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Biopolymer elasticity: Mechanics and thermal fluctuations
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We present an analytical study of the role of thermal fluctuations in shaping molecular elastic properties
of semiflexible polymers. Our study interpolates between mechanics and statistical mechanics in a controlled
way and shows how thermal fluctuations modify the elastic properties of biopolymers. We present a study
of the minimum-energy configurations with explicit expressions for their energy and writhe and plots of the
extension versus link for these configurations and a study of fluctuations around the local minima of energy
and approximate analytical formulas for the free energy of stretched twisted polymers. The central result of our
study is a closed-form expression for the leading thermal fluctuation correction to the free energy around the
nonperturbative writhing family solution for the configuration of a biopolymer. From the derived formulas, the
predictions of the wormlike chain model for molecular elasticity can be worked out for a comparison against
numerical simulations and experiments.
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I. INTRODUCTION

In recent years, the theoretical study of the elasticity
of semiflexible polymers has emerged as an active area of
research. These studies are motivated by micromanipulation
experiments [1–3] on biopolymers in which single molecules
are stretched and twisted to measure elastic properties. These
experiments are designed to help in the understanding of the
role of semiflexible polymer elasticity in the packaging of these
polymers in a cell nucleus. Twist elasticity plays an important
role in several biological functions. DNA, a long molecule
(between micrometers and meters in length) that carries the
genetic code, is neatly packed into the tiny cell nucleus,
just a few micrometers across. The first step in packaging
DNA in a cell nucleus involves the DNA-histone association,
which makes use of supercoiling in an essential way. The
process of DNA transcription can generate and be regulated
by supercoiling [4].

The single-molecule experiments have been analyzed the-
oretically using the popular wormlike chain (WLC) model,
which gives an excellent understanding of the bending elastic
properties of DNA [5]. When the twist degree of freedom
is explored by rotationally constraining the molecule the
theoretical analysis gets complicated by subtle topological and
differential geometric issues [6–9]. In a previous work [10]
we treated these subtleties in the language of differential
geometry and topology. Our present study builds on earlier
mechanics-based research in this area [3,11–13] and goes on
to incorporate the effects of thermal fluctuations in a quadratic
approximation. We evaluate the partition function and present
an explicit analytical form that can be compared against
measured elastic properties or numerical simulations [14].

Two parallel streams of research have evolved in the
study of semiflexible polymer elasticity. Some researchers use
classical elasticity, which is conceptually simple but ignores
thermal fluctuations that are important to the problem. Others
use a statistical-mechanics approach that properly takes into
account thermal fluctuations and entropic effects. This latter
approach is beset by the geometrical and topological subtleties
we alluded to earlier. In the real biological context of a

cellular environment, these polymers are constantly jiggled
around by thermal fluctuations and therefore a statistical-
mechanics approach is necessary. Biological processes involve
the entire range of flexibilities: Actin filaments, microtubules,
and short DNA strands are energy dominated, while long DNA
strands have appreciable entropy. The quantitative measure
of flexibility is L/LP , where L is the contour length of the
polymer and LP is its persistence length (16 μm for actin
and 50 nm for DNA). In the energy-dominated short-polymer
regime classical elasticity gives a fair understanding of the
problem. In the absence of external forces and torques, long
polymers require a statistical-mechanics treatment since the
entropic contribution is not small. In this paper we consider
polymers subject to a stretching force and torque and develop
a theory of thermal fluctuations around the minimum-energy
configurations. These minimum-energy configurations come
in two families, the straight line family (SLF) and the writhing
family (WF). The present paper relies on a key result proved in
Ref. [15] that these minimum-energy configurations meet the
conditions of Fuller’s theorem [16,17]. This permits us to use
a simplified local treatment of the writhe in our study of fluctu-
ations about the minimum. We first present a treatment based
on classical elasticity and then incorporate thermal fluctuations
around the minimum-energy configurations. Members of the
writhing family are far from straight and so our analysis goes
far beyond perturbation theory about the straight line. While
our general analysis applies to polymers of all lengths, some of
our analytical formulas are derived in the long-polymer limit.
Our treatment is analytical and complementary to numerical
studies [14,18,19].

Two extreme situations are relatively well understood. If
the polymer is nearly straight, one can use perturbation theory
[20–22] about the straight line to calculate its elastic properties.
In the opposite extreme when the polymer is wrung hard, it
buckles and forms plectonemic structures [16,17,23] that are
stabilized by the finite thickness of the DNA. The transitional
regime where the polymer is neither straight nor plectonemic
is not as easy. Perturbation theory about the straight line is
not applicable and we do not benefit from simplifications that
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arise from the energy-dominated plectonemic regime. More
specifically, let the stretching force F be 2kBT /LP or higher.
As we turn the bead to twist or wind up the molecule, it initially
remains approximately straight. At high links the polymer
buckles and winds around itself to form plectonemic structures.
The intermediate-link regime, in which the polymer is neither
straight nor plectonemic, is the subject of this paper. (These
three regimes of low links, intermediate links, and high links,
have also been referred to in Ref. [14] as straight-line, buckling,
and supercoiled regimes.) We will study the straight-line and
the writhing solutions and fluctuations around these solutions.

The central goal of this paper is to derive explicit analytic
expressions for the free energy and the writhe of a twisted
stretched polymer. Derivatives of the free-energy expressions
computed here connect to measurable quantities that can be
probed via single-molecule experiments or simulations. We
arrive at the free energies by focusing on the stationary points
of the energy functional dominating the partition function.
While there is interest in the elastic properties of DNA at all
length scales, the experiments [1,2,4] deal with long polymers,
many times the persistence length of about 50 nm. Many
theoretical treatments [14,24–26] also focus on this regime
of long polymers, which leads to some simplification.

In order to formulate the problem we start from an idealized
experiment. Let us imagine that a twist-storing semiflexible
polymer (such as dsDNA or filamentary actin) is attached to
a glass slide at one end and a bead at the other so that its
tangent vector at both ends is constrained to point in the ẑ

direction. Supposing the glass slide end to be at the origin, we
apply a force F and torque τ (both in the ẑ direction) on the
bead. The elastic response of the polymer can be described by
its extension z = �r · F̂ (the position of the bead) and its link
(the number of times the bead has turned about the ẑ axis).
Real experiments on DNA differ from the one described above
mainly in that they deal with long polymers and it is usually
the link rather than the torque that is held constant, though the
experiments [2,27] could easily be adapted by using a feedback
loop to maintain constant torque.

Actually, we will be interested in a wider class of thought
experiments of which the above is a particular realization.
We may, for instance, use more general boundary conditions,
fixing the tangent vector at the ends to t̂(0) = t̂i and t̂(L) = t̂f .
(The force is still along ẑ and the torque along t̂f .) As theorists,
we may also explore the entire range of flexibilities and
parameters, which are not practical in the currently accessible
regime. Our study is not restricted to long polymers, though
we will sometimes specialize to this case for simplicity. We
will also regard all our parameters (contour length, persistence
length, force, torque, temperature, elastic constants, and
boundary conditions) as tunable without worrying about how
this may be experimentally achieved. In the mechanical limit
our analysis reduces to the classical theory of beams and
cables. Our larger aim is a comprehensive understanding of the
entire range of parameters covering the range from beams and
cables to DNA. Thus we are not immediately concerned with
any one experiment, but a class of them. Detailed treatments of
actual experiments are contained in Refs. [3,23]. For example,
these treatments take into account the chiral nature of the DNA
molecule, which we ignore. We are more concerned here with
mathematically working out the predictions of the simplest

wormlike chain model rather than a detailed modeling of
specific experimental data. However, our focus is experimental
relevance and we calculate from the model quantities such as
link-extension relations, which are measured in laboratories.

The paper is organized as follows. Section II deals with the
mechanics of semiflexible polymers. We start by noting that the
problem of computing the partition function of a twist-storing
polymer separates into two parts, a simple Gaussian over the
twist and a harder problem involving the writhe. We derive
the Euler-Lagrange (EL) equations describing the minimum-
energy configurations. The solutions of the EL equations can
be expressed using elliptic integrals. Section III deals with the
role of thermal fluctuations. We perform the second variation
of the energy and explain the methods we use to compute
the thermal correction to the free energy due to fluctuations
about the classical solutions. This gives the main result of
our paper, an approximate expression for the free energy of
a stretched twisted polymer that takes into account thermal
fluctuations around nonperturbative solutions. We then suggest
calculational schemes (Sec. IV) for a more ambitious treatment
of thermal fluctuations. We end with some concluding remarks
in Sec. V.

II. MECHANICS

We model the twist-storing polymer by a ribbon [�x(s),êi(s)]
(i = 1,2,3), which is a framed1 space curve. Here �x(s)
describes the curve, t̂(s) = d �x

ds
is its tangent vector, and ei(s)

is the framing, with s the arclength parameter along the curve
ranging from 0 to L, the contour length of the curve. Since
one end is fixed at the origin, �x(0) = 0. The tangent vectors at
both ends t̂i = t̂(0) and t̂f = t̂(L) are fixed. A force �F = F ẑ

along the ẑ direction is applied at the free end at �x(L) and also
a torque τ is applied along the fixed end tangent vector t̂(L).
We suppose ê3 = t̂(s) and refer to ê1(s) as the ribbon vector
that describes the twisting of the polymer about its backbone.
Defining the angular velocity �� via

dêi

ds
= �� × êi , (1)

the body-fixed angular velocity components of �� are �i =
êi · ��. The expression for the energy of a configuration is

E0(C) =
∫ L

0

1
2

[
A

(
�2

1 + �2
2

) + C�2
3

]
ds − ∫ L

0
�F t̂ ds − 2πτL,

(2)

where L is the number of times the bead is turned around the
t̂f axis. The mathematical problem we face is to compute the
partition function

Z0(F,τ ) =
∑
C

exp −
(E0(C)

kBT

)
. (3)

In Eq. (3) the sum is over all allowed configurations of the
ribbons [10]. The ribbon can be closed with a fixed reference

1Note that we do not use Serret-Frenet framing, which is popular
in this field. Serret-Frenet framing becomes ill defined over locally
straight pieces of the curve.
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ribbon that goes a long way in the t̂f direction, makes a wide
circuit, and returns to the origin along the t̂i direction.2 In the
calculations below we will set both A and kBT equal to unity
and restore them when necessary.

We use the celebrated relation [28,29] decomposing the link
into a twist and writhe

L = T + WCW, (4)

where T = 2π
∫

�3(s)ds and WCW is the writhe. The writhe
is a nonlocal quantity defined on closed simple curves: Let
the arclength parameter s range over the entire length L0 of
the closed ribbon (real ribbon plus reference ribbon) and let
us consider the curve �x(s) to be a periodic function of s with
period L0. Let �R(s,σ ) = �x(s + σ ) − �x(s). The Călugăreanu-
White writhe is given by [16,17,28–30]

WCW = 1

4π

∮ L0

0
ds

∫ L0−

0+
dσ

(
dR̂(s,σ )

ds
× dR̂(s,σ )

dσ

)
· R̂.

(5)

Because of White’s theorem (4), we find that the problem
neatly splits [10,16,20] into two parts

Z0(F,τ ) = Z1(F,τ )Z2(τ ), (6)

where

Z1(F,τ ) =
∫

D[�x(s)]exp − [E1[�x(s)] (7)

and

E1[�x(s)] =
∫ L

0
ds

1

2

dt̂

ds
· dt̂

ds
−

∫ L

0

�F · t̂ds − 2πτWCW.

(8)

The term Z2(τ ) is given by a Boltzmann sum over framings
with E2 given by

E2(τ ) =
∫

ds

(
C

2
�2

3 − τ2πT
)

. (9)

Further, Z2(τ ) is easily evaluated as a Gaussian integral and
gives

Z2(τ ) = exp

(
τ 2L

2C

)
= exp[−G2(τ )]. (10)

Thus the problem that remains is to compute Z1(F,τ ) [Eq. (7)],
which depends only on the curve �x(s) and not its framing.

This problem is hard because of the appearance of the
writhe WCW[�x(s)], which is a nonlocal function of the curve.
However, we will make progress by noting that variations of
the writhe are local [10,15]. We will compute the partition
function using the assumption that for high stretch forces, the
sum over curves is dominated by configurations near minima of
the energy. The approximation consists of using an expansion
of the energy about the minimum-energy configuration and
keeping fluctuation terms about the minimum to quadratic
order. This section deals with the minimum of energy and

2The reference ribbon is supposed to be nowhere self-intersecting
or south pointing [10]. Thus we also suppose t̂i ,t̂f �= −ẑ.

the following one with fluctuations. We thus derive explicit
analytical expressions for the Gibbs free energy of the polymer
G(F,τ ), which can be used to compute its elastic response.

Theoretically, it is easiest to deal with the constant torque
ensemble. In the quadratic approximation, the conjugate
ensembles are equivalent [31–34] even for polymers of finite
length. This equivalence of ensembles holds exactly for long
polymers since these are at the thermodynamic limit. (See,
however, the remarks below concerning stability in different
ensembles.)

In this section we ignore thermal fluctuations and consider a
purely classical-mechanics analysis to study the configurations
of a torsionally constrained stretched semiflexible biopolymer
such as DNA. The classical problem of the torsional buckling
of a bent and twisted closed wire was considered early on by
Michell [6]. In the modern context of DNA, it was discussed
by Benham [7,8] and Le Bret [9]. The problem also arises
in the laying of oceanic cables and the writhing solutions
we deal with in this paper were earlier discussed by Coyne
[35]. A detailed treatment has also been given by Nizette and
Goriely [36]. More recent treatments exist in the literature [11–
13,16,37,38]. We will present a slightly different perspective,
based on analogies with classical mechanics, which helps us
incorporate thermal fluctuations.

The central quantity of interest is the bending, stretching,
and writhing energy

E(C) = 1

2

∫ L

0

˙̂t · ˙̂t ds −
∫ L

0

�F · t̂ ds − 2πτWCW (11)

of a space curve �x(s) whose tangent vector is t̂(s) = d �x
ds

. The
tangent vector is varied subject to the boundary conditions
t̂(0) = t̂i and t̂(L) = t̂f fixing the tangent vector at both ends
of the curve. Remembering that the variations of writhe are
local [10,15], we arrive at the Euler-Lagrange equations [see
Eq. (36) below] from Eq. (11):

−¨̂t − �F = τ (t̂ × ˙̂t) − γ t̂, (12)

where the term γ t̂ arises since t̂ · t̂ = 1. The problem is
formally similar to a symmetric top, a fact that was well
known to Kirchoff. The analogy is useful for integrating the
Euler-Lagrange equations. We use quotes for the analogous
top quantities. The “kinetic energy” is given by T = 1

2
˙̂t · ˙̂t and

the “potential energy” is V = �F · t̂ . The total “energy”

H = T + V = 1
2
˙̂t · ˙̂t + �F · t̂ = 1

2 (θ̇2 + sin2 θϕ̇2) + F cosθ

(13)

is a constant of the motion as is the z component of the “angular
momentum”

Jz = (t × ˙̂t)z − τ t̂z = sin2θϕ̇ − τ cosθ, (14)

where we have introduced the usual polar coordinates on
the sphere of tangent vectors. Using these “constants of the
motion,” we reduce the problem to quadratures as described in
Ref. [39]. The basic equations are

θ̇2

2
= H − F cosθ − (Jz + τ cos θ )2

2 sin2θ
, (15)

ϕ̇ = Jz + τ cos θ

sin2θ
. (16)
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Setting u = cosθ , we find that

u̇ = εf (u), (17)

where f (u) = √
P(u), ε = ±1, and

P(u) ≡ 2(H − Fu)(1 − u2) − (Jz + τu)2 (18)

is a cubic polynomial in u. Integration of Eq. (17) gives
u(s) in terms of elliptic integrals and Eq. (16) gives ϕ(s).
Further integration of the tangent vector gives us the polymer
configuration �x(s) in real space. Since our polymer is under
stretch, we assume that F is positive. The term P(u) is positive
for large positive u and negative (or zero) at u = 1 and −1. In
order for there to be a physical solution there must be two real
roots b and c (turning points) in the physical range of u = cosθ ,
−1 � c � b � 1, and a third real root a � 1. We have ordered
the three roots so that a � b � c. The boundary data must lie
between c and b, with c � ui,uf � b. The “motion” goes from
ui to uf , possibly passing through turning points on its way.

The integration constants H and Jz are determined by the
length of the polymer and the boundary conditions. From
Hamilton-Jacobi theory we can write the energy of the solution
of length L going from ui,ϕi to uf ,ϕf as

E(ui,uf ,ϕi,ϕf ,L) =
∫ uf

ui

du f (u) − HL + Jz
, (19)

where L and 
 = ϕf − ϕi , given by

L =
∫ uf

ui

du

f (u)
(20)

and


 =
∫ uf

ui

du

f (u)
h(u), (21)

determine H and Jz and h(u) = (Jz + τu)/(1 − u2). These
integrations must include turning points if there are any. For
instance, if u goes from ui to uf via c,

∫ uf

ui
= ∫ ui

c
+ ∫ uf

c
,

allowing for sign changes in the integrand (17). We will use
these relations below in computing the fluctuation determinant
in the following section.

A. Symmetric boundary conditions

As an illustrative example, we specialize to boundary
conditions t̂i = t̂f = ẑ. These boundary conditions imply that
θ = 0 is a point on the solution. Since θ̇2 has to be finite and
non-negative at θ = 0, we have Jz = −τ and H � F . The
form of P(u) simplifies to

P(u) = (1 − u)[2(H − Fu)(1 + u) − τ 2(1 − u)]

and Eq. (16) reduces to

ϕ̇ = − τ

1 + u
. (22)

We want to find the minimum-energy configurations subject
to the writhe constraint. These configurations satisfy the
Euler-Lagrange equations. The simplest solution is the straight
line t̂(s) = ẑ or θ (s) = 0 for all s. This configuration globally
minimizes E(C),

EST = −FL, (23)

FIG. 1. (Color online) Typical polymer configurations solving
the Euler-Lagrange equations. From left to right the parameters
link, twist, and writhe (L,T ,W) are the untwisted straight line
(0,0,0), the twisted straight line (3.4,3.4,0), and the writhing solution
(3.6,3.4,0.2). The tube represents the polymer backbone and the black
line represents the twisting of the ribbon vector about the backbone.

but since WCW = 0, it cannot accommodate writhe. For this
we need the writhing solution, in which the tangent vector t̂

starts from ẑ at s = 0 and θ increases to a maximum of θ0

at s = s0, the turning point, and then returns to ẑ at s = 2s0.
The period of the orbit is P = 2s0. As shown in Ref. [15],
the configuration is a local minimum of the energy only if the
length L of the polymer is equal to P (and not a multiple of it).
We illustrate polymer configurations for the untwisted straight
line, the twisted straight line, and the writhing family (Fig. 1).

It has been shown earlier [15] that the local minima of the
energy are “good curves” [24], i.e., they satisfy the conditions
of Fuller’s [16,17] theorem, and so the writhe can be computed
from a simple local formula3

WCW =
∫ uf

ui

du(1 − u)h(u)

f (u)
. (24)

Below we will sometimes drop the subscript on WCW; it is
understood that we deal only with good curves.

B. Long polymers

One gets further simplification by confining to the limit of
long polymers. In this limit the “period” P = L → ∞. As
a result, the doubly periodic functions that appear for finite
L become simple trigonometric functions (since one of the
periods tends to infinity). We will briefly restrict our attention
to infinitely long polymers in this section to arrive at an explicit
analytical form for the writhing family of solitons. To reach this
limit, the length (20) must diverge. For H > F , the function
P(u) = f 2(u) vanishes linearly as u → 1. The corresponding
integral converges and does not lead to L → ∞. Thus we
must require that P(u) vanishes quadratically as u → 1 so
that

∫ 1
u0

du
f (u) diverges logarithmically at the upper limit. This

situation obtains if P(u) has coincident roots at the upper

3As a side remark we mention that our approach is guided by
geometric phase ideas [40–43].
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limit. Now, demanding that P(u)
(1−u) vanishes as we take u → 1 in

Eq. (17) gives us the condition H = F . Thus the form of P(u)
simplifies to

P(u) = (1 − u)2[2F (1 + u) − τ 2].

The turning points of u are at umax = 1 and umin = u0, where

u0 = τ 2

2F
− 1.

The solutions are found by elementary integration [11,44]

u(s) = (1 − u0)tanh2μ(s − s0) + u0, (25)

ϕ(s) = −τ (s − s0)

2
− arctan

(
2μ

τ
tanhμ(s − s0)

)
, (26)

where μ2 = F − τ 2/4. The energy of the writhing family
parametrized by F, τ , and L is given by

EW = −FL + 8μ tanh
μL

2
− 2πτWCW(τ ). (27)

Since we have already established [15] that the writhing
family consists of good curves [24] we may compute the
writhe using the simpler Fuller formula WF , which (apart
from normalization) measures the solid angle swept out by
the unique shorter geodesic connecting the tangent vector
to the north pole. We find by a straightforward calculation that
the writhe of the writhing family is

WCW = WF = 2 sgn[τ ]

π
arctan

(
2μ

|τ | tanh
μL

2

)
, (28)

in agreement with Ref. [3]. Including the twist energy (10)
−τ 2L/2C, the Gibbs free energy GW (F,τ ) of the writhing
family in the mechanics approximation is

Gcl
W (F,τ ) = −FL + 8μ tanh

(
μL

2

)
− 2πτWCW(F,τ )

−Lτ 2/2C, (29)

where WCW is given by Eq. (28). Correspondingly, the Gibbs
free energy G(F,τ ) of the straight-line family in the mechanics
approximation is

Gcl
SL(F,τ ) = −FL − Lτ 2

2C
. (30)

These two Gibbs free energies are plotted in Fig. 2 as functions
of τ for a fixed force. In our expressions (28) and (29)
for the energy and writhe of the writhing family, we have
retained expressions like tanh(μL/2), which become 1 in the
long-polymer limit provided μ is not small [11]. If one drops
these expressions our energy difference coincides with that in
Refs. [11,13] after correcting for an overall factor (

√
F/2).

[Reference [13] also contains misprints in Eqs. (13) and (16).]
The writhing family always has a higher energy [11] than

the straight-line family for fixed force and torque. However,
this difference is not extensive in the length L and remains
finite as L → ∞. The energy difference at zero torque is
8
√

FA. At higher torques (see Fig. 1) this energy difference
narrows and disappears at the buckling torque (

√
4FA, for

long polymers). At the buckling torque, the writhing solution

FIG. 2. (Color online) Gibbs free energies G(F,τ ) (from a purely
mechanical approach) of the writhing family (thick red curve) and
the straight-line family (thin blue line) plotted against torque τ for
L = 10, F = 2, and twist elastic constant C = 1.4. The parameters
A, kBT , and LP are set equal to 1. Note that the writhing family has
higher energy and that this difference narrows as one nears buckling.

merges with the straight line and there are no classical solutions
beyond this torque.

The writhing family becomes relevant when there is a
need to accommodate writhe. As one can see by toying with
a tube, applying a link to the ends of the tube results in
deformations that cause the tube to deviate considerably from
the straight line. If one applies a fixed link to the tube, the elastic
response of the tube depends on C, the twist elastic constant. In
Fig. 3 we plot the relative extension ξ = z/L versus a link for
a fixed force for large and small values of C. If C is large
(Fig. 3), there is a critical link above which the SLF ceases to
exist. The WF is then the only solution to the mechanics prob-
lem. Further increasing the link causes the writhing family to
buckle into plectonemes. Thus the writhing family represents
the transition from the straight line to plectonemes. The figures
were generated by parametrically varying τ in equal steps
and using LISTPLOT in MATHEMATICA. The dotted regions in
Figs. 3–5 reveal discontinuous behavior.

For smaller values of C, the behavior is as shown in Fig. 4,
which plots the relative extension of the polymer versus link.
If one takes a straight ribbon and twists it, it remains straight

FIG. 3. (Color online) Relative extension ξ of the polymer versus
the applied link for the straight-line family (thin blue line) and the
writhing family (thick red line) for a stretching force of F = 2 (in
dimensionless units of kBT /LP ) and L = 10. This plot has a twist
elasticity C = 10 in dimensionless units. At high links the straight-
line family ceases to exist; only the writhing family can store writhe.
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FIG. 4. (Color online) Relative extension ξ of the polymer versus
applied link for the straight-line family (thin blue line) and the
writhing family (thick red line). This plot uses C = 1.4 and a
stretching force F = 2 and L = 10. Similar curves are seen in
simulations [14].

and acquires link, following the thin blue line in the figure.
At a critical torque, the straight line meets the writhing family
(thick red line in the figure) and becomes unstable; it then
follows the red line of the writhing family and buckles. This is
exactly the behavior seen in the simulations of Ref. [14]. See
the section of the curve from b0 to b1 in Fig. 2 of Ref. [14].
The rest of the curve in this figure of Ref. [14] is not relevant
to our analysis since it involves self-contact of the polymer
and goes beyond our analytic approach. A drop in extension
at buckling has also been seen in the experiments of Ref. [2].

III. FLUCTUATIONS

In a thermal environment, the polymer fluctuates around its
minimum-energy configuration. This contributes a fluctuation
term [45] to the partition function and gives a thermal
correction to the classical energy computed in the preceding
section. Interpretation of the experiments on DNA elasticity [4]
requires an inclusion of thermal effects. By taking appropriate
derivatives of the free energy computed here one can find
the theoretical predictions of the wormlike chain model for
the experimentally accessible extension versus link or torque
twist relations. (See Ref. [2] for experimental graphs of these.)

FIG. 5. (Color online) Relative extension ξ versus a link for a
fluctuating polymer for the straight-line family (thin blue line) and
the writhing family (thick red line). The inner curves correspond to
F = 2 and the outer ones to F = 15 for C = 2.

For a system with a finite number of degrees of freedom
qi (for i = 1, . . . ,N) with a potential V (q), the mechanical
energy in equilibrium is given by the value of the potential
V (q∗) at its minimum q∗ where

∂V |q∗ = 0, (31)

∂∂V |q∗ > 0, (32)

where we formally write the gradient of V as ∂V and the
Hessian matrix as ∂∂V . (The Hessian is positive at local
minima.) By performing a Gaussian integration, we find that
the free energy in the presence of thermal fluctuations is

F = V (q∗) + 1
2kBT ln det∂∂V |q∗. (33)

Our objective here is to present a calculation of the free energy
of twisted semiflexible polymers by considering fluctuations
about the mechanical solutions of the preceding section. At
fixed force and torque we have the minimum-energy classical
solution, which satisfies δEBS = 2πτδWCW, whereWCW is the
writhe and EBS is the bending and stretching energy. Formally,
what we wish to do is to expand the energy and writhe around
the classical configuration, retaining terms to quadratic order.
The quadratic integration is a functional Gaussian integration
that can then be performed and gives an answer in terms of the
determinant of the fluctuation operator. The problem reduces
to computing the determinant of the fluctuation operator.

Computing the functional determinant of the WLC polymer
involves some subtleties. If one evaluates the determinant as
an infinite product of eigenvalues, one finds that the product
does not converge and needs regularization. This is an artifact
of the fact that we have modeled the polymer as a space
curve (or ribbon), which has an infinite number of degrees
of freedom. Physically, we know that the polymer consists
of a finite number of atoms and has finite free energy. There
is a well-developed mathematical theory to deal with such
situations. Multiplicative (additive) constants can be dropped
in evaluating the partition function (free energy) and the
infinities do not affect physical predictions. Another subtlety
arises from zero modes of the classical solution. If the energy
functional (as well as boundary conditions) has continuous
symmetries that are broken by the classical solution, there are
Goldstone modes that cost no energy and have zero eigenvalue.
Such zero modes need separate handling. We will face both
these problems below.

Let us now consider a family of polymer configurations
parametrized by σ . The first variation of the energy is (where
a prime denotes the σ derivative)

E ′[t̂(s)] =
∫ L

0
(−¨̂t · t̂ ′ − �F · t̂ ′)ds (34)

and the first variation of the writhe is

W ′[t̂(s)] = 1

2π

∫ L

0
[t̂(s) × ˙̂t(s)] · t̂ ′(s)ds. (35)

The Euler-Lagrange equations read E ′ − 2πτW ′ = 0 or∫ L

0
{−¨̂t − �F − τ [t̂(s) × ˙̂t(s)]} · t̂ ′ds = 0 (36)

for arbitrary t̂ ′ satisfying t̂ ′ · t̂ = 0.
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Now consider the second variation of the energy

E ′′[t̂(s)] =
∫ L

0

˙̂t · ˙̂t
′′ −

∫ L

0

�F · t̂ ′′ +
∫ L

0

˙̂t
′ · ˙̂t

′
ds (37)

and the writhe

W ′′[t̂(s)] = 1

2π

∫ L

0
(t̂ × ˙̂t) · t̂ ′′ ds + 1

2π

∫ L

0
[t̂(s) × ˙̂t

′
] · t̂ ′ds.

(38)

By computing E ′′ − 2πτW ′′ we find that the t̂ ′′ terms combine,
due to the Euler-Lagrange equations (12), to give γ

∫ L

0 t̂ ′ · t̂ ′ds.
(We use the identity t̂ · t̂ ′′ + t̂ ′ · t̂ ′ = 0.)

The form of the second variation functional is

E ′′ − 2πτW ′′ =
∫ L

0
{˙̂t ′ · ˙̂t

′ − τ [t̂cl(s) × ˙̂t
′
] · t̂ ′ + γcl(s)t̂ ′ · t̂ ′}ds.

(39)

This is a quadratic form in t̂ ′, which we assume is non-negative
[since we suppose that t̂cl(s) is a minimum of the energy, either
local or global]. The subscript on t̂cl(s) and γcl(s) indicates that
it is the classical solution about which we wish to compute
the determinant of this quadratic form. Varying t̂ ′ to find the
fluctuation operator (analogous to ∂∂V above), we find the
eigenvalue equation [for t̂ ′ satisfying t̂cl · t̂ ′(s) = 0]

Ôt̂ ′ = −¨̂t
′ − τ t̂cl × ˙̂t ′ + γcl t̂

′ = λt̂ ′, (40)

which gives us the spectrum of the fluctuation operator. If
we could find all the eigenvalues of Ô, we could compute its
determinant. While this works in special cases (such as for the
SLF) it not usually possible in general.

To compute the determinant of the fluctuation operator Ô,
we use a technique due to Gelfand and Yaglom (GY) [46,47].
This technique has been applied to the bend elasticity of
polymers under stretch by Kulić et al. [48,49] and under
compression by Emanuelet al. [50]. We consider the energy
(11) as a function of the boundary conditions at the end of the
polymer. (This is similar to considering the action in classical
mechanics as a function of the end points in Hamilton-Jacobi
theory.) We consider classical solutions that go from t̂i at s = 0
to t̂f at s = L. Although our physical problem fixes t̂i and
t̂f , the calculational technique (from GY) requires that we
consider variations of the energy under such changes. The
result of GY is that the computation of an infinite-dimensional
functional determinant (the determinant of the operator Ô)
reduces to the computation of a finite-dimensional one, the van
Vleck determinant of semiclassical physics. The final answer
is expressed in terms of the variation of the classical energy
with respect to variations of the boundary conditions. Let
E(t̂i ,t̂f ,L) be the energy of the configuration of length L that
goes from t̂i to t̂f (where t̂i and t̂f are the small variations of the
boundary conditions about the actual boundary conditions in
our problem). The infinite-dimensional functional determinant
after regularization is reduced to the computation of a simple
finite-dimensional determinant

detÔ =
[

det
∂2E

∂t̂ i∂ t̂f

]−1

(41)

evaluated at the physical boundary data. From Hamilton-
Jacobi theory we can write the quantity in square brackets

in Eq. (41) as

det
∂pα

f

∂t
β

i

, (42)

where pα
f is the “final momentum” �p(L) of the classical

configuration of length L that reaches t̂f from t̂i .
The method of GY is used in many fields of physics (see,

for example, Ref. [51]) for computing van Vleck determinants
(fluctuation determinants). Reference [50] contains an appli-
cation of the technique to polymer physics in which it is used to
compute the thermal corrections to Euler buckling of polymers
under compression. Our present application is to stretched and
twisted polymers. The great advantage of GY’s technique is
that one does not have to diagonalize the fluctuation operator
Ô to compute its determinant. All one has to do is study the
linearized Euler-Lagrange equations.

We saw in the preceding section that the minima of the
energy come in two families, the straight-line family and the
writhing family. Since GY’s technique may not be familiar
to many readers, we illustrate its use by applying it to a
case where the answer is known, the straight-line family. We
calculate the fluctuation determinant by two methods, first
explicitly diagonalizing the fluctuation operator and then by
GY’s technique. We then apply GY’s idea to the writhing
family to obtain our results.

A. Straight-line family

For the straightline family, t̂cl(s) = ẑ (for any F,τ ). As
is well known [11,20], there is a range of (F,τ ) [τ < τc =√

4F + (π
L

)2] for which the straight-line family is stable
against perturbations. The eigenvalue equation (40) reads

−¨̂t
′ − τ (ẑ × ˙̂t

′
) + F t̂ ′ = λt̂ ′, (43)

where t̂ ′ · ẑ = 0 The eigenvalues are easily worked
out and the thermal correction to the free energy is
computed. This involves regularizing a divergent sum
2kBT

∑∞
n=1 ln(μ2 + n2π2

L2 ), which can be done by stan-
dard methods. The final answer turns out to be detÔ =
(sinhμL/μ)2, which leads to the thermal correction to the
free energy

kBT ln

(
sinh Lμ

μ

)
, (44)

in agreement with Ref. [22].
This computation can also be performed by linearizing the

Euler-Lagrange equations about the straight line. After some
simple transformations, it reduces to the inverted oscillator (in
a magnetic field) and the solutions can be written in terms
of hyperbolic functions (unlike the trigonometric functions of
the usual oscillator). Varying the relations between final and
initial data, we easily find

δZ(L) = exp(−iτL/2)[(coshμL)δZ(0)

+μ−1(sinhμL)δP (0)], (45)

δP (L) = exp(−iτL/2)[μ(sinhμL)δZ(0)

+ (coshμL)δP (0)], (46)

041802-7



SUPURNA SINHA AND JOSEPH SAMUEL PHYSICAL REVIEW E 85, 041802 (2012)

where Z = t̂x + it̂y are complex coordinates in the tangent
plane at the north pole and P are the conjugate momenta.
Setting δZ(L) = 0 and solving for δP (L), performing the
differentiation (42) yields the determinant

detÔ =
(

det
∂P (L)

∂Z(0)

)−1

= (sinh μL/μ)2

as before. Computing kBT /2 ln det| ∂P (L)
∂Z(0) |2 gives us the same

answer as Eq. (44). This illustrates the efficacy of GY’s
technique in a familiar context.

B. Writhing family

For the writhing family, the eigenvalue equation (40) is
considerably more complicated [note the presence of the
functions t̂cl(s) and γcl(s)] and the eigenvalues and eigenvectors
are not available in closed form, but we can still use GY’s
method. The writhing family breaks the azimuthal symmetry
(rotation about the ẑ axis) that is present in the energy and the
boundary conditions. As a result, the solution has zero modes
that need careful handling. There are two routes open to us and
we briefly describe both of them. We can alter the boundary
conditions so that they break the azimuthal invariance. For
instance, we could make one of t̂i and t̂f not point along
the ẑ direction. The other route is to exploit the symmetry
of the rotational invariance and treat the azimuthal degrees
of freedom exactly. This leaves a one-dimensional problem
(θ or u), which we can treat either approximately or exactly,
depending on the desired degree of accuracy. We present the
main results of our analysis below.

C. Asymmetric boundary conditions

We suppose that one of ui,ϕi and uf ,ϕf , the initial and
final tangent vectors, is not in the ẑ direction. We make
a variation in the initial positions while holding the final
positions fixed. We are interested in the resultant variation
in the final momenta. To compute this, we proceed as follows,
exploiting the integrability of the system. We will keep the final
configuration (uf ,ϕf ) fixed and perform variations in (ui,ϕi),
the initial configuration, and look at the variations in 
, L, and
E . These are

δL = εiδui

f (ui)
+ ∂L

∂HδH + ∂L

∂Jz

δJz,

δ
 = εiδui

f (ui)
h(ui) + ∂


∂HδH + ∂


∂Jz

δJz, (47)

δE = εif (ui)δui + δJz
 + Jzδ
 − δHL − HδL.

The Jacobian of interest is Eq. (42), which can be expressed
as (writing pf for puf

and Jz for pϕf
)

∂(pf ,Jz)

∂(ui,ϕi)
= ∂(pf ,Jz)

∂(H,Jz)

∂(H,Jz)

∂(ui,ϕi)
.

From

εf δpf = δf (uf )/
(
1 − u2

f

) = δH
f (uf )

− h(uf )

f (uf )
δJz

we find(
δpf

δJz

)
=

(
εf

f (uf )
−h(uf )εf

f (uf )

0 1

)(
δH
δJz

)
= A

(
δH
δJz

)
, (48)

where A is a 2 × 2 matrix defined by Eq. (48). Setting δL = 0
and δ
 = δ(ϕ2 − ϕi) = −δϕi in Eq. (47) we find

D
(

δH
δJz

)
=

(
∂L
∂H

∂L
∂Jz

∂

∂H

∂

∂Jz

) (
δH
δJz

)
(49)

=
( −εi

f (ui )
0

−h(ui )εi

f (ui )
−1

) (
δui

δϕi

)
= C

(
δui

δϕi

)
, (50)

where the 2 × 2 matrices D and C are defined in Eq. (50).
From

(detÔ)−1 = det

(
∂pf

∂qi

)
, (51)

we finally arrive at

detÔ = (detA)−1(detD)(det C)−1

= f (ui)f (uf )detD (52)

= f (ui)f (uf )

(
∂L

∂H
∂


∂Jz

− ∂


∂H
∂L

∂Jz

)
εiεf , (53)

where D is the 2 × 2 matrix defined in Eq. (50). The final
answer for the total free energy including thermal corrections
is

GW (F,τ,kBT ) = Ecl + kBT

2
ln

[
εiεf f (ui)f (uf )

(
∂L

∂H
∂


∂Jz

− ∂


∂H
∂L

∂Jz

)]
. (54)

These derivatives are evaluated at constant ui,uf . While this
final answer may appear to be abstract, it is in fact quite
amenable to numerical methods. All the functions appearing
here [Eqs. (19)–(21)] can be expressed in terms of elliptic
integrals and numerically evaluated.

Although Eq. (54) is written for asymmetric boundary
conditions, the thermal correction to the free energy for long
polymers with symmetric boundary conditions can be teased
out of it since the free energy for long polymers is expected to
be independent of the boundary conditions. We take the limit
of ui → 1, which leads to f (ui) vanishing. In Eq. (54), of the
terms that multiply f (ui), we need to keep only those terms
that diverge as ui → 1. This results in a simple expression for
the leading correction to the free energy:

�GW = kBT Lμ = kBT L
√

F − τ 2/4. (55)

In Eq. (55) we have dropped lower-order terms that are not
extensive in L. Notice that the numerical value of the thermal
correction to the free energy is the same as for the straight line
family. This can be understood physically since for any finite
μ, most of the polymer is straight. We would not in general
expect the fluctuation energies of the SLF and WF to be equal
in short polymers. The expressions (53)–(55) contain the main
results of this study: an analytic calculation of the thermal
corrections to the free energy for the writhing family.
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Our main result expressing the fluctuation determinant
in simple terms sheds considerable light on the stability of
polymer configurations. Note that the determinant vanishes as
either ui or uf approaches a turning point. This signals the
appearance of null eigenvalues for the Hessian or fluctuation
operator (40). Such effects have been well studied in optics
and mechanics [52], where they reveal the appearance of
caustics, focusing, and conjugate points. If the polymer
configuration goes from ui to uf passing through turning
points, it is not stable against small perturbations. The Gibbs
free energy GW (τ,F ) can be lowered at constant torque by
such perturbations. At constant torque, such configurations
will decay to lower-energy configurations.

However, if one works in the corresponding Helmholtz
ensemble, at a constant link, which is how most experiments
are done, the allowed perturbations are also required to
maintain constant writhe (supposing for simplicity, C to be
infinite) and this instability disappears. However, if ui and uf

are separated by two turning points, there are two independent
perturbations, which lower the energy. Working to second
order in the perturbation, one of these lowers the writhe and
the other increases it. One can take a linear combination of
these two perturbations to maintain constant writhe. Such
configurations are unstable at both constant torque and a
constant link. Note that polymer configurations that extend for
more than a period P are therefore unstable to perturbations,
in accord with the findings of Ref. [15]. They are not local
minima of either the Helmholtz or Gibbs energy.

IV. TOWARDS STATISTICAL MECHANICS

Up to this point we have relied on the mechanical approach,
dealing with individual polymer configurations and consider-
ing small fluctuations around them. This has the advantage that
we know which individual configuration we are dealing with
and can show [15] that the dominant configurations admit a
local writhe formula. We now move toward a more statistical-
mechanics approach and integrate over configurations. In the
process we lose touch with individual configurations, but
we gain by getting a fuller treatment. From the mechanical
approach, we have gained confidence that the sum over
configurations is dominated by good curves that admit a local
writhe formula. Using this idea, we will now extrapolate to
more general situations where the thermal fluctuations are
appreciable and continue to use a local writhe formula. The
justification for this is given in Refs. [10,15].

Let us assume that the boundary conditions are azimuthally
symmetric and exploit the symmetry to treat the ϕ degrees
of freedom exactly by integrating them out. We reduce the
problem to a single variable θ (or u). In the process of
reduction the effective potential picks up an extra contribution
from the thermal fluctuations of the ϕ degrees of freedom.
As a result, the effective potential explicitly depends on the
temperature. The origin of this effect is that path integration in
general coordinates has subtleties coming from the measure,4

as pointed out by Edwards and Gulyaev [53]. These techniques

4This can also be seen by operator methods, where it emerges from
the need to make the reduced differential operator self-adjoint.

have been applied [54] to compute the quantum corrections
to soliton energies. Our calculation is mathematically similar
but physically different since we deal with thermal corrections
rather than quantum ones. Our treatment below closely follows
these earlier studies, with appropriate modifications. After
integrating out the ϕ degrees of freedom, the θ motion is
governed by an effective potential

Veff(θ ) = F cosθ − kBT

8LP

+ τ 2 (1 − cosθ )

1 + cosθ
− kBT

8LP sin2θ

(56)

and the earlier equation (17) is replaced by

u̇2 = PT (u) = [fT (u)]2 = 2

[(
H + kBT

8LP

)
− Fu

]
(1 − u2)

−τ 2(1 − u)2 + kBT

4LP

. (57)

Note the appearance of temperature-dependent terms in
Eqs. (56) and (57) emerging from thermal fluctuation cor-
rections. Note that u = 1 is no longer an allowed solution.
The straight line is destabilized by entropic effects. Indeed it
would be hard to distinguish between the SLF and the WF here
because we are no longer dealing with single configurations
but ensembles of them. However, we can continue to use a
local writhe formula for torques large enough that the turning
point c is positive. Such curves have tangent vectors entirely
in the northern hemisphere and are good curves.

We now treat the θ (or u) motion approximately by consid-
ering the configurations u(s) that satisfy the Euler-Lagrange
equations. One finds the classical contribution by evaluating
the energy on the “classical” solution. (“Classical” is in quotes
because it is a bit of a misnomer since the effective potential
includes contributions from thermal fluctuations.) The thermal
correction to the free energy can now be computed:

F(T ,F,τ ) = E“cl′′(T ,F,τ ) + kBT /2 ln

[
−4(H − F )

(
∂L

∂H

)]
.

(58)

In the first term in Eq. (58)E“cl′′ is computed using the thermally
corrected PT (u). In the second term, which is already of order
kBT , we have used the previous P(u) since the difference
is higher order in kBT . The term L is given in terms of H
by formula (20). These formulas involving elliptic integrals
are numerically tractable and can be used to work out the
predictions of the model.

V. CONCLUSION

We have analyzed the mechanics and fluctuations of
semiflexible polymers. Our central goal in this paper has been
to bridge the gap between mechanics and statistical mechanics
by taking into consideration thermal fluctuation effects to
quadratic order around mechanically stable configurations. To
summarize, our main results are an explicit characterization
of the mechanics of the writhing family, its energy, and
writhe and a study of fluctuations about these equilibrium
configurations and formulas that can be used to calculate
the thermal correction to the free energy. There have been
earlier studies of quadratic fluctuation effects in the context
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of stretched semiflexible polymers [48,49]. However, these
have been analyzed in the absence of a torsional constraint. In
contrast, we present a detailed analysis of quadratic fluctuation
effects on torsionally constrained biopolymers. In particular
we have presented explicit approximate analytic expressions
for the free energy [Eqs. (54) and (58)] of a semiflexible
polymer ribbon. A curious feature of the energy (and free
energy) of the writhing family is the cusp at τ = 0. On
differentiation this results in a discontinuity in the link between
positive and negative values of τ . The discontinuity is visible
in Fig. 3 (the gap in the thick red curve) and is also present in
simulations (see Fig. 2 of Ref. [14]).

We find that thermal fluctuations have a considerable effect
on the elastic properties of semiflexible polymers, as is clear
from a comparison of Figs. 3–5. Notice that in Figs. 3 and
4 the extension of the polymer (shown by the thin blue line)
is maximal, independent of the applied link. This situation
changes drastically when thermal fluctuations are incorporated
(see Fig. 5). The straight-line family no longer has maximal
extension (the thin blue line curves down). Thus the applied
link is stored entirely in the thermal fluctuations of the
molecule. The molecule has helical fluctuations and stores
writhe by preferentially writhing with one helicity. This is in

sharp contrast to the writhing solutions, which can store writhe
even without thermal fluctuations.

A mechanical treatment is expected to work well for short
polymers. For long polymers without applied force, the system
is entropy dominated and therefore our treatment does not
apply. For long polymers under a very high stretching force
(for example, the regime F ≈ 10 in Ref. [2] corresponding to
1 pN), the entropic fluctuations are tamed and a mechanical
approach is again possible. As the force is lowered, entropic
effects begin to gain importance. Our treatment considers
fluctuations about nonperturbative solutions of the writhing
family and therefore goes beyond perturbation theory about
the straight line. We expect this paper to generate interest
in the experimental and simulation community in testing our
predictions.
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[49] I. M. Kulić, H. Mohrbach, R. Thaokar, and H. Schiessel, Phys.

Rev. E 75, 011913 (2007).
[50] M. Emanuel, H. Mohrbach, M. Sayar, H. Schiessel, and I. M.
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