even number
of particles. Other parameters were taken to be ma = 0.5, mb = 1.5,
γL = γR = 1.0 and TL = 2.0,TR = 1.0.

randomly reversing the velocity of the ith particle at rate λ,
then, as is seen in [21,22], the NESS for N → ∞ corresponds
to a local equilibrium state. This ensures that the Ti in the
bulk is the same for i odd or even independently of whether
N is even or odd. In Figs. 6 and 7, we show the effect of
addition of velocity flipping dynamics on the temperature
profile for harmonic chains with odd and even number of
particles. We observe that for the even case, the oscillations
in the temperature decreases considerably upon introducing
the noise, and this reduction is greater when N is larger. For
the odd case however, for small systems, introduction of noise
produces small oscillations in the temperature profile, but these
oscillations eventually decrease as the system size is increased.
For both even and odd total number of particles, the decay of
the oscillation amplitude with system size is faster than for
the momentum-conserving case and we quickly get a linear
temperature profile in the bulk of the system.
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FIG. 7. (Color online) Temperature profiles with only energy-
conserving noisy dynamics for a harmonic chain with an odd number
of particles. Other parameters were taken to be ma = 0.5, mb = 1.5,
γL = γR = 1.0 and TL = 2.0,TR = 1.0.
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V. DISCUSSION

In this paper we obtained exact expressions for the
temperature profile and the heat current in the alternate mass
chain connected to heat baths at different temperatures in the
limit of infinite system size. This proves rigorously that the
temperature oscillations of successive particles in the bulk
persist even in the thermodynamic limit.

We provided an understanding of these oscillations by
noting that in any given normal mode, the mean kinetic energy
of a particle depends on its mass. In an acoustic mode, the
heavier particles have higher mean kinetic energy than the
lighter ones, while in an optical mode, the lighter particles
have higher kinetic energy. Upon connecting the chain to
heat reservoirs each of the modes are excited to different
degrees, depending on the parameters. The kinetic energy of
a particle gets contributions from all the modes, both acoustic
and optical, and the net result depends on the distribution of
energy in the different modes. If both the baths have the same
temperature, we have an equilibrium steady state in which each
mode has the same average energy (equipartition). In this case
the temperatures at all sites are equal. The same is true locally
when the system is in local equilibrium.

The situation is different in the nonequilibrium case
where we do not have local equilibrium and there is no
equipartition of energy between the different modes. We then
expect generically that the mean kinetic energy (temperatures)
obtained by adding the contributions of all modes will depend
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FIG. 8. (Color online) Simulation results for temperature profile
for a two-dimensional N × W strip of harmonically coupled particles
with a periodic arrangement of masses. The sites on the strip are
labeled (i,j ) with i = 1, . . . ,N and j = 1, . . . ,W . Particles at sites
with even i + j have mass ma and others have masses mb. Heat baths
are attached to all sites on the layers i = 1 (temperature TL) and i = N

(temperature TR). Periodic boundary conditions are imposed in the
transverse (j ) direction. Upper plot shows the average temperature
on successive layers for chains of lengths N = 32 and N = 64. There
are oscillations in the transverse direction also and this is shown in the
lower plot which shows the temperatures Ti,j on all sites of a section
of the N = 64 chain. Note that from symmetry we have Ti,j = Ti,j+2,
and this can be observed here. The width of the strips was taken to be
W = 4. The other parameters were taken to be ma = 0.6, mb = 1.4,
γL = γR = 1.0 and TL = 2.0,TR = 1.0.

on the mass of the particle. It is therefore not so surprising that
we get different kinetic energies for the different masses. From
the above explanation we expect that temperature oscillations
should also occur in higher dimensional periodic harmonic
systems. Simulation results for two-dimensional strips (see
Fig. 8) suggest that this is the case, but more extensive studies
are necessary to establish the role of dimensionality.

As already noted there will be no oscillations in the bulk
if the NESS is in local thermal equilibrium. To achieve this
one introduces interactions between the phonons. Interactions
between phonons can be introduced for example by adding
stochasticity in the dynamics and we studied this case
numerically. We find that in this case the oscillations are
qualitatively different from the purely harmonic case and do
not survive in the limit of large system size.
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APPENDIX: DETAILS OF CALCULATION

Here we give more details of the derivation for the
temperature profile and the current. We basically need to
evaluate the integral

Ii = miγL

π

∫ ∞

−∞
dωω2|G+

i1(ω)|2, (A1)

where G+ = [−Mω2 + � − ıω�]−1. We consider the case
with k = 1. Let us define �l,m as the determinant of the
submatrix of [−Mω2 + � − iω�] that starts from the lth
row and column and ends in the mth row and column. We
also define Dl,m as the determinant of the submatrix of
[−M2 + �] starting from the lth row and column and ending
in the mth row and column. In terms of these one has

G+
l,1() = �l+1,N

�1,N

,G+
l,N (ω) = �1,l−1

�1,N

, (A2)

with

�1,l−1 = D1,l−1 − iωγLD2,l−1,

�l+1,N = Dl+1,N − iωγRDl+1,N−1,

�1,N = D1,N − ıω(γRD1,N−1 + γLD2,N )

−ω2γLγRD2,N−1. (A3)

Let us now define f (l) = D1,2l and g(l) = D1,2l−1. These
satisfy the recursion relation,[

f (l)

g(l)

]
= B

[
f (l − 1)

g(l − 1)

]
,

where

B =
[

(2 − maω
2)(2 − mbω

2) − 1 −(2 − mbω
2)

(2 − maω
2) −1

]
,
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with the initial condition f (0) = 1 and g(0) = 0. Hence we
get

[
f (l)

g(l)

]
= Bl

[
1

0

]
. (A4)

The matrix B has unit determinant and can be expressed in
terms of the Pauli spin matrices 
σ as follows:

B = cos q1 + ı 
σ · 
n sin q = eı 
σ ·
nq,

where

cos q = Tr
B
2

= (2 − maω
2)(2 − mbω

2) − 2

2
, (A5)

and 
n is a three-dimensional unit vector. Hence we get

Bl = = eı 
σ ·
nlq = cos(lq)1 + sin(lq)
B − cos q1

sin q
. (A6)

Combining Eq. (A6) and Eq. (A4) we have

f (l) = sin(l + 1/2)q

sin(q/2)
, (A7)

g(l) = sin(lq)

sin q
(2 − maω

2). (A8)

Note that for odd-dimensional matrices with the first mass
equal to mb, the determinant would be given by Eq. (A8) with
ma replaced by mb. Using these expressions in Eqs. (A2) and
(A3), we then get the following forms for the integrals Ii ,
depending on whether N is even or odd.

Case (1) Even N :

Iodd i = 2maγL

π

∫ ∞

0
dωω2

sin2[(N−i+1)q/2]
sin2 q

(2 − mbω
2)2 + γ 2

Rω2 sin2[(N−i)q/2]
sin2(q/2)

|�1,N |2 ,

Ieven i = 2mlγL

π

∫ ∞

0
dωω2

sin2[(N−i+1)q/2]
sin2(q/2) + γ 2

Rω2 sin2[(N−i)q/2]
sin2 q

(2 − maω
2)2

|�1,N |2 , IN = 2γLma

π

∫ ∞

0
dω

ω2

|�1,N |2 , (A9)

where

�1,N =
[

sin (N+1)q
2

sin(q/2)
− γLγRω2 sin (N−1)q

2

sin(q/2)

]
+ ıω

[
γL(2 − mbω

2) + γR(2 − maω
2)

] sin(Nq/2)

sin q
.

Case (2) Odd N :

Iodd i = 2maγL

π

∫ ∞

0
dωω2

sin2[(N−i+1)q/2]
sin2(q/2) + γ 2

Rω2(2 − mbω
2)2 sin2[(N−i)q/2]

sin2(q)

|�1,N |2 ,

Ieven i = 2mlγL

π

∫ ∞

0
dωω2

(2 − maω
2)2 sin2[(N−i+1)q/2]

sin2 q) + γ 2
Rω2 sin2[(N−i)q/2]

sin2(q/2)

|�1,N |2 , IN = 2γLma

π

∫ ∞

0
dω

ω2

|�1,N |2 , (A10)

where

�1,N =
[

(2 − maω
2)

sin (N+1)q
2

sin q
− γLγRω2(2 − mbω

2)
sin (N−1)q

2

sin q

]
+ ıω(γL + γR)

sin(Nq/2)

sin q
.

We now consider points in the bulk such that x = i/N and
(N − i)/N remain finite in the N → ∞ limit. We now note
that, for real values of 0 < q < π , Eq. (A5) has two allowed
solutions for ω, namely:

ω2
− = 1

mamb

[1 − φ(q)],

ω2
+ = 1

mamb

[1 + φ(q)],

where

φ(q) = [1 − 2mamb(1 − cos q)]1/2, 0 � q � π.

These correspond to the frequencies in the acoustic and
optical branches of the lattice with the frequency ranges
0 < ω− <

√
2/M and

√
2/m < ω+ <

√
2/(mM), where m

(M) is the smaller (larger) of the two masses. For frequencies
outside these ranges, Eq. (A5) gives imaginary values of q.
This means that for these frequencies, terms such as sin Nxq

grow exponentially with N . Hence it is clear that in the
limit N → ∞, the integrals in Eqs. (A9) and (A10) only
get contributions from frequencies in the acoustic and optical
bands. Thus for each of the integrals above, we get

∫ ∞

0
dωF (ω) =

∫ √
2/M

0
dω−F (ω−) +

∫ √
2/(mM)

√
2/m

dω+F (ω+)

=
∫ π

0
dq

∣∣∣∣dω−
dq

∣∣∣∣ − F (ω−(q))

+
∫ π

0
dq

∣∣∣∣dω+
dq

∣∣∣∣F (ω+(q)).
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We now note from Eqs. (A9) and (A10) that the required
integrands F (ω) have factors of the form sin2(Nxq) in the
numerators and �1,N in the denominators. In the limit N → ∞
the factors sin2(Nxq) in the numerators can be replaced by
1/2. Next we note that the determinant �1,N always has the

form

�1,N = A(q) sin(Nq) + B(q) cos(Nq), (A11)

where A and B are smooth complex-valued functions. We now
obtain the following result for any function g(θ,φ) which is

periodic in both variables:

lim
N

→ ∞
∫ π

0
dθg(θ,Nθ ) = lim

N→∞
1

N

∫ 2π(N/2)

0
dφg

(
φ

N
,φ

)

= lim
N→∞

1

N

i=(N/2)∑
i=1

∫ 2πi

2π(i−1)
dφg

(
φ

N
,φ

)
= lim

N→∞
1

N

i=(N/2)∑
i=1

∫ 2π

0
dψg

(
2π (i − 1) + ψ

N
,ψ

)

= lim
N→∞

i=(N/2)∑
i=1

1

N

∫ 2π

0
dψg

(
2π (i − 1)

N
,ψ

)
= 1

2π

∫ π

0
dθ

∫ 2π

0
dψg(θ,ψ).

Using this we obtain∫ π

0
dq

C(q)

|A(q) sin(Nq) + B(q) cos(Nq)|2 =
∫ π

0
C(q)dq

1

2π

∫ 2π

0
dψ

1

|A(q) sin ψ + B(q) cos ψ |2

=
∫ π

0
dq

C(q)

|A(q)B∗(q) − A∗(q)B(q)| . (A12)

Using this we get the asymptotic forms of the various integrals in Eqs. (A9) and (A10), and these lead to the results given in
Eqs. (11) and (12). When γL = γR = γ , we can explicitly carry out the integrals appearing in these expressions and we get the
following results.

Case (1) Even N :

Iodd = mb

2

2(1 + β) + (δ2 + 2δ)2β + 2 β2

1+2βμ
δ2(δ + 1)2

√
2β + 1

√
1 + 2β + 2β2μ

− 4
ma

1 + 2βμ

⎛
⎝

√
1 + 2β + 2β2μ

1 + 2β
− 1

⎞
⎠

+ mb

2

|δ|(δ + 1)2

μ(1 + 2βμ)
√

1 + δ2
+ ma

2βμ

1 + 2βμ

(
1 − |δ|√

1 + δ2

)
, (A13)

Ieven = ma

⎛
⎝1 +

−(1 + β) + β(2δ − δ2) − δ2(1 − δ)2 β2

1+2βμ√
1 + 2β

√
1 + 2β + 2β2μ

+ β
|δ|(1 − δ)2

√
1 + δ2(1 + 2βμ)

⎞
⎠

+ mb

1 + 2βμ

(
− |δ|√

1 + δ2
+

√
1 + 2β + 2β2μ√

1 + 2β

)
, (A14)

JE = �T
γ

β2μ(1 + 4γ 2)
[2β + 1 + 2β2μ(1 + δ2 − |δ|

√
1 + δ2) −

√
(2β + 1)(2β + 1 + 2β2μ)], (A15)

where μ = 2mamb, δ = ma − mb, β = γ 2/(mamb).
Case (2) Odd N :

Iodd = Ieven = 1
2 , (A16)

JO = �T
γB

G2

(
1 −

√
(F + H )2 − G2 +

√
(F − H )2 − G2

2F

)
, (A17)

where

F = B

2C
(B2 − 4AC)1/2, G = Cμ, H = B2

2C
− C(1 − μ) − A

and

A = δ

mb

− δβ

ma

, B = 1

mb

+ 2mbβ

ma

, C = β

ma

.
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